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MODELING TO GENERATE ALTERNATIVES: A PHILOSOPHICAL TWIST
Cleve Willis and Lisa Petraglia

Since the development of the simplex method some two score
years ago, analysts have emphasized computational efficiency.
Simplex solution involves moving about extreme points so as to
locate the optimum basis while examining relatively few corners
en route. Analysts have been proud to report having found the
"best" solution, and perhaps to comment on sensitivity. Théy
have most considerately spared the decision maker the distraction
of reviewing other solutions to the model formulated and solved.
The parallel in multiple objective decision making formulations
is that only non-inferior solutions are presented (Willis and
Perlack [1980]).

In conventional applications of mathematical programming,
our historic preoccupation with finding the "best" solution has
meant that we have all but overlooked the possible presence of
multiple optima and have largely failed to exploit the useful
information contained in such solutions. We have as often
neglected the wisdom contained in nearly optimal solutions. This
seems a clear consequence of the philosophy of computational

efficiency embedded in the development of the simplex method.

The authors are, respectively, Professor and Graduate Student,
Agricultural and Resource Economics, University of Massachusetts,
Amherst. We are indebted to Glenn Caffrey for the generous
sharing of his considerable computer talents, and to Peggy Cialek
for preparing this manuscript under severe time constraints.
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The view to be developed here is that the efficiency paradigm
should be modified to admit that models are imperfect, that some
objectives are generally left unquantified, and that we would
often do better to provide a range of solutions that are quite
different from one another, but which are as good or nearly so
for the single objective linear program or nearly non-inferior
for the multiple objective application. Provision of multiple
and near optimum solutions will not only provide a richer set of
information to decision makers, it may also enhance the
predictive power of our prescriptive models. In brief, we should

model to generate alternatives.

Multiple Optima in Economic Problems

Despite the relative silence of economists on the subject,
multiple optima and nearly optimal solutions are not rare. Yet
Paris’[1981] search of the empirical literature failed to find a
single application that reported whether the solution was unique.
Indeed, most failed to reveal even the numbers of rows and
columns in the constraint matrix. Much is known about multiple
and near-optima and how to find them. Until recently, however,
there has been little show of interest among economists.

A couple of examples from economic theory may motivate the
discussion--they are theory of the firm and consumer theory (the
diet problem).

Theory of the Firm. Linear programming generally examines

the firm from a short-run point of view in which production
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facilities are assumed to be fixed. These limitations on
facilities and on quantities of raw materials available, in turn
place limitations on the various commodities that can be
produced.

Rather than to deal with a continuous production function,
linear programming begins at the more basic level of considering
various processes of production. For firms operating in purely
compgtitive markets, the linear programming problem can be
expressed as:

(1) max z = c¢'x
subject to:

(2) Ax < b

(3) x > 0.

Here x is the n dimensional column vector of activity levels
(Xj), c’ the vector of profit per unit of good made by activity
j, A the matrix [aj], and b the vector of resource limitations.

We know, of course, that an optimal solution to this problem
need not have greater than m of the X5 > 0. The firm can
maximize profit using only ﬁ activities! For any optimal
solution, the dual variables, zj - c¢j, are non-negative for all
j. The interpretation of zj - ¢j is as the reduction in profit
that would be associated with producing an additional unit of j
and adjusting the levels of the other basic activities so as to
maintain feasibility. These fundamental theorems are the
equivalent to the classical theory of the firm admonitions to
produce to the point at which price equals marginal cost and to

employ resources to the point at which resource costs equal their




values of marginal products.

Paris provided an interesting and useful insight: if firms
are believed to be competitive and linear programming is
considered to be capable of reflecting this environment, then one
ought to expect multiple or near-optima as a frequent natural
consequence. That is, in competitive markets long-run necessary
conditions call for zero profitability, and generally goods are
available in these markets in greater numbers than the number of
constraints in a linear programming model of a single firm. 1In
his words (p. 726),

"In a competitive situation, where there are many firms

using essentially the same technology, one observes

that similar firms produce different product mixes. 1In

the absence of uncertainty, all activities are equally

profitable and therefore, it just happens that one firm

chooses a particular combination of activities while

others select a different mix. In LP terminology, this

situation is characterized by zero relative loss not

only for the optimal basic activities but also for

those not in the basis. It causes the multiple optimal

solution phenomenon. Hence, an extensive dual :

degeneracy may be interpreted as a validation of an LP
economic model, where perfect competition and certainty
prevail.™" ’

To be sure, the extreme case of perfectly competitive
markets seldom, if ever, exists and linear programming models are
not designed to reflect the long-run. However, the analyst
should be heartened by the presence of multiple optima and,
conversely, should view with concern the finding of a unique
optimum. The latter could signal the existence of non-
competitive markets or the failure of the linear programming

formulation to reflect the assumed environment.

Diet problem. As indicated earlier, the diet problem is

well-known in the linear programming literature as the first




economic problem ever solved by these procedures. Jerome
Cornfield independently formulated and solved approximately a
diet problem, which he reported in an unpublished memorandum in
1941 (Dantzig [1963]). Several years later, George Stigler
[1945] formulated a minimum cost diet model concerned with
selecting among 77 foods subject.to 9 nutrient constraints. He
used trial and error procedures to solve approximately the
constrained optimization, and the solution contained only 5

foods: wheat flour, evaporated milk, cabbage, spinach, and dry

navy beans. In 1947, Dantzig and Laderman used linear
programming to solve this same problem. Their solution,
unpublished, contained 5 foods -- four as selected by Stigler

and the fifth, beef liver, replacing evaporated milk (Dantzig
[1963]). More recent works done for USDA have employed quadratic
programming formulations, either to minimize weighted sums of
squares of deviations of quantities of food groups from food
consumption patterns (Peterkin et al. [1981]) or to maximize
utility (Balintfy and Taj [1983]), both subject to minimum
nutrient requirements and food budget.

