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1. Introduction.

The problem of estimating selectivity models has received considerable theoretical and empirical
attention in the econometric literature. Maddala (1983, chapter 9) provides an overview.
Consider the following selectivity model:'

yi = ao + Xiai ei (1)

where I = 1 iff 0 and I = 0 otherwise. The continuous dependent variable yi is related
to a constant, some explanatory variables contained in the vector Xi, the variable Ii equaling
either 1 or 0 and an error term with zero expectation. The latent variable 17 depends upon a
constant, a vector of explanatory variables Zi and the error term vi with zero mean. This model
has been utilized to measure the effect of social training programs on wages. The key parameter
in that case is 0. It reflects the wage effect of the training program or, in other words, it is a
measure of the effectiveness of the program. Obviously, model (1) has a very restrictive nature.
An important generalization is the switching regression model (see e.g. Maddala, 1983, p. 261
or Willis and Rosen, 1979). It enhances the model by permitting the program to not only affect
the constant term of the wage equation but also its slope al. Furthermore, it allows for a more
elaborate error structure than model (1). In particular, the switching regression model does not
assume equal variances across regimes. To clarify this point consider model (1) where an
individual specific stochastic money return of participating in the training program 0i replaces
the constant money return 0. Assume that 0; = X0 + ViXi with EKi = 0. Rewriting model
(1) yields:

(2)

4. = +

If we choose Vi = Xi we obtain the switching regression model. The difference between models

This model is the starting point of the analysis in e.g. Bjoridund and Moffitt (1987) and
Goddeeris (1988).
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(1) and (2) lies not only in the addition of slope effects but also in allowing for a heteroscedastic

error term. Indeed, this last generalization of model (1) is a very straightforward one. For

instance, even if we relate the uncertain individual specific returns of the training program to

a constant and an error term: Oi = 0 + error term, 01 = 0, the resulting model would be

heteroscedastic. Now, consider the estimation of model (2). We can estimate the heteroscedastic

model by either full information maximum likelihood, this procedure yields consistent,

asymptotically efficient parameter estimates and correct standard errors, or use a two step

estimation method, which differs slightly from the one commonly encountered (see below),

yielding consistent but not asymptotically efficient estimates and incorrect standard errors for

the second step estimates. But what will happen if we ignore the heteroscedasticity and perform

a homoscedastic maximum likelihood estimation?

With respect to ignoring heteroscedasticity the following results are established in the

literature. Disregarding heteroscedasticity in a linear model will yield consistent, but inefficient,

estimates. Homoscedastic estimation of a heteroscedastic probit or truncated model (cf. Yatchew

and Griliches, 1984, and Hurd, 1979) will result in inconsistent estimates. For simultaneous

models much less is known of the influence of heteroscedasticity on estimators of a

homoscedastic specification. In this paper a more or less intermediate position is considered.

The problem of homoscedastic estimation of a heteroscedastic simultaneous model will be

addressed for the case that one of the endogenous variables of the model has a qualitative nature

and the other endogenous variable is heteroscedastic. In Section 2 it will be proved that ignoring

heteroscedasticity will frustrate the consistent estimation of model (1) in which the

heteroscedasticity is assumed to have a very simple form. Section 3 will consider a variation of

the well known selection model discussed in Heckman (1979) in which the linear equation is

heteroscedastic. Section 4 describes some small scale Monte Carlo experiments to settle some

loose ends of sections 2 and 3 and to get some insight in the magnitude of the bias of the

homoscedatic ML-estimates and section 5 concludes.
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2. Heteroscedasticity in a self-selection model.

Consider the following rewritten version of model (1)?

Xice (3a)

(b)

The constants ac, and 70 are now included in the vectors of explanatory variables X and Zi.

Furthermore, I; may also be included in Xi. The errors Ei and vi are jointly normally distributed

with expectations 0, variances ai and 1 and correlation p.3 The heteroscedastic variance al of

ei will be restricted to a very simple form c4 = oI + o(1-l). A rationalization for this

specification is given in the introduction. If we define S1 (S0) as the set of individuals i with I;

= 1 (0), the loglikelihoodfunction of this model equals:

logL = E log(P11)

where:

and

E log(Pio)

= P(Ei = yi - Xia, vi Ziy) = P(vi 5_ Zak = yi - Xia)T(Ei = yi - Xia)

1 1= exp(--(yi _ a)2) .

- --P- - Xia) I

Pio = P(ei = yi vi > Zr,) = P(vi > Zak = yi - X1a)-13(E1 = Xia)

(4)

2 This model is discussed in Maddala (1983, p. 120).

3 The variance of vi has to be restricted to 1 because we only observe the sign of I:. The
correlation is assumed to be homoscedastic and consequently the covariance of Ei and vi is
heteroscedastic.
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= exp(--(yi - Xia)2)•[1 - (131 1 
-Xia) I

427

(To 

1ff; 2a2c,

To economize on the notation the loglikelihood function can be written as:

logL =
Nlog27 - - nologao - 

1
2E (y - X ia

)2 -
2 2o1 us,

where:

1 (y - Xia)2 E log4,01) E log(1 -
2a20 icS0 its, Jac,

(13
[ Z

Z17-p-1 (yi - X ia)
.o- .

ii-T-7 

4, i7 -

I-F-7

y1 - X ia

a

(5)

N is the number of observations and n1 (no) the number of elements of Si (So) (N = no + n1).

The loglikelihoodfunction of the homoscedastic model (a = 01 = a2) can be obtained by

substituting for al and a2 in eq. (5). Maximization of (5) with respect to a, 7, al, a 0 and p

will, under some general conditions (cf. Cramer, 1986, Chapter 2), yield consistent,

asymptotically efficient estimates 11, 5), 8-1 ao and p . The properties of the estimates obtained by
ignoring the heteroscedasticity of the error term (ix", ;)," , & and 15) are unknown and are the object

of the present analysis.'

