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1. Introduction

The purpose of this paper is to bring togethe
r those properties of the

(simple)Kronecker product, the vec operator, and 0-1 matrices (commutation

matrix, duplication matrix) that are thought to be of interest to

researchers and students in econometrics and statistics. The. treatment

of Kronecker products and vec operators is fairly exhaustive; the

treatment of 0-1 matrices is (deliberately) selective.

The organization of the paper is as follows. In sections 2 and

3 we review (and prove) the main results concerning the Kronecker

product and the vec operator. The commutation matrix K is introduced
mn

as the matrix which transforms vec A into vec A' for any mxn matrix A.

Its algebraic properties are discussed in section 4, and its role in

normal distribution theory in section 5. Closely related to the

commutation matrix is the symmetric idempotent matrix N
n

defined as N
n 
= 12(In2 + Knn), whose main properties are obtained in

section 6. If A is a symmetric nxn matrix, its ½n (n 1) supradiagonal

elements are redundant in the sense that they can be deduced from the

symmetry.. If we eliminate these redundant elements from vec A, this

defines a new vector which we denote as v(A). The matrix which

transforms, for symmetric A, v(A) into vecA is the duplication matrix

D. The duplication matrix plays an essential role in matrix

differentiation involving symmetric matrices, and also in solving matrix

equations where the solution matrix is known to be symmetric. Its most

useful properties are given in section 7. The class of symmetric

matrices is the most important example of a much wider class of matrices:

L-structures. An L-structure is the totality of real matrices of a

specified order that satisfy a given set of linear restrictions. Other

examples of L-structures are (strictly) triangular, skew-symmetric,
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diagonal, circulant, and Toeplitz matrices. In section 8 the concept

of an L-structure is defined and some of its properties discussed.

Finally, in sections 9-11, we giye what we claim to be the only viable

definition of a matrix derivative (Jacobian matrix) - one which

preserves the rank of the transformation and allows a useful chain

rule. We also define the Hessian matrix. If the Jacobian matrix- is

square, its determinant is the Jacobian of the transformation. Some

examples show that the evaluation of Jacobian matrices, Hessian

matrices, and Jacobians can be short, elegant, and easy, also if the

transformations involve symmetric (or L-structured) matrix arguments.

The historical references .in sections 2-4 are taken from Henderson

and.Searle's (1981) interesting survey.

The following notation is used. Matrices are denoted by capital

letters, vectors and scalars by lower case letters. An mxn matrix is

one having m rows and n columns, A' denotes the transpose of A, A
+ 
Its

Moore-Penrose inverse, and r(A) its rank. if A is square, trA denotes

-
its trace, IA1 its determinant, and A 1

 its inverse (when A is non-

singular). Melx11 is the class of real mxn matrices and le the class

of real nxl vectors, so that MRI1 E The nxn identity matrix

is denoted I
n
. Mathematical expectation is denoted by E, variance•

(variance-covariance matrix) by var.
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2. The Kronecker product

Let A be an mxn matrix and B a pxq matrix. The mpxnq matrix

defined by

a
ll
B Ba n

•
•

• 
aB
ml

• • •

•

a B
mn

is called the Kronecker product of A and B and written A B.

(2.1)

Observe that, while the matrix product AB only exists if the

number of columns in A equals the number of rows in B or if either

A or B is a scalar, the Kronecker product A 0 B is defined for any

pair of matrices A and B. The following three properties justify

the name Kronecker product:

A0B0C = (A0B)QC = AO (B C); (2.2)

CA + B) 0 (C + D) = A0C+A0D+B0C+80 D, (2.3)

if A + B and C + D exist; and

(A 0 B)(C 0 D) = AC 0 BD, (2.4)

if AC and BD exist.

If a is a scalar, then

a 0 A =

••

= A El a . (2.5)

(This property can be used, for example, to prove that (A 0 b)B =

(AB) 0- b, by writing B = B 0 I.) Another useful property concerns

two column-vectors a and b (not necessarily of the same order):

b = ba = b 0 a'. (2.6)
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The transpose and the Moore-Penrose inverse of a Kronecker product are

given by

+
(A = A' 0 B' , (A 0 B)+ = A

+ 
0 B. (2.7)

If A and B are square matrices (not necessarily of the same order),

then

tr(A B) = (tr A) (tr B (-2.8)

(Of course, the trace of A 0 B may exist even when A and B are not

square matrices; in that case the expression for tr(A 0 B) is more

complicated?) If A and B are nonsingular, then

(A 0 B) = A
-1 
0 B

-1
. - (2.9)

(The nonsingularity of A and B is not only sufficient, but also

necessary for the nonsingularity of A 0 B; this follows from rank

considerations, see (2.11).)

