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Abstract

The questions here are: can indirect methods relying on estimating Engel
curves provide mathematically simpler ways of estimating price elasticities in
demand systems than direct methods and, will the results be an improvement
over available direct methods? In answering these questions a number of
issues surface. The first has to do with specifying the size of the problem.
As a practical matter, separability must be assumed. It can, however, appear
in various ways. Second, if an indirect method is to be used to recover
demand function parameters then we must consider the functional form of the
estimating equations and the number of samples needed to obtain estimates.

The samples may be from the same population at different points in time, or
may be fram different parts of the same population at the same time. In both

cases price regimes must differ among samples.



Introduction

Suppose you have the data from an extensive survey such as the U.S.
Department of Agriculture food consumption survey covering 31 food groups and
approximately 15,000 households. What would be the best way to estimate the
set of price elasticities contained in this demand system? If the Survey is
sufficiently wide ranging there may be enough price variation in the data to
use a direct method (e.g. Lau, Lin and Yotopoulos). At the other extreme if
there is no price variation across households only Engel curves can be
estimated. And only under the most restrictive conditions of a Cobb-Douglas
utility function can price elasticities be recovered. The possibility is
raised ‘later that with same price variability an indirect method may recover
price elasticities of a rather less restrictive utility function.

.If there is sufficient price variation a second issue arises. The
equations to be estimated are econametrically intractable and same added
structure must be imposed on the system. Typically this takes the form of
either an ad hoc single equation approach with explanatory variables
selectively deleted or a system estimation of aggregate commodity groupings.
Both of these lose information, either of a theoretical nature, or that
contained within the disaggregaﬁe data. Applied formally, they constitute
separability restrictions. Yet to estimate a system of this size, even with
separability restrictions imposed, creates immense computational requirements
and is not likely to deliver results of very high quality.

Is there an alternative approach? The present paper investigates an
indirect method that consists of estimating Engel curves. It requires a

number of subsamples, the number depending on the size of the system. Each



subsample could consist of a separate survey in which there was no price
variation across households or it could be a regional (or other) grouping fram
a larger survey with the same property. It is essential that there be price
variation between subsamples for without this price elasticities cannot be
recovered.

A desirable property of the Engel curves would be that they do not need
to be parallel and linear to aggregate perfectly over consumers (i.e. to
achieve the representative consumer). Deaton and Muellbauer propose a model,
the Almost Ideal Demand (AID) System, which posseses the property of perfect
aggregation without the restriction on Engel curve shape Its disadvantage,
however, is that it is highly separability-inflexible. When separability is
imposed, as it inevitably must be, the number of parameter restrictions is
large. This function and this issue are examined in detail in later sections.

The organization of the paper is as follows. First, a classification of
the approaches to estimating demand functions is presented, including the one
described in detail later. Second, since separability of scame form must be
assumed, the implicatiionns for the structure of demand equations of the
different types of separability are discussed. For the translog and price-
independent generalized linear logarithmic (PIGLOG) utility functions these
consequences are spelled out in detail. Next, having imposed separability,
the number of free parameters in these two functions is calculated.
Surprisingly, for a given number of commodities it turns out to be the same,
indicating that under these conditions the AID system is no more flexible than
a translog utility function. Calculation of the number of samples required to
recover all of the parameters occupies the last part of the paper. The number

depends on the function specified and the number of cammodities in the system.



Methods of Estimating Systems of Demand Equations.

Estimation of a system of demand equations for disaggregated commodities
is difficult. This is un:ffortunate. It is precisely the level that would be
most useful in addressing such issues as policy analysis within a sector,
forecasting, and explanation of the forces influencing the demand for a
camodity. The fundamental problem is that the simultaneous estimation of all
the parameters of a disaggregate demand system requires the imposition of many
parameter restrictions across equations.

Researchers have tackled this problem in several ways.

(1) Ignore most of the system and estimate one or perhaps two demand
equations directly. Introduce such explanatory variables (prices of
other commodities in the usual- fém) as intuition or the findings of
previous researchers suggest. Also, ignore integrability conditions; if
the function is viewed as approximating some true but unknown relation it
need not meet them. This method is perhaps the one most widely adopted
in applied work.