The ML-estimates of the model taking account of the heteroscedastic error terms can be

calculated by solving the following system of equations:

The analysis will concentrate on whether the most important parameters of the model (Ex

and 5) are asymptotically biased or not.
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 E Gctogi
1-F7 us.

(6a)

1 1 .(yi - Xiey)Xi + (yi - Xitx)Xi + EF(eigi - (b)
ao us. al. jai

1 A A
2_,G(e0i)Xi

ao

ni 1 1 A= 0 = + __
3
E (yi - 2 + 7 • 15 E F(tu)(yi -

&I ^ •al us, al ifS,

no
= 0 = + _E (yi - Xiee)2 - 1 E )(y - Xia A)7,5P 

6-0 630 Id0 ao

3ioggo-1,0-0) = 0 = E _ E Octoeiceoap

where5

AO 4)
[ -  { bEi 14, 4- - bei 3_, _ ogr - h•e)

IF-T2 • ir.---F cl)(Zii,' -

6(61) . 4, [ zji - bei 1 1 _ 4) zili, - h&j  ..... 0 ' * - h * E)
1 - 4)(zi-3, • - ,5 - 6)

(c)

(d)

(e)

goi (gi) denotes EN (e11) evaluated in C'e and ao ca-o.
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In general this system of equations will have to be solved numerically. Assuming a

homoscedastic error term ei would require solving:6

aloggo) _ 
0 -  

1__E PRoz, - E ocadzi
a7 ii= " 47----A2

alogL(a)
aa 0 — + —1 E — x «pc +

5-2 us. I

1 - vc-,
P 2, Gctoi)xi
a leS.

F-(toxi _
a its,

ni 1 )X.&)24. 1 — - Kp EX&) -alogL(o) = + _  (y
ao-

n 1 0 —E - 1 x&-)2 - .E utuyi - X,Fx)
a 713 us, " '62

a/oggo 0 E pRigio) _ E Octo)Lcoap

(7a)

())

(c)

(d)

From now on the analysis will concentrate on the estimation of the most important parameters

of the model: a and 7. To prove that the probability limits of the estimators under the

assumption of homoscedasticity (Ey and mj, , these estimates result from solving (7)), equal a and

7, it suffices to demonstrate that the probability limits of (7a) and (7b) equal 0 under

heteroscedasticity.

The following lemma is very useful in pursuing this objective.

6 The tilde distinguishes the homoscedastic ML-estimation from the heteroscedastic ML-
estimation. F, G etc. are defined analogously to F, G etc. except for substituting Ey, -3, and i) for

=1 and p and & for a, and ao.
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Lemma 1.

For the function

O(Z'Y. — P. E) G(E)
1 — — p•

the following holds:

(a) 3G(e)/8c < 0 if p > 0
(b) aG(e)/ac > 0 if p < 0
(c) 32G(e)/e2 >

The proof is given in the Appendix.

Starting with (7a), assume that for an infinite number of observations a proportion r1 (= lim

n1/N) belong to the set SI and a proportion ro (= Ern no/N = 1 - r1) belong to So. Eq. (7a) can

be written as:

ni 1 _ n 1
EF(e .)Z. — E G(e )Z. = 0

N nius, is N noks. a

For an infinite number of observations plim() solves:

[1 [1T= 7-1 plim — F(eii)Zi - roplim G(e0i)Zi = 0
n us n. 0 •

(8)

(9)

where Eli N(0,(01/&)2) and toi N(0,(o-0/02), o ao. The essential feature of this

specification is the deviation between the variance of both error terms. Therefore, we assume

for simplicity that — N(0,1) and t N(0,62), 62* 1.7 If the variance of the first and the

second term (9) goes to 0, the probability limits can be replaced by expectations. The problem

with eq. (9) is that it contains five different stochastic variables: ix", 5,, 13, ó and yi. Assume that

and are consistent estimates of a and p. Furthermore, assume that plim 6 = a and plim

= 7(o). We know that a 1. Define the function T as follows:

7 The fact that 62 1 is crucial. Obviously, if al a2, the probability limit of 5- can not
be equal to 1 in this simplified version, because the probability limit of FE before this
simplification was made can not be equal to al and o-2.
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[
1 [1

T = r1plim — EF (61i)Zi - roplim — EG(eoi)Zi
n1 usi n0 ics.

where:

Z.-y(a) - pei 14. Ziy(a) - pc i (1)(47(0)* - P*
F(6) = ck[ 

if F-7 4:1)(47(o)* - p' e)

= [4)-  11 -P zi7(0) - PE i_1 
=

f2 J
G(Ei) 0 7('   ci)

[iv

7(0)* _  'Y(0) 

--p2

0(47(0* P *

1 - cl)(Zi-y(a)" - p• 6)

(9')

Eli and Eoi are distinguished because they have disf'.nct variances: Eli — N(0,1) and Eoi —

N(O,a2), a2 1. Clearly, plim T = plim T = 0 in 'y(o). Under the assumption that the error

terms are uncorrelated across individuals we can write:

1 1 11 1var _E REozi = __,E var(F(Eli)Zi) = __,E ZiZi var(F(ei))
1 ifS, ni US, n1 its,

max

Lemma 2.

441 E 1E(RE02) -
n ni 

E(F(Eii) 1 21

E(F(en)) and E(F(e1)2) are finite.

The proof is given in the in the Appendix.

Lemma 3.