But let us return to the problem formulated by Stigler. Its
structure is that of (1)-(3) above, where thé direction of the
inequality in (2) is reversed and (l) is minimized. The 77
elements of Cj all take values of one and the xj are defined as
daily dollar expenditures on food item j, A is the 9 by 77 matrix
of aj j defined as quantities of nutrient i contained per portion
of food item j, and b is the vector of minimum requirements of

the 9 nutrients (calories, riboflavin, etc.).



Since a basic solution to a linear programming problem will
contain at most m positive variables, nine food items would be
the maximum variety consistent with a basic solution. However,
another set of 9 or fewer food items might satisfy the
nutritional requirements at the same cost, and if so, an infinite
number of solutions would solve the problem equally well. 1If
there are two or more extreme point solutions with the same
(optimal) value of z, then any convex combination of these
extreme point solutions is also optimal. And these convex
combinations are not limited to at most m foods. Hence, far from
being a "problem", the presence of multiple optima would give
rise to the possibility of a more diversified, interesting and,
in this case, palatable set of optimal solutions.

Certainly, multiple optima could occur if a non-basic food
item had the same nutritional components (aj) and cost (Cj) as a
basic variable, or similar to a factor of proportionality. With
a large number of food items n, relative to nutritional
requirements m, it seems likely that near-optima, if not multiple
optima, would be the rule rather than the exception. Many of the

77 food items examined by Stigler are similar in aj and cj.

Normative and Positive Models

Simon [1965] distinguished between positive and normative
theories by the analogy to the distinction between declarative
and imperative sentences. Positive theories describe, explain

(addressing the question of "why?"), or predict behavior.




Normative theories in economic modeling generally prescribe--
they are operational in the sense of providing goals or criteria
as well as procedures for achieving them. The distinction is
commonly referred to as one of answering questions of "is" or of
"ought". Kadane and Larkey [1983, p.1365] have recently

suggested that,

"The development and application of theories of

decision making in economics...have long been bedeviled
by confusion between the ‘is’ and the ‘ought’ in
theoretical statements. It is often not clear from

either an author’s claims for a theory (model) or from
the context of its use whether a model is intended to
describe how decisions have been made, to explain why
they have been made,... or to prescribe how they should

be made.

Their final point is that both normative and positive theories

are important and that we should recognize that these theories

(models) are likely to differ from each other. Unless the way

decisions are currently being made cannot be improved, positive
and normative statements are apt to differ.

What has this to do with the subject at hand? Simply this.
Linear programming provides normative solutions to the problem of
optimizing (1) subject to the conditions (2) and (3). The
extreme point solution prescribed may or may not prédict actual
behavior well. 1In practice, one often sees the accuracy of
prediction used to validate the model, and if the predictions are
poor the model is revised. This is certainly sensible procedure
for predictive models, but it is less so for purely prescriptive
models.

Models of the firm are frequently used in agricultural

economics to develop regional models with strong positive as well




as normative motives. Predictions have génerally been poor with
these models -- usually suggesting substantially greater
specialization of agricultural production by region than is
observed in practice. The differences between predictions/
prescriptions and observed behavior led Day [1961] to impose
upper and lower bounds on production, Meister, Chen and Heady
[1978] to suggest the use of rotational constraints to curtail
the overspecialization (and to "model the agronomic nature of
crop production"), McCarl [1982] to advocate a decomposition
methodology to reconcile sectoral equilibria and farm level
plans, and Howitt and Mean [1983] to advance a positive quadratic
programming specification based on the discrepancy between the
linear cost function and the cost function implied by the actions
of farmers.

While the latter two approaches seem rather promising, most,
such as imposition of upper and lower constraints on production
and the use of rotational restraints are ad hoc contrivances
which force solutions to resemble actual behavior more closely.
Commenting on the former procedure, Howitt and Mean (p. 1)
suggest,

"This problem severely limits the value of linear

models for policy purposes since models that are poorly

calibrated and unbelievable will not be used. But

models that are tightly constrained can only produce

that subset of normative results that the calibration

constraints dictate. The policy conclusions are thus

bounded by a set of constraints that are expedient for

the base year but often inappropriate under policy
changes."

Another way of saying that the linear programming models

predict over-specialization relative to actual behavior is to say




that there are too few positive variables in the solution.

Again, extreme point solutions limit to m the number of such
activities, but in the presence of multiple optima there is no
such limit to the number of positive variables contained in a
convex combination of several optimal solutions. Indeed, Paris
[1981] provides a procedure for selecting a convex combination of
a set of k < n primal optimal solutions whose least squares
objective function is to make the optimal solution close to the
levels of the activities observed in practice.

Similar considerations apply to the diet problem example.
Imagine even cost-conscious individuals choosing to subsist on a
(Stigler) diet of wheat flour, evaporated milk, cabbage, spinach
and dry navy beans for an extended period of time! And even if
cost is replaced by utility measures, a unique optimum solution
limits variety to at most m (9 in the original formulation) food
items. Once again convex combinations of multiple optima remove
this barrier to making the model more nearly predictive of actual
behavior.

The argument for heeding the predictive power of the

normative model is potent for the diet problem. A major use is
in devising diets for major institutions: school lunches, penal
institutions, military, and the like. If the menu lacks

sufficient diversity or in other ways fails to conform with what
individuals will eat, major portions of the meal will be
discarded and as a consequence some or all of the nutritional

constraints will be violated.



