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1. INTRODUCTION

We consider the standard Linear Regression Model

where y is Txl, X is TXK, nonstochastic and of full column ra
nk, a is

unknown Kxl, and u is an unknown Txl disturbance vector with
2

expectation Eu = 0, whose components have common variance Mu
t)

Our topic is the relative bias of the OLS-based estimate

s2 = I (y-X0)((y-X5)
T-K

(1)
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for a2 , where a = 1 XA Xf y , when the disturbances have a non-scalar

covariance matrix a2V.

This problem is important because of the resulting distortions 
of

t-statistics and stochastic inferences in general, and has co
ncerned

applied economists for quite some time. Cochrane and Orcutt (19
49), in

an early sampling experiment, find that serial correlation lead
s to an

underestimation of a
2, whereas Wold (1950) points out that the bias can

go the other way as well. Watson (1955) and Sathe and Vinod (197
4)

derive the (attainable) bounds

mean of T-K least mean of T-K greatest
(21

roots of 
E[:1 

V 
722 

roots of V

which show that the bias can be both positive and negative, d
epending on the

regressor matrix X, whatever V may be. Finally, Dufour (1985)
 points

out that the inequalities (2) amount to

0
T-K

(3)
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when no restrictions are placed on X and V. Again these bounds are sharp

and demonstrate that the underestimation of a2 is much more of a threat

in practice than the overestimation (Incidentally, they also hold for

nonlinear or stochastic regressor models ; see Dufour, 1988).

The problem with Dufour's bounds is that they are unndcessarily wide

when extra information on V is available. Below we follow Sathe and

Vinod (1974) and Neudecker (1977, 1978) in assuming that the components

of u follow a stationary AR(1) process ut = put_i + Et i.e. that V

takes the well known form

V(p) =

-1 p •

• • • pT-2p 1

P
2 

P . • •

..ipT -1 pT-2 • • • 1

(4)

where -1 < p < 1. We show that Neudecker's bounds, which he derived for

positive p, hold for negative p as well, and that E(s2/a2) tends to

zero as p 4 1 for all regressions with an intercept. We also provide

sharper bounds when certain columns of X are given (such as seasonal

dummies or a linear trend) and demonstrate, contrary to the suggestion

in Sathe and Vinod (1974), that the bias tends to zero as T 4 ce° for any

given p and irrespective of the particular regressor sequence fxt).

2. RELATIVE BIAS IN FINITE SAMPLES

From y - Xi = Mu, where. M = I - XXXI-IX', we have

E(j 
s2, ( E 1 -0-72 - a2(rr_K) U' Mu] = 1 tr MV . (5)
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We show first that

lim E(2.731 = 0
p41 a'

(6)

whenever there is an intercept in the regress
ion (or more generally,

when Mi = 0, where i = (1,1,...,1)'). To this extent, note that

V lim V(p) =
p41

and that

Jim tr = tr (WI) = tr (Mii') • (8)

P41

So Mi = 0 implies (6). In particular, we have
 Mi = 0 whenever the

regression contains an intercept, i.e. wheneve
r i appears among the

columns of X, or when X contains a full set of 
seasonal dummy variables.

A similar result holds for p 4 -1. We have

lim V(p) = ee' 
(9)

p4-1

where e = (1,-1,..., (-1)T-1") , so lim E(s2/a2) = 0 whenever e is
p4-1

contained in the column space of X (or more 
generally, when Me = 0).

This shows that no nontrivial lower bound.
 to E(s2/a2) exists which holds

irrespective of X and. V, even if V is restr
icted to be of the form (4).



For intermediate values of p, the inequalities (2) translate into

_5_

.4

1 T-K

T-K i=1

T-K1 Ex.
T-K i=1

(10)

where  are the eigenvalues of-V(p1. These bounds hold

for arbitrary but given p, where X can be any TxK matrix with full

column rank. They can therefore be tabulated as functions of T, - K and p,

(see Neudecker, 1977, 1978) where some space can be saved by observing

that the eigenvalues of V(p) and V( -'p) are identical

(since V(-p) = diag(e)V(p)diag(e) and diag(e)diag(e) = I).

Below we present additional tables for the case where X = [X1 X2] and

X1 is a fixed_ TxK
 matrix, such as a set of seasonal dummies or a1

linear trend (the important special case X1 = i having been treated by

Neudecker (1978)).

Let M = I - (X.'X )X-1'1 X 4 1 1 1 
4 1 and let Ai 112 1T-K1+1 gT = 0 be

the eigenvalues of MIVM1 . Along the lines of King (1981, p. 1573), and

generalizing Neudecker (1978), it is easily seen that

T-K _ 1 ILIC
El? 5 iE.111i. •

T-K i=1

Table 1 gives the numerical values for these bounds, for various T, K

and p, for the case where Xi is a Tx4 matrix of seasonal dummies. Table

2 gives the analoguous bounds when. Xi is Tx2 comprising a constant and a

linear trend. The bounds in both tables are narrower than the ones in

Neudecker (1978), where X1 = i, and also narrower than the

Watson/Sathe/Vinod bounds, which do not place any restriction on X.
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Contrary to the latter case, any bounds which incorporate specifi
c

features of the X-matrix are no longer symmetric in p. In the table
s we

focus on the more relevant case of positive autocorrelation. There 
are

different bounds where correlation is negative.