E(G(e0) and E(G(60)2) are finite.

Proof: Note that the Mills' ratio (x)I(1 - cl)(x)) equals 4(-x)/43(-x) and employ Lemma 2. The

fact that co; has variance a2 1) does not cause complications because the density of EN equals
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Assumption.

_
1
E 4Z; and —

1
E Zg are finite.

n1 ics, no icso

This assumption implies that if the number of observations increases, the elements of the matrix

EZiZ ; do not increase at a greater rate. This assumption is commonly made in the literature.

Consequently max(ZiZ ;/n1) < co and therefore, given Lemma's 1 and 2 the variance of the first

and second term of (9') go to 0 if the number of observations is increased infinitely. So, 7(o)

solves:

lim 1 urn
T = r1 nr,03E(—Eksi Z,F(Eli)) - ro n ....,,,E(_E ziG(60)) = 0[ ni 

0 no t.. so

(10)

where Eli — N(0,1) and Eoi N(0,02). If a = 1, (10) holds and plimi/ = = -y (the

heteroscedastic case (5)). For the consistency (inc-msistency) of we have to proof that -y(o)

is independent (dependent) of a if the number of observations is infinite or, in other words,

87(0)/00- = 0 for all a > 0 (8-y(0/00- 0 for all a > 0). Consider the arbitrary element k of

the vector T:

liin 1 liM 1
T k = 7-1 n _...E(—ji ZaF(cii)) - 7.0 n ,,,,E(_E zaG(E0) = 0[

I no us.
•

Apply the implicit function theorem to (10'):

0-yk(o) = a Tk/a

ao- aTkbay k(0-)

where:

if aTia-y o

a T k liM 1 a E(G(coi)) lirn
= -ro - -ro n0-*03 no us,Za  a a 

o us.

aft80
• G(E0i)  a a  ckoi =

OD

(10')
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2 I
To Ern 1

1-- dcoi = n _3003 ziked
a 0 no le;

Ern 1 aqcu fi) dc„,
aTk  = r liurn1 Z 

aF(s
e . (1)(-11) ro no--> nE &So -Z .1a'y k(o) ik1 tic+ ni jai _Jo, k(0 00 kQ° 0 a7

urn1 7 nk

r1 
lirn 

—
1
E z ok , r _ n1--03 n . hi 0 -E z/
1 

s a 
no so

f(co) is the density function of a normal distribution with expectation 0 and variance 02.

Proposition 1. 

If there exists at least one i E So or at least one i E SI for which Z& 0, aTk/a7k(o) < 0 for

all 7k(a) and a.

The proof is given in the Appendix.

Pro osition 2.

If there exists at least one i E So such that Zik 0 and if p 0, Ogi < 0 for all a.

The proof is given in the Appendix.

Now assume that there exists an i E So such that Zi 0. From propositions 1 and 2 it follows

that:

7k(°)
a a 0 if p 0

In other words, the homoscedastic ML-estimator 5," k of the heteroscedastic model (a 1) is

inconsistent under the assumption that a and p are consistently estimated. According to

Proposition 2 it does not matter whether 15 is consistent as long as "b' 0. Therefore the

assumption that "p" is estimated consistently is superfluous. If = 0 (or if it is simply assumed

that p = 0), -y is estimated consistently. Of course, this is in line with the frequently utilized

2-step estimation technique for selection models. For the present model the 2-step estimation of
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first estimating eq. (3b) by means of the probit technique and then estimating (3a) with ordinary

least squares on the regressors Xi and a correction term created from the first step of the

estimation (cf. Heckman, 1979) will yield a consistent estimate of 7 despite the

heteroscedasticity of the error term. However, in this case the 2-step estimate of a will be

inconsistent (see further). We can conclude that 5, is an inconsistent estimator of 7 if it is

assumed that Ei is a consistent estimator of a.

Inconsistent estimation of a might in principle yield the consistency of Suppose that

plim(de) = a + A(o), where 12(a) 0. Given Proposition 2, needs to be dependent on a to

establish the consistency of 14(a) solves:8

aT lim 

agF(81)) 
1im ,c-, ,73E(G(E0))= 0 = n .03E Zi auS1 o. no-"3 Li,so Ldi a a 7acr 1

Furthermore, it(a) should be such that Et = a + go) solves (7b). Whether ei is able to solve

both of these equations simultaneously is a difficult problem. It becomes even more involved

if we recognize that 13 is likely to depend on a also. However, it can be shown for a relevant

case that CI is not able to solve both (11) and (7b) simultaneously. Assume that Zi = X3 . In that
case "(X solves:

E - + E - xiEoxi = 0us, it;

that is, ei is the ordinary least squares estimate of equation (3a).9 Clearly, plim(a) is

independent of a and therefore, it can not solve (11) for every a. This conclusion can be made

more general: construct the vector Wi by stacking the independent elements of X and 4'

Replace Xi and Zi in (3) by Wi. The elements of a and corresponding to the elements of W1

not in x or in Z. respectively should be estimated equal to 0. This artificial procedure does not
prohibit us to conclude that -3, is an inconsistent estimate of 7 irrespective of the consistency of

In this case the first term of (10) also depends on a through & which is part of Eli. I 7
denotes that the expression is evaluated at 7.

9 Note that this conclusion does not hold for the heteroscedastic model (6). The weights of
the third and fourth elements of (6b) differ.

10 At this point it is assumed for the moment that I; is not an element of Xi.
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both & and 13. Unfortunately, this conclusion does not hold for the case that I; is part of Xi: eq.

(3b) can not be estimated if I is an element of Zi. A Monte Carlo study will be performed to

study this point (see section 3). Given the complicated structure of (11) and (7b) it appears to

be unlikely that a go) exists with settles both these equations simultaneously.