(2) Proceed to estimate the system in an ad hoc way, equation by equation,
making use of arbitrary separability conditions and imposing theoretical
conditions (such as Slutsky symmetry) where needed, to obtain all cross
coefficients or cross elasticities. The classic study along these lines
was George and King.

(3) Use a highly restricted utility function. The system of demand equations
is therefore guaranteed to possess the theoretical conditions but should
still be simple enough to estimate. Examples include the linear
expenditure system (LES) and the Rotterdam system. (For a review, see

Barten.)




(4) Aggregate the data to a manageable number of commodities. This allows a
variety of utility functions to be specified and estimated without an
excessive number of explanatory variables in any demand equation.
Parameter restrictions across equations are also not too burdensome.

This approach is commonly found in theoretical studies.

(5) Estimate demand systems indirectly fram Engel curves, indifference curves
or marginal rates of substitution. Usually this approach is forced on a
researcher by lack of data. For example, a survey of consumers in a
small geographic area would find little, if any, variation in prices paid
for a commodity. Two cross section samples would show interperiod
difference in prices for each camodity, but no intraperiod variation.

If the utility function is globally additive, then, in general, two such
sets of data will suffice to identify demand systems (Dybvig). The
indirect approach has not been widely used. It has also been combined
with aggregation. For example Pollak and Wales examined three cammodity

groups.

Separability.

In any econametric study of demand, some form of separability must be
imposed. There are just too many commodities to be econamically tractable at
once. Although global definitions of separability have been proposed (e.g.
Bliss) the leontief-Sono definition, which relies on local differentiability,
is still most useful. According to the latter, given a utility function,

U(Xy, ..., X,), variables X; and Xj are separable fram variable X if and only

if
5 dU/ axi

P aU7an =0




Separability imposes structure; however, to obtain convenient functions
or to achieve dual representations of a technology, further restrictions may
be required. A number of types of separability may therefore be defined. The
seminal work in this area is Blackorby, Primont and Russell. The section
below depends heavily on their work.

If the utility function, U, satisfies the regularity conditions of
continuity, positive monotonicity and quasi concavity then it is separable
("weakly separable") if
(1) u=0owtEb,..., =]
where TAJ, the macrofunction and each aggregator function, UY, display
continuity, positive monotonicity and quasi-concavity (BPR Theorem 4.1 p.108).
Addition of the slightly stronger condition of strict quasi-concavity is
sufficient for strong decentralization. That is, the consumer's problem of
maximizing utility subject to the budget constraint results in systems of
ordinary demand functions
(2) xF= cbr(Pr,yr)
where the consumer's 6ptimal consumption vector of commodities in the rth
sector depends only on prices of goods in the sector, PY, and sectoral
expenditure, y,..

The same demand systems can be derived from a conditional indirect
utility function

H = Hlh (y,Ph), . By, PY ]
by the use of Roy's theorem, provided the function is partitioned in the same
groups as equation (1). It is referred to as conditional because both it and
equation (2) depend on the sectoral expenditures, ;‘,r . Equation (2) therefore
corresponds to estimation of the second stage of Strotz's two-stage budgeting

procedure. The first stage, the expenditure allocation functions,



(3) vy, = 6T [nt(@h), ..., mE™,y] r=1,...,m,

are derived by maximizing conditional utility subject to a budget constraint.
Without them, all of the parameters of the utility function cannot be
calculated. The ¥ (PF) are sectoral price indexes, frequently the
conventional Laspeyres, Paasche or Divisia indexes (See BPR pp.285-7 and the
references cited therein).

Since the arguments of the expenditure allocation functions are price
indexes, a frequent strategy was to substitute equation (3) into equation (2)
giving
(4) xF = ¢T(P5,P,y)
where P is the vector of price indexes of each sector or separable group.
(See, for example, George and King.) Knowledge of total incame, y, is also
required to estimate (4). However, if the first stage budgeting can be
assumed to be optimal, then the actual sectoral expenditure, y,, can be used
instead. No other data are needed for estimation.

