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Abstract:

In this paper it is demonstrated that testing models for misspecification

by OLS-based variable addition may lead to the acceptance of reduced form

equations or other hybrid relationships derived from the structural form.

The awkward result is obtained that in order to acquire consistent estima-

tes of structural parameters some regressors that appear as significant

are sometimes better removed from the specification. This illustrates the

need for tests on the validity of exogeneity assumptions. From application

of the variable addition approach to a single linear simultaneous regression

model three basic types of tests for instrument adequacy are developped, viz.

tests for exogeneity of the maintained instruments, for exogeneity of exclu-

ded regressors, and for exogeneity of included regressors. Finally it is

shown Which ordenings of these tests and tests on the adequacy of the

specification will lead to asymptotic independence of the test statistics.

Such ordenings enable to exercise control over the overall type I error

probability in a comprehensive model selection procedure.
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1. INTRODUCTION AND SUMMARY

In specification testing of econometric relationships most attention is

usually paid to the investigation of the adequacy of the set of explanatory

variables and to the validity of the assumptions on the second moment matrix

of the disturbance vector. In this paper it is demonstrated in which aspects

the interpretation of many specification test statistics may be blurred through

the adoption of incorrect exogeneity assuptions. First it is shown that in

situations where little a priori information on the specification of the

structural relationship is available the use of (mis)specification tests

according to the variable addition principle may induce revisions of a correct

specification, and then may lead to the acceptance of hybrid forms of

structural and reduced form equations or of other derived relationships as

model specification. By a simple example it is illustrated that the habitual

judgement of OLS regressions by t ratio's is not void of pitfalls: The awkward

result is obtained that in order to acquire consistent estimates of structural

parameters, some regressors that apbear as significant are sometimes better

removed from the specification.

Having pointed out the importance of the validity of exogeneity assumptions,

we review tests on joint dependence of regressors and disturbances, on

instrumental variable adequacy and on overidentifying restrictions. Three basic

types of tests on exogeneity emerge from application of the variable addition

principle to the single linear simultaneous regression model, viz, tests for

exogeneity of the set of maintained instruments, and two types of tests for

exogeneity of variables that are not (yet) included in the set of instruments,

viz, tests for variables that are excluded from the regression and tests for

exogeneity of regressors of the structural model. Finally it is investigated

how these three types of tests can be combined with the test on coefficient

restrictions to solve empirically the comprehensive problem of both finding

an adequate specification of the structural form and composing a set of

admissible instrumental variables. Examination of the interdependence of the

various tests, when applied to particular sequences of hypotheses, leads to

some suggestions for ordenings in the employment of the different test

procedures. These ordenings permit control of the overall type I error of the

complete model selection procedure, as for all tests particular sequences are

found that entail asymptotic independence of the test statistics involved.
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2. VARIABLE ADDITION AND THE IMPORTANCE OF EXOGENEITY

Many checks on the validity of the specification of a regression model can be

formulated as tests of the significance of extra regressors. Pagan (1984)

presents a number of examples. For a single linear model estimated by ordinary

least-squares (OLS) the framework in which such tests are used as tools for

model validation and possibly for model (re)specification may be described as

follows.

Let the present model specification for the Tx1 vector of observations on

the dependent variable y be

y = Xf3 + (2.1)

where X is a TxK matrix of regressors and s a Txl stochastic disturbance vector.

Then a modelbuilder usually wants to supplement the OLS estimate b=(X 1X)
_1
X'y

of the coefficient vector snot only with an estimate of its dispersion, but also

with one or more statistics that support the (often implicit) assumption that

OLS is an appropriate technique for the supposed relationship (1.1). We shall

clarify here, as has been done before inter alia by Pagan and Hall (1983) and

Davidson and MacKinnon (1985), that insignificant values of statistics on the

significance of extra regressors may provide such evidence, and that significant

values of such tests may disqualify the original model, and perhaps may induce a

revision of this specification. However, it will be demonstrated also that this

type of inference is heavily dependent on the validity of a number of assumptions.

We will focus on the effects of improper exogeneity assumptions which may entail

that incorrect conclusions with respect to the adequacy of the model specification

are drawn due to the application of an incorrect or suboptimal estimation technique.

Evidence obtained from variable addition on the likely consistency of b for

fi maybe based an the following reasoning. Suppose that a consistent estimator of

13 could in theory be obtained from the application of OLS to the regression

y =X3 + X + c (2.2)

where R is a TxK matrix of (usually unknown) extra regressors, and let

the evidence on the consistency of b in (2.1) take the_form of a test
rk,

on the significance of the coefficients a in the regression

y = xf3 + TcW + e (2.3)

t J

where X is a TxK matrix of observable regressors. The matrix X may contain

powers or other functions of variables from X, other variables, lagged

residuals from (2.1), dummies etc. Of course we have

_ fk,
c = Xfi E and E = X13, - . (2.4)
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As X may contain redundant regressors (giving zero elements in a), the only

restrictions so far are the linearity of the models, and the necessity to have

K<T-K. As consistent estimates of 13 may be obtained from various specifications,

(2.2) is not necessarily unique.