All these properties are easy to prove. Let us now demonstrate

the following result.

Lemma 2.1. Let A be an mxm. matrix with eigenvalues X11X21..., ra,

and let B be a pxp matrix with eigenvalues p1,p2,...,pp. Then the

pp eigenvalues of A 0 B are Xipi (i = 1,...,m, j = 1,...,p).

Proof. By Schur's Theorem (Bellman (1970, p.202)) there exist

nonsingular (in fact, unitary) matrices S and T such that

-1 -1
S AS = L, T BT = M,

1) See Neudecker and Wansbeek (1983, Theorem 3.2).
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where L and M are upper triangular matrices whose diagonal elements

are the eigenvalues of A and B respectively. Thus,

- -1
(S

1
 0 T )(A fit B) (S til T) = L 0 M.

Since S
-1
0T

-1 
is the inverse of SOT, it follows that A 0 B and

- -1.
(S

1 
OT )(A 0 B)(S 0 T) have the same set of eigenvalues, and hence

that A 0 B and L 0 M have the same set of eigenvalues. But L 0 M

is an upper triangular matrix by virtue of the fact that L and M

are upper triangular; its eigenvalues are therefore its diagonal

elements Xji. This concludes the proof.

Remark. If x is an eigenvector of A and y an eigenvector of B,

then x 0 y is clearly an eigenvector of A 0 B. It is not generally

true, however, that every eigenvector of A 0 B is the Kronecker

product of an eigenvector of A and an eigenvector of B, AS the

following example shows.4 Let

O 1 l {011A .= e
l 

'O 0 01 

Both eigenvalues of A (and B) are zero and the only eigenvector is

e
1
. The four eigenvalues of A 0 B are all zero (in concordance

with Lemma 2.1), but the eigenvectors of A 0 B are not just el 0 el

but also el 0 e2 and e2 0 el.

Lemma 2.1 has several important corollaries. First, if A and

B are positive (semi)definite, then A 0 B is positive (semi)definite.

Secondly, since the determinant of A 0 B is equal to the product of

its eigenvalues, we obtain

2) This fact is emphasised here because it is often stated

incorrectly, see el. Bellman (1970, p.235).
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IA e B1 = IAIP Isim (2.10)

where A is an mxm matrix and B is a pxp matrix. Ti-Edly, we can obtain

the rank of A 0 B from Lemma 2.1 as follows. The rank of A 0 B

is equal to the rank of AA' 0 BB'. The rank of the latter (symmetric,

in fact positive semidefinite) matrix equals the number of nonzero

(in this case positive) eigenvalues it possesses. According to

Lenum 2-1.theeigermaluesofArifaBBareA.V.,whereX.are the
1

eigenvalues ,of AA' and . are the eigenvalues of BB'. Now, X.p.113 3

is nonzeroif and only if both X, and 1.1. are nonzero- Hence, the
3

number of nonzero eigenvalues of AA' fa BB' is the product of the

number of nonzero eigenvalues of AA' and the number of nonzero

eigenvalues of BB'. Thus the rank of A 0 B is

r (A & B) = r (A) r (B) . (2.11)

Historical note. The original interest in the Kronecker product

*focussed on the determinantal result (2.10), which seems to have

been first studied by Zehfuss (1858). The result was known to

Kronecker who passed it on to his students in Berlin, where

. he began lecturing in 1861 at the age of 37. The exact origin of

the association of Kronecker's name with the 0 operation is still

obscure.
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3. The vec-operator

.
LetAbeanmxnmatrixanda.its 3 

th
 column, then vec A is the

7

mnxl vector

vec A =

ea

a
2

a

(3.1)

Thus the vec-operator transforms a matrix into a vector by stacking

the columns of the matrix one underneath the other. .Notice that

vec A.is defined for any matrix A, not just for square matrices.

Also notice that vec A = vec B does not imply A = B, unless ;Land

Bare matrices of the same order.

A .very simple but often useful property is

vec a = vec a = a (3.2)

for any column-vector a. The basic connection between the vec-

operator and the Kronecker product is

vec ab' = bOa (3.3)

for any two column-vectors a and b (not necessarily of the same

.th 
column of ab' is b,a.order). This follows because the

3

Stacking the columns of ab' thus yields b O a.

The basic connection between the vec-operator and the trace is

(vec Avec B = tr A VV B (3.4)

where A and B are matrices of the same order. This is easy to

verify since both the left side and the right side of (3.4) are

equal to E E a..b. .
1J 1J

i j
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Let us now generalize the basic properties (3.3) and (3.4).