Note that duality between direct and (unconditional) indirect utility
functions cannot be established without further restrictions. In particular,
specification of separability in the indirect utility function leads to

allocation functions
- r T
SRS

in which both sector and total expenditures must be known. And while
functions (2) possess the conditions of hamogeneity of degree zero and Slutsky
symmetry, functions (3) do not.

For an indirect utility function to give rise to a demand system of



equation (2) stronger restrictions are needed. Sufficient conditions can be
found if duality between an indirect utility function and the separable
utility function (1) can be established. If in the direct utility function
(1) each aggregator function, U, is homothetic the utility function displays
homothetic separability. Note, however, this does not imply that the utility
function itself is hamothetic. Dual to a hamothetically separable utility
function (1) is an indirect utility function

(6) W(y,P) = Wly,w(P1),..., AEY ]

where T;V is monotonic and each W* is positively linearly hamogeneous in prices
(BPR Theorem 4.4 p.123). The set of prices in aggregator function WwE are
those of the set of cammodities in aggregator function UF of equation (1).

If a cost function is chosen as starting point for the imposition bf
separability, slightly different demand systems result. If the cost function,
C(u,P) satisfies the regularity conditions, then it is separable if
(1) ¢ =c [u,clw,p),...,du,Y]
where ¢ and CF satisfy continuity, positive monotonicity, positive linear
hamogeneity and concavity in prices. In addition C should also be strictly
positively monotonic in u (BPR Corollary 4.1.4 p.112). The C* are sectoral
cost functions.

Differentiation of the cost function (7) results in demand functions
(8) XF =cf(u,PHy,
in which the consumer must know the utility of "real income," u (BPR Theorem
5.5 p.192). Flexible functional forms such as the translog have frequently
been used to specify direct or indirect utility functions, but not cost
functions. With a cost function specification the problem is dealing with the
unobservable utility or real incame. Stronger assumptions on functional form

are needed.




The hamothetically separable direct utility function is equivalent to a
hamothetically separable cost function. The latter can be written as

C(w,P) = Clu,cL(pl), ..., T(FM]
where C satisfies the same regularity conditions as before, EZ is monotonic and
each ¢ is linearly hamogeneous in prices (BPR Theorem 4.4 pp. 123-4). The CF
are price indexes. Finally, if the direct utility function is itself
hamothetic then the cost function can be written

C(u,P) = Tl (l),...,TY ]

(BPR Theorem 4.6 p.125). In this case a flexible functional form cost
function, for example the translog, can be estimated from share equations that
are not functions of utility or "real incame."

An alternative way of imposing restrictions makes use of camplete
separability (also referred to as strong separability). If the utility
function is continuous then it is campletely strictly separable if it can be
written "

, m

U(X) = U*[ z uF(x5)]
r=1

where U* is an increasing function (BPR Theorem 4.8 p.136). The extreme case,
addivity, occurs when each set X* consists of a single cammodity. Duality
results can only be obtained under stronger restrictions. The utility
function must be hamothetic (which property is inherited by each aggregator
function, (BPR Corollary 4.8.1 p.139). Under these additional restrictions
there is a cost function that is separable in the same partitions and can be

written as either

m
Cu,P) =r(J = -Cr(Pr)p]]./p

,0

or

C(u,p)

m e T
r m o e)” ’Pr>0,zor

=1 =1




The limiting cases when each set comprises a single cammodity are the CES and

Cobb-Douglas functions respectively. These are clearly strong restrictions.

The Separability Inflexibility of Functional Forms.

Denny and Fuss maintain that the translog function treated as an exact
function is either a translog macrofunction of Cobb-Douglas aggregators or a
Cobb-Douglas macrofunction of translog aggregators. BPR show that the
situation, although restrictive, is not quite that bad. Any flexible
functional form that is a Taylor's series expansion to the second order can be
expressed as a mixture of the above polar cases (BPR Theorem 8.2 p.303 and for
the translog, corollary 8.2.3 p.309).

