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1. Introduction

Let {X.} be a sequence of non-negative i.i.d. random variables with

common distribution function F. One is often interested in compound

S = X + X
2 
+ + X

1

where the counting variable N is independent of the terms X (see

e.g. [21). In the collective risk model in insurance S represents

the total amount of claims in a portfolio, modeled as the sum of a

random number of individual claims.

If

p
n 
= Pr (N = n) ( 1 . 2)

then the distribution of S reads

F (x) = E p 
n
F
n*
(x)

X
n=0

( 1 . 3)

n*
where F

x
(x) is the distribution function of X

1 
+ x

2 
+ + X

n 
, so

n*
F
x 

is the n-fold convolution of F
x

The distribution F is called a compound distribution. Suppose further

that the probabilities p
n 
depend on a parameter e . We may interpret

p
n
(0) as a conditional probability of N = n given 0 = 0 :

p
n
(0) = Pr (N =n18 = 0)

We then obtain

Hence

where

n*
F (x(0) = Pr(S < xI8 = 0) = E p

n
(0)F

X
(x)

SIO
n=0

F (x) =J F (x10)dU(9)
SIO

U(0) = Pr(0 < 0)

00

(1.4)

(1.5)

(1.6)

(1.7)



Consequently

00

n*
F
s
(x) = E f p (6)dU (6)F

X
(x)

n=0 n

- 2 -

( 1 . 8)

This distribution is called a weighted compound distribution. In the
-

special case where p
n
(6) = e

0 6n 
in! denotes a Poisson (6) distribution,

and the weighting distribution U(6) is a Gamma (y,c) distribution,

the weighted compound Poisson distribution is the compound Negative

Binomial (y,  
1+c

) distribution.

2. Stop loss dominance

A well known ordering of random variables is provided by stochastic

dominance (of the secondorder), where X is preferred over Y if for

all x E

f F
x
(y) dy <J F (y)dyY

0 0
( 2 . 1)

One may show that for distributions having the same mean this ordering

coincides with the one given in

Definition 1 X precedes Y in the loss stop order, written X 4;Y , (or

equivalently Fx ‹F'y ) if E(X) is finite and for all X E R
+

1(1 - F
X
(y))dy < f(1 - F (y))dy (2.2)

Stop loss ordering uses the tails of the distribution function, and

is more appropriate to order losses than stochastic dominance, often

used for gains.

Using partial integration an equivalent definition may be derived.

Definition 2 X < Y if and only if E(X) is finite and for all X > 0

CO

(y - x) dF (y) < (y - x) dF (y)
X —

The integral in the left hand member

(2.3)

equals the expected value of

the random variable X as far as it exceeds x . Using the notation

t
+ 
= maxit,01 we may rewrite (2.3) as
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E(X - x) < E(Y - x)
+ —

(2.4)

In a stop loss contract an insurer pays the loss X over a retained

amount x , and E(X - x)
+ 
is the net premium for such a contract, so

the term stop loss order is explained.

A sequence 00),01),...,(1)(n) is convex when for v = 0,1,...,n-2

we have

A2 (v) = i(v + 2) - fly + 1)} - {14)(v + 1) - (Hy)} > 0 (2.5)

the following section we will use the following lemma's:

Lemma 1 The inequality

E (P(v)av > 0
v=0

holds for any convex sequence (I) if and only if the sequence

satisfies

and

(2.6)

n

E (v - k) a > 0 , k = 0,1,...,n-1 (2.7)
+ v —

v=0

E
„
a
v 
= E va

v 
= 0

v=u v=0
(2.8)

Proof (This lemma is a special case of a much more general result

obtained in [4]).

The conditions are necessary since the sequences

(1)(v) = + 1 , (1)(v) = + v and (Hy) = (v - k) , k =

are convex.

To prove sufficiency, first observe that we may write

n-1

(I)(v) = q)(0) + Aq)(0) . v + E [A2(P(j - 1)](v - j)+

j=1

Using (2.7) and (2.8) we obtain from (2.9)

n n n

E (1)(v)a
v 
= (0) E a +A((0) E va

v=0 v=0 v v=0 v

n-1 n
+ E [A2(1)(j - 1)] E (v - j).4_av

j=1 v=0

(2.9)

0 (2.10)
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SC) the lemma holds.