Now let us further assume that

- -- -
plim T

1 
X'X = II ; plim T

1 
X'X = --

xx 
30c

-1 -
plim T X 1X = _ ; plim T X'X = (2.5)

xx

-1 q, -1-'
plim T XiX =ll ; plim T X'X = 11-rb

xx xx

and that all these matrices have finite elements,and further that II , IL_ and
xx xx

Tkik, are of full rank, while the matrices [X:R] and [X:30 have full column
xx

rank. Finally we suppose that

and

-1 - L . "-1
T N(0,a II)

xx

-
T X- 'M-c N(0,a

2
[II -11
xx- xx xx xx

• i •

(2.6)

(2.7)

where M
A 
denotes I-A(A'A)A- ' for full column rank matrices A. From these

- - -1- -
assumptions it follows that plim T 

1 
Xle=0 and plim T X'E=0 , hence the

regressors are predetermined in (2.2) and - at least in theory - a could be

estimated consistently by OLS from regression (2.2).

2.1. The variable addition test underfull exogeneity

We now derive the asymptotic distribution of the test statistic on the

significance of the extra regressors in (2.3) under some extra suppositions.

The test statistic is given by

% -
S(13) = y'M

x
X(X'M

x
X) X'M y/a

2
, (2.8)

-2 -2 -1
where a is some estimator of a

2
. We will consider separately a =T y'My and

0
-2 -1 

x

al =T y'Mx: 17 , which give rise to Soa) and S1M respectively. From sub-

stitution of (2.2) in (2.8) we find for i=0.,1

S,() = [T3iicim (Pcoim'c ))qic -1 1c.14

-,
+ 2 aixim

x
x(om x) .x.m

x
e + om

x
x(xim

x
x) x i m

x
el /a

i
(2.9)
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r‘,andwelmethistoinvestigatetheastributionofsA3) in various situations.

If we suppose

- L 2r -1T X'M N(0,a illwrrq,11 %.1)
xx xx xx xx (2.10)

then using (2.2) through (2.7) this implies plim T-1;N=0 and we find

(2.11)

and

-2 - 'plim ao = plim T
1 
y Mxy

a2 _frugH > a2
xR xx xk xR

-2 -
plim a . plim T 1 

y'M y1 x:x (2.12)

= plim T-1(.5+)1[M -M 3iR T M;0-1;1C''M
x 

> a2 .x x x
-

 

Both  probability limits exist (i.e. have finite constant values); besides we

find

2 2 -2 -
plim a

o 
plim a >a

1 — (2.13)

and it can also be derived that the equality signs apply under the extra

assumption

=o .

If we adopt (2.14) then we have c=c and hence plim T
-1
X 1 c=0 which

(2.14)

gives plim b= .

From the above the following general results follow. Given (2.1) through
%(2.7) and (2.10), hence under exogeneity of X, X and X, we find that the

% 2 q,statistics S0()and S1() tend to a x (K) variate for T4.°° if a=0 .
If however -e./0 then the,denominato±s of. So (W) and Si (4 tend to a finite

value whereas it follows from (2.9) that the numerator tends to an infinite

value in general. except when plim T X'M
x
X is finite, which implies

--
plim T

1 
X'M X = 0, (2.15)

the numerator of the test statistics will assume finite values asymptotically.

So we may conclude that under (2.1) through (2.7) and (2.10) we will obtain
2 %a value of the test statistic exceeding the o.-'level critical value of the x (K)

distribution whith probability one asymptotically, provided that 0 and
- -

plim T
1
 X'M

x
)W) . If 0 but (2.15) applies, hence at any rate when Mx

and M
x 

span orthogonal vector spaces, then the inequality signs apply in

(2.13) and we have



-2
plim a.

% L 2
  S . ) X (K) •

1
a
2

(2.16)

%
So then the asymptotic rejection probability of S0() will be smaller than

%
that of S (f3), and this will be even smaller than a.

1
Thus under the maintained assumptions (2.5), (2.6), (2.7) and (2.10) the

%
tests S.(a) constitute consistent tests for the consistency of b, except

for the case (2.15), where the search for misspecification goes in a

completelywiongdirection.AsignificantresultofS.(a) may be used

to extend the regression model in such a way that it better suits the

requirements to produce consistent OLS estimates.