Modeling to Generate Altermnatives

Modeling to generate alternatives is a developing branch of
multiobjective progfamming which deliberately leaves some
objectives (and perhaps constraints) unquantified. It accepts
that the model is not reality and presumes to be a tool rather
than a replacement for the decision maker. It provides a set of
optimal and nearly optimal-- or non-inferior and nearly non-
inferior-- solutions from which the decision maker can select.
The intent is to offer the decision maker a manageably small set
of decision vectors which are nearly optimal or nearly non-
inferior and which are as different from one another as is
possible. The unquantified or unquantifiable objectives can then
lead the decision maker toward a final choice.

As indicated in the survey by Gidley and Bari [1986], MGA
techniques involve two functions: generation of alternatives and
selection of several for presentation.

Generation. To be general let us consider a mathematical

programming model with several objectives expressed as:

(4) Minimize zy = gp(x), k=1,2,...,r

(5) subject to xe€X,

where gyi(x) denote the r objectives and as usual X is the
feasible solution set. One finds an initial solution by the
usual means, and then typically seeks alternative solutions by
solving (5) augmented by:

(6) gr(x) < (l+py)zyk™, k=1,2,...,r,

10



where Zk* is the value of the kth objective function in the
solution of (4) and (5), and py is the allowed tolerance from
optimality of the kth objective. Two groups of techniques have
been used to generate and select solution vectors--one- and two-
phase approaches.

Single phase approaches. This class of techniques 1is

designed to produce a relatively small number of solutions which
are as different from one another as possible. Variants include
the Hop, Skip, and Jump (HSJ) method of Brill et al. [1982], the
fuzzy HSJ method of Chang et al. [1983], Gibbs inner product
minimization method proposed by Kshirsagar and Brill [1984], and
the orthogonal search method developed also by Kshirsagar and
Brill. The most widely used remains the HSJ approach, which
seeks to minimize the sum of the activities which were nonzero in
the solutions generated previously, subject to the constaints (5)
and (6). Previously nonbasic activities tend to be forced into
the basis and hence successive solutions tend to be quite
different, although naturally this difference declines as the
generations continue. Generation stops when\either the maximum
number of solutions desired has been found or the basic variables
remain unchanged from the previous solution.

Two phase approaches. These techniques generate large

numbers of solutions and a second stage must be used to select a
subset for presentation. Again, four classes can be identified
for first phase generation: neighboring extreme point generation
(Paris [1981], Padmanabhan and Rogness [1985]), exhaustive

extreme point generation (Paris [1981, 1983]), search with random

11



objective functions (Harrington and Gidley ([1985]), and the
branch and bound /screening method (Chang and Liaw [1984]).

For simplicity, the search with random objective functions
has much to offer, and we shall return to it below. The approach
has developed in several ways. One of these has been to generate
random objective functions by selecting a uniform random deviate
on an interval such as [-1,1] as an objective function
coefficient for each decision and slack variable, drawing
repeated samples, and collectingvalternative solutions to the
problem within the specified tolerance of optimality.

Selection of a set for presentation. Pitted against the

benefits of this richer set of information is the added cost.
One component is the cost of obtaining the alternative solutions.
This is likely to be trivial in comparison with the costs of
model development and initial solution. The other component
relates to limitations associated with the information processing
ability of the human mind-- it ié possible to overload decision
makers with solutions. The works in the human choice theoretical
literature of Thurstone [1927], Luce [1964], Coombs [1964],
Tversky [1972], and Keeney and Raiffa [1976] are relevant here,
as are empirical pieces by Gehrlein and Fishburn [1976], Scott
and Wright [1976], Troutman and Shanteau [1976], Wilkie and
Weinrich [1973], and Wright [1974]. Miller [1956] provided an
early and entertaining paper on this point. He begins,

"My problem is that I have been persecuted by an

integer. For seven years this number has followed me

around, has intruded in my most private data, and has

assaulted me from the pages of our most public

journals. This number assumes a variety of disguises,
being sometimes a little larger and sometimes a little

12
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smaller than usual, but never changing so much as to be

unrecognizable. The persistence with which this number

plagues me is far more than a random accident.”
O0f course, this magical number is seven. He cites: 7 point
rating scale; 7 categories for absolute judgement; 7 objects in
the span of attention; 7 digits in the span of immediate memory;
7 days of the week; 7 notes of the musical scale; 7 primary
colors; 7 deadly sins; 7 digits of telephone numbers among other
"coincidences." He concludes that people are less accurate if
they must judge more than one atﬁribute simultaneously-- as they
add attributes, they decrease the accuracy of the evaluation of
any one. It is the reason for the importance of selecting for
presentation a modest set of alternative solutions.

One way of selecting alternative solutions for presentation
is by inspection based on the analyst'’s judgement. As Gidley and
Bari caution, the danger here is that the presentation set
becomes biased by the modeler’'s preferences. Formal selection
procedures are generally based on some form of cluster analysis.
The technique involves partitioning a group of vectors into
relatively similar subsets using some measure of distance --e.g.,
the Euclidean metric-- between vectors. As Chang and Liaw [1984]
indicate, the choice of metric is important and the measure
should be applied only to the most important decision variables.

Clustering techniques can be divided into hierarchical and
disjoint classes, and both have been used in selecting
presentation sets. Hierarchical clustering involves starting
with each solution vector representing a cluster, merging the two

most similar clusters, and repeating the process until all

13



' vectors are contained in a single cluster. The output is in the
form of a tree diagram (a dendogram). Chiang and Liaw used this
approach to prune their solution set. In contrast, the number of
desired clusters is prespecified in disjoint clustering
approaches, and the algorithm is left to group altermnatives into
this given number of clusters. One practical advantage of
disjoint clustering for present purposes is that it is easier to
select a set for presentation from a given number of clusters
than from a dendogram. Perlack and Willis [1985] used this
approach to prune a larger set of non-inferior solutions obtained
by generating techniques applied to a nonlinear programming

formulation of Boston'’s sludge disposal problem.
An Illustration: The Diet Problem Revisited

