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for Zellner's seemingly unrelated regression equations (McELRoY (1977)). Amongst
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1. INTRODUCTION

Some ten years ago McELR0Y(1977) presented a measure of goodness of fit for

Zellner's seemingly unrelated regression equations.

In this paper we will discuss some properties of this measure, some of which are

known, some of which are new e.g. that it is the sample correlation coefficient of

(11-10N)y and (n-ION)ŷ where ; is the theoretical value of the dependent variable

y and POI is the variance of y, and asymptotic properties.

Next we will look at the properties of another goodness-of-fit measure, the

squared sample correlation coefficient of (fi-10I)y and (1/10I)i. McElroy wrongly

stated that her measure is this correlation coefficient. A comparison will be made

between the two measures and it turns out that McElroy's measure possesses more

desirable characteristics in case all equations contain a constant term.
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In section 2 Zellner's SURE-model is given and the assumptions underlying the
model are stated.

Section 3 gives the definition of McElroy's measure (R) and discusses its
properties.

In section 4 the properties of the squared sample correlation coefficient between
(t1-10I)y and (1/-10I)i are given.

In the concluding section 5 a comparison between the two measures is made.

2. MODEL AND ASSUMPTIONS

Zellner's model consists of n observations on g seemingly unrelated stochastic
equations written as

Xi 0 . . 0- 3 1 -1
0 X2 132 + -82

.0 0 xg_

(1)

where for the j-th equation yj is nxl, Xi is nxkj of rank ki and fixed, /53i is kix 1
and unknown, and si is nx 1 and stochastic with mean zero.

Furthermore it is assumed that every equation contains a constant term, so Xi can

be partitioned as (sn,Zi), with sn = (1,1,...,1)', for all j.

We shall write (1) in compact form as

(2)

where y and E are ngxl, X is ngxk, fl is kxl and k=E iki.

For E we have E(s)=0 and

D(.0 = n ®

n being the gxg positive definite contemporaneous variance.
For simplicity we assume that n is known. If not, it can be replaced in all relevant

Aformulae by a consistent estimator, e.g. IL = EE'E, where E = (ei,...,eg) and ei is
the LS residual of the jth equation.

Following McElroy we rewrite (2) as



= Zigz + Wfiw + E,

Zi 0 . . . 0

0 - Z2

=

3

W = Ig SI

The estimated counterparts of (2) and (3) will be written as

where

(3)

(4)

I = Xb + e = Zbz + Wbv, +e, (5)

b = (X'(0-10I.)X)-1XV1-10In)y, (6)

- 
The theoretical value of y, y, is given by

y = Xb = Zbz + Wbw.

3. DEFINITION AND PROPERTIES OF MCELROY'S RI

McElroy defines as a measure of goodness of fit for the estimated model

12z'ZVI-10Nn)Z12z k(fileNn)î
=  

y'(11-10Nn)y.

where

loNdi

(7)

Nn = In - (8)

and the second equality holds because W'(1/10Nn)=0 by virtue of (4), (7) and (8).

R2z can be seen as the ratio of the estimated weighted variation and the total

weighted variation in y, because 11-10Nn = (IgON.)(0-10In)(Ig0Nn).



Properties of R: are:
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= 1 if y= y,

= 0 if

ii) R: has a one to one relation with the F test statistic for testing the hypothesis -

that all coefficients except the constant terms (3w) are 0:

2Rz ng-k
Fk-g,ng-k = •

1-R! k-g

iii) R: is a generalization of Buse's definition of R2 in the univariate GLS-model
(BusE (1973), (1979)).

Consider a GLS-model

y = Xf3 +

with E(E)=0, D(s)=a2V and X=(s,Z).

Buse's definition of R2 for this model is given by

where

(ym -s124;)1T-1(i-s14)
R2. = 

b* = =

is the estimator of the constant term under the restriction that all other

coefficients are 0.

A generalization of this measure for the SURE-model is

(i-Wb:)'(C1-10In)(i-Wb:)
R123. = 

(y-Wb:)'(C/10In)(y-Wk.)

where
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= (NW(filegn)WilWV1-10In)y_ =

is the estimator of flw under the restriction 9z=0.

That R/23u for the SURE-model equals R: can be seen as follows. 'We have

*Wbw = E(IgOsnsni)y_ = ril(IgOsnsn')i,

because of (A.3). (For (A. ) see the appendix.)