The generalization of (3.3) is the following well-known result.

Lemma 3.1. Let A, B, and C be three matrices such that the matrix

product ABC is defined. Then,

vec ABC = (C' 0 A) vec B. (3.5)

Proof. Assume that B has q columns denoted Similarly

let ei,e2,...,E4 denote the columns of the qxq identity matrix Iq,

so that B = bs.e!. Then, using (3.3),
j=1 "

vec ABC = vec Ab .e !C = vec (Ab.) (C'e .)
3 3j=1 j=1

= (Cie 0 Ab.) . (C' 0 A) (ei 0 bi)
j=1 3 j=1 J J

. (C' 0 A) '! vec b.e: . (C' 0 A) vec B. il
j=1 3 3

One special case-of Lemma 3.1 is

vec AB = (B' 0 I ) vec A = (B' 0 A.) vec I
n 

= (I 0 A)vecB, (3.6)
m

where A is an mxn matrix and B is an nxq matrix. Another special

case arises when the matrix C in (3.5) is replaced by a vector.

Then we obtain, using (3.2),

ABd = (d' A) vec B = (A d') vec

where d is a qxl vector.

The equality (3.4) can be generalized as follows.

(3.7)
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Lemma 3.2. Let A, B, C, and D be four matrices such that the 
matrix

product ABCD is defined and square. Then,

tr ABCD = (vec D') '(C' fit A) vecB = (vec D)1 (A 0 C') vec (3.8)

Proof. • We have

tr ABCD = tr D (ABC) = (vec D' vec ABC (by (3.4))

= (vec D') (C' 0 A) vecB (by (3.5)).

.•

The second equality is proved in precisely the same %.,17 
starting from

tr ABCD = tr DI (C IB IA')

Historical note. The idea of stacking the elements of a matrix in

a vector goes back at least to Sylvester (1884a,b). The notation "vec"

was introduced by Koopmans, Rubin and Leipnik (1950). Lemma 3.1

is due to Roth (1934).
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4. The commutation matrix K 
mn

Let A be an mxn matrix. The vectors vec A and vec A' clearly

contain the same mn components, but in a different order. Hence

there exists a unique mnxmn permutation matrix which transforms

vec A into vec A'. This matrix is called the commutation matrix

and is denoted K . Thus
mn

K vec A = vec A'. (4.1)
mn

Since K is a permutation matrix it is orthogonal, i.e., K' = K
-1
.

mn mn mn

Also, premultiplying (4.1) by Knm gives KnmKmn vec A = vec A so that

K K =1 •. Hence,
nm inn inn

K' = K
-1

= K
mn inn nm

Further, using (3.2),

(4.2)

K
nl 

= K
ln 
• I

n 
(4.3)

The key property of the commutation matrix (and the one from

which it derives its name)-eiidbles us to interchange ("commute") the

two matrices of a Kronecker product:

Lemma 4.1. Let A be an mxn matrix and B a pxq matrix. Then

K 0 B) = (B 0 A)K
4n 

(4.4)
Pm

Proof. Let X be an arbitrary qxn matrix. Then, by repeated

application of (3.5) and (4.1),

K (A GcB) vec X = K vec BXA = vec AXIB'
Pm Pm

= (B fa A) vec X' = (B 0 A)Kqn 
vec X.
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Since X is arbitrary the result follows.

and

Immediate consequences of Lemma 4.1 are

K (A 0 B)K
nq 

= B 0 A
Pm

(4.5)

K 0 b) = b 0 A, K (b 0 A) = A GI b, (4.6)

Pm mp

where b is a pxl vector.

. All these properties follow from the implicit definition (4.1)

of the commutation matrix. The following lemma gives an explicit

expression for K which is often useful.
mn

Lemma 4.2. Let H. be the mxn matrix with 1 in its i
th
3 position

13

and zeroes elsewhere. Then

K = 1 (H.. 0
inn 

1
. .
=1 3=1 

13 13
(4.7)

th
Proof.LetXbeanarbitrarymnmatrix.Letel denote the i

.
column of I

m 
and U. the 3 

th
 column of In, so that H = e.u.. Then

= IX'I
m 

= ( u.u!) X'(
n 

-
5=1 3 3 ' 1 11=1„

u.(u!X'e.)e'= u (e'Xu.)e!
3 3 1 iij ij

= (u.e!)2c(u.e1)=
3 3. J.

