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Some invariance properties of net stop loss ordering of risks
are examined and proved in the framework of weighted compound

distributions.




1. Introduction

Let {Xj} be a sequence of non-negative i.i.d. random variables with
common distribution function FX. One is often interested in compound
sums

X2 + XN (1.1)

where the counting variable N is independent of the terms Xj (see
e.g. [2]). In the collective risk model in insurance S represents
the total amount of claims in a portfolio, modeled as the sum of a

random number of individual claims.

then the distribution of S reads

FS(X) = I pnFX (%)
n=0

%
where F;(x) is the distribution function of X1 + X2 + ..

*
F; is the n-fold convolution of FX .

The distribution FS is called a compound distribution. Suppose further

that the probabilities P, depend on a parameter 6 . We may interpret

pn(e) as a conditional probability of N = n given 8 = §
pn(G) = Pr(N =nl|8 = 0)

We then obtain

FSI@(XIG) = Pr(s < x|8 =8) = nio pn(G)FX(x)

Hence
Fg(x) = J Fglg(x18)dU(8)

where

U(g) = Pr(8 < 0)




Consequently

oo

n*
F.(x) = 2 [ p (8)du(8)F. (x) (1.8)
S n=0 n X

This distribution is called a weighted compound distribution. In the
-0

special case where pn(e) = e

Gn/n! denotes a Poisson (6) distribution,
and the weighting distribution U(6) is a Gamma (y,c) distribution,
the weighted compound Poisson distribution is the compound Negative

Binomial (v, Igéﬁ distribution.

2. Stop loss dominance

A well known ordering of random variables is provided by stochastic
dominance (of the secomdorder), where X is preferred over Y if for

all x € R+

X X
J Foay < [ F (ynay (2.1)
0 0

One may show that for distributions having the same mean this ordering

coincides with the one given in

Definition 1 X precedes Y in the loss stop order, written X <Y , (or
+
equivalently FX <'F§ ) if E(X) is finite and for all X € R

(o] [ee]

Ja - Fey)dy < f(1 - F(y))dy (2.2)
X X

Stop loss ordering uses the tails of the distribution function, and
is more appropriate to order losses than stochastic dominance, often
used for gains.

Using partial integration an equivalent definition may be derived.

Definition 2 X <Y if and only if E(X) is finite and for all X > O

[oe) foo)

Jty - xar () < [ty - x)dF_ (y) (2.3)
X X

The integral in the left hand member equals the expected value of
the random variable X as far as it exceeds x . Using the notation

£, = max{t,0} we may rewrite (2.3) as




E(X -x), < E(¥-x, (2.4)

In a stop loss contract an insurer pays the loss X over a retained
amount x , and E(X - x)+ is the net premium for such a contract, so

the term stop loss order is explained.
A sequence ¢(0),¢(1),...,¢(n) is convex when for v = 0,1,...,n-2

we have

A29(v) = {o(v +2) - (v + D} - {gv+1) -6} >0 (2.5

In the following section we will use the following lemma's:

Lemma 1 The inequality

n
LI ¢(via >0
v=0 v T

holds for any convex sequence ¢ if and only if the sequence
ao,al,...,av satisfies -

n
L (v - k)+av >
v=0

(2.8)

Proof (This lemma is a special case of a much more general result
obtained in [4]).

The conditions are necessary since the sequences
o(v) =+1, ¢(v) =+ Vv and ¢(v) = (v -k , k=

are convex.
To prove sufficiency, first observe that we may write

n-1
$(v) = 6(0) +89(0) . v+ £ [2%G - DI -3,
j=1

Using (2.7) and (2.8) we obtain from (2.9)

n n n
pX ¢(v)av = a + Ap(0) Z va
v=0 v=0 v=0 "
n-1 n
+ 2 [A%G -1 (v-3).a > 0
. + Vv f—
j=1 v=0




so the lemma holds.

In fact we will need a less restrictive sufficient condition:

Corollary 1 If ¢(v) is a non-decreasing convex sequence, and (2.7)
zororttary a .

holds together with X av 0 , then still (2.6) holds.
v=0
n
Proof We have \ > 0 by (2.7) with k = 0 , and A¢(0) > O in
- v=0 - -
(2.10) gives the desired inequality.

Lemma % Let for some o >0

[o0)

*
$(n) = f(x - a)an(x) ,
a

then ¢(0),¢(1),... denotes a non-decreasing convex sequence.

*k
. y . n .
Proof wWe must prove AZ¢(n) >0, n=20,1,.. . since F (x) is the

distribution function of X1 + X2 + ... + Xn , this is equivalent to

n
), 4 E(iE1Xi X -, <

n+2
E(4Z Xi - a)+ + E(.Z Xi - OL)+
i=1 i=1

For this to hold it is sufficient that for all x, y, z >0,

(x +y - a)+ + (x + z - a)+ < (x - a)+ + (x +y + 2z - a)+ (2.13)

For x > a , equality prevails in (2.13). For x < a , let B = a - x ,

then (2.13) becomes
(y - B)+ + (z - B)+ < (y+ 2z - B)+

This inequality is easy to check, so ¢(0),¢(1),... is a -convex
sequence. For it to be non-decreasing it is sufficient that
(1) > ¢(0) . But always

0 =¢(0) < ¢(1) = E(X, -a),




3. Invariance properties of stop loss dominance

It is easily seen that stop loss ordering is preserved under mixing
[1]:

Theorem 1 Let Fl’F2"" and Hl'HZ"" be distributions and let

P rPore-- be a discrete probability distribution.