Let us now turn to the estimation of a. First consider a 2-step estimation of model (3)

while ignoring heteroscedasticity. In the second step the following equation is estimated with

ordinary least squares:"

yi = X ja + paX + v

where:

Xi = E(eil/i = = E(ci l Z.-y) if I = 1

or

Xi = E(eiR = 0) = E( > 0) if /i = 0

Consistent estimates of X., can be calculated from the first step, the probit estimation of (3b):

Xi = -
0(Zi:Y) 

if = 1 and X. =  if /. = 0
cl)(Zii) 1 - (I)(Zii)

where :y is the probit estimate of 7. Ignoring the heteroscedasticity of vi and assuming that it

is normally distributed with mean 0 and variance a!, the OLS regression amounts to maximizing

the following loglikelihoodfunction:

2

2
lo gL = —Nlog(2) - .Nlogav - _E  

2
1 N Yi Xia

at,

One of the first order conditions is can be written as:

" cf. Maddala, 1983, p. 120 or p. 224.
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a/ogL 1 [r. (yi _ + E (y - XiCOX 1E (-5 qc) - 5i)Cil (12)aa • 2 Z---d
a1, is1 &So kSo

This method of estimation suffers from two different types of heteroscedasticity. As already

noted vi is heteroscedastic. Due to the well known result that ignoring heteroscedasticity in a

linear regression model does not hinder consistent estimation, this heteroscedasticity problem

per se will not lead to an inconsistent estimate of a. However the second type does. The

problem is that the coefficient of the correction term Xi for I; = 1 and I, = 0 are restricted to

be equal despite the heteroscedasticity of ei. The correct coefficients of the corrections terms are

Pi = 1) and Po (I; = 0), which are only equal if al = a or p = 0. Consequently, this.

restriction prevents the consistent estimation of a by solving (12). Consistent estimates can be

obtained in this case by not imposing this restriction in the 2-step estimation technique (see

below). Assume for the moment that Xi = Zi. Given the similarity of (12) and (7b) it will be

clear that substituting consistent estimates of F(El1)/V(1-p2) and G(eoi)/V(1-p2), assuming that

there are available'', and solving (7b) will not yield a consistent estimate of a. A more general

conclusion can be reached by considering model (3) where Wi, the vector of independent

elements of Xi and Zi, is substituted for Xi and Zi." The third and fourth element of (7b) drop

out. Assume Wi is arranged such that Wi = (Xi,X), where X are the independent elements of

Zi not belonging to N. Denote the corresponding vector of parameters by: a" = (45%0. as

solves:"

Therefore, the homoscedastic estimation is similar to regressing Wi on yi.

Consider the ML-estimation of (3) while taking account of second type of the

12 Consistent estimates of F(.) and G(.) can be obtained by carrying out a probit estimation
on I; while using both Zi ,yi and Xi as regressors. (V(1-p2)4 can be included in the coefficients
of the second stage of the estimation (cf. footnote 15).

13 Again, I; is for the moment excluded from Xi.

14 Of course, a. can be equal to 0.
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heteroscedasticity discussed above. In this case the first order condition with respect to as is :15

a logL 1 1
= 0 = - Wp * )W —,E -aa ics, ao iLso

1 1
(5,—E (-X)Wi - 607E xiwi- 2

al ieS, ao us.

The first order condition with respect to equals:

aiog, E Rel)wi _ Reo" =E - E xiwi
it; ieS, leS,,

Substituting this condition in (13) yields:

c4
wice • — 051 — --i° i)W W * )W

ao °b us.

This first order condition corresponds to the regression model:

yi = Wia* +(-)XJ.+w.

(13)

(14)

Recall at this point that we have already demonstrated that the homoscedastic maximum

likelihood estimate of a of model (3) in which Xi and Zi are replaced by Wi, is the ordinary

least squares estimate of equation (3a) in which Xi is replaced by Wi. Consequently, if p 0

and al 0-0, simply estimating equation (3a), where yi is regressed on Wi instead of Xi, will not

lead to a consistent estimate of a due to missing variables bias. Only if W. and Xi are

uncorrelated, consistent estimates are obtained by employing ordinary least squares. This is

obviously not the case.

Finally, consider the case in- which I; is part of equation (3a). For simplicity look at the

following model:

15 61 = PalA /(1-P2) and 3o = Pa0A41-P2).

4
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yi = 01i + ei where ei - N(0,1) if /i = 1 and Ei N(0,02), a2 1 if /i = 0

1 = Z - v

Rewriting the first order conditions with respect to estimating 0 for the homoscedastic and

heteroscedastic maximum likelihood estimations yields (cf. eqs. (7b) and (6b)):

-6 = yi Fca = 0 4. irEi+
n1 it. s, n1 ,4 si nl ks, ni

= Eyi E Fcti) = + _l Eci

nlks, n1 ,4 es, n • s

The probability limit of is 0. Consequently, o is consistent only if:

[plim 5;5. -1-E F(Zi) = -plim —
1E Ei = p* plim —1 EF(t)

Ill .,s1 . . n1 its, ni it;
(14)

where Ei - N(0,1), - N(0,1) and N(0,ä). The inconsistency of 0 can be proved by

showing that the first term of (14) is independent of a. However, this is a very complex task

because both Er and 13 depend on a. Furthermore, no explicit form of & and I) can be derived,

we only know that they solve (7c) and (7d). To get some insight in the consistency of 0 a Monte

Carlo experiment will be carried out in the section 4.