Taking vecs we obtain

vec X' = vec H' .X11!. =
i3 1

13 13

using (3.5). The result follows. 11

(H.. 0 W.) vec X,
13 13
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Lemma 4.2 shows that K is a square matrix of order mn,mn

thpartitioned into mn submatrices each of order nxm, such that the

..thsubmatrix has unity in its 31 position and zeros elsewhere. For

example,

1 Q 1 0 0 1 0 0

O 0 1 1 0 0 0

O 0,0 0 I 1 0
K
23 

=  

O 1 1 0 0 0 0

O 0 1 0 1 1 0 0

OD 010 0101

(4.8)

The explicit form (4.7) of Kmn enables us to find the trace and

the determinant of K .
mn

Lemma 4.3.
3)

The trace of the commutation matrix is

tr K = 1 + gcd(m-1,n-1)mn - '
(4.9)

where gcd(m,n) is the greatest common divisor of m and n; its deter-

minant is

K
rian 

= (-1)1";
n(m-1)(n-1) . (4.10)

'Proof. We shall only prove the case mn. (For a proof of the

more difficult case m+ n, see Magnus and Neudecker (1979, Theorem 3.1.)

.
Let e. be the 3 

th
 column of I. Then, from (4.7),

n n
tr K = tr 1 1 (e.e! 2 e.e!) = 1 tr (e e! 0 e.e!)nn 

i=1 j=1
1 3 3 1 

. 
1J 
 

31ij

. 7 (tr e.e!)(tr e.e!) = / 6
2
ij. = n /

1 3 3 1ij ij

3) For a discussion of the characteristic polynomial of the
commutation matrix, see Hartwig and Morris (1975) and Don
and van der Plas (1981).
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where 6 = 0 if i j, 6.. = 1. Since K
nn 

is real, orthogonal, and
13 3.1

symmetric, it has eigenva1ues- +1 and -1 only. (The eigenvalues of

K
ran
, in n, are in general, complex.) Suppose the multiplicity of

-1 is p. Then the multiplicity of +1.is (n2 -p) , and

= trK = sum of eigenvalues of Knn = :p + n2 -
nn

so that p = ½ n(n-1). Hence

n1/2 (n-1) = (-1) 1/4n2 (n,-1) 2
. IIIK I = (-1)P = (-1)

nn •

= n2- 2p

.An important application of the commutation matrix is that it

allows us to transform the vec of a Kronecker product into the Kronecker

product of the vecs, a crucial property in the differentiation of

Kronecker products.

Lemma 4.4. Let A be an mxn matrix and B a pxq matrix. Then

vec (A 0 B) = (I 0 K I )(vec A 0 vec B). (4.11)
n qm p

Proof. :Let a. (i = 1,...,n) and bi 0 th= 1,...,q) denote e columns
i 

o = 1,...,n) and u1 i

(j = 1,...,q) denote the columns of In and I, 
respectively. Then

q

we can write A and B as

fl

A = y a
i
e
i
,

i=1

and we obtain

b.u:
j=1 3 3

n

vec A 0 B) = vec (a.e! 0 b.u!)
1 3- j

i=lj=1

vec (a. 0 b.) (e. 0 u.)' = e. u. a. 0 b.)
a. 3

ij ij

(1 e K I )(e, 0 a, fa u. b.

ij 
n qm p 1 3 3
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= (I 0 K 0 I vec a.e!) 0 (1 vec b.12!))n qm p

= (I
n 
0 K(1711 0 I

p
)(vec A 0 vec B).

In particular, by noting that

vec A 0 vec B = (I 0 vec B)vec A = (vec A 0 I ) vec B,nm qp

using (2.5), we obtain

where

vec (A 0 B) = (I
n 
0 G) vec A = (H 0 I ) vec B, (4.12)

G = (K 0 I )(I 0 vec B), H = (I 0 Kqm)(vec A 0 I ). (4.13)qm p m n 

Historical note. The original interest in the commutation matrix

focussed on its role in reversing ("commuting") the order of Kronecker

products (Lemma 4.1), a role which .seems to have been first recognized

byLedermann (1936) and Nurnaghan (1938, pp.68-69), while Vartak (1955)

generalized Murnaghan's result to rectangular matrices. Tracy and

Dwyer (1969) rediscovered the commutation matrix and based their

definition on the fact that K is the matrix obtained by rearrangingmn

the rows of I
mn 

by taking every m
th 

row starting with the first, then

everAn
th 

row starting with the second, and so on. (For example, the

rows of K
23 

are rows 1,3,5,2,4, and 6 of I
6
.) The fruitful idea of

defining K by its transformation property (4.1) comes from Barnett

(1973), and is the definition adopted in this paper.