I1If F < H for all n and if L p f xdF (x) < « then
n n LoD n

X pnFn < I ann
n n

Proof Trivial.

We will next show that stop loss dominance is preserved under

convolution.

Lemma 1 Let X, Y and 2 be independent random variables with

E (X) < and E(Y) < o . If Yf{ 7 , then X + Y LX + 2 .
Proof First we observe that E(X+Y) < « ., Also, for all t

E(X +Y - t) E(E(X+Y—t)+|X)
E(E(X + 2 - t) |X) =E(X + 2 - t)
- + +

By repeated application of lemma 1 we obtain

Theorem 2 If Xl,X and Yl’Y are sequences of independent

21‘-- 2,...
random variables with for all i X, « Y, , then
i i

X, + X+ ... +x < + + ...
1 2 n Y1 Y2 + Yn

From theorems 1 and 2 we immediately obtain

Theorem 3 If Xi and Yi are as in theorem 2 and N is an independent

counting variable with E(N) < «» , we have

X, + ... + X +
> N-<Y1 Y2+...+YN

To prove that stop loss order of counting variables is preserved under
compounding is slightly more complex.

1,X2,... are independent with common
distribution function F , then

Theorem 4 If N <N' , and X

X, + X +...+XN-<X1+X + ... + X

1 2 2 N'




Proof Let a = Pr(N' = V) - Pr(N = v) , then by N' < N the

conditions of corollary 2.1 are satisfied. Defining

[ )

*
() = [y - x)aF" (y)
X

[ee]

we have by lemma 2 I ¢(v)av > 0 or equivalently

0

o v © ® \)*
LPr(N' =) [(y - x)aF (y) > £ Pr(N =) [(y - x)aF"(y)
v=0 n=0 X

+ ... + - > X, + ... + -
E (X, Xy - %), > E(X, X, = %),

The previous results may be summarized in the following theorem:
Theorem 5 Let S, = X, + ... + XN y S, =Y+ ..+ Y , with

_ 1 1 2 1 N,
N1'<N2 and X <Y . Then sl-<s2 .

Next we show that stop loss dominance is preserved for weighted

compound Poisson distributions.
Theorem 6  Consider two weighted Poisson distributions S1 and 82
with

[ee)

e *
Fg x) = & fe %™ /n1au . (8) F (x)
J n=0 O J

IfU1<U2 , thenSl-<Sz .

Proof Let N1 and N2 be random variables satisfying
p(J) (3)

= Pr (N
n

n) = e_een/n!de(G) (3.1)
for j = 1,2 and n =0,1,... . By theorem 5 it suffices to shqw N1-< N2.
Let
_ (1) (2)
n pn n
v(e) = UI(G) - U2(9) '

$(0) = - [ v(w)dw
8

Consider

e—eﬁn/n!dUl(G) - fe'ee“/n:duz(e) e %" miavie) (3.3
0




Two successive partial integrations yield

[ av(e) + I(e"e- 1)av(e) =
0 0

=0+ (- Dv@ 1] + e %v(e)ae
0

0+ 0 + e'e¢(e)|: + [ e % (0)a0
0

o 2 a
-p(0) + [[ 4" e %76 (0)a0

0 as?
J 8e %av (6)
0
Ge—GV(O)Ig - J(e‘e - 0e %) v(0)an
0

-0 Yoa , -0
_.._(e

-(e = - ee'o)lg + - 0e )¢ (8)as
0

dae

=) 2 _
60+ 12— 6 16 (0)a0

0 ae?

[o o] 2 _
a_ 19 ™% /n1 14 0)a0
0 de?

It is easily shown that

n k 2
r [ d
k=0 v=0 d6%

e—een/nl] = e—een/n!

a = (n+ 1) (-$(0)) + n(+¢(0))

n k o 2
d -
+r % JI e %6V /v116 (8) a0
k=0 v=0 0 d62

= (0 + J e %% n1o(0)a0
0
On the other hand

n k n n n
X r a = I z = I (n-v+ 1)a =
v
v=0




n n
(n + 1) X av - Z va
v=0 v=0
-(n+1) & a + pX
v=n+1

\Y

using the fact that

L va = [ = ve'oe“/v:dV(e) [ eav(e) = ¢(0)
v=0 0 v=0 0

From the fact that U1v< 02 we obtain for all 6 > O

foe] [ee]

9(8) = - [ vwaw = [(1 - v, (w)dw - [(1 - U (w)dw < 0 (3.9)
0 6

So for all n =0,1,... by (3.7), (3.6) and (3.9)

o

(v - (n+1»(pél) - péz)) = [ %" /nto (a0 < 0
v=n+1
. T (@)
Since by (3.8) P, - P, ) < 0, we have N1~< N2 , and the

theorem holds. v=0

Application: minimal and maximal distributions

In this section we exhibit minima and maxima in the sense of stop
loss ordering in restricted classes of compound distributions.
First we prove a lemma giving an easy to check sufficient condition

for stop loss dominance.