Hence,

ŷ - Wb: = (IgeNdŷ ; y - Wb: = (IgeNdy,

and therefore

2
RBu  =R.

f(friONn)Y.

iv) R: is the squared sample correlation coefficient of (1/-1øN)y and (iTIONn)i.

Denoting this correlation by r: we have

2rz =
(k(f1-10Nn)Nng(C1-10Nn)y)2

'1'(fileNn)Nng(1/10Nn)1 • f(0-10Nn)Nng(00Nn)1
(9)

Because (1/101\1n)y = (IgONn)(f1-10Idy consists of g n-vectors, all measured

as deviations from their means we have

1'(00Nn)Nng(1/10Nn)1 = y'(c1-10Nn)y..

Clearly the same holds for the other two quadratic forms.

Further

k(fil®Nn)y. =

= yA1(f1-10Nn)y_̂ + k(1/10Nn)e

= ŷ1(11-10Nn)î + k(1/-10In)(Ig0Nn)e

=
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because of (A.4) and (A.1).

Therefore

i(n - loN)i

=  =R.
2

f(fr

v) R: is invariant under changes of location and changes of scale of the
dependent variable.

Consider a change of location of y given by

= I + agesdti , = (111,•••,Ag)'•

The theoretical value of y* is then (in the following y- and b are the
theoretical value of y and the estimator of ie respectively in the
untransformed model)

ŷ*= X(XV1-10In)X11XV1-10In)(14-(IgOsn)p)

=I + (IgOsn)µ.

Because (Ig0Nn)(IgO5n) = 0 it follows that

i*Vil0Nn)y.̂* k(11-10Nn)y.-
R:* =   =R.

1*I(11-10N)1* f(f1-10Nn)y.

Next, consider a change of scale of y given by

y* = (A0In)y,

with A a gxg diagonal matrix.

If we define the matrix

A =

AiIki 0 . . 0
0 A2Ik2

•
0 I• • g kg
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then because of the block-diagonality of X it is easily seen that we have

(A0In)X = XA.

Model (2) now becomes

y* = (A0In)X/3 + (A0In)e,

= XA15' + E*

= XP* E*

with fl*=A13, X as before, E(e*)=0 and

D(e*) = (A0In)(00I.)(A0In) = AnA0In.

Clearly, the estimator b* of fi is Ab and consequently

= XAb = (A0In)i.

Finally we obtain

i*'(1.-10-1A-10Nn)y_̂* k(fi-10Ndi
R2z* =   = R.

yl"(A-10-1A-10Nn)1* f(fil®Nn)y_

vi) Asymptotic properties of R.

We shall investigate the asymptotic properties of R. It can be considered to

be the estimator of a sort of population correlation coefficient. The procedure

will be inspired by the approach of HEIJMANS and NEuDEcKER(1987). This

itself relies strongly on certain properties of characteristic roots. A useful tool

for asymptotic results is the following lemma:

Lemma 1; Lukacs' Lemma: If the sequence (zn) of random variables is

bounded, then plimz=z implies

E I zn-z I r 0 as n co for all r > O.
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Proof see LuKAcs(1975, p.38).

We shall make the following assumptions relating to the SURE-model:

i) There exist m,M with 0<m<M<oo such that m<Ain<•••<Akn<M, where

(Ain,,Icn) are the characteristic roots of••• 
This means that iliVX remains a finite matrix of full rank.

ii) plim ilisvrioNde = g.

This assumption is inspired by the following facts :

E((n-11-101-10Nnk) = g

Dan-1)- le'(0-10Nn)g) = 2g/(n-1),

in case s is normally distributed.

It is now possible to prove the following result:

Lemma 2 : If assumptions i) and ii) hold then

(1) plim iii(ii(1/10Nn)î - fi'XV-1-10Nn)Xfi) = 0;

(2) plim ili(y1(0-10Nn)y. - /3'X'(11-10Nn)Xp - ng) = 0.

If additionally we also assume

lim TlIZVI1ONn)Z = H,

then

, fizlifiz
plim R; = 

Pzliflz+g

and so
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plim R2z = 0 if f3z = 0

plim R2z 1 if fi --+ O.

/3,,11flz
Further 1im,o3E(R2z) =  and D(K) —+ 0 as n 00.

flz1b3z+g

Proof .• Consider

- 9'X'(fr1ONn)Xi3)

=

+ sw-loidx(xvi-loidxylxviloNdx(xvrioin)x)-imirivids.