In fact we will need a less restrictive sufficient condition:

Corollary 1 If (P(v) is a non-decreasing convex sequence, and (2.7)

holds together with E a = 0 , then still (2.6) holds.
v=0

Proof We have E Vav 30 by (2.7) with k = 0 , and Aqb(0) > 0 in
v=0

(2.10) gives the desired inequality.

Lemma  2 Let for some a > 0

n*
(n) = f(x - a)dF (x) ,

a

then fl0),(1)(1),... denotes a non-decreasing convex sequence.

n*
Proof We must prove e(n) > 0 , n = 0,1,.. Since F (x) is the

distribution function of X
1 
+ X

2 
+ ... + X

n 
, this is equivalent to

n n
E(EX.+X - a)

+ 
+E( 1X +X -a) <

n+11 i + —
i=1 1 

n+2 
=1

n n+2

< E( E X. - c) + E( E X. - a)
-- . 1 + 1 +

1=1 1=1

For this to hold it is sufficient that for all x, y, z > 0

(2.12)

(x + y - a) + (x + z - a) < (x - a)+ + (x + y + z - a) (2.13)+

For x > a , equality prevails in (2.13). For x < a , let 13= a - x

then (2.13) becomes

(y - + (z - < (y + z - (3)4. (2.14)

This inequality is easy to check, so 00),01),... is a convex

sequence. For it to be non-decreasing it is sufficient that

(1)(1) > (1)(0) . But always

0 = (1)(0) < 01) = E(X1 - a)4.
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3. Invariance properties of stop loss dominance

It is easily seen that stop loss ordering is 
preserved under mixing

[1]:

Theorem 1 Let F1,F21... and 1-111H21... be distributions and let

be a discrete probability distribution.

If F
n 

AC H
n 
for all n and if E pn 

xdF
n
(x) < cio then

PFn < E PnHn n

Proof Trivial.

We will next show that stop loss dominance is 
preserved under

convolution.

Lemma 1 Let X, Y and Z be independent random variables with

E(X) < co and E (Y) < ()a IfY<Z,thenX+Y-<X+Z.

Proof First we observe that E(X+Y) < . Also, for all t

E(X + Y - t) = E(E(X + Y - t) IX)

< E (E (X + Z - t)IX) = E (X + Z - t)
+ +

By repeated application of lemma 1 we obtain

Theorem 2 If X11X21... and Y1,Y21... are sequences of independent

randomvariableswithforallhen1 1

X
1 
+X

2 
+ + X

n1 
+Y

2 
+ . + Y

n

From theorems 1 and 2 we immediately obtain

Theorem 3 If X. and Y. are as in theorem 2 and N is an independent
1 1

counting variable with E(N) < 00 , we have

X
1 
+ 

X2 .. 
+ . + X

N
a< Y

1 
+ Y

2 
+ . . +. 

YN

To prove that stop loss order of counting variables is preserved under

compounding is slightly more complex.

Theorem 4 If N N' , and X ,1X 
2".

distribution function F , then

. are independent with common

X + X
2 
+ . + X

N 
X + X

2 
+ + X

1 1 N'
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Proof Let a = Pr(N' = v) - Pr(N = v) , then by N the

conditions of corollary 2.1 are satisfied. Defining

(1) (v) =
n*

(y - x)dF (y)

co

we have by lemma 2 E cp(v)a
v 
?0 or equivalently

v=0
. . . .

v* v*E Pr(N' = v) f(y - x)dF (y) > E Pr(N = v) f(y - x)dF (y)
v=0 x n=0 x

So

E(X + +X -x) > E(X + +X -x)1 N' +-- 1 N 

The previous results may be summarized in the following theorem:

Theorem 5 Let S = 
1 

X
1 
+ + X , S

2 2 
= Y + + Y

N 
, with 1-

1 
-‹ N

2 

and X •‹Y . Then S1 S2 
1

Next we show that stop loss dominance is preserved for weighted

compound Poisson distributions.

Theorem 6

with

Consider two weighted Poisson distributions S1 and S
2

CO 00

F =Efe-43011/n!dU.(0)Fn*(x)Sj
n=00 3

If U
1 
<U2 
' 

then S1 <S2 .