Specifically, for the translog we have
m m m

(9 WmUu = 0 + 1 : éstUs(Xs)Ut(Xt)
r=1 s=d+1 t=d+1
Two types of aggregator function can be present
T = 1. R T
(10a) Ur(X) );ai In X; + L ;):Bjk In xj In X i,j,kel
i jk
(10p) UT(xh) = Ty; In X, ieI®

The first camponent of (9) consists of both types of function. Those sets of
cammodities that are found in the second component must, however, always
appear in the form of (10b). For most applications it would seem reasonable
to begin with a subset of commodities specified as (10a), ‘which would lead to
demand equations like (2).

The Almost Ideal Demand System is specified through a cost function in
the logarithms that also generates share equations that are price-independent
generalized linear. The preferences represented are therefore members of the
PIGIOG class, and the function has several desirable properties. Following

Deaton and Muellbauer, it can be written.
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(11a) 1n C(u,P) + Zog In P * ’/ZZZij In Py In pj *+ uB,lp,

%0

By
In P + uBO]ka

(11b) 1n C(u,P)

and will be linearly hamogeneous in prices if

% J

It will be noted that since the AIDS function consists of a translog cost

=1, ZYkJ IZ(YkJ =318. =0

function plus a Cobb-Douglas form, it contains more parameters than a
parsimonious flexible functional form.

The AIDS function is even more separability inflexible than quadratic
forms such as the translog. If a four commodity master AIDS cost function is
specified, then {1,2} would be separable in InC from {3,4} under the following
conditions:

If 80 = 0 (then the function degenerates to the translog) then with the

usual translog restrictions, either

MYk T %2¥ik T O | k=34
and

24713 T Y14¥23 = 0
for non-additive separability, or
137 14 T V23 T ¥y 70
for additive separability.

Yoz =Y, =Y
If B o = 0 then
either B =8, = 0
plus the restrictions above. The implication is that if a sectoral cost
function takes the AIDS specification (11) then the g; (i # 0) on the excluded

camodities must be zero. Therefore, the excluded sectors are either a linear
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cambination of translog aggregators or a quadratic combination of Cobb-Douglas
aggregators or both. Stated differently, one and only one of the aggregator
functions of equation (9) takes the AIDS form. The desirable properties
claimed for the AIDS over the translog by Deaton and Muellbauer are less
impressive (With parameter restrictions on either the AIDS or the translog to
ensure positive linear hamogeneity in prices the additional benefits of the
ATDS are Engel curves that need not be linear and parallel in different
households, and the functional form is consistent with previous household
budget data.).

The AIDS shares the advantage of any cost function that is positively
linearly homogeneous in U: it is easily inverted to the indirect utility

th

function. Treating equation (9) as a cost function of the r-" sector then

fram (11b)
8
1In Cr(u,Pr) = 1n Yp = In P¥ + ugy I Py k
ker
Rearranging
8 y
kX
(12) ugyllpy = m(Pr)

Differentiating (1la) and multiplying by P;/C(u,PF) gives

B
k
(13) w. =a. + I y.. 1lnp. + B.uB, I p
i i jer ij ] i Okerk

Substituting (12) into (13) gives the AIDS demand functions in budget share

yI'

form

W. = o-. + Zyi

1 i . ; 1n p.
Jér

J
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Parameters in the Translog and Aids Functions

If the indirect translog utility function is hamothetically separable
(equation (6)) it consists of a number of aggregator functions of the form
=T - 1

In W ay * Iog 1n p; * zzzsij In P; In pj

where the prices are those of the n cammodities in the partition IF. As the

result of utility maximization subject to the budget constraint PyXy = Yr the
n - 1 independent share equations are

z
Pi¥i %5 " 3Pi;

Y Oy ¥ ZBmj

In p.
J i=1,...,n -1
lnpj

T
the nt! share equation being derived fram the budget constraint. The

denaminator in each equation should be identical, which adds n + 1 parameters,

o_ = XZa.
m 1
n ]
ij _j Elsij , j RS o}

giving a total of
(n-1) +n(n -1) +n+l=n®+n
(Since utility cannot be cardinally measured, o cannot be recovered.)
Since the share equations are hamogeneous 6f degree zero in the
parameters, one must be set arbitrarily, e.g. through the normalization

a, = Ia; = -1 (Christensen, Jorgenson, lLau) giving

n? +n-1 parameters.