Among the many alternative names of the commutation matrix we

mention permutation matrix, permuted identity matrix, vec-permutation

matrix, shuffle matrix, and universal flip matrix. Alternative

nxmnotations for K
mn 
includeE,E,U,P, I , and Im,n mxn mxn n,m (n,m) n,m
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Lemma 4.1 goes back at least to Lederm.ann (1936). Concise proofs

are given by Barnett (1973), Hartwig and Morris (1975), and Magnus and

Neudecker (1979). Lemmas 4.2 and 4.3 are due to Magnus and Neudecker

(1979), and Lemma 4.4 to Neudecker and Wansbeek (1983).

Far further reading on the commutation matrix we recommend Hartwig

and Morris (1975), Balestra (1976), Magnus and Neudecker (1979),

Henderson and Searle (1981), and Neudecker and Wansbeek (1983).
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5. The commutation matrix and the Wishart distribution

Somewhat unexpectedly, the commutation matrix also plays a role

in distribution theory, especially in normal distribution theory.

This role is based on the following lemma.

Lemma 5.1. Let u be an nxl vector of independent and standard

normally distributed random variables ul,...,u
n
, that is, u N(0,I

n
).

Then,

var(u 0 u) = I
n
2 + K . (5.1)

nn

Proof. Let A be an arbitrary nxn matrix and let B = (A+A')/2.

Let T be an orthogonal nxn matrix such that T'BT = A, where A is the

diagonal matrix whosediagonal elements X11...,X
n 
are the eigenvalues

of B. Let v = with components v1,...,v
n 

Then,

u'Au = u'Bu = u'TAT'u = v'Av = X.v? .
1. 1

i=1

Since v N0,I
n
), it follows that v2

' 
...,v2 are independently distri-

buted with var v = 2, so that
1

var u Au = var X.v?. = X?.(var = 2 tr A2
. 11
1

= 2 tr B2 = tr A A + tr A2 = (vec A) (I + Knn) vec A,

using (3.4). Also, since u'Au = vec u'Au = (u & u) vec A,

var u'Au = var( (u u) vec A) = (vec A) (var u u) vec A.

Hence,

(vec A) (var u u) vec A = (vec A) (I + K
nn
) vec A

for every nxn matrix A. The result follows.
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We can generalize Lemma 5.1 by considering normal random variables

which are not necessarily independent or identically distributed. This

leads to Lemma 5.2.

Lemma 5.2. Let x N(p,V) where V is a positive semidefinite nxn

matrix. Then

var (x x) = (I
n 
+ K

nn
) (V V + V'e pp + pp' 0 V) .

Proof. We writex=Vu+pwith u N(0,I
n
),so that

x ex = V1/2uOVIlu + V1/213.0p+p0V12u +pep

11 
= (V 0 V

12 
) (u u) + (I + K

nn
) (V1/2u p) + p p

= (V12 0 V½) Cu 0 u) + (I + K
nn
)(V 0 p)u + p 0 p

(5.2)

using (4.6) and (2.5). Since the two vectors u 0 u and u are uncorrelated

with var(u 0 u) = I + K
nn 

and var u = I
n
, we obtain

- var (x 0 x) = var.{ (V1/2 0 V1/2) (u 0 u) } + var{ (I + K
nn 

(V1/2 0 p) u}

= (v1/20 v1/2) (I + K
nn 

(v1/2 0,0) + (I + K
nn 

(v1/2 0 tO (171/2 0 P) + K
nn

= (I+K )(V0V) + (I+K 0 pp + K (tip v))nn nn nn

= (I + K
nn
) 0 V + V 0 pp + pp' 0

using (4.4) and the fact (implied by (4.2)) that I + K
nn 

K
nn 

= I + K
nn
.

Let us now consider k random nxl vectors 171,..

independently as

17i :41 NW. IV) , = 1, ...,k) .

distributed
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0

The joint distribution of the elements of the matrix

0
S = y.y!

i=1

is said to be Wishart with k degrees of freedom and is denoted by

W
n
(k,V,M), where M is the kxn matrix

M = (111,112,-,Pkr •

(If M=0 the distribution is said to be central.) The following theorem

gives the mean and variance of the (noncentral) Wishart distribution in

a compact and readily usable form.

Theorem 5.1. Let S be Wishart distributed W
n
(k,V,M), V positive

semidefinite. Then,

and

ES = kV + M'M (5.3)

var(vec S) = (In2 + K
nn
) {k (V EtV) +VOM'M+ WM V} • (5.4)

Proof. We first note that 1 p.p! = M M. Then_1=1

and

ES = E y.y! = Ear.y!
. 1 1

var(vec S) = var(vec

using (5.2). 11

=
1 1

/ (V + 11.t1!) = -kV + M 111/41 ,

var(1 Y.& y.)a.