2.2. The variable addition tests when regressors are jointly-dependent

• The above results depend heavily upon the validity of the assumptions

(2.6), (2.7) and (2.10). Let we extend the analysis now and let (2;.2)

represent the structural form of the relationship while

- -1-- -1% -
plim T Xie = - , plim T X'e = Tf... and plim T X'c = (2.17)

xe xE xe

where ff ff-- and consist of finite elements not all necessarily equal
XE XE XE

to zero. Under the assumptions (2.1) through (2.5) and (2.17) the
-2 -2

probability limits of a and a
1 
are still finite. It is easily seen from

0%
(2.9) that now S. (a) will tend to infinity for T+00 if

-1% -
plim T X'M

x
e = 

xc

Clff _L

,a XX Xi" U
(2.18)

•irrespective of the validity of (2.15) and the value of 13 and of 'TT-
xE

Hence, even if model (2.1) is a 'correct specification' (X contains all

relevarvtregressorsthusK-=4nthensignificantvaluesofS.(a) will be

found asymptotically if (2.18) applies. If we have 13=0, (2.18) may be written

as

-1
plim -X'M c = ffq, - fl'll y 0 ,

T x XE XX XX ICE
(2.19)

as then c=c, and two special cases of (2.19) deserve further considerations:

(i) TT =0 and Tr 0 and hence H 40 .
xc XE xx

Here (some of) the initial regressors are jointly dependent with y.
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In regression (2.1) the exogenous regressors X' do not occur in the explanatory

part of this (structural) relationship. However, they appear as significant

due to Tr 0 (the wrong application of OLS) and II40. Acceptance of theXE XX%
regressors X in the specification would involve the conversion of the

relationship in a hybrid form of both the structural and the reduced form

of this equation. Here the better course of action in a modelling exercise

would not be inclusion of the (seemingly significant) extra regressors X,

but the replacement of OLS by an instrumental variable technique. The

variables X are feasible instruments here as TM, =0 and H 0.
XE XX

(ii) Tr3ec/0 and Tr =0 .
XE

Here the regressors in X are predetermined in (2.1) and hence b is a
fr,consistent estimator. However, due to correlation between X and c doubts are

raised with respect to the adequacy of the specification because X appears

to contribute significantly to the explanation of y. This may occur when a

single equation of a seemingly unrelated regression (SUR) system is estimated

by OLS and dependent variables of some of the other SUR-equations are used in
. (1,the matrix X. Then a(seemingly) significant decrease in the residual variance

will result, although inclusion of the extra regressors may impede the

assesment of the actual structural parameters of the relationship, if H
xx

This is illustrated by a simple example in the appendix.

The two cases discussed above constitute serious pitfalls the modelbuilder

faces when he validates estimation results implicitly or explicitly by use of

variable addition. These examples illustrate that it may be wise to remove

regressors from a specification because they appear as significant! This

analysis can easily be extended to cover the case of a single equation

estimated by use of instrumental variables (IV), where again it can be

shown that an estimated coefficient may assume a significant value not only

because it concerns a genuine structural coefficient, but also when the

exogeneity assumptions of the estimation technique employed do not hold.
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3. TESTS FOR SPECIFICATION AND IV ADMISSIBILITY

We extend our framework here in such a way that we can indicate

separately both the problems of specifying the structural relationship

(testing for omitted regressors and for coefficient restrictions) and of

composing an adequate set of instrumental variables (testing for exogeneity

or for instrumental variable validity) for the same particular structural

relationship. Therefore we use a notation for the single linear simultaneous

equation here in which alternative assumptions on both issues can easily be

expressed. Let the model now be

y =Y
1
a+Z + W

1
S + c-=,)0 + 6

. (3.1)

Y = [Y :Y
1 
],

0 
Zo 

W = [W0'W11

X = [Y1:Z1 and = (al:y':6'1 ,

whereY„z.andlcare TxG, TxL, and TxM. matrices respectively and1 , 1 1
X is a TxK matrix with 1(=G

1
+L
1
+M
1 
the number of coefficients in 13, and

where E is a stochastic disturbance term of T elements. Hence, T is again the

sample size, and the regressors [Yo:Zo:Wo] are excluded a priori from the

relationship. We suppose that the following probability limits exist:

and

- -1 -
plim T

1 
Z'Z = H ; plim T W'W = TI ; plim T

1 
Z'W = ;zz ww ZW

_ 
-plim T

1 
Z1 X = H ; plim T1 W'X = H ,

zx wx

where H , H and fl all have full column rank, henceZZ WW ZX

L =L
0 
+L

1 
>G+L

1 
+M

1 
=K.

— 1 

Further we write

and assume

-
plim T Yle = 

YE 
; plim T 1ZIE = Tr

ze 
; plim T Wle = 7

WE

,
T 12Z 6 N(O,cY2lT

zz

(3.2)

(3.3)

(3.4)

hence a priori we have
TrzeE°' 

thus Z contains aamissible instrumental

variables, and because of (3.3) 13 is consistently estimable by means of the

IV technique. We admit ir 
ye

0 so the matrix Y contains jointly dependent
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variables, while W contains variables of which the status has yet to be assessed
empirically. We shall consider tests now for (zero) restrictions on

elements of 1, for checks on 7 =0 and also for zero restrictions on 7 .Z E WE:
In the following we will not always state explicitly the various (usually

trivial) requirements with respect to the rank of (partitions of) It and II .
wxzw

The test of H
0 
:Ri3=r, where R is a HxK matrix of rank H, is easily

derived according to the Wald principle, see for instance Bowden and

Turkington (1984). The statistic

S(n-r) = (Rfl-r) [R(X'PzX) (Rfi-r)/62 (3.5)

tends under H
0 

in distribution to a x
2 

variate with H degrees of freedom.