3. Heteroscedasticity in the Heckman (1979) selectivity model.

Consider the model discussed in Heckman (1979):

yi = Xia + Ei observed if /i = 1 (15a)

(b)

where I = 1 if 1 > 0 and I, = 0 if I: Lc_ 0. Assume that there no observations for which yi is

not observed and N-no observations for which yi is observed. Furthermore, for the observations
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for which yi is observed the variance of ei is either ai (n1 observations) or (73 (n2 observations)
and ai d. The group of ni (n2) observations will be denoted by Si (S2). The main goal of

model (15) is the estimation of a, the addition of eq. (15b) to the model is only carried out to

correct for selectivity. The loglikelihoodfunction of model (15) is:

logL = E logP(Eii = yi - Xa, 1 > 0) + E logP( e = yi - Xia, 4* > 0) +
ice% ieS2

E logP(/: 5_ 0)

where the additional subscript of Eii reflects the heteroscedasticity of this error term. Under the

assumption of normally distributed error terms with expectation 0, var(Eli) = o, var(E2) =

var(v) = 1, cov(eli,vi) = po-1 and cov(a21,v) = pa2, the loglildhoodfunction of model (15) can

be written as:

n +n2
logL = - log27 - - n loga2 - 0.5E (eii(a1))2 - 0.5E (62i(a2))2 +2 

ics2

PEu((11)
z - ry PE2i(a2) IE logcb ZrY  + E 100  

i 
E log(1 - 4)(47))

uS1 _2 V=c7 us.

where

yi Xiae11(a1) yi Xiaand E 2 i(a 2) -
a1 a2

(16)

The loglildhoodfunction in the case that the heteroscedasticity of E i is ignored is obtained by

substituting a for al and cr2 in (16). Maximizing this likelihoodfunction is equivalent to solving

the system of first order derivatives with respect to the parameters of the model:

alogL(a)
437 /1p2 uS1 

0 =  1  [E REli(o)zi E F(82,(0-))z1l - E G(0)Z1
id2 leS.

alogL(o) 1 — 1 — e0 = _E i(OX + _E E2i(oxi R-Edopcia a a icS, Iff a

(17a)
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P e E Ri2i(o)xi
a icS2

alogL(a) ni÷n2 1 E -
2i‘a"

.(ar2 " 1N-

a 0- 
_ 

0- 2 'a • 1 T c. ics2

ILE Riii(0)--i,i(0) F((o))(a)
a jai a

alogL(a)
ap

where

F(61) = cl)

=0 - E - E R0-mT2,( i(01
yr-7

1  

[

[Zry - pc i I tie Zi7 - PE (kg cy. - P s 6)

(I) (Z ry* - p•E1 -1-7

G(0) =  
cb(Z

t
ti)

1 -

1 - pE
Ma.) =     -

11--7 fr-17

'Y

1- p2

7 

pT

(c)

(d)

Again the analysis will be concentrated on the consistency of the estimators of the most relevant

parameters of the model: a and 7 . To prove the consistency of the estimates resulting from

solving (17) we need to prove that (17) also holds, while acknowledging the heteroscedasticity

of the error term, if the number of observations goes to infinity. Denote the solutions of (17)

by: Ee, & and 1). Starting with (17a) assume that if the number of observations gets very large,

the proportions of the observations in each set S1, S2 and So got to the constant r1, r2 and ro. Eq.
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(17a) can be written as:

no 1 v• G(0)Z1 . 0{ n v. ii(i2fi-DZi - 7 i 7roit
1 n1 1 E -ici,j6-,-Dzi + 2 1 

w. 7,- -2 ii7s.:ITT Wn's1

(18)

where the bars indicate that the function is evaluated in , a, Er and 13. If the number of

observations becomes boundless we know that the probability limits of , Fr and -pi solve:

= plim 1  1 [riplim [1-E + r2plim [!E TR-E-2Agil - (19)
1-F-72 n1 iis, n2 i,s2

roplim _LE -dog] = 0
fts.

where "an N(0,(o-1/5)2) and -t2i N(0,(cf2/5)2). The essential characteristics of the specification

is that al a2. Again, to simplify things, we will assume again that -- N(0,1) and -t 2i —

N(0,62), 6-2 1. T consists of five different random variables: and yi. Assume that

ii and 7) are consistent estimates of a and p and that plim = a 1 and plim = 7(0. Define

the function T as follows:

T =
1  {

rlplim —
1E + r2plim —E F(e2gi -

{177 ni n2 us2

roplim _LE Gogilno us.

(19')

where F(.) and G(.) are defined as in (9'), Eli — N(0,1) and 62i N(0,o2), o2 1. Obviously,

plim T = plim T = 0 in 7(o-). Analogously to the previous section and under the assumption

that the elements of the matrix EZiZ: increase in a moderate enough fashion (cf. the Assumption

in section 2) it can be proved that 7(a) solves:
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lim 111 lirn 1
T =   n _.00E _E RE,gi r n _E —2

ni &Si 2

ro no_.00 E G(0)Zil
urn

o it;

(20)

For the consistency (inconsistency) of 5/ we have to prove that 7(o) is independent (dependent)

of a if the number of observations is infinite. Apply the implicit function theorem to an arbitrary

element k of the vector T:

a7k(a) 371130-_ _
ao- aTd ,(0)

where:

if 0Ti3-yk(0-)0

a lirn 1lirn 1 T k agF(62)) afic
=ra a 2 n ELk   

a o-
_ = r2 

n2 
co n Zik )  dev =

2 n2 te-2 2 I 2 - 02 
21 a a

co ,2
r2 lim 1 G2i

n _E RE2y(e2) 1 dE2i = - 
r2 lim

n
a 2 n • s2 2 02

and

a T k
a'y k(0)

lirn
ro n 00

0

= r1

_E zik,k;
71-2 kS2

1411 1 7 c°  lifn 1 ir-N 

co aplcid ) + r 
3f(e2i)

n ,00
li 2 —ik n fic2) dE2i -

ni its, 07k(a) "2 uS2 _o, u7k(0)

— G(0) 

no us. a a7k(a)

liM 1 k urn 7 k lirn7 E k

n 00 
--E r2 n _3,00 Lajoklyi ro n Leik4/0„,ii
ni icsa 2 uS; 0 us.

f(c2) is the density function of a normal distribution with expectation 0 and variance a2.
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Pro osition 3.