= I(' + K)(VOV
nn 

I- V011.11! + 11.11! V)
3. 2.

= (I + Knn){k(VEIV) +VOMM+MMO VI

var(yi 0 yi)
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Historical Note. The results in this section are taken from Magnus

and Neudecker (1979), but the proofs are somewhat simplified. More

general results can be found in Magnus and Neudecker (1979) and

Neudecker and Wansbeek (1983). In the latter paper it is shown, inter

alia, that the normality assumption in Lemma 5.1 is not essential.

More precisely, if u is an nxl vector of independent random variables

2 2 4 4 -
u1,...„uri vdthEu. = 0, Eu. = a Ar at. = , then

var(u 0 u) = a I 2 K
nn 

+ y (E . 0
i=1

(5.5)

where y = (P
4
/a
4
) - 3 (the kurtosis) and E is the nxn matrix with

.th
1 in its i diagonal position and zeros elsewhere.
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6. The matrix N

In the previous section the n2 xn2 matrix I
n
 2+K played a
nn

central role. This matrix appears in many applications and we shall

now study it in more detail. For reasons which will become apparent

shortly it is convenient to investigate the properties not of I +K
nn
,

but of the n2xn2 matrix

N
n 

= 12 (In2 + K) . (6.1)nn

This matrix, is symmetric and idempotent,

N
n 

= N
n 

= 
N2

(6.2)

and, since trK
nn 

= n, its trace (and hence its rank) is easily shown

to be

r (N
n
) = tr N

n 
= ½ n (n+l) .

.The matrix N
n 
transforms an arbitrary nxn matrix A into the

symmetric matrix 12(A + A'):

N
n
vec A = vec + ).

(6.3)

(6.4)

Of course, if A is symmetric to begin with, the transformation has

no effect. (This shows again that N must be idempotent.)

Further properties of Nil...include

N K = N = K N ,n nn n nn n

and, for any two nxn matrices A and B,

(6.5)

N (A B)N
n 

= N
n
(B A)N , (6.6)

N (A013 + Bt2) A)N
n 
= N(A0B + BOA) = (AB + BOA)Nn n

, (6.7)
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N(AtStA)N = N (A0A) = (ikelk)N
n n n n 

,

N
n
(A0b) = N

n
(b0A) = 1/2(Afab + b0A),

(6.8)

(6.9)

for any.nx1 vector b.

The explicit form of Nn is easily derived from For
nfl

example, for n=2 and 3, we have

.•

loloo

o 121 ½ o

o 1/2 o

0.O1 0 1

N
3

1 0 0 0 0 0 I 0 0 0

O 1/2 0112001000
O 0 1/2 100011/200

-rO 1/20 1;200,000
000 10101 0.400
O 0 0 1 0 0 1/2 1 0 al 0
O 0 II 0 0 0 1 LI 00

O 0 0 
i0 0 1/2

I 
0) 21 0

O 0 0 p 0 0 0 1 0 0 1

. (6.10)

Historical note. . The matrix Nn 
was introduced by Magnus and

Neudecke (1980, p.424).
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7. Saimmetry: the duplication matrix D

Let A be a square nxn matrix. Then v(A) will denote the

1/2n (n+1) x 1 vector that is obtained from vec A by eliminating all

supradiagonal elements of A. For example, if n=3,

and

vecA=(a a a a a a a a a),
11 21 31 12 22 32 13 23 33

v(A) = (a
11 

a
21 

a
31 

a
22 

a
32 

a
33
)' .

In this way, for symmetric A, v(A) contains only the distinct

elements of A. Since the elements of vec A are those of v(A) with

some repetitions, there exists a unique n2 x ½n (n+1) matrix which

transforms, for symmetric A, v(A) into vec A. This matrix is called

the duplication matrix and is denoted D. Thus,

D
n
v(A) = vec A (A = A') . (7.1)

-
*Let A = A and D

n
v(A) = 0. Then vec A = 0, and so v(A) = 0. Since

the symmetry of A does not restrict v(A), it follows that the columns

of D
n 
are linearly independent. Hence D

n 
has full column-rank

12n (n+1), D
n
D
n 
is nonsingular, and D

+
, the Moore-Penrose iverse of

•

D, equals

-1
D = (DnDn) D

n 
.