The formulation of the Stigler diet problem as a linear
program is provided in the Appendix. The 77 Xj are in the same
order as Stigler's presentation. Table 1 below shows in the
first column Stigler'’'s approximate solution, and next to it the
optimum solution to this minimum cost of subsistence problem.
Stigler’'s approximation calls for a daily ration consisting of 16
ounces of wheat flour, a couple of ounces of evaporated milk,
five ounces of cabbage, another of spinach and twelve ounces of
dried navy beans. The total cost in 1939 dollars is 10.93 cents
per day ($1.17 in 1986 values). The optimal solution substitutes
a small portion of beef liver for the evaporated milk and reduces

cost to 10.86 cents per day. This optimum solution is unique--

14




Table 1

Solutions* Within Various Tolerances of the Stigler Optimum

Near Optima
Food Stigler Optimum
Item | Approximation Solution p = .02 p= .05 p=.10 p=.20 p = .40
1 Wheat 16.18 Wheat 13.28 Wheat 16.44 Wheat  18.22 Wheat 19.55 Wheat 15.11 Corn 15.00
Flour (3.64) Flour (3.00) Flour (3.70) Flour (4.10) Flour (4.40) Flour (3.40) Meal (4.00;
2 Evap. 2.31 Beef 0.12 Evap. 3.25 Evap. 5.84 Corn 4.87 Corn 5.56 Evap. 7.60
Milk (1.07) Liver (0.20) Milk (1.50) Milk (2.70) Meal (1.40) Meal (1.60) Milk (3.50;
3 Cabbage 4.80 Cabbage 4.84 Iard 0.36 Lard 0.98 Evap. 9.10 Evap. 8.66 Peanut 0.90
(1.11) (1.12) (.22) (.60) Milk (4.20) Milk (4.00) Butter (1.00)
4 Spinach 1.01 Spinach 1.00 Cabbage 4.84 Cabbage 4.89 lard 0.33 Potatoes 14.11 Potatoes 15.52
(0.51) (0.50) (1.12) (1.13) (.20) (2.00) (2.20)
5 Dried 12.47 Dried 16.48 Spinach 1.00 Spinach 0.88 Cabbage 4.76 Sweet 3.45 Sweet 2.50
Navy (4.60) Navy (6.10) (.50) (.45) (1.10) Potatoes (1.10) Potatoes (.80)
Beans Beans
6 - - Dried 10.48 Dried 5.97 Spinach 0.71 Dried 1.26 Dried 5.70
Navy (4.00) Navy (2.20) (.36) Lima (.70) Lima (3.20)
Beans Beans Beans Beans
Total
Cost 10.93 10.86 11.07 11.40 11.90 13.00 15.20

(¢)

*Quantities are in ounces per day

hundredth.

and figures in parentheses are costs in cents (1939 values) rounded to the nearest
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all zj-cj for non-basic variables are positive. However, it is
barely so; alternative feasible bases can be found within 0.1
percent of the optimum solution. If we wished to find a diet
with none of the least cost ration food items in it, we could do
so with a 40 percent increase in cost.

If we are to perform MGA, we must select a value for the
tolerance from optimality, p. A value of 0.001 seems needlessly
stringent; we will not find much variety within that narrow
tolerance of the optimum solution. A value for p of 0.40 would
provide substantial variety, but 40 percent may not be an
acceptable increase in cost. The remaining columns of Table 1
show the alternative solutions which minimize the cost of the
food items in the original optimum solution subject to a maximum
of 2, 5, 10, 20 and 40 percent increase in cost of rations above
the minimum cost diet. For a 2 percent increase, lard is added
to the diet; for a 10 percent increase corn meal is included;
potatoes, sweet potatoes and dried lima beans are added at the 20
percent level; and at the 40 percent level peanut butter 1is
consumed and all items are different from the optimum solution.

Single Step Procedure. To illustrate the HSJ procedure, two

values of p will be used (one at .02 and the other a more
generous .10). For each case we generate six solutions as
different as we can make them from the standpoint of minimizing
the cost of all previous basic variables in seeking another
solution within the given tolerance of the least cost solution.
Table 2 provides these solutions for the 2 percent tolerance

case. The first two columns repeat the optimum solution and the

16



Table 2

Optimal and Nearly Optimal Solutions* Within a 2 Percent Tolerance of lLeast Cost (p = 0.02)

HSJ Alternatives

Food ~ Optimum
Item Solution 1 2 3 4 5 6
1l Wheat 13.30 Wheat 16.40 Wheat 15.00 Wheat 14.80 Wheat 14.44 Wheat 12.22 Wheat 12.84
Flour (3.00) Flour (3.70) Flour (3.40) Flour (3.33) Flour (3.25) Flour (2.75) Flour (2.89)
2 Beef 0.12 Evap. 3.20 Cheddar 0.44 Wheat 0.80 Milk 0.93 Beef 0.15 Beef 0.17
Liver (0.20) Milk (1.50) Cheese (0.67) Cereal (0.69) (0.64) Liver (0.25) Liver (0.28)
3 Cabbage 4.80 Lard 0.36 Cabbage 4.80 Beef 0.17 Beef 0.06 Cabbage 3.63 Cabbage 4.32
(1.10) (0.22) (1.10) Liver (0.28) ILiver (0.10) (0.84) (1.00)
4 Spinach 1.00 Cabbage 4.80  Spinach 1.00 Cabbage 4.80 Cabbage 4.80 Potatoes 4.30 Spinach 0.60
(0.50) (1.10) (0.50) (1.10) (1.10) (0.61) (0.30)
5 Dried 16.50 Spinach 1.00 Dried 0.80 Spinach 0.95 Spinach 1.00 Spinach 0.97 Sweet 1.82
Navy (6.10) (0.50) Lima (0.44) (0.48) (0.50) (0.49) Potatoes (0.58)
Beans Beans
6 - Dried 10.80 Dried 13.30 Dried 14.00 Dried 14.83 Dried 16.65 Dried 16.30
Navy (4.00) Navy (4.90) Navy (5.16) Navy (5.47) Navy (6.14) Navy (6.01)
Beans Beans Beans Beans Beans Beans
Min. 9.30 9.95 10.38 10.43 10.46 10.48
z (¢)
Total
Cost 10.86 11.07 11.07 11.07 11.07 11.07 11.07