If there exists at least one i E So, at least one i E Si or at least one i E S2 for which Za

0, allayk(o) < 0 for all 7k(o) and a.

Proof:

a). 1,0f7i = 2.7:ikZa with Eil, < 0, due to Proposition 1.

b). = 014 with 01 > 0, due to Proposition 1 and the property of the inverse Mills' ratio:

0(x)/(13(x) =

c). =3G(0)/87k(o) = 3G(0)/0(Ziak(0))Zik = al,i„Zik with NFik > 0 (see the proof of Lemma

1) •

Combining a), b) and c) leads to the specified result.

Pro osition 4.

If there exists at least one i E S2 such that Zik 0 and if p 0, > 0 for all a.

Proof: Due to the property of the inverse Mills' ratio that 4)(x)/c1(x) = 4(-x)/(1-(1)(-x)), we can

make use of Proportion 2.

Assume that there exist an i E S2 such that Zik is not equal to 0. It follows from Propositions

3 and 4 that:

$31,k(a)

a 0-
0 if p

So, under the assumption that both & and 15 are consistent, 5, is inconsistent if p 0. Again,

in order to obtain this result it does not matter whether -(5 is consistent as long as 0.

Consequently, the assumption that is a consistent estimate of p is dispensable. Note however,

that if I) is inconsistent it is likely to be related to a and therefore, the direction of the bias of

5, which can be deduced from Proposition 4 need not to be correct. Furthermore, note that if

we would have started with the incorrect assumption that p = 0, consistent estimates of 7 would

have been obtained. Of course, this is no surprise given the properties of the 2-step estimation

technique discussed in Heckman (1979).

To investigate the consistency of & consider the 2-step estimation of model (15) while

ignoring the heteroscedasticity of the error term si. Just like in the previous section this amounts
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to imposing an incorrect restriction on the coefficients of the second step equation. While

ignoring heteroscedasticity the following model is estimated with OLS:

yi = Xia + OXi + vi

where

Xi = E(Eilv Ziy)

and Ei is assumed to be normally distributed with mean 0 and variance 02, whereas taking full

account of the heteroscedasticity of Ei would require the estimation of

yi = Xia + OiXii + 02X. + vi

where

Xii = E(eli Ivi Ziy) if ieSi and Xli = 0 if icS2

X. = E(e2i I vi Ziy) if i€S2 and X2i = 0 if i€Si

and en — N(0,0) and E21 N(0,03), with ordinary least squares by substituting consistent

estimates of X11 and X21. Clearly the imposition of this incorrect restriction will lead to a

inconsistent estimate of a. The ML-model (15) can be considered to suffer from exactly the

same problem as the model discussed in Section 2.

What we have proved for model (3) is that if a is consistently estimated, 5,* is inconsistent

and if 1, is consistently estimated, & is inconsistent. Unlike the model discussed in the previous

section, it is unclear how to prove that 5, or Et are unconditionally inconsistent. The method used

in section 2 can not be applied because we can not eliminate the summation over the

observations in So. To study this point a Monte Carlo experiment will be conducted in the next

section.

4. Some Monte Carlo evidence.

To investigate the remaining problems and to get some insight in the bias of the estimates a

Monte Carlo experiment will be carried out. Two models will be considered. The first model
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is discussed in section 2 and has the following structure:

yi = ao + + 0/i + i

+ xii71

where I; = 1 if 0 and I = 0 otherwise, x1i is a scalar randomly drawn from a uniform

(0,1)-distribution. The coefficients were set to: ao = 1, al = 1, 0 = 1, = -1 and 71 = 1.

The normally distributed error term Ei has mean 0 and variance 0.5 if Ii = 0 and 2 if I = 1.

Both these variances will have to be estimated. The mean and variance of the normally

distributed error term vi are 0 and 1. The correlation between ei and vi is put to 0.8. 1000

independent data sets of 1000 observations were created and the model was estimated with

homoscedastic and heteroscedastic Maximum Likelihood. Table 1 gives information on the

results:

-INSERT TABLE 1-

This table clearly illustrates that the homoscedastic estimation results are biased. In particular,

the coefficient of 0 is biased strongly. The true value (1) is even much smaller than the

minimum of the homoscedastic estimates (2.132). Given the importance of this parameter

estimate (cf. the introduction), heteroscedasticity of the error term of the linear equation should

be a common procedure in models like model (1). The quality of the homoscedastic estimate of

the correlation between the error terms of the model is also very poor: again, the true value

(0.8) does not lie in the range of estimated coefficients (0.891-0.982).

To investigate the bias of the estimates of the model discussed in Section 3 consider the

following specification:

yi = ao + xiai + i observed if I = 1

Ii* = 70 + x71 - vi

where I = 1 if 1: > 0 and I; = 0 if 0. The variance of Ei is either (4 or (4. xi is drawn

from the uniform (0,1)-distribution. The coefficients were set to: ao = 1, al = 1, = -1 and

-yi = 1. The normally distributed error term ei has mean 0 and variance 0.5 or 2.0. Which of
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these variances applies to an individual observation is decided upon by a simple selection rule:

a standard normal random variable is drawn and if it exceeds 0 the variance was put to 2.0 and

otherwise to 0.5. The mean and variance of the normally distributed error term vi are 0 and 1.

