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Abstract

A multivariate linear regression model with q responses as a linear function

ofpindependent variables ry, = + k is considered withapxqparameter

matrix B. The least squares (or Maximum Likelihood for multivariate normal E)% %

estimator of B is deficient in that it takes no account of the "across%

regression" correlations, on the one hand, and ignores the famous Stein effect,

on the other hand. A remedy was offered by Brown and Zidek (1980) in the form

of a multivariate ridge estimator. A richer class of estimators is obtained here

by casting the model in a linear hierarchical framework, obtaining the Brown and

Zidek multivariate ridge estimators., Efron and Morris' estimators of several

normal mean vectors and Fearn's Bayesian estimators of growth curves as special

cases. The unknown covariance cases result in an identifiability problem which

is treated in a Bayesian fashion using conjugate priors. The method is then

applied to forecasting the final election results from partial returns obtained

at election night.
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On Multivariate Ridge Regression

1. INTRODUCTION:

Brown and Zidek (1980) consider a multivariate problem with q responses
and n observations, , assumed to satisfy the standard multivariate linear
regression model

=

with X an (n x p) full column rank matrix whose elements

are treated as fixed known constants

and is a (p x q) matrix of unknown coefficients to be estimated. With

= kg), the usual assumptions on the error are

E(E ) = o, cov(
i
E , E ) =%(\A Y.

n

(1)

j,k = 1,...,q (2)

or, in short E() = , cov(k) = Fe tIn , where CD denotes the usual Kronecker
product of matrices. The least squares estimator of k is given by

=

which is also the maximum likelihood estimatorwhen normality of the error

distribution is assumed. Equivalently, writing = (B

(3)

Y = o kg) s that the vectors y.(n x 1) and j (13 x 1) pertain to the
% 

f 
j-th of the q responses, (3) can be rewritten as

(
T -1 T

= q)

Brown and Zidek cite Sclove's (1971) argument that the least squares

(3a)

estimator (3) is deficient in that it takes no account of 
= 
(y..) , the between

regressions covariance matrix. In order to remedy this shortcoming and also to
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take advantage of possible improvements in the estimation of the 6 's even
rbi

when k = I by using the ridge regression estimator for that case, Brown and
%

Zidek suggest the multivariate ridge regression estimator (MRRE) of the form
.1

le(k) = ' (4)

where K(q x q) > 0 is the ridge matrix, = vectfl is the (nq x 1) vector

T T T
= %_,..., 71,(1) and k*(1,9 is a (pq x 1) vector of estimators of

= vecql = 4f. ,..., 6
T 
q)
T 

where each B is a (p x 1) column vector.1% 

The least squares estimators(3) have also a stacked matrix representation

_ teip_i_
iq (3b)

Clearly e(k) = .

Estimator (4) is recognized by Brown and Zidek as a Bayes estimator, which

can be directly obtained from Lindley and Smith's (1972) treatment of the linear

model. However, a more careful application of the Lindley-Smith approach will

yield a richer class of estimators, which is the aim of this paper.

It will be shown that the relationship between the resulting estimator

and the Brown-Zidek MRRE is similar to that between the Lindley-Smith

Exchangeability Within Regression estimator and the Ridge Regression estimator,

where the Ridge estimator is obtained as a special case when an exchangeable prior

around zero is assumed for the regression coefficients. Furthermore, it will be

shown that the Efron-Morris (1972) estimators,at least for the known covariance

cases, can be obtained as special cases of the estimator suggested here. Hence

the latter can be regarded as an extension of Stein's method to the multivariate

regression model.

1 Brown and Zidek stack their matrices row by row. I find it more natural

to stack them by columns and hence the few apparent differences.
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The unknown covariance case, even after 
imposing initial restrictions on its

structure, Is shown to he nonidentifiable, 
and hence furt-hor (non!;tocha!;_ic

)

restrictions are required for estimating
 the model parameters. Thus, prior

information on at least some of the 
covariances is imposed in the form of a

natural conjugate distribution.

2. THE LINEAR HIERARCHICAL MULTIVARIATE REGRESSION ES
TIMATOR

The approach here is that of Lindley and Smith (
1972). A three-stage model

will be assumed, where in the first stage, given th
e design matrix

r %NW 
% %ci %

I } . (5)

Equation (5) is Zellner's (1961) "seemingly unrelated regression equations"

representation of the multivariate linear regression model in the special case

of identical design matrices.

A second stage is added by supposing

N( 
q ® 

, 0 , independent of , (6)

that is, each E{, j} = fk;, (j=1,...,q) . A vague prior knowledge on .E:% i
s

assumed for the third stage.