For n = 3, we have

(7.2)



1 0 01 0 0 10

O 10 1 0010

0 0 1. 0 0 0

O 1 01 0 0
1 
0

1
D3 = 000 1 100

0.0 01 0 11 0

o olloolo

O 0 0
1
1 
0 1

I 
0

1
O 0 01 0 0 1 1

- 23 -

+1
D
3 

=

1 0 01 0 01 0

o 1/2 o I o o' o

o o 1/2 I o Oj o 

o ½ 0
1' 
o 01 o

o o 
01
 1 ol o (7.3)

O 0 0
1
 0 1/21 0
fT

O 0 1/2 000I I

O 0 01 0 1/21 0

O 0 01 0 01 1

Some further properties of Dn are easily derived from its i
mplicit

definition 7.1. For symmetric A we have

KD
n
v (A) = K vec A = vec A = D

n
v (A)

nn nn

and

N
n
D
n
v(A) = N

n
vecA = vecA = D

n
v(A).

Again, the symmetry of A does not restrict v(A), so that

. %ri npn 
= D

n 
= ND

 
.

Also, from (7.2) and (7.4),

DK = D = DN
nnn n nn 

.

Finally, we obtain

DD = I D
n
D
n 

= N
nn n(n+1) 

.

(7.4)

(7.5)

(7.6)

The first of the two equalities in (7.6) is an 
immediate consequence

of (7.2), while the second follows from N D = D (see (7..4)).
4)

n n n

4) Let A be an idempotent, symmetric nxn matrix, a
nd B an

n xr matrix with full column-rank r. Then AB = B if and

-1 I
only if A = B(B B) B .
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Much of the interest in the duplication matrix is due to the

importance of the matrices D
n
(A a A)D

n 
and D

n
(A 0 A)D

n
, whose properties

we shall now investigate. We first prove Lemma 7.1.

Lemma 7.1. Let A be an nxn matrix. Then,

DD (A 0 A)D = (A 0 A)D
nn n n

,

D
+
(A 0 A)D D

+ 
= D

+
(A 0 A),

n n

and, if A is nonsingular,

- + - -
(D
n
(A 0 A)D

n
)
1 

= D
n
(A

1
 A 1

 
)D

 
.

(7.7)

(7.8)

- (7.9)

Proof. The first two equalities follow from D D
+ 
= N

n n n 7

N(A 0 A) = 0 A)N N D = D and D+N = D+. (See (7.6),n n' n.n n nn n

(6.8), (7.4); and (7.5).) The last equality follows by direct

verification since
+ -1 - -

D
+
(A 0 A)D

n
D
n
(A '0 A

1 
)D
n 

= D
+
(A 0 A) ( A

1
 0 A

-1
)D
n 
= D

+
n n

using (7.7) and (7.6). m

In fact, the property D D
+
(A 0 A)D

n 
= (A 0 A)Dn for arbitrary

n n

square A is the Kronecker counterpart to D
n
D
n
vecA = vecA for

symmetric A, just as the property Knn(A 0 A) = (A 0 A)Knn is the

Kronecker counterpart to Knn vecA = A. We see this immediately if

we let X be symmetric and substitute the symmetric matrix AXA for X

in D
n
D
n 
vec X = vec X, yielding

D D.(A 0 A)D
n
v(X) = (A 0 A)D

n
v(X) .

nn
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Next we show that if A has a certain structure (diagonal,

triangular), then D+(A 0 A)Dn 
often possesses the same structure.

Lemma 7.2. Let A be a diagonal upper triangular, lower triangular)

nxn matrix with diagonal elements a11 ,a22 
. Then the

nn

n (n+1) x ½n (n+1) matrix Dn
(A 0 A)D

n 
is also diagonal (upper

triangular, lower triangular) with diagonal elements a a.
Jj

(1 j i n).

.th
Proof.LetE..be the nxn matrix with 1 in the 3 position and

47

zeros elsewhere, and define

T.. = E.. +E.. - 6..E.. .
1D 13 31 13 11

Then, for i

D
+
(A 0 A)D v (E..) = D

+
(A 0 A)D v (T..)

13 13

= D+(A 0 A) vec T.. = D
+ 

vec AT. .A = v (AT. .A'),
13 13 3.3

and therefore, for i j and s t„

+
(v (E))  0 A) D v (E.) = (v(Est"117(1a—PI')st ij 13

= (AT. ) = a .a . + a .a . - 6..a .a . .
ij st t3 s3 13 Si ti

In particular, if A is upper triangular, we obtain

(v (E
st
)) D 
t+(

 0 A)D v (E..13
Iasiatj (t.1s: =i or t:j <s.li),

= asiati + asjati (t .1 s .1

0

<

(otherwise) ,

so th
a
t D

+
(A 0 A)D is upper triangular if A is, and
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.1 4.
(E .)) D(A0 A)D v (E)= a . . a . .
13 lj 11 33

are its diagonal elements. The case where A is lower triangular is

proved similarly. The case where A is diagonal follows as a special

case.