(¢)

*OQuantities are in ounces per day and figures in parentheses are costs in cents (1939 values) rounded to the nearest
hundredth.



solution which minimizes the items from the optimum solution at a
2 percent increase in cost. Notice that this 11.07 cent diet
contains 9.3 cents worth of food items from the optimum solution.
The second alternative adds cheddar cheese and dried lima beans
and contains 9.95 cents worth of food basic in either the Stigler
optimum solution or the first alternative solution. Wheat cereal
enters in the third alternative at a level of 0.69 cents and
represents the only new food item not previously appearing. Milk
appears in solution 4, potatoes in solution 5, and sweet potatoes
in solution 6.

As shown in Table 3, a more generous tolerance of 10 percent
of cost produces a greater variety. In this case the first
alternative uses less than 6 cents worth of optimum solution food
items. In fact, three new food items enter this alternative:
corn meal, evaporated milk and lard. The second alternative
added an additional two: cheddar cheese and potatoes.‘ It used
only 7 cents worth of items from the previous two solutions. The
third alternative added a new item, the fourth an additional two
items, and one more entered in each of the final two
alternatives. With this generous tolerance, even the sixth
alternative only used 9.7 cents worth of food items that appeared
in any of the previous six bases, or 82 percent of the total cost
of the ration. This contrasts with the similar situation for the
2 percent tolerance case in which 10.48 cents worth of food items
from the previous six bases were involved, representing 95
percent of the 11.07 cent total cost of the ration.

In light of the range of choices contained in Tables 2 and

18




Table 3

Optimal and Nearly Optimal Solutions* Within a 10 Percent Tolerance of lLeast Cost (p = 0.10)

HSJ Alternatives

Food Optimum
Item | Solution 1 2 3 4 5 6
1 Wheat 13.30 Wheat 19.82 Wheat 24.97 Wheat 21.64 Wheat 17.42 Wwheat 10.18 Wheat 9.77
Flour (3.00) Flour (4.46) Flour (5.62) Flour (4.87) Flour (3.92) Flour (2.29) Flour (2.20)
2 Beef 0.12 Corn 5.04 Cheddar 2.45 Wheat 4.05 Milk 3.30 Beef 0.05 Rolled 4.93
ILiver (0.20) Meal (1.45) Cheese (3.71) Cereal (3.50) (2.27) Liver (0.08) Oats (2.19)
3 Cabbage 4.80 Evap. 9.01 Cabbage 4.67 Beef 0.39 Cabbage 3.89 Cabbage 4.84 Beef 0.44
(1.10) Milk (4.20) (1.08) Iiver (0.65) (0.90) (1.12) Liver (0.74)
4 Spinach 1.00 Iard 0.36 Potatoes 1.55 Cabbage 4.80 Spinach 4.27 Spinach 1.00 Cabbage 4.80
(0.50) (0.22) (0.22) (1.11) (2.16) (0.51) (1.11)
5 Dried 16.50 Cabbage 4.75 Spinach 0.83 Spinach 0.81 Sweet 2.76 Dried 5.37 Spinach 0.80
Navy (6.10) (1.10) (0.42) (0.41) Potatoes(0.88) Peas (2.65) (0.40)
Beans
6 -_— Spinach 0.71 Dried 1.53 Dried 3.63 Dried 10.09 Dried 14.21 Dried 14.21
(0.36) Lima (0.85) Navy (1.34) Navy (3.72) Navy (5.24) Navy (5.24)
Beans Beans Beans Beans Beans
Min. 5.92 7.12 8.40 8.74 9.24 9.70
z2 (¢)
Total
Cost 10.86 11.90 11.90 11.90 11.90 11.90 11.90
(¢)

*Quantities are in ounces per day and figures in parentheses are costs in cents (1939 values) rounded to the nearest
hundredth.




3, it might seem desireable to the decision maker and consumer to
have access to this information. Surely, for example, a 2
percent (0.21 cents per day) increase in costs would generally be
considered negligible, and in exchange the variety of diets seems
substantial--at least relative to the small difference in cost.
The quantity of information supplied in these two tables is not
liable to overload most normal minds, and yet the provision of
this additional set of near- optimum solutions could well result
in their selection rather than the minimum cost of subsistence
solution. And if we wished even greater variety, a convex
combination of these diets could offer a menu consisting of 17
items at the same cost.

Two Phase Approach. As indicated earlier, as an alternative

to selecting a small number of very different solutions in a
single step by a procedure such as HSJ, we might generate a large
number of solutions within a given tolerance of the optimum in
one stage, and then apply a selection criterion to choose a
manageable number to present to the decision maker. The random
coefficients procedure has been selected to illustrate use of a
two phase approach. 1In this, we select repeated series of random
c' vectors each consisting of 77 random variates drawn from a
Uniform [0,1] Distribution. Eighteen such vectors were drawn and
used to optimize that objective function subject to (5) and (6),

with p set at 0.10. The number of solutions, 18, was selected

arbitrarily for the illustration, and means that because we chose
to form six clusters of solutions to compare alongside the

optimum solution, the average number of solutions in a cluster
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will be three.