The formal posterior 
distribution of re J)Tl 

clgiven x an), is shown, for
5

known variances, to be normal with mean vector 
[see Haitovsky (1985)] :

and covariance matrix

(coy

(
T -1 -1 T -1_

“, (7)

(8)



r
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%p ( c1 1,%/3

and

-4--

ZT = (y , O)0
T)

CU % %

CU

After some algebra this reduces to the means and variance, conditional on y and X:Cu %

T
= {I Q.9X X+ (reI)Q} (I L>9X

T
)v

CU rbq % % % CUPCU(\xi

with

(.0v (e) = (1,-4 ® xfux +%r\,
and

1-1
&*. = {(1 I )

T -1
q (),T, )1 (t )

T-1 *
Jsq % p q P

with

cov(*) = [ctql‘ 4) {)-ki

where

%

(9)

(10)

1 I )1-1 '12)
r‘ip

1 -9 = [1 - (1 01 )fq (DI ,To- a eI )}l(  oi )T N-1 
. (13)

pq % %q (bp q (bp % rk,(1 %p iNT %

Equations (9) and (10)can be regarded as ridge estimatorsof the multi-

variate regression model. Furthermore, the MRRE reduces to the least squares

estimator(3) when Q
-1 

= 0 , as is the case with the univariate ridge.

It will be instructive at this stage to impose some structure on the

general covariance matrix Q . Let,
CU

so that V (q x q) > 0
CU

= vex:

is the covariance (except for an overall scale factor)

(14)

between any two rows in B and F. (p x p) > 0 is the covariance (except for



an overall scale factor between any two columns in k . As a result Q
%

reduces to Q = V WjL , and hence eqns. (9) - (13) reduce
%

respectively to

13* = (1 Q.9 K 
0 E-1)-1(i 0 x'53,

(\A rk, r‘/W % %

,, - 1 -
cov W*) = (I X

T
X + K Q.9 E 

)1 
® I )

rvw % % %P

= (1
T
V
-1
1 )
-1
(1

T
V
-1 I )*

(NA% %q %q% (143 %

(15)

(16)

and (17)

-1 -1
coy (*) = [(1

T
® ){F(52)(X

T
X)
-1 

+

where K = IV
-
 W.

%.1̂ 7
W = I -(1

T
V
-1
1 )

-1
J V

-1 
and J = 1 1

T 
.

%sci %Tx, rks1 q %qr‘iszl

(18)

Brown & Zidek (1980) require that MRRE obeys two rules:

(i) that it should be a Bayes rule for fixed known Kj , which, being a

posterior mean, our estimator(13) certainly is;

(ii) for a suitably chosen estimator for K , in the special case of equal

information (?1C)
T 
=), 

the MRRE should correspond to the Efron and

Morris (1972) multivariate extension of the James and Stein (1961)

estimator. It will be shown in the next section that this requirement is

met here as well.

3. SPECIAL CASES

In this section we consider a few important subclasses of priors 
on

the regression coefficients. We start with those affecting the ridge

matrix K .
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3.1 The prior (c) = 0 is of special interest in applied work, since it%

results in the multivariate regression analog to the Hoerl and Kennard (1970)

"ordinary" ridge rule, in Thisted's (1976) terminology. Thus, as Lindley

and Smith (1972, p. 11) show, the univariate (multiple) regression

estimator,when the elements of 0. are assumed exchangeable about an

LSunknown value (i.e. a vague ), is Qj = (X
T
X + kU )

-1
X
T
y , where

-
U =I -p

1 
J and k = /02 , the ratio of the regression error%p qfp (3.

variance to the prior variance of k . When exchangeability is assumed

about 0 (i.e., = 0 , in our notation),

U reduces to I and the "ordinary" ridge is obtained. Similarly, in

multivariate regression, E = 0
% is implemented by deleting the last

column of submatrices from A (eqn. 7), resulting in q = k2, in eqn. (13).

Or, when (14) is taken into account, in analogy to the univariate case,

-
W becomes I and K = 

,U11 
(in contrast to K = FV

-1
W when the prior

(Am ilm

on F., is vague). K is an obvious multivariate generalization of k in
rx,w

the Lindley and Smith framework.

3.2 Multivariate Exchangeability Between Multiple Regression Equations is

expressed by letting V = , obtaining a ridge matrix K = FU .fl, %%q

If, furthermore, it is assumed that r = yI (15) reduces to
%

with

-1 q ^B* = +(I - H) q E
r\ip 

j=1

-
coy (P) = + q

1 
(I - H)1 y(X

TX)-1

rf.(1,p %

where H = (y
-1
X
T
X -I-

-1
)
-1

y
-1

X
T
X and 13. as before are the least squares

fl, %

estimators. This is the Bayesian approach to growth curves with identical X.

matrices as developed by Fearn [1975, equations (10) and (11)].

