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Abstract:

Latent-variable models are nowadays frequently used in economic, social and
behavioral studies to analyze relationships among variables. The LISREL

model is a general model that integrates the classical simultaneous-equation
model developed in econometrics with the factor-analysis model developed by
psychometricians. The classical "errors-in-variables'" model is also a
particular case of LISREL. In this paper we obtain the hessian of a general
type of fitting function for the LISREL model. Although the expressions of the
first derivatives are known and widely used, the expressions obtained for the
second derivatives are a novelty and may have practical implications. For
instance, the expressions for the hessian would be needed to implement true
Newton fitting algorithms, or when using observed hessians (instead of
expected) in evaluating the asymptotic distribution of statistics of interest.

*The research of this author was made possible by a grant from Dutch
Organization for Advancement of Pure Research (NWO)




1- Introduction

Latent-variable models are now frequently used in economic, social, and
behavioral studies for analyzing structural relations among variables.
Perhaps the most popular of these models is the so-called LISREL model
(Joreskog, 1977; Wiley, 1973), the analysis of which has become standard
practice through Joreskog and Sérbom (1983)'s computer program also
nemed LISREL. The LISREL model integrates the classical simultaneous
equation model developed in econometrics with the factor-analysis model
developed by psychometricians. The classical “errors-in-variables” model
is also a particular case of LISREL. Alternative formulations of latent-
variable models, as Bentler and Weeks (1980)'s model implemented in the
computer program EQS (Bentler, 1987), or the COSAN model of McDonald
(1980) have been recognized to be equivalent specifications of the

LISREL model. A particular type of analysis of the LISREL mode] suited
for discrete data is implemented in Muthen (1988) 's program LISCOMP. A
review of latent-variable models can be found in Anderson ( 1984), and
Aigner, Hsiao, Kapteyn and Wansbeek (1984).

A maximum-likelihood analysis, under the assumption that the vector of
observed variables is normally distributed, as well as more general
distribution-free methods, are implemented in most of the above-
mentioned computer programs. Covariance structure analysis is a general
framework for fitting latent-variable models. Within this framework, if
8 denotes the vector containing all the unknown parameters of the model,
and z the population covariance matrix of the vector of all observed
variables, then the covariance structure, ¥ = £ (8), implied by the
specified model is fitted to the corresponding sample covariance matrix
S. The model is fitted by minimizing with respect to 8 a (non-negative )
real-valued function of F=F(S,%(8)) of 8. Numerical iterative methods are
required to achieve such a fit. As far as we know, all the above-
mentioned programs use only the first derivatives of F, thus quasi-
Newton optimization methods and expected hessians are used. Browne
(1984), Shapiro (1987) and Satorra ( 1989) deal with different theoretical .
aspects of covariance structure analysis. Lee and Jennrich (1979) study
several algorithms which are used in the practice of covariance structure
analysis.

This paper provides an expression for the second derivatives of a general
type of fitting function used in the analysis of the LISREL model.
Standard matrix differential calculus, as in Magnus and Neudecker ( 1986),




will be used. Although the expressions of the first derivatives are known
and widely used}d\aawill also be given as beswg. Obtained on the way to the
second derivatives. The expressions obtained for the second derivatives
are a novelty and may have practical implications. For instance, the
expressions for the hessian would be needed to implement true Newton
fitting algorithms, or when using observed hessians (instead of expected)
for evaluating the asymptotic distribution of statistics of interest.

The paper is structured as follows. Section 2 describes the model. Sections
3 and 4 obtain respectively the first and second derivatives of the

matrix valued function Z = Z(8). Finally, section 5 integrates the results
of the previous sections deriving the desired gradient and hessian
expressions.

2. The model

A general linear statistical relation that combines measurement and
structural equations is the following :

(2.1) é Z= An+e

n= B +¢,

where z represents a p-vector of observable variables, andr, ¢ and ¢ are
random vectors such that ¢ is uncorrelated with & The matrices 4 and
Bo, and the variance matrices of ¢ and £, ¥ and ¢ respectively, contain the

parameters of the model. The specific form of these parameter matrices
gives rise to particular models.

It can be shown that (2.1) is both a specific case and a generalization of
the LISREL model (Joreskog, 1977; Wiley, 1973), which has the following
specification

) Y= aynte
(2.2) ¥ = Axﬁ*ﬁ

where ¢, § ¢ and { are mutually uncorrelated random variables (and
correspond to new notation with respect to the one of (2.1)) with variance




matrices &;, 65, ¢ and ¥ respectively. Ay, Ag, Bo and T represent
matrices of appropriate dimension, Rewriting (2.2) as

Sl R CNN
2 )

we see that the LISREL model is a special case of (2.1). Further, one sees
immediately that (2.1)is of the form (2.2), where the second equation

and the component T¢ on the right-hand side of the third equation in
(2.2) have been dropped.

Equations (2.1) with the assumptions of zero correlation between¢ and
&, imply the following covariance structure for the matrix = of variances
of z:

(2.4) = AB1eB T & + vy,
where B= (1-Bg) is supposed to be non-singular.