The correlation between ei and vi is put to 0.8. 1000 independent data sets of 1000 observations

were created and the model was estimated with homoscedastic and heteroscedastic Maximum

Likelihood. Table 2 gives the results.

-INSERT TABLE 2-

The estimation results of the homoscedastic maximum likelihood estimation are particularly poor

for the parameters of the linear equation. The range of estimate a() does not even cover the true

value of the coefficient. Given the fact that the estimation of the linear equation is the primary

goal in this model this is a very worrisome result. Heteroscedasticity has a very strong impact

on the quality of the estimation results. The range of the estimates of p does not contain the true

value also. The quality of the estimates of the probit-type equation are much better, but still

there seems to exist a negative bias.

5. CONCLUSION.

The effect of ignoring heterdscedasticity of the error term of the linear equation in a

simultaneous equation model consisting of a linear equation and a qualitative variables equation

is that the parameter estimates are no longer consistent. The Monte Carlo analysis performed

in Section 4 demonstrates that the bias of the estimates is quite substantial. It should therefore

be common practice to test the linear equation of the simultaneous model against

heteroscedasticity.

Finally, it should be noted that a two-stage estimation method such as the one described

in Heckman (1979) has an advantage compared to homoscedastic maximum likelihood estimation

of a heteroscedastic model: the coefficients of the qualitative variable equation will be estimated

consistently.
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Table 1: Characteristics of 1000 replications of the selectivity model.

homoscedastic ML heteroscedastic ML

coefficient mean variance min max mean variance min max

cto (=1) 1.066 0.01598 0.702 1.490 1.007 0.01213 0.714 1.396

al (=1) 0.609 0.04596 -0.044 1.345 1.008 0.00808 0.691 1.280

0 (=1) 2.712 0.02075 2.132 3.184 0.984 0.02519 0.281 1.415

To (=-1) -1.098 0.00569 -1.393 -0.842 -1.003 0.00730 -1.327 -0.707

71 (=1) 0.779 0.01829 0.323 1.287 1.004 0.01956 0.563 1.476

cr 1.947 0.00416 1.751 2.170

a, (=0.5) 0.498 0.00128 0.355 0.627

a2 (=2) 1.993 0.00781 1.672 2.338

p (=0.8) 0.952 0.00018 0.891 0.982 0.792 0.00345 0.395 0.934

True parameter values between parentheses.



Table 2: Characteristics of 1000 replications of the Heckman selectivity model.

homoscedastic ML heteroscedastic ML

coefficient mean variance min max

.

mean variance min max

a0(=1) 2.712 0.05946 1.855 3.467 0.997 0.01124 0.682 1.413

a, (=1) 0.029 0.09739 -1.264 1.166 1.004 0.01446 0.570 1.410

"Yo (=-1) -0.966 0.00782 -1.311 -0.703 -1.002 0.00798 -1.291 -0.728

'Yi (=1) 0.013 0.01954 0.483 1.552 1.002 0.01988 0.549 1.487

a 2.127 0.01496 1.763 2.480

a, (=0.5) 0.499 0.00157 0.385 0.640

a2(-2) 1.998 0.01040 1.657 2.335

p (=0.8) 0.972 0.00011 0.922 0.994 0.798 0.00175 0.653 0.912

True parameter values between parentheses.



APPENDIX

A note on notation:
Throughout this Appendix the inverse Mills'ratio will be denoted by:

H(x) =  c(x)
1 - (13(x)

the related function M(x) is defined as:

M(x) = 4)(x)
(1)(x)

Proof of Lemma 1.

C6(ZY* - P * c) G(c) =
1 - - p* c)

Clearly,

8G(c) _p. aH(x) and a2G(e) p.2a2H(x)
ac ac2

Using the results that H(x) > 0 and H(x) > x (cf. Johnson and Kotz, 1970, p. 279):

OH(x)
= H(x)(H(x) - x) > 0

Ox

This proves (a) and (b). The second derivative of H(x) equals:

a2H(x) _ aH(x) (H(x) + 114)[allax(x) - 1)Ox - 2dx
= H(x)((H(x) - x)2 + H(x)(H(x) - x) - 1)

This expression exceeds 0 for all x if

y(x)2 + (y(x)(x + y(x)) -1

exceeds 0, where y(x) = H(x) - x. The following properties of y(x) are relevant here:

(a) y(x) = H(x) - x > 0 because H(x) > x (cf. Johnson and Kotz, 1970, p. 279);

(Al)

(b) y(x) --0 0 if x --o 00 because H(x) x if x --* cx) (x < H(x) < x + (1/x), cf. Johnson and Kotz, 1970,
p. 279);

(c) ay(x)/ax < 0, because ay(x)/ax = OH(x)/ax - 1 = H(x)(H(x) - x) - 1 = -(1 + H(x)x - H(x)2) < 0
because 1 + H(x)x - H(x)2 is the variance of a unit normal variable truncated from below at x (cf.
Johnson and Kotz, 1970, p. 278).

Thus, y(x) is a strictly positive decreasing function of x. Taking the first derivative of (Al) we get:

a2!(2(2.Y(x)+(x+Y(x))+Y(x)))
Ox

which, due to the properties of y(x) and the fact that x + y(x) = H(x) > 0, is negative. So, (Al) is a
decreasing function of x. Finally, by noting that:
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x..• co(y(x) + y(x)(x + y(x))- 1) = 0

because of the property (b) of y(x) (y(x)(x + y(x)) = aH/ax -0 1 if x -0 00), we have established that (Al)
exceeds 0 and therefore that 8H2/ax > 0 and consequently, 8G2/ac > 0.