It is worth mentioning here that if Zellner's seemingly unrelated regression
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equations model is assumed instead of (5) , i.e., the design matrix say,
in (5) takes the form of a diagonal block matrix with different

submatrices along the main diagonal and exchangeability between the regression
equations is assumed, then

T -1, -1 T -1= { z (F U( I )Z + u ez z (F I )y .(k) % (kiq (A, % %

See Lindley and Smith (1972, eq. 23) and Haitovsky (1979, §VI-1).

Here again if (11-: is a diagonal matrix, Fearn's results for non-identical

design matrices are easily obtained. See also Lindley and Smith (1972, p.10).

3.3 Multivariate Exchangeability Within Multiple Regression Equations will

require, in addition to letting E = I ai fourth stage in the Linear
% %P

Hierarchical Model [cf. Haitovsky (1979)]. If only the former is assumed then,

= (I OXTX + KWOI )-1(I OXT)y(1.,q % tv\i rk,p q,C1 t\,
(19)

The last two cases can be combined with the = 0 prior assumption, resulting

in W = U = I and hence, for instance for the present case one obtains:

= ((t ®,)x)
(T

i ® ZP
)-1 

(Z tC) \J(T)q \i ( qk,

This is the Brown-Zidek MRRE .

3.4 The Efron-Morris Extension of Stein's Method can be reduced from the

= (3*(K) . (20)
(l)

hierarchical representation of the multivariate regression model (5) and (6)

by letting n=p andX=I , F=I , = 0 and R=IOE , thus obtaining
% %I) % rbq % %,c1 %

or

- -(3* = (I + O
1 

I E {I - (I + 

®-1-1 
(:Ijg k, )}z%pq %q % 

1 
= y 

%pq %pc' mi \

kt = i(1,13 (kf 4)-11k1

Cf., Efron and Morris (1972, eqn. 2.4).

(i=1,... q)
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If we relax now the a priori assumption that rj = r?, and let it be unknown

[Efron and Morris (1972, §7)], is estimated according to eqn. (17)
%

by y = y. and hence
rx, p

or

P1 -1 -1 p,N -1
= (I + I Q.9 E ) (y + 1 y

rk, %pq rksi rx, % c1r, %

—1 —
= (I + E 1)'(y. E Y),\Jp 

= { — (I + E) 1}(. —) + fkr,AJp %
(1=1,— 2 q)

-1 %
Cf. Efron and Morris (1972, eqn. 7.2) and recall that (k-p-2) S there

estimates I + E.
%p %

Efron and Morris's more general formulation (1972, §4) requires a

modification in our model, i.e., replacing the covariance matrix in (5) by

I OF and setting X = I
%q % % AJp.

or

V = I , one obtains
Axl

(3 = (r-1 + r-1\-1F-lly .*
% • % rt % %

f3t
-1= {1 - r(r + z) lyi

(1,
(1=1,..., q)

for the = 0 case [cf. Efron and Morris (1972, eqn. 4.6)] , and
%

13.* = 
r‘,j

for the unknown C case.

(i=1,..., q)
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4. RESTRICTED LEAST SQUARES INTERPRETATION

Ridge regression estimators were originally obtained by either

minimizing the residual error sum of squares subject to a positive (scalar)

constraint on the length of the vector of regression parameters, or by

minimizing the length of the parameter vector subject to a positive constraint

on the residual error sum of squares. A generalization is possible if the

minimization of the residual error sum of squares is performed subject to

a constraint on the length, in a prespecified positive metric, of the

differences between the vector of parameters and an a priori given vector

of constants. See Haitovsky and Wax (1980). Similarly, multivariate

ridge-regression-like estimates can be obtained as a solution to the

problem:

minq - (ft q f), T

subject to the constraint

yielding

rt )-1{z 0?,,c)kn 

(13 - 1 c)(-3)TC2-10 - 1 eib =

-1 -
*(k, (C12, ,) 

_ 
- (%

F-1 xTx kQ-1) (i,-1 0 xT)y ks.2-1 
(1
 0 -ia)

% % (Lci rk)

where P.' is a p x 1 vector of constants, h is a given positive constant,

and k > 0 is the Lagrange multiplier. If now instead of fixing 13 one takes

it to be (in some sense) a mean vector of the estimated (3. 's, one 
obtains (9)

%j

with Q replaced by kQ , where Q depends on how exactly 13 was derived. If,

on the other hand, 13 is set to 0
%

*(k, Q
-1
,

%

(F-1 0 xTx ks_2-1) -1 (F-1 0 xT)z

i.e., (9) and (10) are obtained with Q replaced by kQ
-1 

.
%
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In a similar manner the ridge regression estim
atc)rsare obtained from the

generalized ridge estimators by setting the a priori given vector of constants

equal to zero.