Proof Let N1 and N
2 

be random variables satisfying

, j = 1,2.

.
(j) (j) 

= n) = f e
-0
0
n
/n:dU.(0)p =Pr

-n 30
(3.1)

for j = 1,2 and n = 0,1,... . By theorem 5 it suffices to show N1 .< N2.

Let

(1) (2)
= Pn Pn

V(0) = U1(0) - U
2
(0) ,

4)(0) = - 5 V(w)dw

Consider
co oo CO

(3.2)

-0 r -0 r -0a
n 
=jr e 61-1/n!dU (0) - je On/n:dU

2
(0) = je 0n/n!dV(0) (3.3)1

0 0 0
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Two successive partial integrations yield

r -
a
0 
= f dV(0) + j(e e- 1)dV(0) =
0 0

00

r -
= 0 + (e

-e
- 1)v(e) I c° + j e eV(0)de

0 
0

7 -
= 0 + 0 + e (0)i e

0
(0)deo + 0

CO

d2 -e
w= -o + f[  e J(e)de

0 de2

c? _0
a
1 

j Oe dV(e)
0

= Oe °V(0)1 - j(e - Oe)v(o)deJ 
-0 -e

U)
-0 -0 co d 

(e
-4

Oe
-0

)q)(0)d0= -(e - e )1
o 
+
0 dO

= (P(0)+ f[ 
d2
 Oe

-e
]4)(0)d0

0 d02•

d2 -en
a
 
= f[  e On/n!]q)(0)dO , n = 2,3,.. (3.4)

0 d02

It is easily shown that

So

n k
d2 

E E [  -One 0/n!]
k=0 v=0 d02

= e-e0n/n! (3.5)

n k
E E a = (n + 1) (-(1)(0)) + n(+00))

k=0 v=0

n k co d2 _0
+ E E IC  e Ov/v:14)(0)de

k=0 v=0 0 d02

= -(0) + 5 e-e0n/n:(1)(0)d0

0

On the other hand

n k n n

E E a
v 
= E E a

v 
= E (n - v + 1)a

v
k=0 v=0 v=0 k=V v=0

(3.6)
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n n

(n + 1) E a - va

v=0 v=0
CO 00

= (n + 1) E av + E vav - (1) (0) (3.7)

v=n+1 v=n+1

using the fact that

pc,

E va
v 
=

v=0

CO 00

—f E Ye
o 
Ov/v!dV(0) =

0 v=0

00

f ethi('s+) = ((o)

From the fact that U1 "< U
2 

we obtain for all 0 > 0

00 00 00

(3.8)

q) (0) = —5 V(w)dw = (1 — u1 (w) )aw — 5(1 — u2(w))dw < 0 (3.9)

So for all n = 0,1,... by (3.7), (3.6) and (3.9)

. . 

E 
v

(1) 

v

(

 

2)
e
0
0
n
in(0)de < 0(v - (n+1))(p- p) = f __

v=n+1 0
CO

(1) 
Since by (3.8) E v(p

v 
- 

(2) 
p
v 

) < 0, we have N
1 
•< N

2 
, and the

theorem holds. 
v=0

4. Application: minimal and maximal distributions

In this section we exhibit minima and maxima in the sense of stop

loss ordering in restricted classes of compound distributions.

First we prove a lemma giving an easy to check sufficient condition

for stop loss dominance.

Lemma 1 Suppose a real number c > 0 exists such that

F
1 
(x) 

—
< F2 (x)for 0 < x < c

F
1 
(x) > F

2 
(x) for x > c

— 

and suppose xdF
1 
(x) <5 xdF2 

(x)
--

0 0
CO

If 5 xdF1 
(x) < co , then F1 < F

2 
.

Proof For t > c we immediately have

00 00

5(1 - F
1 
(x))dx <5(1 - F

2
(x))dx 1

(4.1)
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and for t < c

00 00

• f{(1-F1(x)) - (1-F2(x))}dx < f{(1-F
1 
(x)) - (1-F

2
(x))1dx < 0

0

If F
1 
and F

2 
are as in lemma 1 we say that "F

2 
is more dangerous

than F
1
.