Lemma 1 Suppose a real number ¢ > 0 exists such that

Fl(x) < F2(X) for 0 <x <c

Fl(X) -F2(X) for x >c

and suppose [ xdF, (x) < | xdF. (x)
0 1 ~0 2

(o]

1f [ xdF, (x) < @ , then F, < F

0 2
Proof For t > ¢ we immediately have

o o)

Ja - F (x)ax < J(1 - F_(x))dx ,
¢ 1 % 2




and for t < c

[o o]

f{(l—Fl(x)) - (1-F,(x))}dx < [{(1-F
t o0

1(x)) - “"FZ(X))}dXiO

If Fl and F2Aare as in lemma 1 we say that F, is more dangerous

2
than F, .

1
First consider the class of compound Poisson distributions with
parameter A and with terms having mean p. The minimal distribution
in this class has terms equal to p with probability one. It is easy
to see that this distribution is less dangerous than any other with
mean U.

If the terms are restricted to have a bounded range, say [0,M], we

can identify the following distribution as the most dangerous one:

u U
= 0 = 1 - —— = - ———
Pr (X ) M Pr(X = M) M

So the compound Poisson (A) distribution with terms as X is maximal
in the sense of stop loss ordering in this restricted class.

To compute the upper bounds for net stop loss premiums it is easier
to consider the compound Poisson (Au/M) distribution with terms
equal to M with probability one. This is the same distribution as
the maximal distribution found above, as one sees by comparing

moment generating functions.

Now let the distribution of the terms F be fixed, and also the
expected number of terms E(N) = A. In this class there is a minimal

element. ItS number of terms N' satisfies
Pr(N' = [A]) =1 - (A = [A])
pr(N' = [A] + ) = X - [A]

The distribution functions FN and FN' can have only one point of
intersection, either at [A] or at [A] + 1 (remember that FN is
constant between [A] and [A] + 1 , too). So N> N', and by theorem 2.5

the minimal element is this class is found.

Finally, consider those compound distributions with some fixed F as




distribultion function for the terms, and a counting variable N that

may be written as

N=A, +A_+ ... +
1 Ay Ay

with the Aj Bernoulli(pj) distributed and independent.

T . .
Let the vector p = (pl,...,pn) , and let N' with terms A% with

probability vector p' = (pi,...,pé) be another such counting variable.

. . A ) . .
We will show that if E(N) = A is fixed, the Binomial (n,;& distribution
is maximal. For E(N) = A fixed but n arbitrary, we obtain the Poisson (A)
distribution as a supremum.

First let n = 2. If the vectors p and p' are related as

e
Tl )

for some t €[0,1], we have
1 ] - -
PP, (tp, +(1 t)pz)Gl £)p, + tp,)
t(l—t){p2 + p2 - 2p,p.} + p.p, > pP,P
1 2 1%2 172 — #1792
and with the same reasoning
(1 pl)(l p2) > (1 pl)(l p2)

This implies that N' > N , since N' is more dangerous.

Of course by theorem 2.2 we have for any m

|l \] 1 ] e + +’..
BI+AL > A +A, A1+A2+A3+A4+ +Am > A1+A2 A +A, +Am

So if the matrix T T(k,2,t) satisfies

Tk = Tag

Tro = Tox

T. . 8., otherwise
1] 1]
for some k and % and some t €[0,1], and p' = Tp, then N' > N.

Now suppose we have proven that if




N =247 +A_+...+
(TR tA

N < B(n-1, —1—EN)
n-1

where B(r,t) denotes a Binomial (r,t) random variable. Note that for
11
n -1 =2, the assertion is proved by taking T = ( z).
- 1 N _ 2 72 _
Let p = —;—321pj . If all pj are equal to p , N has a Binomial (n,p)
J:

distribution. Now suppose k and % exist such that Py >p > p

L
Take t €[0,1] such that tp, + (1~t)p2 = p

Let p' = T(k,%,t)p , then N' with probability vector p' satisfies
N<N' .

Then N' - Aé-( B(n-1, ;%T-E(N'—Ai)) = B(n—l,é) by induction.

But then

1_pnt L4 1~ '
(N Ak) + Ak B(n-1,p) + Ak

so N' <B(n,p) , which was to be proved.

If for some A > 0 Fn is the Binomial (n, ~%—) distribution function,
we have F1'<F2°< oo .
Also, for all x we have Fl(x) 3_F2(x) > ... with

lim F_(x) = F_(x)
e D >

where F_ is the Poisson (A) distribution function. Using definition

2.1 we conclude

(e}

lim [(1 - F, (y)dy= Ja - F_(y))ay
koo x X

so F_ is a supremum in the sense of stop loss order in the class
of distributions N that may be written as a finite sum of Bernoulli

experiments.
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