The properties of the generalized ridge regr
ession estimators are explored

by Haitovsky and Wax (1g80).

5. COVARIANCES UNKNOWN

Turning now to the more realistic situation wher
e the covariances are un-

known, it is natural to choose maximum likelihood 
as the estimation principle.

One may regard our three-stage hierarchical mode
l as a mixed effect model,

where the first stage parameters are assumed rando
m and the second stage parameters

are assumed fixed, in view of the widely known f
act that classical (BLUE) estimators

of fixed effects are the limiting posterior mea
ns corresponding to random effects

with zero precision matrix (i.e. flat prior). Maximum likelihood estimators for the

mixed effect models were reviewed by Harville
 (1977) for variance component models

and were extended by Dempster, Rubin and Tsut
akawa (1979) for covariance component

models. We follow Haitovsky (1985) who writes the joint probab
ility

function, when assuming (14), as proportional to

r ® I 21V@EI 2 etr{-1/2(Y XB)r-1(Y - )B) - E-1-7 V-17:T}

% %n (\j (\f\J (1)%

where etr denotes the exponent of the matrix trace,
 and E = B - 1T®C isrq %

(21)

obtained by "rematricizing" the (3 - 1 (DC vector. Maximizing (21) with respect
(\ r\A

to 
- -1F1 , V-1, E , B and C , the following estimators are obta

ined:

1 ^ 
= — (Y - XB*)

T 
(Y - XB*)

n % (v\, rx, "vb

1
V --
% p %

q qn, %

^
and 13* and are as in (15) and (17) , but with the covariance matric

es

%

(22)
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replaced by their estimators.

There are two things to note here:

a) in the traditional treatment of the multivariate regression, the matrix of

coefficients B is considered fixed, hence V and E are equal to zero,

and r is indeed estimated by (II] in (22). Likewise, if it is assumed that
%

E = I and = 0 , i.e., the Brown-Zidek MRRE (see Section 3.3 above),

there is no need to estimate E , while V is estimated by
.•

1 T^
V =

p % %
(23)

^

where B* is a matrix of estimators obtained by "rematricizing" (3* with
%

= 0 and E = I . Estimator (23) is the "natural estimator",
(N, %,13

suggested by Brown and Zidek (1980, eqn. 2.14), apart from some differences

in the number of degrees of freedom, which the ML method so notoriously

fails to account for. A correction for the number of degrees of freedom

is suggested below which will make (23) identical to the Brown-Zidek

estimator.

the matrix of order p X q

^ -^ -
= B* - 1

T
(5) = B*{I - 

(1T 
V
-1 
1 )

1 V1 
J

,k,(1 (1,C1 %CI% rl,C1

is of rank < min fp, q-11 , since its rows lie in the q - 1 dimensional space.

, -
(Note that VI 

T 
= I - (1

T-1 
V 1 )

1 V J is an idempotent (nonsymmetric) matrix with

rvc1 (bc1,1,q,g rvg

rank and trace equal to q - 1 ). Consequently, either F or V is a

p(p + 1)/2 + q(q + 1)/2 - 1
singular matrix. Alternatively, there are

independent parameters to be estimated in VOE , but only 
pq

%

( < p(p + 1)/2 cl(q + 1)/2 - 1)entries in B* That is, the structure

imposed on does not suffice to identify the second stage covariance 
matrix.

%

In order to overcome the singularity, a Bayesian solut
ion is suggested.
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To this end we specify prior distributions for the covariance matrices. It will

be done through the conjugate family, which is the wishart distribution. Assuming

-1 -1
F , V and E-1 are independent, Wishart distributed with y, v and CY 4

degrees of freedom and G, R, and S matrices, respectively, the following% %

densities (up to a proportionality factor) are obtained:

and

etr{-1/2F-10
% %

etr{-1/2V-110
%

1E1-1/2(G-P-1) etrI-1/2E-1s1
% %

,The joint distribution of all the quantities is obtained by multiplying the joint

probability function (21) by the three prior densities above. The integration

with respect to C is performed by rewriting the second term in the

exponent in (21) as

where

tr{E-1 .7,v-17T} = 1 ()QT(vpz)-lo - 1 ®
rk) % r\J`i

=( - 1 oz)T(voz) -1( - 1 ®) (1TV-11 )(C - Z)T E-1( - -C)
% % % rk, %q% %q% %sq. % % %

-1 -1 -1= (1TV 1 ) (1TV 0 [the counterpart of (17)] ,(bq (\q% (1,1) %

since the cross product term vanishes.