Table 4 shows the eighteen alternative solutions. For these
solutions, 18 different food items are included in one or more of
the diets. This compares with the 17 items appearing in the
single phase approach in Table 3. The presentation of even this
abbreviated example took three pages. A more exhaustive
enumeration of near optima would surely make choice even more
difficult. Thus selection of a presentation set is needed as a
final step.

A form of disjoint clustering called Quick Cluster,
available in the statistical package SPSSX, was used to group the
18 solutions into 6 clusters. The Euclidean distance metric is
used to measure the distance between each solution and the center
of each cluster (means of the variables for the solutions
contained in the cluster). The solutions were considered as one
cluster initially, and then split successively at each step until
the desired six clusters had been formed. At this point,
solutions are reallocated iteratively into the cluster whose
center is closest. The 18 food items appearing in one or more of
the 18 alternative solutions seems a needlessly large number of
attributes to use in forming clusters, and would require finding
a larger number of nearly optimal solutions to cluster in any
case. Therefore, for purposes of clustering we aggregated these
18 food items into 7 food groups: vegetables(cabbage, spinach,
asparagus), cereals and grains(wheat flour, corn meal, oats,
wheat cereal), legumes(lima beans, navy beans, peas),

starches(potatoes, sweet potatoes), sweeteners(sugar, molasses),
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Table 4

Randam Coefficients Generation of Nearly Optimal Solutions* Within a
10 Percent Tolerance of least Cost (p = 0.10)

Alternative Solutions
Food
Item 1 2 3 4 5 6
1 Wheat 1.15 Wheat 2.20 Wheat 5.34 Wheat 5.53| Wheat 4.18 Wheat 6.48
Flour Flour Flour Flour Flour Flour
2 Lard 1.32 Cabbage 0.20 Wheat 3.09 Evap. 4.05| Cabbage 1.12 Evap. 0.29
Cereal Milk Milk
3 Cabbage 1.13 Spinach 2.33 Evap. 1.18 Cabbage 1.14 | Spinach 0.54 Cheddar 3.54
4 Spinach 0.52 Dried 6.55 Cabbage 1.13 Spinach 0.42 | Dried 4,27 Cabbage 1.18
Navy Navy
Beans Beans
5 Dried 2.01 Sugar 0.54 Spinach 0.50 Dried 0.76 | Molasses 1.80 Spinach 0.42
Lima Peas
Beans
6 Dried 5.77 - Dried 0.66 - - -
Navy Lima
Beans Beans

*Jalues are costs of the food items in 1939 cents, rounded to the nearest hundredth.




Table 4 (Continued)
Randam Coefficients Generation of Nearly Optimal Solutions* Within a
10 Percent Tolerance of ILeast Cost (p = 0.10)

Alternative Solutions

Food
Item 7 8 9 10 11 12
1 Wheat 4.46 Wheat 4.53 wheat 5.64 wheat 1.95| Wwheat 5.62]| Wheat 4.59
Flour Flour Flour Flour Flour Flour
2 Corn 1.45 Evap. 4.36 Cheddar 3.68 Corn 0.67| Cheddar 3.71| Evap. 4.33
Meal Milk Cheese Meal Cheese Milk
3 Evap. 4.24 lard 1.32 Cabbage 1.14 Cabbage 0.83| Cabbage 1.08 | Iard 1.22
Milk
4 lard 0.22 Cabbage 1.14 Spinach 0.35 Sweet 1.60 | Potatoes 0.22 | Cabbage 1.14
Potatoes
5 Cabbage 1.16 Spinach 0.41 Sweet 0.23 Dried 1.39 | Spinach 0.42 | Spinach 0.41
Potatoes Lima
Beans
6 Spinach 0.37 Dried 0.14 Dried 0.87 Dried 5.45 | Dried 0.85 | Asparagus 0.22
Beans Beans Beans Beans

*alues are costs of the food items in 1939 cents, rounded to the nearest hundredth.




Table 4 (Continued)
Random Coefficients Generation of Nearly Optimal Solutions* Within a
10 Percent Tolerance of least Cost (p = 0.10)

Alternative Solutions

Food
Item 13 14 15 16 17 18
1l Wheat 4.24 Wheat 2.46 Wheat 5.09 Wheat 5.53 Wheat 5.51 Wheat 5.64
Flour Flour Flour Flour Flour Flour
2 Milk 2.76 Rolled 0.96 Evap. 4.32 Evap. 4.27 Evap. 2.02 Cheddar 3.68
Cats Milk Milk Milk Cheese
3 Cabbage 1.06 Cabbage 0.30 Cabbage 1.14 Cabbage 0.65 Cheddar 2.07 Cabbage 1.18
Cheese '
4 Spinach 0.49 Spinach 2.13 Spinach 0.41 | Potatoes 1.04 Cabbage 0.52 Spinach 0.42
5 Dried 3.37 Dried 6.05 Sugar 0.94 Spinach 0.41 Potatoes 1.37 Dried 0.98
Navy Navy Lima
Beans Beans Beans
6 - -— —_ - Spinach 0.41 -—

*Values are costs of the food items in 1939 cents, rounded to the nearest hundredth.




dairy(cheese, milk, evaporated milk), and fats(lard). For each
nearly optimal solution, the cost of each of these seven groups
was calculated and used as the basis for clustering the 18
alternative solutions.

Table 5 shows how the 18 solutions found in Table 4
clustered into 6 groups. Four solutions formed a first cluster,
clusters 2,3 and 4 contained a single solution each, cluster five
was comprised of solutions 14 and 15, and the final cluster
grouped the remaining nine solutions. The Euclidean distance for
each solution is also provided. For solution 1, for example, the
distance 0.801 represents the sum of the squares of the
differences of the costs of the seven food groups in that
solution from the means of those seven items in cluster 6.
Naturally, the clusters containing a single solution have a zero
distance. It was interesting that the solutions in the large
cluster were each nearer that cluster centroid than several of
the solutions in the smaller clusters.