Now there are &CEZ:_Q_ symmetry restrictions of the form si. = R..

J J1
(Note that the an are recoverable from
n-1
. = .- T B.. j = 1,...,n
an ij i=161J J )
giving finally

n2+n-l-£(-r—12ﬁ

=n®+3n-2
2
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independent parameters in the non-hamothetic translog utility function. The
same result prevails starting from the direct utility function.
The translog expenditure function (7) has aggregator functions that are

sectoral cost functions of the form

In Cr(u,P) =¥y * Zyi 1n P; * Yoo Inu + 1/2500(111 u)2

+ 4 ZZéi.

Jlnpi In p. * I¢; 1nu1npi

J

withl+n+l+1+n+n = n2+2n+3parameters.

There are n(n - 1)/2 symmetry restrictions again. Homogeneity of degree one

in prices also requires

Iy; = l’§6ij = §Sij =2$; = 0

This adds n + 2 parameter restrictions. In addition, although the dependent
variable, expenditure, is measureable, 1n u is not, so that of Yo» Y00 600
only one constant can be recovered, losing 2 more parameters so that again (n2

+ 3n - 2)/2 parameters can be estimated.

The AIDS cost function specification of equation (7) has sectoral cost

functions
In Cr(u,P) =y * Zag In p; * ’/ZZZykj In P; In pj
+ uBOHpj B3
=1nP + uBOHijj
Share equations
Wi =aj *Iyzy mpy siueonpjgj L i=l..n

=0, ZYij In pj + Bi(ln C-1nDP
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Thecostfunctionhasl+n+n2+1+n = n2+2n+2parameters. If
symmetry is imposed this gives n(n - 1)/2 restrictions.

Homogeneity of degree one in prices requires

Lo, = 1’§Yij = ?Yij =8; = 0
This adds n + 2 restrictions. In addition, although oj is estimated in
the process of constructing the price index, 1nP, the other parameter g,
cannot be estimated since u is unknown. This loses one more parameter, giving
n2+2n+2-nn-1)/2-(m+2) -1 = (2n®2+4n+4-n°+n-2n-4-

2)/2 = (n? + 3n - 2)/2 independent parameters, the same as the translog.

Recovery of parameters.

When there is no price variability in a sample, as might be anticipated
from a geographically confined household budget survey, only Engel curves can
be estimated within the sample. Pollak and Wales used two such cross sections
to recover all the parameters of the Linear Expenditure System (LES). Dybvig
shows that any globally additive function can be determined from two Engel
curves, that is, fram two cross sections of data.

The Cobb-Douglas utility function requires only one. Taking the seif
dual cost function, from Hotelling's theorem it is straightforward to
establish that the budget share

Wi=Ei7x_i =Bi , i=1,...,n
where B; is the parameter on the it_'h camodity in the utility function
Inu = ay + I8 1In X; - The LES is an affine transformation of the C-D

function. For each cammodity there is an additional parameter, y;, sometimes

referred to as the minimum required quantity.
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Inu = ay * ZB; In (xi - yi)
where ZBi =1,0 < Bi <1 for all i and X; ~ Yy >0 for all i.
Maximization of utility subject to the budget constraint gives a demand
system
(14) p;X; = D5y * B0y - Ippm) i=1,...,n
If sectoral éxpenditure is known then, because the function is separable,
incame can be replaced by sectoral incame y, and the summation of the minimum
required quantities, vy , takes place only over those comodities in the
sector.
With a single cross section in which all consumers face the same prices
equation (14) can be estimated as
P;X; = ei +-Biy R i=1,...,n-1
where 6; = p;Y; — Bj IpKYy, is constant for each cammodity. Even though Ip, Yy
must be the same in each equation and B, can be recovered fram the restric-
p
i=1 ,
insufficient information to recover the y;. By introducing a second cross

tion B; =1, the magnitude of IPyYy is not constrained and so there is
section with a different price vector and using maximum likelihood methods,
the binary price vectors provide sufficient information to estimate the y;
parameters directly.