Here

with

= (X'P
z
X) 1X'P

z 
y

P = Z(Z1z) lz and K < L < T

-2is the IV estimator of 6 and a is a consistent estimator of a
2
, for

instance

y-Xib t(y-X) = T-1.RSS(X1Z) .

(3.6)

RSS(X(Z) indicates the sum of squares of the residuals obtained- from the

regressors X and the IV estimator based on the instrumental variable set Z.

The test statistic .(3.5) can also be expressed as

S(R(3-r) = T.PRRSS(RIZ) - RSS(XIZ)]/RSS(XIZ) , (3.7)

where RSS(XIZ) indicates the residual sum of squares obtained when OLS is

applied in the regression of y on X=PzX. We may call this the second

stage RSS. This regression produces the IV estimator P. which enables the

calculation of RSS(XIZ). By RRSS(RIZ) we indicate the RSS that results from

regressing y on X under the restrictions _,Rf3=r.

Statistic (3.7) and asymptotic equivalents thereof enable to test

coefficient restrictions in model (3.1) under the assumptions (3.2), (3.3)

and (3.4). The same test procedure can also be employed to test the significance

of regressors added to specification (3.1). Pagan (1984) presents some (mis).-

specification tests in this form such as for functional form and serial

correlation. We consider here the possibility to generate tests for exogeneity

and instrumental variable admissibility along these lines for the single

simultaneous equation model given above.



3.1. Tests for the status of excluded regressors

We first consider the problem of assessing the status of the variables

W by a test procedure. An asymptotically more efficient estimate of f3, than0
0 of (3.6) can be found if the variables in W

0 
can be'Aised as extra

instruments. For the present purpose we examine the test of H0:60=0 in the

augmented model

fx,
y = Xe. + W +

0 0 (3.8)

where now c=c-W
0 
6
0 

and where we use [Z:W
0 
] as instrumental variables.

•
According to formula (3.7) the test statistic, which we indicate by S(6 ),

0
equals

S(60) = [Rssoll - ,-
- RSS(X:W

0 
1Z:W

0 )ita
2 

• (3.9)

In these second-stage residual suns of squares the degree of overidentific-

ation is L+M
0 
-K and L-K respectively. This Wald test is derived from the IV

estimator of (S in (3.8) which is
0

where

(W'M-W0 
)
-1 

y
Ox Ox

X = P X
z: 
w0

and P
A 
denotes the projection matrix A(A'A

(3.10)

-1
A' for full column matrices A. As

wfm-x = wi[x-R] = [1-P ]x = 0Ox 0 0 z:w
o

substitution of y=Xa+E in (3.10) leads to

o 
= (W'M-W im_e

Ox0 Ox (3.11)

L 
and it is found that SO

o
) -,x

2
 (M

o
) and that plim

o
=0 if we have (3.4) and

_
T-12W'e _) N(0,a

2 
n )0
w0w0 (3.12)

-
which implies w =plim T

1 
W'E=0 . Hence we find that the combination of

w0c 
0

w =0 and 71- =0 belongs to the implied null-hypothesis of testze 
w0c

statistic S(60). Note however that S(60) may assume significant values not

only due to Tr
w0

ks , but also in case O. Hence,if one lacks firm
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information on u the test is better interpreted as a general mis-z6'
specification test with a non-specific alternative hypothesis.

The test under consideration here also appears in the literature
as a test for overidentifying restrictions. Usually it is presented then
for models like (3.1) for the case where M

0 
=0=M

1 
and then L-K elements of

Z are added to the specification and their significance is tested. Let0

Z0 
=[Z

00 :Z01 
] with Z

01 
a Tx(L-K) matrix, then the statistic may be written

S(Y01) 
= [RSS(XIZ) RSS(R:Z01lZ)]/62 . (3.13)

As now the extended regression is just identified we have for the second-
stage residuals RSS (X:ZoilZ)=RSS(Z1Z). Hence if Z contains all the pre-
determined variables of a complete simultaneous system then RSS(R:ZoilZ)
corresponds with the RSS of the reduced form equation for y. Therefore
we can rewrite the numerator of (3.13) as follows

RSS(RIZ) - RSS(X:Z
01

1Z) =

(y-C6) ' - y'm y = ' -

= = (y-x)Pz (y->6) .

This isa quadratic form in the IV residuals and it appears that the actual•
partition of the matrix Z is irrelevant. The statistic (3.13), written as0

S("Yoi) = T. (y-X)'Pz(y-Xa) / (y-X/3) (y-X), (3.14)

is presented without much of a formal derivation in Sargan (1964, p29).

In Basmann (1960, p651) and in Harvey (1981, p338), a comparable
test is presented in disguise. Basmann suggests to take as the numerator of
the test statistic the minimum over a of

(y-Y
1
a) 'I z1 zM -M Dy-Y a). (3.15)

Taking the derivative with respect to a and equating this to zero leads to
the minimand

a* = (YIEMzi-MziY1)

and as M
z1
-M
z
=P
z
-P
zl
=P
z
M
z1
P
z 

we find

Ct* = y =(jNziY)1iNzi 
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which equals the IV estimator of a in (3.1) for M=0. Hence the numerator of

the test is, as in Harvey's statistic,.