The variance of the first right-hand side term equals

4/n2 xxv-rioNdx(mn-loinpcy'voz---loidx(mirican)x)-1-

mn-loNnpo
= 4/n2 /3'Xi(f/-101\ln)X(XVT1OI.)X)-1X'(11-10NdX/3

= 4/n2 p'X'41-10Nn)(00In)X(X'41-10IdX)-1X'(00In)(fi-IONn)X/3

< 4/n2 fl'X'(1-10Nn)(00Nn)X# = 4/n2 fi'X'(1/10Nn)X/3,

for the greatest characteristic root of (f1-10In)X(X'(1i-10In)X)-1X'(100In)

is 1.

If then wg is the greatest characteristic root of 0-1 (and hence of frioN.),

we get

4/n2 #6'X'(1/10Nn)X9 < 4/n2.wg•fl'X'X13 4/n•wg.Akn,8,3 0 as n--+oo

by assumption i).

So the variance of the first right-hand side term approaches zero as n--400.

The second right-hand side term is

i4e(crlein)x(xim- oin)x)-1-xvi1oNdx(m1r1evx) lmir1oids

= (1-1,e(n-Joidx)(11-ixvi'oidx)-'(-n-lxv-i-loNdx)(pcorleadx)-'
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Now

D(X1(1i1®In)g) = 1/n2 xim-leadx 0 as n--400.

This can be proved as follows.

Consider the quadratic form 1/n2 a'X'(11-10In)Xa with arbitrary a. Then

1/n2 a'X'(f1-10In)Xa < 1/n2.w .a'X'Xa < 1 in.wg.Akn.a'a 0 as n---000

by assumption i).

Hence 1/n2 V(0-10In)X --+ 0 as n---+oo.

Further it follows that FliX'(0-10Nn)X is finite, therefore the probability

limit of the second right-hand side term is zero.

This establishes the proof of (1).

The proof of (2) goes in the same manner, as

- /3'X'(12-10Nn)Xfl - ng)

= -Pi3'X'(0-10N)s IlEVI1ONde - g.

Clearly

D(2/n fl'X'(i1-10Nn)) = 4/n2 fl'X'(11-10Nn)X# 0 as n---400.

Using assumption ii) we finish the proof of (2).

The additional results follow immediately, partly from Lukacs' Lemma.

4. THE SQUARED SAMPLE CORRELATION COEFFICIENT OF (1 -1/201)1 AND (friA0I)_y_̂

McElroy states that R: is the squared sample correlation coefficient of (0-10I)1

and (fi-10I)ŷ (McELR0Y(1977, p.384)). We will show that this is a wrong statement.

But could this correlation coefficient be an alternative goodness-of-fit measure?

Some properties of this measure will be discussed in this section and a comparison

will be made between the two measures in the next section. It turns out that R:

possesses more desirable properties in case all equations contain a constant term.
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Let us denote the correlation of (1001n)y and (1r10In)ŷ by R2. Then

with

R2 =
(k(11-10In)Nng(C2-10In)y)2

ya'(11-10In)Nng(1)-10In)1̂ • 1'(c1-10In)Nng(f1-10In)1:
(10)

N g = Ig0Nn + Ng0(In-Nn). (11)

We can rewrite the numerator of (10) as the square of

because

and

iV1 1egn)1'Tng(1-10in)1.- yAVII®in)Nng(fil n)e =k(i1-10In)Nng(0-10In)y_̂,

(f1-10In)Nng(11-10In)e = (11-10In)(Ig0Nn)e + (0-INg1rlOIn)(Ig0(In-Nn))e

= (ii-10In)e

ŷ1(11-10In)e = 0,

by virtue of (7), (11), (A.1) and (A.4).

We can further derive

ii(1i-10In)1'4ng(n110In)1 = k(n-10Nn)i- + k(friNgf/-10(In-Nn))1-

= k(fileNn)y_A + f(friNgf-00(In-Nn))i,

by employing (5), (7), (11) and (A.4).

So eventually we find

i'(11-10Nn)i + f(fr1Ngf/-10(In-1'1n))1
R2= 

f(f)-10Nn)y. + f(friNg1/10(In-Nn))y_

Let us introduce the definitions
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:= (Y1,—,Yg) and SI' := (Y1,•••Yg),

so that y=vecY and ya=vect .•
We can then establish the alternative expressions for R: and R2

and

trfili"'Nn)-(
=  

trfilY'NnY

R2 =
+ ,Asn'Yfl-iNgfrirsn

trfilY'NnY + Tilsn'YfriNgiiirsn •

The direct relationship between R2z and R2 is then given by

where

R2

R2 = z
+A

sn'YfriNgfilY'sn
A

trfilYiNnY

and it is easily seen that

0 < R: < R2 < 1.