Now the integration with respect to C is straightforward, resulting in the

joint posterior density for 6, r V and which is proportional to:

1 11-1/2(n+y-q-1)1 v 1 -1/2(p+v-q-1)1z1-1/2(q+G-p-2) T -1
(1 V 1 )½
%q(\ q,c1

- - -1 - x etr[-Yr
1 
G + V

1 
JZ + X S + (Y - XB)F

1 
(Y XB +% %J % % % % rkA, 1\'

(24)
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where here i-1-2,4 = k - 1 . The integration with respect to c, resulted in

the loss of one degree of freedom in the estimation of k

Following Lindley and Smith (1972) we derive the modal Bayesian estimators by

differentiating the log joint posterior density partially with respect to k ,

v-1 and E-1 obtaining #* as before (eqn, 15) with k , k, and y% %

replaced by their estimators:

= (n + 1 + -

- r ^^-= (q + G-p-2)
1 
tS + EV }

(l)

V = (p + v-q-15-1{clq
T 
(y, (LI ) J + k + 1;i4i}%

-1 .. 11̂ -1^ -= (p + v-q-1) [{(p+ V-q-2)1
T
(R + E E)

-1 
1 } 1J + R + E L.]rbq % rbq cbq % % %

The estimators for E and V are natural in view of the following theorem:(I)

Theorem: Let the p X q random matrix B be multivariate normal with a common

2 %
mean vector and variance VG E , V 2 E > 0 i.e., = vec{B}

Then, if q > p +l

and if p > q + 1 , then

where here 7-7 = B-1
T

rTj

common mean factor.

-1_T
EV = W(E, p, q) ;
rt% % %

T -1-E E = W(V, q, p)
% %

is the matrix of columnwise deviations from the
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Proof: vec {E} % N(0, VOE) . Diagonalize
% % %

T
VP = A
(kik,

where z = vec

, a diagonal matrix, and define

(A-2P
T 

) vec {E} Clearly, z N(0, I

{z} ,

V by the orthogonal matrix P ,

= (A '01 )(PTOI ) vec {E} =
(00 %

OE) , hence ZZ
T 

W(E, p, q) ,
q %

i.e.

but ZZ
T 
= EP

T
A
-1
PE

T 
= EV L. . Similarly for p > q"+ 1 .(v\., qn, %

1_ -1 -1Corollary: For q > p + 1 , (E V
-11 

L-1 
)-1

- -1(q-p-1) MEV )1 
} = E . If p > q+1 , then

and hence (P - q
-1 

- 1) E{(E L') } = 
V-1

% r %

Q.E.D.

, p, p+q+1) and hence,

-1- -1 -1
W (V- , (hp-fig-El)

The correction of the number of degrees of freedom in the estimation of 1.,1

differs from that in least squares theory; in the latter the divisor is (n-p-1) .

This brings up a related problem. O'Hagan (1976) proves that in joint

posterior densities as in our (24), modal estimatarsobtained from the joint

density will differ, often substantially, from that of the marginal densities;

the main difference being the number of degrees of freedom, i.e., the divisors

of the estimated variances and covariances. Thus, the problem of which mode to

choose can be problematic, especially when the number of regression coefficients

to be estimated is large relative to the sample size. However, note that this issue

affects the estimation of the vector of regression coefficients only indirectly,

via the estimation of the variances and covariances. It is our opinion that

the question of "which mode" cannot be ignored, nor overstated

in situations like ours, where the main objective is the estimation of the

regression coefficients rather than the covariances. A few trials made with

our model and the example in O'Hagan (1976) indeed support this contention.

The Bayesian modal estimates can be calculated using an iterative procedure:

initial values for B*, B* , are computed using least squares multivariate

regression estimates (eqn. 3), from which the initial values for r and for C*

(eqn. 17) are computed, using for the latter a simple average of the q columns

of B*
rb°

^
(i.e., letting V = I in eqn. 17 ). Next,

% f\A

^
is computed, from whichito
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- - _ -
E is obtained after suppressing X to 1 . Having computed k-',0 and E0 ,

-

Vo can be calculated, completing the first round, from which iterations can start.

Another possible iterative solution is the E-M algorithm. See Dempster et al. (1979)

6. APPLICATION TO SCOTTISH ELECTION.

Merely as an illustration, our method is applied to the Scottish election of

October 1974 in forecasting the final results on the basis of partial returns.