(y—Y1;) Emzi—mz (Y—Yic") =
^ ^

(y.--Ya1 -z1y) z
—P
zl

](y—Y
1 
a—Z

1 
y) =

(17-4) Pz (17.-X)

which equals Sargan's,and where we made use of Mz1Ziy=0 , M_Z11=0 and of

1-R'(y-4)=X1 y-ii'x(R'X)- Xlv=0 which includes Z (y-X13) = 0 and givesI

P (y-X) =0. Basmann and Harvey take as denominator the estimator of az

(y—Y
1
a)M

z 
(y—Y

1
ce-e)/T = (y—Xi)M

z
(y—X13)/T .

2

If Z contains valid instruments this estimator is consistent and therefore

the tests of Sargan and Basmann are asymptotically equivalent. Basmann also

presents a straightforward modification of the test in an F statistic, viz.

(y-X) 'Pz (y-I6)

L-K (y'-.X) 'M
(3.16)

which, as we proved, is a simpler expression for the test given in Harvey.

The tests on expgeneity of excluded regressors S(60) and 
S(101) both

follow from the rather heuristic variable addition approach. In Smith (1983)

comparable tests are derived according to the Wald, Lagrange Multiplier

and likelihood ratio principles.He supposes the disturbance in the single

structural equation to be normally distributed and Z to.be the full set of

explanatory variables in the reduced form of the system which also has

normally distributed disturbances. Then it appears that according to the

LM principle again the statistic 
S(Yol) 

of (3.14) is obtained. .Therefore

we may hope that the test has favourable characteristics also in the less

regular cases considered here.
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3.2. A test for the status of included regressors

We now consider the case where the exogeneity of the variables in W1 is to
be assessed. This problem is also addressed in Smith (1983) and again for the
more specific case, where e is normal and the reduced form of Y1 has normal
disturbances as well, he derives a statistic according to the LM principle.
We will denote this test statistic as

S(c51) = [Rsso(lz:w1) Rss(R:mzwi lz:w1)1/a2 • (3.17)

It corresponds to the test statistic that is obtained by using the instrumental
variable set EZ:Wi] to test H0:61=0 in the augmented model.

y = X13, 
MzW1(S1 +c • (3.18)

Note that in (3.17) we have 2=P X and that we made use of P
z:

w
i z 1
MW =z:wi

W
1
-P
z
W
1
=M
z
W
1 
. The statistic S(.5

1
) can also be applied in our less regular

circumstances; it is simply based on the IV estimator of 61 which equals

= [w'm m-m w ]-114,14 m-y1 lzxzl lzx (3.19)

and hence its implied null-hypothesis can be investigated by analyzing the
distribution of T 11141 1 M M-y . Because we may write W'M =W'M P we find1 z x- 1z lzz:wi

-1-w'm m-(X-1-6) = w'm p1 z z:141[I-X(R1R) x'](n.+e1 z x

= wim m-e = -1,711) m.e.1 z x 1 z x (3.20)

Here the latter equality follows from X=P X=Ii
1
:Z

1
:W

1
] which givesz :wi

W'M-=0 . As it also gives Z'M-=0 we can reduce (3.20) further by uartitioning
lx lx _ _

P
z 

and we then obtain

- - -T M-y = -T 1W'M Z T
1 
Z:,14 Z )

1 
T 12Z 1M-c .1 z x- 1 zi u z1 0 0 x (3.21)

It follows from (3.2) that plim T
-1
Z'M Z is non-singular and also that0 zi 0

plim T
_1
W'M Z has finite elements. That the rank of the latter matrix1 z1 0

expression will equal M
1 
corresponds with the feasibility requirement of

regression (3.18): estimator (3.19) only exists if [X:MzWi] or
[Y1:Z1:Wl zi:PW This ] has full column rank. is implies that Z'M W has to have0 zi 1full column rank. It is obvious now from (3.21) that SO

1
) is distributed

asymptotically as a X
2 

variate with M degrees of freedom if Z and1 0R=P X=[PY1:Z1:W1] are independent of e. Hence Trze=0 and 71 =0z:w1 
z:w1 
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are part of the implied null-hypothesis. If c and Wi are dependent we will

generally have S(61) -0-,03 and plim cy0 . The test S(61) is a general form

of what is usually called the Wu-Hausman procedure for testing dependence of

regressors and disturbances.