Properties of R2 are:

i) 0 R2 < 1, R2 = 1 if y- = y,

R2 = 0 if bz = 0 and NgiTlY'sn = 0.

(12)

ii) The relation of R2 and the F test statistic for testing the hypothesis I3=0 is
given by
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1 ng-k
Ak-g,ng   (R2-k = )
1+A •

1-R2 k-g

by virtue of (12) and property ii) of R.

iii) R2 is not invariant under changes of location and changes of scale of the

dependent variable.

Consider a change of location of y given by

Y.* = I + (Ig05n)/1 , =

We know from property v) of R: that

ŷ* = ŷ + (IgOsn)p.

In this case, because

(IgO5n')(f2 1Ng0-10(In-Nn)) = ((friNgfriOsn') 0 0,

it follows that R2* o R.

Next consider a change of scale of y given by

y* = (A0I)y,

with A a gxg diagonal matrix.

As we know from property v) of R: we have

and so

D(y*) = AnA0In ;

= (Aoidŷ

yAi(f1-10Ndi + f(AIMIA-INgA-112-1A10(In-Nn))y.
R2* = *R2.

y'(11-10Ndi + y'(A1f1-1A-INgA-10A10(In-Nn))1
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iv) Asymptotic properties of R2.

Lemma 3 : If assumption i) holds then

plim ril(y.VIINg11-10(In-N))i - MfriNg1140(In-Nn))Xfl) = 0.

If further assumption ii) holds and the additional assumption

lim,. miriedn)Nng(n-loi)x = G,

then

IfYG/3
plim R2 = ,

fl'GP+g

and so

plim R2 . 0 if fi = 0,

plim R2 --- 1 if 0 --+ O.

frGfl
Further limn-,00E(R2) =  and D(R2)--+0 as n—*00.

fliGi3+g

Proof: Consider

i4(y:(1l-INgii-10(In-Nn))1 - fi'X'(iiiNgcl-/e(In-Nn))Xfi)

= -VXVIINgf1-10(In-Nn))s + TlIEVIINgcl-10(In-Nn))e.

It is easy to see that the variance of the first right-hand term equals

4/n2 p'Xi(1i-iNgfi40(In-Nn))V

= 4/n2 fi'X'01-10In)(Ng0(In-Nn))(fl-/OInDXfl

__ 4/n2 fi'X'(11-10In)X/3

... 4/n wgAknfiV -- 0 as n--,00



•
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by assumption i) and using the fact that all characteristic roots of

Ng0(In4Nn) are less than or equal to one.

The second right-hand side term is

'(00In)(Ng0(In4Nn))(0-10In)E.

If we define (11115...5%') = = S'(f1-1øI), we can write this term as

g g
1/n' E E

i.1 j=i

where 8- equals 1 if i=j, zero otherwise.

Now

E(Sn'Lli)= 
0

DeAsn'Lli) i=15...5g

so plim(sni) = 0 and therefore the probability limit of the second

right-hand side term is zero.

The additional results follow from the results of Lemma 2 and Lemma

1.

5. CONCLUSIONS

If we finally compare the properties of the two measures we see that R: possesses

a vital property viz, that it is zero if bz is zero and furthermore plim R2z=0 if

fi'z=0.

For R2, if b=0, we have by (12)

R2=  
A 

1+A

which is larger than zero in general.
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If we partition G like X as

[Gww Gwz
Gzw Gzz

we have for the probability limit of R2 in case flz=0

PwiGwwfi'w
plim R2 = 

flw#Gww/gw+g

and again this is not equal to zero in general.

Furthermore, R: is invariant with respect to changes of location or scale in any
yi, whereas R2 is not.

We can conclude that it is preferable to use R2z as goodness-of-fit measure in the
SURE-model if all equations contain a constant term. However, if there is at least
one equation without a constant term McElroy's definition is of no use and one
may consider as a goodness-of-fit measure r: as given in (9) or R2 as given in
(10).

a

•
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APPENDIX: BASIC ALGEBRAIC PROPERTIES OF TIIE MODEL

It follows from (3) and (4) that

X'(fil®In)e = 0.

Using the partition of X we find

(IgO5n')(1/-10In)e = 0,

which yields

(IgOsn')e = 0,

and consequently

(A.1)

(A.2)

(A.3)

(IgONn)e = e. (A.4)

,
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