Table 6 displays the presentation set based on this
clustering. In it, the solution in each cluster which is closest
to the centroid by the minimum distance criterion is selected as
representative of its cluster. The argument here is that, while
less information is contained in this set of solutions compared
with the larger set enumerated in Table 4, it may be a more
usable set because it is simpler for the human mind to
comprehend. Had we opted to generate several hundred nearly

optimal solutions, the point would be more dramatically made.
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T§b1e<5

Cluster Membership

Cluster &“v _,_Solutiog-Né} : 'Euclidean Distance
1 4 | 1.782
1 8 1.830
1 13 1.525
1 18 1.141
2 16 0.000
3 7 - 0.000
4 17 0.000 :
5 14 1.101
5 15 -0.551
6 1 0.801
6 2 1.253.
6 3 0.924
6 S5 0.877
6 6 1.225
6 9 1.058
6 10 1.049
6 11 1.340
6 . 1.030

12




Table 6

Presentation Set for Two Phase Solutions* Using Cluster Analysis

Representative Solution Fram Clusters

Food
Ttem 1l 2 3 4 5 6
1l Wheat 10.13 Wheat 18.58 Wheat 18.84 Wheat 28.80| Wheat 24.58 Wheat 19.82
Flour (2.28) | Flour (4.18) | Flour (4.24) | Flour (6.48)| Flour (5.53) | Flour (4.46)
2 Cabbage 0.86 Cabbage 4.84 Cabbage 4.58 Cabbage 5.10 | Cabbage 4.93 Lard 0.36
(0.20) (1.12) (1.06) (1.18) (1.14) (0.22)
3 Spinach 4.60 Spinach 1.07 Spinach 0.97 Spinach 0.83 | Spinach 0.83 Cabbage 5.02
| (2.33) (0.54) (0.49) (0.42) (0.42) (1.16)
|
| 4 Dried 17.76 Dried 11.58 Dried 6.06 Evap. 0.63 | Wheat 4.68 | Spinach 0.73
Navy (6.55) | Navy (4.27) | Navy (3.37) | Milk (0.29) | Cereal (4.05) " (0.37)
Beans Beans Beans
k 5 Sugar 1.67 Molasses 2.38 Milk 4.01 Cheddar 2.34 | Dried 1.54 | Evap. 9.18
| (0.54) (1.80) (2.76) | Cheese (3.54) | Peas (0.76) | Milk (4.24)
6 -_— - - - - Corn 5.04
Meal (1.45)
Solution 18 16 7 17 15 1

|

*Quantities are in ounces per day and figures in parentheses are costs in cents (1939 values) rounded to
the nearest hundredth.



Concluding Thoughts

As appealing as efficiency is to economists, a limit to its
usefulness exists. Generation of multiple optima when they exist
and exploration of noninferior solution space should be augmented
by the generation of nearly optimal and nearly noninferior
solutions. This provides a far richer set of information to
decision makers in normative models and can facilitate prediction
in positive ones, provided the information does not itself become
too burdensome to process in making final selections. The
philosophy and accompanying procedures termed "modeling to
generate alternatives" has been developing rapidly in the
engineering and management science literature in the early to mid
decade of the 80s, and it is important for applied economists to

embrace the paradigm before the decade is out.
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Appendix
Stigler Diet Formulation

MINIMIZE
X14+X24X3+X4+X54X6+X7+X8+X9+X10+X11+X12+X13+X14+X15+

X16+X174+X18+4+X194X204+X21+X22+X234X24+4X25+X26+X27+X28+
X294X30+X31+X32+X33+X34+X354+X36+X37+X38+X39+X40+X41+
X42+4X43+4X444X45+4X46+X4T7+X484+X494X504+X51+X52+X53+X54+
X554X56+X57+X58+X59+X60+X61+X62+X63+X64+X65+X66+X67+

X68+X69+X704+X714+X724+X734+X744X754X764X77
Constraints

SUBJECT TO:

44 ,7X1+411.6X2+11.8X3+11.4X4+36X5+28.6X6+21.2X7+ Calories
25.3X8+15X9+12.2X10412.4X11+8X12+12,5X134+6.1X14+ (thousands)
8.4X15+10,8X16+20.6X17+2.9X18+7.4X19+3.5X20+
15.7X21+8.6X22+20.1X23+41.7X24+2.9X25+2.2X26+3.4X27+
3.6X28+8.5X29+ 2.2X30+3.1X31+3.3X32+3.5X33+4.4X34+
10.4X35+6.7X36+18.8X37+1.8X38+1.7X39+5.8X40+5.8X41+
4.9X42+1X43+4+2.2X44+2.4X45+42,6X46+2,.7X47+.9X48+

+4X49+5,8X50+ 14.3X51+1.1X52+9.6X53+3.7X54+3X55+
2.4X56+.4X57+1X58+7.5X59+5.2X60+2.3X61+ 1.3X62+
1.6X63+8.5X64+12.8X65+1.5X66+20X67+17.4X68+26.9X69+
8.7X72+48X73+34.9X74+14.7X75+49X76+6.4X77.GE.3

1411X1+418X2+4377X34252X4+897X54680X6+460X7+907X8+ Protein
488X9+484X10+439X11+130X12+288X13+310X14+422X15+
9X16+17X17+238X18+448X19+49X20+661X21+18X22+166X25+
214X26+213X27+309X28+404X29+333X30+245X31+140X32+
196X33+249X34+152X35+212X36+164X37+184X38+156X39+
705X40+27X41+460X42+21X43+40X44+138X45+4125X46+73X47+
51X48+27X49+166X50+336X51+106X52+138X53+20X54+
8X55+16X56+33X57+54X58+364X59+136X60+136X61+63X62+
71X63+87X64+99X65+104X66+1367X67+1055X68+1691X69+
237X72477X73+4+11X77.GE. 70