The forecasting model is that of Brown and Zidek (1979), which was used as purely illus-

trative as well. It is a modified version of a model actually used by Brown and

Payne (1975) for predicting the February 1974 British General election.

6.1 Description of the Data: The data are taken from Brown and Zidek (1979) and

are described there in detail. The forecasting problem is to forecast the winner

of the undeclared constituencies on the basis of the declared constituencies.

The forecasting model is a multivariate regression with the dependent variables

being the change in the party's share in the number of electorates in each consti-

tuency, relative to previous election. The independent variables are the party's

,shares of votes in the previous election plus three dummy variables. The four

main parties who participated in the February and October 1974 elections were the

Conservative, Labour, Liberal, and Nationalist parties. They will be denoted by

i = 1, 2, 3, 4 in that order. Thus, let W. and Z. denote the October 1974

and February 1974 votes for the i
th 

party, respectively, and E the electorate

figure, which stayed practically the same in the two elections. Then

X. = Z./E and Y = W./E - X.
1 • 1 1 1

i=1,...,4

denote the (non dummy) explanatory variables and the dependent variables, respectively.

The 3 dummy variables are

X
5

f 0.5 Liberal intervenes, i.e. w
3 
> 0 and X

3 
= 0 •

0 otherwise;

f
0.5 R = 5, 6 ;

0 otherwise;
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0.5 Labour or Nationalist top party in February 1974

X
7 

and IX
2 
- X

4
I _<.5_ 0.2 ,

0 otherwise.

where R is a categorical variable defining region where

1 = GLASGOW;

3 = EDINBURGH;

5 = HIGHLANDS;

2 = Rest of Clydeside conurbation;

4 = Rest of industrial centres;

6 = Rest of Scotland.

The value of 0.5 employed in these three dummy variables X5, X6, X7 is

somewhat arbitrary but was chosen so that a priori coefficients for all seven

variables would be of a similar magnitude.

Thus, q = 4 and p = 8 , including the unit vector for the intercepts.

6.2 The Choice of Priors in the multivariate regression with a covariance structure

(14) is being studied now and will be reported in a subsequent paper. The

choice of the priors in the present paper motivated the research and, hence is

partially based on it.

There are three covariance matrices G, R, and S and three scalars y ,
%

and G, which require prior specification. Vague priors are assumed for the

regression error covariance, i.e., G and y are set to zero. The remaining

prior values are related to the regression coefficients and their assessment should

be based on their careful interpretation;

The forecasting equations discussed in the last section can be viewed as

including an implied explanatory variable for the eligible voters who did

not participate in the February election. Thus, rewriting slightly the first

equation as:

1
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W -z z Z . Z . Z .
lj 

. 
_21 13 2_41

01 11 E 2 E 31 E 41 E

+ 11

or, collecting terms:

E - Z . - Z . - Z,. -Z,.
13 23 Jj 'j + dummies + error (j=1,...,71)

Wii 
 ai y1) a

iE

. y

= 4- °01 ± Y1) (1 + 1311 - 21 Y1) E 31 1 E

Z
4j 

- ) + dummies + error
41 1 E

and similarly for the three other parties, it can be seen that the coefficients

measure the shifts of votes from last election to the present, adjusted for the

fraction of abstainer, attributable to the various party supporters in the last

election. Thus, for instance, the negative
4

in the "Conservative equation"

signifies a shift of those who voted Nationalist in the last election away from

the Conservative party in the present election, over and above the shift away

from the conservative party of nonvoters in the last election. If we disregard

now the problem of abstainers, obviously each of the regression coefficients

across equations must sum n up to zero: in the absence of nonvoters the real-

location of last election voters for each party will result in compensating

shifts in the present election. In the absence of more specific information the

componentwise deviation of the 13 -vectors around is justified in the present

application. Moreover, = 0 should be imposed if all eligible voters vote,

or if it is believed that there will be no (non-proportional) shifts among the

last election abstainers, or nearly so. Otherwise, let be freely estimated.

Now, as the case happened to be, competition was particularly fierce

between the Conservative and Nationalist parties, but less so between the Labour
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and Nationalist. In the final result the Conservatives lost in the October

election 28.35% of their voters in February, the Labour lost 5.39%, the

Nationalist gained 32.61%, while the Liberals remained the same. The partici-

pation rate dropped from 77.87% in February to 74.60% in October.

Assuming that the nature of competition between the Conservatives and the

Nationalists on the one hand, and the Labour and the Nationalists on the other,

was known before the election, we have chosen a priori values for R to reflect
%

a prior belief that corr( ii, = -0.7 and corr0i2, = -0.5 ; all

other correlations between the (3 's across equations were set to zero.