For illustation, consider the regression by Rea (1983, p. 185, eq
. 7) of

unemployment on money supply, government expenditures and expor
ts (which

actually is part of a simultaneous equation system, but we negle
ct this

complication here). This particular example was chosen because t
he data

were available from an earlier paper (Kramer et. al., 1985; see a
lso

Kramer and Sonnberger, 1986, p. 144), and because the regressi
on

contains a linear trend. The original regressor matrix X has 
the

dimension T = 90 and K = 5, but we confine ourselves to the T
 = 72

initial observations, which is the maximum allowed by our comp
uter

program.

Figure 1 gives the true value of E(s2/a2) plus the unrestricted

Watson/Sathe/Vinod bounds and the bounds which hold for all 
72x5

regressor matrices with an intercept and a linear trend. The 
figure

shows that the unrestricted bounds are symmetric in p, wherea
s the true

Els2/a2) is not. Likewise, any bounds which incorporate additional

information on X are not symmetric in p.

3. ASYMPTOTIC UNBIASEDNESS

Tables 1 and 2 already show that, for given Ipl < 1, the bias becomes

less severe as sample size increases. We demonstrate next 
that the bias

vanishes completely as T 4 °° i.e. that in the expression (10),

T-K 17-1(
Um -1 I = lint EX. 1 (12)

T T-K 1=1X1+K T+.0 T-K i=1



The convergence to one of the upper bound is an easy consequence of

Dufour's simple formula (3). It only remains to show that the lower

bound tends to one as well. To this extent, we observe (see Neudecker

1977, p. 1258) that the xi's can be expressed in the form

x.
1

1-2pcostR.-1,t

1-p2 . (13)
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where l,T 
pe is some number which depends on i and on the sample size, bute

which need not concern us here. The point is that

SO

1 - 2pcos(ei,T) + p
2 5 (1-p)2 (p 0)

1 - 2pcos(ei,T) + p
2 5 (1+p)2 (p 0)

X. 1 + ipi
1

irrespective of sample size. We note next that

SO

I X. = tr(V) = T ,
i=1

1 T-K 1 K • i+JpiE x. - -T_K i=1 T-K T-K i 
xi

=1 T-K T-K 1-1 p 1

(14)

(15)

(16)

(17)

where the first term tends to one and the second term tends to zero as

T 4 c'" . Therefore, the lower bound to the bias of E(s
2/a2) tends to one

as well, so s2 is asymptotically unbiased, irrespective of the

particular evolution of X.
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The seeming paradox here is that (at least for regressions with an

intercept), E(s2/a2) tends to zero as p 4 1 for any given X, but tends

to one as T 4 °° for any given p . The technical explanation for this is

that the convergence to zero of E(s
2/a2) as p 4 1 is not uniform in T.

4. Conclusion

We have shown that the relative bias of the least squares estimate of

the disturbance variance can be quite narrowly bounded when additional

information on the regressors and on the disturbance correlation

structure is available. Not surprisingly, the bounds get tighter as

this prior information increases. In addition, the estimate is

asymtotically unbiased for AR(1) disturbances irrespective of p and the

particular sequence of the regressors.
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TABLE A: Lowe rbounds (lwb) and upperbounds (upb) of E(s7VT4) for various T,

K and (3, where KA-4 with X4-(S4:St:S1 :S4].

p -0.30 
p-0.60 -0.80 (0 -0.95

lwb upb lwb upb lwb upb lwb upb

T-12
K-5 0.932 1.086 0.719 1.030 0.428 0.771 0.114 0.274
K-6 0.841 1.169 0.552 1.154 0.287 0.878 0.071 0.314
K-7 0.762 1.260 0.450 1.308 0.220 1.018 0.053 0.369
K-8 0.683 1.359 0.365 1.504 0.171 1.208 0.040 0.445

T-16
K-5 0.946 1.053 0.768 1.005 0.488 0.793 0.138 0.308
K-6 0.880 1.101 0.624 1.079 0.343 0.860 0.087 0.337
K-7 0.820 1.157 0.525 1.167 0.268 0.942 0.065 0.371
K-8 0.762 1.219 0.447 1.270 0.217 1.040 0.052 0.412

T-20
K-5 0.958 1.039 0.806 0.999 0.541 0.820 0.162 0.346
K-6 0.906 1.073 0.679 1.052 0.393 0.870 0.103 0.368
K-7 0.857 1.112 0.584 1.112 0.311 0.927 0.077 0.394
K-8 0.809 1.155 0.508 1.181 0.256 0.994 0.062 0.425