It is claimed by Deaton and Muellbauer that m cross sections provide
enough information to estimate a translog system with at most n + 1 + m(n - 1)
parameters. This appears to be in error. For example using the indirect

translog utility function

p;X; ) a; *+ ):Bij(ln pj - Invy)
Yy o + Zij In (pj/y)
Introduce the normalization o = -1. If there is no price variability within

a time period t, then the estimating equation is
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PitXir _ Soit ~ %13 1M Yy
- b
Yrt L+og

int O = IBpj In (P3/¥e)

There will be m(n - 1) estimates 6 n - 1 estimates 811 and m estimates 6t'

oit’
atotalof m(n-1) +n-1+mor n(m+ 1) - 1 parameter estimates. These
can be solved for no more than n(m + 1) - 1 structural parameters.

The AID system, on the other hand, has share equations of the form

Wi Tooy t vy
(since Iw; = 1 is required)

lnpj+8i (InC - 1In P) , 1i=1,...,n-1

or wi=ai+2yijlnpj—8ilnP+BilnC iél, ceer n =1
If prices are fixed within a time period, 1n P cannot be uniquely estimated.
The estimating equations are

Wi =8¢ t8; In G
where 6i4 =ay + ZYij In Pst ~ B In P.. m cross sections give m(n - 1)
estimates of éit and n - 1 estimates of . i.e.m(n-1) +n-1 = (m+ 1)
(n - 1) parameter estimates. The system can be solved for no more than (m +
1) (n - 1) structural parameters.

'The way in which the number of commodities in the system is related to
the number of subsamples required is shown in Table 1.

The indirect approach will fail to give satisfactory estimates unless.the
price variability within each sample is small and the variability between
samples is large. This needs to be checked prior to any estimation. The
method can also be used for a single cross section if a subsampling scheme can

be justified that leads to the above conditions and assumes an identical

representative consumer in each subsample.
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Table 1. Relation Between Number of Commodities and
Number of Samples Required

Number of Number of Number of subsamples requlred (m)
Commodities Parameters (k) Translog

n 02 + 3p-2 [n(m+1)-1] [(m+1) (n-l)]

— m = (k-n+1)/n = (k-n+1)/(n-1)

3 8 2 3

4 13 3 4

5 19 3 4

6 26 4 5

7 34 4 5

8 43 5 6

10 64 6 7

15 134 8 9

20 229 11 12

25 349 13 14

30 494 16 17
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Summary

In estimating the elasticities in a demand éystem the question of price
variability seems more important with a single cross section of data, than
with time series data. A sample from a widespread survey may well contain as
much price variability as a particular time series, in which case the same
direct estimation methods may be employed. Where price variability is less
marked, as would be expected in a small geographic region, an indirect method
relying on Engel curve estimation may be preferable. This may be attainable
if a number of mutually exclusive subsamples can be genqerated that maintain
low intrasample and higher intersample price variation.

A cross section sample also poses more of a problem in creating a
"representative consumer" that is consistent across subsamples. One
attraction of the AID system is that this can be achieved without the
requirement of parallel linear Engel curves for all consumers.

The intractability of a disaggregate system forces the investigator to
adopt the assumption of separability. When this is done same of the
flexibility of the AID system campared with the more familiar translog
specification is lost; both end up with the same number of free parameters.

Unresolved issues are whether the gain in camputational ease using the
indirect method compared with the direct one is offset by a loss in accuracy
of parameter estimation. This tradeoff will be influenced by changes in the
relative magnitude of intersample to intrasample price variation. These

issues could perhaps best be explored through a Monte Carlo type of study.

&
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