T -1_
Furthermore, in order to be in line with E E = , to which R is added, the

diagonal elements of R were set to 0.1 . Thus, R = 0.1 I, 4- R* where R*
% rbm. %

is a 4 X 4 matrix of zeros except that -0.07 appears in the (1,4) and (4,1)

positions and -0.05 appears in the (2,4) and (4,2) positions.

As for the choice of S , it was felt that the Conservatives benefited from
(1,

the Liberal intervention, but were adversely affected by the last two dummy

variables, and hence we set =
where S* is an 8 x 8 matrix of

r‘,

zeros except for 2 in the (2,6) and (6,2) positions, -1/4 in the (2,7)

and (7,2) positions, and -1/2 in the (2,8) and (8,2) positions. In the

six explanatory variable case the non-zero off-diagonal elements were slight
ly

increased to 0.7 and -0.5 respectively, while the last row and column

were deleted. Finally, V = 10 and a = 20 produced divisors for the estimates

of V and E of 13 and 14 respectively, and judged to reflect our
r‘,

confidence in our choice of R and S .
rk,

6.3 The Forecasting Performance Criteria: It is not obvious that forecasting

the winner is best achieved by first forecasting the vote shares from which 
the

winner can be picked out. However, there are countries with proportional

representation where the number of votes matters, and, hence the multivariate

..‘
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regression might be better suited there. We nevertheless follow here, merely as

an illustration, Brown and Zidek (1979) and use the first 25 declared

constituencies to forecast the results of the remaining 71 - 25 = 46

constituencies, using the multivariate regression set-up with n number of

observations, equal to 25 . Using these 25 observations we first estimate

13* from which we can predict the Y. 's and eventually the number of votes to

be cast in each constituencies for the four parties. Hence,

W. = (Y.. + X..)E.
1.] 1J 1J 1

i = 26,...,71; j = l,...,4 .

Three criteria for goodness of prediction were chosen.

SD = ftr(W - W) (W - 
)T/(4 2 

x 46)
11) rk,

PRED = number of incorrect predictions of winning party

RSD = E E (W . - . .)2/(w2 x 4 x 46

i 
ij

where W is the 46 x 4 matrix with typical element W.. .

The first two measures were used by Brown and Zidek (1979). The first is

just the square root of the mean squared prediction error and it indeed

estimates the standard deviation of prediction.

The second records the number of times the prediction of winners proved

to be wrong. It is a very crude measure, but has the appeal of simplicity.

It does not however take account of the closeness of a particular cont
est.

The last is the square root of the relative mean squared prediction error.

It standardizes the prediction errors, in some sense, for ease of prediction
.

Brown and Zidek also used a third measure which we feel will a priori bias 
the

results in favour of their method, since it was constructed to be in 
line with

the loss function they used in developing their estimates, and 
thus is rejected

here in favour of more objective measures.



-20-

6.4 Results: Two variants of the linear hierarchical model were tried and

compared to the multivariate regression least-squares (maximum likelihood)

estimates (eqn. 3) and to the Brown-Zidek ridge estimates (eqn. 4 with

--1 - -
estimated by k x , where r and V are given on p. 13 below except that% rb

•
in the latter the divisor is p-q-1 ). The two variants are with &) vague and

with &) a prior set to zero. The three estimates are reported in Tables I - III.

The predictive record of all those three estimates and that of Brown-Zidek are

summarized in Table IV.

TABLE IV

PREDICTION RECORDS OF THE DIFFERENT ESTIMATES

,

SD RSD PRED*

Least Squares (M.L.)

,

1551.03 0.2972 7(0)

Ridge (Brawn-Zidek)

Linear Hierarchical Model

xm 0
(1, %

vague

1315.78

1315.62

1423.97

0.2189

0.2271

0.2651

6(1)

6(1)

5(1)

* The numbers in parentheses denote the number of wrong "predictions" of

the winner party in the 25 declared constituencies.

Interestingly, the best prediction records is for the Ridge and the linear

hierarchical model with = 0 , which is closely related to Brawn-Zidek's
(1,

Ridge, since the latter essentially presupposes exchangeability about zero.

See section 3. The reason for the more restrictive cases, namely = Q , to
%

perform better might be due to the fact that the "sample" of the 25 declared



TABLE I

LEAST SQUARES (ML) ESTIMATES OF THE MATRIX OF COEFFICIENTS OF THE MULTIVARIATE

REGRESSION MODEL AND THEIR RATIO TO THE CORRESPONDING STANDARD DEVIATIONS

Equation 1 Equation 2 Equation 3

..

Equation 4

g/Std. Dev.

.