T-24
K-5 0.966 1.031 0.835 0.998 0.586 0.843 0.186 0.381
K-6 0.923 1.058 0.722 1.039 0.438 0.883 0.119 0.401
K-7 0.882 1.087 0.633 1.084 0.352 0.922 0.089 0.423
K-8 0.842 1.119 0.559 1.135 0.291 0.978 0.072 0.447

T-36
K-5 0.978 1.019 0.886 0.996 0.684 0.886 0.252 0.471
K-6 0.950 1.035 0.804 1.021 0.546 0.912 0.164 0.486
K-7 0.923 1.052 0.731 1.047 0.452 0.940 0.124 0.502
K-8 0.896 1.069 0.666 1.075 0.382 0.969 0.099 0.519

T-48
K-5 0.983 1.014 0.914 0.996 0.747 0.912 0.311 0.542
K-6 0.964 1.025 0.850 1.014 0.624 0.931 0.207 0.555
K-7 0.943 1.037 0.791 1.032 0.531 0.951 0.157 0.567
K-8 0.923 1.049 0.735 1.052 0.458 0.972 0.125 0.581

T-60
K-5 0.987 1.011 0.931 0.996 0.790 0.928 0.364 0.599
K-6 0.971 1.019 0.879 1.010 0.681 0.943 0.247 0.609
K-7 0.955 1.028 0.830 1.025 0.594 0.959 0.188 0.620
K-8 0.939 1.038 0.783 1.039 0.521 0.975 0.151 0.632

T-72
K-5 0.989 1.009 0.942 0.997 0.821 0.939 0.411 0.644
K-6 0.976 1.016 0.899 1.008 0.725 0.952 0.285 0.653
K-7 0.963 1.023 0.857 1.020 0.643 0.965 0.219 0.663
K-8 0.950 1.031 0.816 1.032 0.573 0.978 0.176 0.673



TABLE 2:2: Lowerbounds (lwb) and upperbounds (upb) of E(s1/4 ) for various T,

K and (1 , where 1(44-2 with X -[1.:t].

11 -0.30 p -0.60 (3 -0.80 pa-0.95

lwb upb lwb upb lwb upb lwb upb

T-12
K-3 0.801 0.905 0.510 0.673' 0.262 0.391 0.064 0.102

K-4 0.737 0.948 0.421 0.724 0.202 0.425 0.048 0.112

K-5 0.688 0.998 0.368 0.786 0.171 0.467 0.040 0.123

K-6 0.646 1.056 0.329 0.863 0.150 0.520 0.035 0.138

T-16
K-3 0.845 0.927 0.583 0.734 0.319 0.460 0.080 0.128

K-4 0.791 0.958 0.491 0.773 0.246 0.489 0.059 0.136

K-5 0.746 0.993 0.430 0.819 0.207 0.522 0.049 0.146

K-6 0.705 1.033 0.384 0.872 0.180 0.562 0.042 0.158

T-20
K-3 0.873 0.941 0.639 0.777 0.371 0.518 0.097 0.153

K-4 0.829 0.965 0.549 0.809 0.289 0.543 0.071 0.161

K-5 0.788 0.992 0.485 0.846 0.242 0.572 0.058 0.170

K-6 0.751 1.022 0.434 0.887 0.209 0.604 0.050 0.180

T-24
K-3 0.893 0.950 0.684 0.808 0.417 0.566 0.113 0.178

K-4 0.855 0.970 0.598 0.836 0.328 0.589 0.083 0.185

K-5 0.820 0.992 0.533 0.866 0.276 0.614 0.067 0.194

K-6 0.785 1.016 0.479 0.900 0.238 0.642 0.057 0.203

T-36
K-3 0.928 0.966 0.772 0.866 0.528 0.671 0.160 0.247

K-4 0.902 0.979 .0.701 0.885 0.430 0.688 0.117 0.254

K-5 0.877 0.993 0.641 0.905 0.367 0.707 • 0.094 0.261

K-6 0.852 1.008 0.588 0.927 0.318 0.726 0.079 0.269

T-48
K-3 0.946 0.974 0.823 0.897 0.607 0.736 0.206 0.309

K-4 0.927 0.984 0.765 0.912 0.512 0.751 0.150 0.316

K-5 0.907 0.995 0.713 0.927 0.443 0.765 0.121 0.322

K-6 0.888 1.005 0.665 0.943 0.388 0.781 0.101 0.330

T-60
K-3 0.957 0.979 0.856 0.917 0.666 0.781 0.248 0.364

K-4 0.941 0.987 0.807 0.929 0.576 0.793 0.183 0.371 -

K-5 0.926 0.995 0.762 0.941 0.507 0.805 0.147 0.377

K-6 0.910 1.004 0.720 0.954 0.449 0.818 0.123 0.383

T-72
K-3 0.964 0.983 0.878 0.930 0.710 0.813 0.288 0.413

K-4 0.951 0.989 0.837 0.940 0.627 0.823 0.214 0.419

K-5 0.938 0.996 0.798 0.950 0.560 0.834 0.173 0.425

K-6 0.926 1.003 0.760 0.961 0.502 0.845 0.144 0.431
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