Prior information with regard to the form of Bo, A,  and ¥, yields more
specific models; for instance, in LISREL one may restrict some of the
elements of the matrices By, A, ¢ and ¥ to have equal specific values, or
to be equal among themslves. Given a specific model, the distinct and
functionally unrelated unknown elements of the matrices Bg, A, ¢ and ¥
will be assembled into a say g-dimensional parameter vector 8.

¥e will also consider the following vector & of parameters of model (2.1)
unrestricted:

&=[(vec 4 ) |(vech® ) |{vecB)|(vechw )]

Usually, without further restrictions added to (2.1}, the parameter vector
6 will not be identified by X. A specific model will induce a function &
=& (8) expressing & interms of a paremeter vector 8 of smaller
dimension. For model (2.1) with the type of restrictions considered, the




function 8= & () will be regular enough in order to be twice continuously
differentiable. In fact, in LISREL the derivative matrix A=38/08 isa
constant matrix of zeroes, ones and minus ones. Moreover, equality (2.4)
implies that o =vec X is a function of §, hence of 8.

3- First derivatives of 6 = ¢ ( §)
Vectorizing (2.4), and taking differentials, we get
dvecZ = (I+K)AB'¢BT ® I)dveca

-(1 +KXaB'¢BT ® AB-!) dvecB

+(AB1® AB-1) dvec &

+ dvecVy .

vhere "d” denotes differential, "®" denotes kronecker product, 1 is the
identity matrix of appropriate order, and K is a commutation matrix.
Using now vec A = D vech A and vech A = L vec A, for symmetric A, where

D and L are respectively the duplication and elimination matrices of
Magnus & Neudecker (1986 ), we get

dvechs = L{I+K){(AB-1'¢B-T ® 1) dveca

-L{I +K) (AB'¢BT ® AB-!) dvecB +

+L(AB'® AB1) D dvech ¢
+ dvechV¥ ;
which says that
dvechz = Gd§,
with
G= [ Ld+K) (4B-'¢BT ®1) | L(@AB'® AB1)D |

-LO+K)(AB1eBT ® AB1)| 1]




4- Second derivatives of = = X (0)

Consider

4 & B g )

/,Hn Hiz Hiz 0 )
32 5ij/ 36 38" =

Differentiating the expression of d vec T obtained in the section above,
we get

Hiy = B-1¢ B-T ® Tij
Hiz = (B 1®TjjAaB-1)D
Hiz= - (B 1¢BT ®Tjj AB1) -K(Tjj AB-1¢B-T ®B-1)
Hoz :‘ -D'(BT®BTA" Tij A B-1)
Hiz = (B 1¢BTA Tij AB-1 ® B-T)K +
K(BTA'Tij AB-1¢BT® B-1)+
(B-1¢ BT ® BTA"'Tjj 4B 1),

where Eij = ejej and Tjj = Ejj + Ejj, and zero matrices for the elements
of the partition above which are marked with 0" .




5- 6radient and Hessian of a (weighted) least squares fitting
function F

In the practice of covariance structure it is usual to minimize the
(weighted) least-squares fitting function

(5.1) F(8) = (s -o(8))'W (s -o(B));

vhere ¥ is a possibly stochastic (positive semi-definite) matrix. This is
the fitting function used in generalized least-squares estimation
implemented in most of the computer programs for covariance structure
analysis (EQS, LISREL, LISCOMP, etc. ). Also maximumdikelihood
estimation (under the assumption that z is normally distributed) has
been shown to yield the same estimators as a weighted least-squares
analysis where W is updated after each iteration (see, e.q., Browne,
1973; Lee and Jennrich, 1979; Fuller, 1987, Section 4.2.2)

The weighted least-squares function (5.1}, with W supposed not to depend
on 8, implies the following expression for the gradient of F

(3NoF/06" = -2(s-0)' ' W(d /36" ).

Differentiating dF, we get '

d2F = 2(do) Wdo - 2 (s-o0) Wd25 =
2(do) ' Wdo - 2 Zr {{s-0) W) (d20)r,

where the sum Zr runs over the indexes (i,j) corresponding to the p* =
p(p+1) /2 distinct elements of 3.

Usingnow do = Gd& and(d2c ). = (d§) ' Hr d§, with the matrices G
and Hy as obtained in the sections above, we get

d2F =2(d8) ' [GWG- I ((s-6) W) H Id§);
hence, the hessian of F is expressed as

02F /3888 = 2[GWG- Zr {(vech(S-2)"WlHr |,




where

zr { (vech (S-Z))"W'}r Hr = 2r (Zh(Sh"Oh )Whr)Hr ,

vhere wpr is the hr-th element of W,and Hr= 9 Zjj / 3838 for
corresponding index ij.

Note that from the gradient and hessian given above, we obtain
immediately the gradient and hessian of a specific model. Ef fectively,
such specific model has associated a function § = §( 8 ) with corresponding

derivative matrix A= 9 §(8)/ 938 .
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