.
A A

f3/Std. Dev. ii
A

13/Std. Dev. 13 /Std. Dev.

180 -0.0119 0.22 -0.0007 0.01 0.0367 0.69 -0.1501 2.06

i -0.0627 1.04 -0.0911 2.32 -0.0303 6.51 0.1793 2.21

(32 -0.0297 0.32 -0.0212 0.36 -0.0712 0.78 0.3193 2.54

-0.1070 0.79 0.2768 3.13 • -0.2864 2.15 0.4736 2.59

-0.2202 1.88 -0.0768 1.01 -0.0854 0.74 0.3321 2.10

f3 5 -0,0160 0.63 0.0276 1.67 0.0763 3.06 -0.0250 0.73

,
0.0315 0.92 0.0307 1.37 0.0028 0.08 -0.0146 0.31

-0.0061 0.36 -0.0025 0.22 0.0042 0.25 -0.0278 1.20
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TABLE II

LINEAR HIERARCHICAL MODEL ESTIMATES OF THE MATRIX OF COEFFICIENTS OF THE

MULTIVARIATE REGRESSION MODEL AND THEIR RATIO TO THE CORRESPONDING STANDARD DEVIATIONS

Equation 1 Equation 2 Equation 3 Equation 4 E

*
i3

13* * 13* * 6* *
fi

s* V' V
Std. Dev. Std. Dev. Std. Dev. Std. Dev. Std. Dev.

0 
0

-0.0768 3.75 -0.0234
q

1.22 -0.0486 2.33 0.0364 1.56 -0.0183 0.47

.., -0.0254 0.97 -0.0338 1.45 0.0301 1.13 -0.0124 0.38 -0.0198 0.28

'.
0
2

0.0452 1.18 0.0274 0.79 0.0619 1.59 0.0606 1.33 0.0477 0.94

133 0.0861 1.45 0.1858 3.48 -0.0450 0.74 0.1966 2.73 0.1474 2.87

13.
4

-0.0721 1.52 -0.0533 1.22 -0.0157 0.32 -0.0300 0.54 -0.0485 0.84

5
-0.0022 0.16 0.0025 0.21 0.1024 7.00 -0.0184 0.95 -0.0026 0.05

6
0.0135 0.69 0.0330 2.09 0.0162 0.81 0.0136 0.51 0.0184 0.34
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TABLE III

LINEAR HIERARCHICAL ESTIMATES OF THE MATRIX OF COEFFICIENTS OF THE MULTIVARIATE

REGRESSION AND THEIR RATIOS TO THEIR CORRESPONDING STANDARD DEVIATIONS

= 0

.

Equation 1

.

Equation 2 Equation 3

.

Equation 4

p.*/Std. Dev.
_

_

..k fi*/Std. Dev. e 13*/5td. Dev. 13 * f3*/5td. Dev.

130 -0.0595 5.73 -0.0036 0.41 -0.0346 3.06 0.0574 4.99

13,1 1 -0.0166 0.92 -0.0208 1.35 0.0254 1.30 0.0083 ' 0.41

132 0.0022 0.09 -0.0140 0.71 0.0218 0.87 0.0034 0.14

13 3 -0.0038 0.14 0.0236 1.01 -0.0538 1.79 0.0203 0.73

-0.0264 0.99 -0.0096 0.42 . 0.0083 0.28 0.0135 0.50

..5 -0.0232 1.96 -0.0247 2.49 0.0935 7.60 -0.0345 2.17

6 -0.0075 0.47 0.0103 0.78 70.0011 0.07 -0.0047 0.25

..7 -0.0112 0.82 -0.0000 0.00 0.0084. 0.59 -0.0135 0.78

,
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constituencies, on the basis of which the regression parameters were estimated,

is not a random sample, and hence might bias the forecast in the same systematic

way which determines the speed of declaration. The added restriction might

have the effect of correcting for that bias.

Finally, the pattern of convergence of the regression coefficient is

traced throughout the iterations and depicted in Figures I and II. For all

practical purposes, convergence is achieved in four or five steps. It continued

to iterate to the 11
th 

iteration only because our convergence criterion is strict.

7. A CONCLUDING REMARK

It was shown that the linear hierarchical model yields a richer family

of estimates than the Brown-Zidek MRRE, but at the cost of requiring more

information in order to identify all the necessary parameters in the case of

unknown covariances. This results from the fact that Brown-Zidek's MRRE is an

Empirical Bayes type estimate and hence all the parameters can be estimated

from the sample itself. Ours, on the other hand, is a Bayes type estimate

which requires some prior knowledge. Hence, the relative merits of both

estimates must take into account the availability and reliability of the extra

information required for the implementation of the latter.
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