3.3. Another variable addition test for IV validation

In our initial design in (3.8) and (3.9) of the variable addition test in

the *context of IV estimation we tested the significance of the excluded

regressors Wo and, while using [Z:Wo] as the set of instruments, a test for IV

validity of W
0 

emerged. In the test for exogeneity of W
1 
we added the

regressors M W
1 
to the model, and these variables were also added to the set ofz 

instrumental variables, as [Z:M
z
W
1
] and [Z:W

1
] span the same subspace. Therefore

these two tests are particular examples of a straightforward extension of the

S(a) test in the OLS regression of (2.3). Now we have

y = xa + + (3.22)

and the statistic

S(s) = [RSS(XIZ:;16 RSS(X:X1 I Z:)]/a2 (3.23)

r‘, rtests the significance of a using the instrumental variable set LZ:XJ.
In (2.3) we have the special case where ZaX . Apart from the tests S(6 ) and

0
S(6

1
) the test for predictive failure given in Kiviet (1985) is another

example of such a variable addition test.

Next to this we could use the variable addition principle without adding the

extra variables to the set of instruments. Of course the number of extra

regressors should not exceed L-K then. We distinguish this approach from the

S(a) test by writing the extended model as

y = Xa + )1(34 + (3.24)

• •
with c=c-Xa and X a TxK matrix of extra regressors with K<L-K. The test

• statistic is

s(s) = [Rss(Xlz) - RSS(RJCIZ)]/&2

and it is based on the IV estimator

:
f3. = (x'm—fc) xim—y ,

(3.25)

(3.26)
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_ • . •where X=PX and X=PX. As X'M-X=5CP [X-X]=0 it follows from substitutionZ z X z
of y=X13-1-c that the requirement for plim f1=0 is plim T X'M-E=0 . Thisx-obtains if either .Tr =0 or plim T 

1 
Z'X=0. However, the latter case mayZE

•be excluded because then IV estimation is not feasible. Hence the test S(a)
of (3.23) allows (asymptotically) the following inference. If S(s) is
significant this indicates that Z is an inappropriate set of instruments for
the model y=X13.-Fc and hence a is inconsistent, while an insignificant value
corroborates the adequacy of the instruments Z in this specification. However,
a significant value gives no clue whether it is the specification of the
explanatory part and hence of the disturbance term c, or whether it is the
matrix Z that has to be adapted (or both). Hence, test S() provides no
information on the status of X at all, but it uses the added regressors only
to provide a diagnostic on the validity of 71-ze=0 and thus on the consistency
of 3. From Kiviet (1985) it follows that particular tests for serial correlation
in single simultaneous equations are particular examples of the S(s) test.
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4. CONSIDERATIONS ON *A GENERAL TESTING STRATEGY FOR IV EQUATIONS

In the foregoing section we presented four types of tests for checks on

the adequacy of the specification of the structural form and the composition

of a set of instrumental variables for a single linear regression equation.

All four tests have as a part of their implied null hypothesis n =0. For
ZE

test S(s) of (3.26) this is the main element of the null hypothesis. Test

S(6
1
) of (3.19) tests also for n =0; test S(6) of (3.9) tests also for

wie 0
n =0 [the test S(y ) of (3.14) is a special form of test S(6 )1; and finally
w0c 01 0
we have test S(Ra-r) of (3.7) which tests the validity of the restrictions on

the coefficient vector Rf3=r.

From the extended regressions that correspond to the exogeneity tests for

excluded regressors S(60) and included regressors S(61) we obtain a test for

the exogeneity of both. This is based on the extended regression

y = X13. + W
0
6
0 
+ M

z-w 
W
1
6
1 
+c,

• 0
(4.1)

where the joint significance of 60 and 61 is tested by using [Z:W] as

instruments. In practice, however, a sequential test for the exogeneity of

single variables is much more helpful. Such a procedure avoids the problem that

remains when a joint test leads to a rejection, because then it is still

possible that some of the tested variables are acceptable as instrument

individually.

For a sequential test procedure, see Mizon (1977) and Kiviet and Phillips

(1985), in which the same set of data is used repeatedly to test various

hypotheses, it is desirable to have a unique ordering of successive hypotheses,

and also that this ordering leads to test statistics that are independent

under the most restrictive null hypothesis. We shall investigate these

phenomena here for a sequential testing strategy in which the comprehensive

problem is tackled of composing the explanatory part of a linear regression

equation and assessing the validity of the instruments. For the moment we

take the simplifying (yat unrealistic) assumption that the modelbuilder has

already established correctly that the structural relationship for the

dependent variable y must contain the regressors Y1, Z1 and W1, andfurther

that the matrix Z contains L>I( admissible instruments. For this particular

situation we now try to devise a sequential test procedure to verify the

legitimacy of the instruments Z, to establish the (non-)exogeneity of all the

regressors in W (one by one) and to validate particular restrictions on the

coefficients 13.
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4.1. The interdependence of the test statistics

To begin with we consider pairs of statistics from the four types of
tests of section 3. We start by investigating the sequential procedure
where first the exogeneity of Wo and next the exogeneity of W1 is tested, and
where in the second test W