First consider the class of compound Poisson distributions with

parameter A and with terms having mean p. The minimal distribution

in this class has terms equal to p with probability one. It is easy

to see that this distribution is less dangerous than any other with

mean p.

If the terms are restricted to have a bounded range, say [0,M], we

can identify the following distribution as the most dangerous one:

Pr(X = 0) =i--4-, Pr(X = M) =  

So the compound Poisson (X) distribution with terms as X is maximal

in the sense of stop loss ordering in this restricted class.

To compute the upper bounds for net stop loss premiums it is easier

to consider the compound Poisson (Xp/M) distribution with terms

equal to M with probability one. This is the same distribution as

the maximal distribution found above, as one sees by comparing

moment generating functions.

Now let the distribution of the terms F be fixed, and also the

expected number of terms E(N) = X. In this class there is a minimal

element. Its number of terms N' satisfies

Pr(N' = [Al) = 1 - (X - [X])

Pr(NI = [Al + = A - [Al

The distribution functions F
N 
and F

N' 
can have only one point of

intersection, either at [X] or at [Al + 1 (remember that FN 
is

constant between [Al and [Al + 1 , too). So N> N', and by theorem 2.5

the minimal element is this class is found.

Finally, consider those compound distributions with some fixed F as
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di:Aribution function for the terms, and a counting variable N that

may be written as

N=A•  +A 
2 
+...+1  

1

with  the A.
3
 Bernoulli() distributed and independent.

x
Let the vector p = (01,...,

T
Pn) , and let N' with terms A', with

3
probability vector ID' = be another such counting variable.

We will show that if E(N) = A is fixed, the Binomial (n,-) distribution

is maximal. For E(N) = A fixed but n arbitrary, we obtain the Poisson (A)

distribution as a supremum.

First let n = 2. If the vectors p and p' are related as

= ( t 1-t

1-t t
)

for some t E[0,1], we have

pp = (tpi +(1-t)p2)((1-t)p1 + tp2)

, 2 2
= t(1-t) {pi + P2 - 21DiP2} P1P2 PiP2

and with the same reasoning

(1-p)(1-ic) > (1-pi) (1-p2)

This implies that N' > N , since N' is more dangerous.

Of course by theorem 2.2 we have for any m

A ' +A )* A
1
+A
2 

A ' +A ' +A
3 
+A
4 
+ +A

m 
> A 

1
+A
2
+A
3
+A
4
+
...

+A
m1 2 1 2 

So if the matrix T = T(k,Z,t) satisfies

T
kk 

= T = t ,

T = T = 1 - t

.T 6.. otherwisei := 3 
13

for some k and 2, and some t E[0,1], and p' = Tp, then N' > N.

Now suppose we have proven that if

(4.2)



n±co

then

N = A
1
+A
2
+...+A

n-1

1
N B (n-1 , 

1 
EN) ,

n-

where B(r,t) denotes a Binomial (r,t) random variable. Note that for

1/2 1n - 1 = 2, the assertion is proved by taking T =
1 -2 2

Let p =   Ep..Ifall..are equal to p , N has a Binomial (n,15)
n j=1 3 P3

distribution. Now suppose k and 2, exist such that pk > p >pt .

Take t E[0,1] such that tp
k 
+ (1-t)p = p .

Let p' = T(k,t,t)p , then N' with probability vector p' satisfies

N N' .

Then N' - A' .0(B(n-1, 
1

1
E(N'-A')) = B(n-1,p) by induction.

n-

But then

(N'-A') + A .<B(n-1,p) + A'

so N' <B(n,p-) , which was to be proved.

If for some A > 0 F
n 
is the Binomial (n, 

A
) distribution function,

we have F1 <F2 K' .

Also, for all x we have F
1
(x) > F,

z
(x) > ... with

lim F
n
(x) = F (x)

cn.

where F is the Poisson (A) distribution function. Using definition

2.1 we conclude

00 00

lim (1 - F
k
(y)) dy= 5(1 - F (y) ) dy

k4-oo

so F is a supremum in the sense of stop loss order in the class

of distributions N that may be written as a finite sum of Bernoulli

experiments.
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