2X1+.7X2+14.4X3+.1X4+4+1.7X5+.8X6+.6X7+5.1X8+2.5X9+ Calcium
2.7X10+1.1X11+.4X12+.5X13+10.5X14+15.1X15+.2X16+
.6X17+41X18+16.4X19+1.7X20+1X21+.2X22+.1X25+.1X26+
«1X27+4+.2X284.2X29+.2X304+.1X31+.1X32+.2X33+.3X34+.2X35+
«2X36+4+.1X37+.1X38+.1X39+6.8X40+.5X41+.4X424.5X43+
1.1X44+43,.7X4544X46+2.8X47+3X48+1.1X494+3.8X50+1.8X51+
2,7X53+4+.4X54+,3X55+.4X56+.3X57+2X584+4X59+.2X60+.6X61+
.7X62+.6X63+1.7X64+2.5X65+2.5X66+4.2X67+3.7X68+
11.4X69+3X724+1.3X73+.5X75+10.3X76+.4X77.GE.0.8

365X1+54X2+175X3+56X4+99X5+80X6+41X7+341X8+115X9+ Iron
125X10+82X11+31X12+50X13+18X14+9X15+3X16+6X17+52X18+
19X19+3X20+48X21+48X22+434X25+432X26+33X27+46X28+62X29+
139X30+20X31+15X32+30X33+37X34+23X35431X36+26X37+
30X38+24X39+45X40+36X41+30X42+14X43+18X44+480X45+
36X46+43X47+23X48+422X49+59X50+118X51+138X52+54X53+
10X54+8X55+8X56+12X57+65X58+134X59+16X60+45X61+38X62+
43X63+173X64+154X654136X66+345X67+459X68+792X69+72X72+
39X73+74X75+244X76+7X77.GE.12
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5.

Appendix (Cont.)

Constraints

30.9X5+18.9X12+16.8X14+26X15+44.2X16+55.8X17+ Vitamin A
18.6X18+28,1X19+16.9X20+2.7X22+4.2X24+.2X25+
4X26+.4X28+169.2X30+.1X38+3.5X40+7.3X41+17.4X42+
11.1X44+69X4547.2X46+188,.5X47+.9X48+112.4X49+416.6X50+
6.7X51+918.4X52+290.7X53+21.5X54+.8X554+2X56+16.3X57+
53.9X58+3.5X59+12X60+34.9X61+53,.2X62+57.9X63+86.8X64+
85.7X65+4.5X66+2.9X67+5.1X68+.2X77.GE.5

55.4X14+3.2X2+14,4X3413,.5X4+417,4X5+10.6X6+2X7+37.1X8+ Thiamine
13.8X9+13.9X10+9.9X11+2,.8X12+4X14+3X15+.2X17+2.8X18+
.8X19+.6X20+9.6X21+.4X22+2.1X25+42.5X26+1X28+.9X29+
6.4X30+2.8X31+1.7X32+17.4X33+18.2X34+1.8X35+9.9X36+
1.4X37+.9X38+1.4X39+1X40+3.6X41+2.5X42+.5X43+3.6X44+
4,3X45+49X46+46.1X47+1.4X48+1.8X49+4,.7X50+29.4X51+
5.7X52+8.4X53+.5X54+.8X55+2.8X56+1.4X57+1.6X58+
8.3X59+1.6X60+4.9X61+3.4X62+3.5X63+1.2X64+3.9X65+
6.3X66+28.7X67+26.9X68+38.4X69+4X70+2X72+.9X73+
1.9X76+.2X77.GE.1.8

33.3X141.9X2+8.8X3+2.3X4+7.9X5+1.6X6+4.8X7+8.9X8+ Riboflavin
8.5X9+46,.4X10+3X11+3X124+16X14+23.5X15+.2X164+6,.5X18+
10.3X19+4+2.5X20+8.1X21+.5X22+,5X24+42.9X25+2.4X26+
2X27+4X28+50.8X30+3.9X31+2.7X32+2.7X33+3.6X34+1.8X35+
3.3X36+1.8X37+1.8X38+2.4X39+4,.9X4042.7X414+3.5X42+
1.3X44+45.8X45+4.5X46+4.3X47+1.4X48+43.4X49+3.9X50+
7.1X51+13.8X52+4+5.4X534+X54+.8X55+.8X56+2.1X57+4.3X58+
7.7X59+4+2.7X60+2.5X61+4+2.5X62+2.4X63+4.3X64+4.3X65+ |
1.4X66+18.4X67+38.2X68+24.6X69+5.1X70+2.3X71+11.9X72+ |
3.4X73+4+7.5X76+.4X77.GE.2.7 :

441X1+68X2+114X3+468X4+106X5+110X6+60X7+64X8+126X9+ Niacin
160X10+66X11+17X12+7X14+11X1542X164+X18+4X19+4471X21+
5X24+69X25+87X26+120X28+316X30+86X31+54X32+60X33+
79X34+71X35+50X364+68X38+57X39+209X40+5X41+28X42+4X43+
10X44+37X45426X46+89X47+9X48+11X49+21X504+198X51+33X52+
83X53+31X54+45X5547X56+17X57432X58+56X59+42X60+37X61+
36X62+67X63+55X64+65X65+24X66+162X67+93X68+217X69+
50X70+42X71+40X72+14X73+5X75+146X76+3X77.GE. 18

177X14+60X15+17X20+525X30+46X38+544X41+498X42+ Ascorbic
952X43+1998X44+4862X45+5369X46+608X47+313X48+449X49+ Acid
1184X5042522X514+2755X52+1912X53+196X544+81X55+399X56+
272X57+431X58+218X60+370X61+1253X62+862X63+57X64+
257X65+136X66.GE. 75
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