0 
is added to the set of instrumental variables Z

if the first test statistic assumes an insignificant value. Then, according to
(3.11), the asymptotic distribution of the first test statistic depends on
T 1- 1W 1 M-c, with X=P X, and according to (3.20) the distribution of theOx z :Wo
second test statistic depends on T I- lw!P M-c, with here R=P X . Each ofz:wo x z:w
these two stochastic vectors is under the overall null hypothesis of the
exogeneity of W asymptotically normally distributed with mean zero. Whether
the two test statistics are asymptotically independent depends on the value of

X(X'P X) 1X'P ][I-P X(X'P X) 1X1Pz:w z:w]130 z:wo z:wo z:wo z:w z:w
0 

1

(4.2)

If this expression equals zero the two vectors are uncorrelated asymptotically,
and hence, the two test statistics are asymptotically independent; in that
case the asymptotic overall type I error of the procedure in which these tests
are employed successively can be controlled. Making use of P P X=

z:wo z:w
P P X=P X expression (4.2) can be reduced toz:w z:wo z:wo

wi[I-P x(xip x) 
- i

xtp w,0 z:wo z:wo z :wo z :wo

and as PW
1 
constitutes one of the partitions of P X the expressionz:wo z :wo

equals zero indeed.

Notice that independence is not obtained if in the second stage Wo is not

added to the set of instruments. One can also verify that reversing the order

of the two tests, and hence testing the exogeneity of the included regressors

Wi first, and next the exogeneity of the excluded regressors Wo, will lead

to dependent test statistics under exogeneity of W, irrespective of the use of

Wi as instruments in the second stage. Upon addition of Wi to the set of

instruments in the second stage the relevant expression is

W[I-P X(X'P X)-1X'P JP W.0 z:wi z

This generally differs from zero since neither PzWi nor Wo should be completely

spanned by the columns of [P Y :Z :W 3-
' 

the case Z'W =0 has to be excluded,z 1 1 1 0 1
because then the first test cannot be performed due to extreme multicollinearity

in the extended regression.
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We now examine whether partitions of the matrix Wo can be tested

sequentially in such away that the statistics are independent under exogeneity

of Wo. If W = W
0 E oo:woli' the expression to be investigated with respect to the

asymptotic independende of the successive tests for the exogeneity of two

mutually exclusive sets of excluded regressors is

-W '[I-P X(X'P X)
1 
X'P x

00 z:w z:
00 w00 :w00

[I-P X(X'P X) 1XlP 3W
z:w w

z: z:w 01
0 0 0

= W '[I-P X(X'P X) 1X'P 1w01oo z:w z: z:woo woo oo

and this again differs from zero in general. When we happen to have W qZ:W
00 

3=0

independence is obtained.

If we test sequentially partitions of the included regressors W =
1 [W10:11111

and add after testing W10 this matrix to the set of instruments in the second

stage, then the relevant expression is

W 'P EI-P (X X'P X) X'P x
10 z z:w10 z:w10 z:w10

 

EI-P X(X1P X)-1X'P JPz:w z:w z:wi z:w10 11

-= W 'P EI-P X(X'P X) 1 X'P JP. W = 0
10 z z:w

10 z:w10 
z:w10 z:w10 11 1

as P W just contains some of the columns of P X. Hence, independence
z:w10 11 z:w10

is acquired here irrespective of orthogonality of the partitions of Wl.

The results obtained so far indicate that in a sequence of tests on the

exogeneity of the variables W independence can only be obtained by first
employing the S(50) test once, and then performing a series of S(c5li) tests

for i=0,1,..., on appropriate partitions or individual columns of W1, under

sequential addition of the not rejected exogeneity hypotheses.

We now examine how the SO ) and S(6
1
) tests relate to the test S(13). This

0
has a less restricted null hypothesis than the tests on the status of W Mien

it is used with instrumental variable set Z). If test S(3) is employed first,

followed by test SO ), the relevant expression concerning (in)dependence
0

reduces to

)113 [I-PX(X 1P
z
X)-1X 1P 1w

z z 
,z o

and if the order of the tests is reversed it is
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14( „wo.3,[1.-Pxoc,P)o—ixip )1) k .z:wo. z:w0 z:w0.

Neither of these equals zero in general. If test SW is employed first, and

then the test SUS
1
) on exogeneity of the included regressors W1, therelevant

expression reduces to

XP [I-P X(X IP X)
-1
X'P1D)

z z1 
,

and this does equal zero as PzWi is a partition of PzX. If the ordek of the

tests is reversed the expression is

W'P [I-P X(X'P X) 1X 1P ]P1 z z:w z:w1 z:w z:w

and in general this will differ from zero.

We will not consider explicitly the effects on the interdependence of these

tests if X is included in the regression when the tests S(60) or S(61) are

employed, and next the significance of X is tested. The results for the S()

test when used in this way will follow directly from our findings for the

S(11 -r) test, as this test and the S(s) test are of exactly the same nature;

the only difference is that model (3.1) constitutes the null hypothesis for

test S(.) and that it is the maintained hypothesis for test S(R-r).