Proof of Lemma 2.

1..[4.(Zir - p° c,1)

f Ogir P* c„)
CID

gRe 11)8) = 1
 
ck(cii)

0

lim 0: 
(c11) = _

O
0 = 0

II

13rzi7ay' P p*.ced) 
1

0 = 1,2

= 1,2

By applying L'Hopital's rule we find:

lirn (gZ,7* - p° c11) lim p* (Ziy* P* clO(Zy* - p* c„) lim
00 - (Ziy p*cii)

C11-"'° 4:1)(47* - p*e„) en" p° ckgr

[ lim 0(47* - Pwen)

- p* c„) 
(c11) . lin!. _gir - p.cid(cli) = 0ell 00cir*c° cl)(Zir 

because xclexp(-x) ''. 0 if x ''4 00 and q 0.
Again, by implementing L'Hopital's rule we find:

[  
E 

2

11M 0(47* — P * C„ 

= 

) 11M 2P si (Ziy* - P* c„)02(Ziy* - p* en)

Cli—"3 (1)(Zir — p i ' C„) -11—)c° -2p*O(Z17* - p* cii)(1)(47* - p* cid

[11M gZilf* — P 'Cid 

2 

liin * )  Ck(Z17* — P* en)  o(C11) = 00(c11) = c -(Z17* - P ciicir.c° - - pi- c11) ii (Dg-y- - pli edi

due to the previous result.
Both 4;50 and 4)0 are bounded strictly positive and continuous functions and therefore:

dl [4.(Z1r - p"' cid] 11
< 00

max cl)(47* - p° c11)
0 = 1,2

Given these results (Al) is finite for both 0 = 1 and 0 = 2.

-(Ziay* -

0

(Al)

ck (Zia,/ 11
P* E  

cl) (Z •

0

- P. Cu)

- Cu)



Proof of Proposition 1.

0171 =

where

aple,,,
(a) 

c1) deli and Ot,yi
aqc .)

.) dc
a7k(a) '31

aF(ci,) = 1 aRcii) = 1
F(e11)(1,; p*cl, + F(ci,)); =Ea.;

aTi(ci) IfiT-7 ôy117--p2

aqc.) = 1 aqc,) = 1 qcoi)(G(c.) - (7; - s coi)); = Oa;
1117 ay; 15.-TpTa7k(a)

(A3)

(Ma)

(A3b)

The function x + M(x) exceeds zero if (I)(x)x + 0(x) exceeds 0. This holds because it is an increasing function
of x (first derivative 43(x) > 0) and (I)(x)x + 0(x) -• 0 if x - 00. Similarly the function H(x) - x exceeds zero
if 40(x) -(14(x))x exceeds 0. This function is decreasing in x (first derivative -(14(x)) < 0) and 01(x) - (1-
c13(x))x 0 if x 00. Consequently Eik is strictly negative and flik is a strictly positive function of 5, and
therefore:

lirn 1;Nr% nk 11M 1 v•-%
r1 n  171 = 7'1 n < 0 and

n n id,

lirn urn 1i_E = 
" 

> 0
,,Ho 0,n 0 0n

if Zik 0 for all i. Consequently, aTiial,k(a) < 0.

Proof of Proposition 2.

Define

h(c) = fic,)(1 -
c,11
02

0

where f(.) is the normal density with expectation 0 and variance 02. This function is symmetric in coi (h(coi) =
h(-E0)), h(co) = 0 if and only if Cc1i = a, h(co) > 0 if -a S Co1 < a, h(co) < 0 if :coi l > a and

h(c„) de, = ffte,) de, - e2,01(e,) de„ = 0
or‘-

Because of the symmetry of h(e.,)

Oa a

= h(e„) de„ + h(ç) de, = 0

and therefore:



U ce

1 h(cu) cico, = - .1 h(;) d;

Consider

...

0„ = el.
 
G(c)h(c) deo,

-..

Making use of the properties of h(.) and G(.) we can deduce:

0 0.

0, = J. G(coi)h(cu) deo, + IG(coi)h(cu) deo,

0 CIO

.-.

= 1 -G(-coi)h(-c) d(-ç) + 1G(roi)h(coi) droi =

c.
. few

1 ‘-‘-cc,) 4- G(co))h(coi) d; = i G'(e)h(coi) cico,

The function G*(coi) has the following properties:

G* (c) = G (-ço)

G*(ewp"`) = Gli(cw-p*) (G *(x) is symmetric in p)

aG*(ca)

aco,
= 
PI(
:i - P' coi)G(coi) - (3 4- Pi i coi)q-coi) +

q-c)2 - G(c)2J = -

aGa(coi) . 0

aco,

aGsl(coi) > 0

. accii

aG*(co,) < 0

ac,

if cu = 0

if co, > 0 .

if co, <0

ac,

(A4)

These last two results follow from Lemma 1. Consequently ales:0 is a strictly increasing function for coi > 0.
Splitting Oci up we get:



a
= G*(e„)h(e„) dca + G*(ca)h(coi) de,

a

min
< G'(ea)h(coi) deo, ce[a, )G (ca) h(ea) dca

because h(c) <0 and G*(co) > 0 for coi > a. Because G*(co) is an increasing function beyond c.oi = 0, we
know min G*(r.0) = G(a) for cm a. Using (A4) we get:

a
< (G*(;) - G*(o))h(e„) de, < 0.

because h(co) > 0 and G*(coi) < G(a) for co; E (0,a).

0
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