From (3.5) it follows that under validity of 11=r the distribution of

S(n7r) depends on the distribution of R(X'P
z
X)
-1

z
6. Hence, employment of

S(S ) first, followed by addition of W
0 

to the set of instruments, and0 
application of test S(R13-r) next leads to independent test statistics since

Wv[I-P X(X'P X)-1XIP 1P X = 00 z: z: z: z:w0 w0 w0 w0

If instead of S(
0
6 ) the test S(6) is employed firs,we obtain

W'P [I-P X(X 1P X)
-1

X'P ]P x = 01 z z:w z: z:w z:w
1 _1

and, if test S(13) precedes the S(R.13-r) test the relevant expression is

XP [I-P X(X 1P
z
X) 1X 1P ]P X = 0 .z z z z

The three test sequences above all constitute examples of what Kiviet and

Phillips (1985) call the testing of 'superposed' alternatives: the null-

hypothesis of the first test conforms with the maintained hypothesis of the

second test. Here it is again shown that in such sequences the individual test

statistics are asymptotically independent under validity of the most restrictive

null-hypothesis.
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We now consider the reverse order, in which test S(Ra-r) is employed first,

followed by application of one of the other tests to the model in which the

restrictions Rf3=r are imposed. Such a sequence will in general lead to

dependent test statistics as the alternative hypotheses of the two test

statistics are non-nested, while both tests have the same null-hypothesis.

Only in particular circimqtances, such as for test S(a) followed by test

S(61), the testing of these 'juxtaposed' alternatives will lead to

independent test statistics.

The results obtained sofar may be summarized in the following scheme:.

Second test

First test
s(610) 

S(611) S(Ra-r)S() s(600) s(601)

S(6
00
)

S(6
01

S(6
11
)

Indicated is the asymptotic (in)dependence obtained in the sequential

application of two tests out of the four types of tests considered here, where

the first test is applied to model (3.1) and the second test is applied to

model (3.1) after the imposition of the restrictions tested by the first

statistic. The letter 'i' indicates asymptotic independence under the overall

null-hypothesis and the letter 'd' denotes that the tests are dependent in

general but can be independent in incidental situations which usually cannot

be forced by the modelbuilder.

4.2. A strategic ordering of the test statistic

In a modelling exercise usually many tests are applied to the same set of

data and if one wants to exert some control over the overall type I error of

such an operation then the individual tests should be linked preferably in

such a way that independence under the most restrictive null hypothesis is

acquired. From the scheme in the foregoing subsection we see that we therefore

should order the tests as follows. If one starts with one (or a sequence of

superposed) S(a) test(s) then one should avoid S(60) tests altogether. Next, a

(sequence of superposed) S(61) test(s) may be applied, followed eventually by
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a (sequence of superposed) S(1,43-r) test(s). A S(60) test should be applied
only once, and, if applied at all, it should be used at the very outset of
the test sequence; any S(s) tests should be avoided then. This onlYS (60) test
should precede any sequence of S(6

1
) tests which again has to precede any

sequence of S(M-r) tests. Note, that the order of testing meant above does
not necessarily mean the actual order in which the computation of the tests
takes place. This ordening of the tests merely corresponds with the degree
of generallity of the model specifications to which the tests are applied.

The approach outlined above is only applicable if the initial number of
instruments L in the matrix Z is sufficient. Whether the approach will turn
out to be profitable depends amongst others on the admissibility of the
instruments in Z, and hence on the adequacy of the initial model specification:
in fact one should have available an overparameterization of the data generating
process from the very outset. Further, some modified version of the various
asymptotic tests should be used that behaves satisfactory in small samples
with respect to the size, the power and the interdependence. Finally, the
success of the complete exercise will be heavily dependent on the adequacy
of the decisions taken by the modelbuilder in case hypotheses are rejected.
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Appendix

That variable addition may contaminate consistent estimators is illustrated

by the following simple example. Let the equation under study be

y
1 
= a

1
x
1 
+ a

2
x
2 
+ Cl

and let a seemingly unrelated second equation be

where

y
2 
= a

3
x
3 
+ a

4
x
1 
+ 6

2

c = pc
2 
+ n , with (30 and Ec

2
n = 0 ,

(A.1)

(A.2)

(A.3)

and let x x
2 
and x

3 
be non-stochastic and c

1 
and c

2 
such that OLS estimation

of the equation leads to (inefficient but) consistent estimators. Now using

y
2 
as an extra regressor in (A.1) to check the consistency . of OLS leads to

the equation

(1,
y
1 
= a

l
x
1 
+ a

2
x
2 
+ i3111.

2 
+ c

1 
. (A.4)

rx,
It is simply seen that the test statistic s(a) will in general assume
significant values asymptotically. From (A.1) through (A.3) it follows that

we have

= 1 
-p

4
a )x

1 
+ a x + PY2 - pa3x3 + n ,2 2

(A.5)

from which the four parameters can be estimated consistently and more

efficiently. In (A.5) the regressors are exogenous. In (A.4) the OLS estimates

of
1 
and a 

2 
will be biased and inconsisyent due to the omission of x

3 
in that

regression, which leads to joint dependence of (some of) the regressors and

the error term C
1 '

s,
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