Lemma 7.2 is instrumental in proving our main r
esult concerning

the matrix Dn
(A ta A)D.

Theorem 7.1. Let A be an nxn matrix with eigenvalues X1
,A
2
1...
'n

Then the eigenvalues of the matrix D
+
 (A 0 A)D

n 
are X.X (1 i j n),

j

and its trace and determinant are given by

and

tr (D
n 
(A 0 A) D

n 
= 1/2 tr A

2 , 
+ (tr A) 

2

D
n
(A 0 A)D

n
I = 

lAin+1

(7.10)

(7.11)

Proof. By Schur's Theorem (Bellman (1970, p.202)) the
re exists a

•••

• nonsingular matrix S such that S
-1
AS = M, where M is an upper triangular

matrix with the eigenvalues X11...,Xn 
of A on its diagonal. Thus

-
1:0+(S

1 
S 1)D D

+
(A 0-A)D D

+
(S 0 S)D = D M)D

nn nn n n 
+, 

n

+ - -
Since D

n
(S

1 
0 S 1

 
)D

 
is the inverse of D

+
(S 0 S)Dn (

see (7.9))-„it follows
n

that D
+
(A 0 A)D and D

+(
M a M)D

n 
have the same set of eigenvalues. By

nn n

Lemma 7.2, the latter matrix is upper triangular wi
th eigenvalues

(diagonal elements) X.X (1 j i n). These are therefore the
j

eigenvalues of Dn
(A tE4 A)D

n 
too.
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The trace and determinant, being the sum and the product of

the eigenvalues, respectively, are

and

tr D
n 
(A A) D

n 
= • XjA = 

2,2
.4- 12

i>j

- = tr A
2 
+ 1/2 (tr A) 

2
,

•

ID (A =I 
nxx .nxn+1 IA111+1 .

i j i i

Let us now establish the nature of the nonsingular Iln(n+1) x

1211(11-1-1)Inatrixpip.Let 13 =(bij)arldC=(ci3
)be arbitrary

n n 

symmetric nxn matrices, and let be the nxn matrix with 1 in the

ith
diagonal position and zeros elsewhere. Then

so that

(v(B))'D'D v(C) = (vecB) vecC = b .c..
n n 

ij iD 17

2 1 b
i
jc
i 

- bc

1J 1

2 (v (B) ) tv (C) - ((v (B) ) 'v (Eii)) (v (Eii) ) (C))

(v(B))1(2I - 2 v(E..)NcE..».)v(c),

- DD
n 

= 2 I
Lin(n+1) 

v(E)(v(E
ii

i=1

(7.12) .

Hence, DD is a diagonal matrix with diagonal elements 1 n times)
n n

and 2 (ln (n-1) times)-and determinant

ID'Dn n = 2Im(
n-1)

•

With the help of (7.13) we can now prove Lemma 7.3.

. (7.13)



-28 -

c>
Lemma 7,3. Let A be an nxn matrix. Then

21/2n(n-1)ID' (5,0 A)D = n
n I +1

and, if A is nonsingular,

-1 = D(A-1 0 A-1)D+1 .(D' (A 0 A)D
n
)

Proof. Since, from (7.7),

D'(A fa A)D = (D'D )(1:14-(A 0 A)D
n
)

n n n n

(7.14)

(7.15)

(7,14) follows from (7.13) and (7.11), and (7.15) follows from (7.9)

and (7.2). m

Historical note. The idea of putting into a single vector just the

distinct elements of a symmetric matrix goes back at least to Aitken

(1949). Properties of the duplication matrixwere studied, inter alia,

by Tracy and Singh (1972), Browne (1974), Vetter (1975), Richard

(1975), Balestra (1976), Nel (1978), and Henderson and Searle (1979).

-For further properties of the duplication matrix the reader should

consult Magnus and Neudecker (1980).
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8. A generalization: L-structured matrices

The class of symmetric matrices is just one example of a aluda

wider class of matrices: L-structures. An L-structure ("L" stands

for linear) is the totality of real matrices of a specified order that

satisfy a given set of linear restrictions. . To define the concept

of an L-structure more formally, let D be an s7dimensional subspace

(or linear manifold) of the real vector space Mkm, and let

d
l' d2' 

...,d_ be a set of basis vectors for D.

= (d ,d ,...,d_)
1 2 s

The mnxs matrix

is called a basis matrix for V, and the collection of real mxn

matrices

L(A) = {X I X E IFtn" , vec X E D} (8.1)

is called an L-structure; s is called the dimension of the L-structure.

A basis matrix is, of course, not unique: if A is a basis matrix for

I), then so is AE for any nonsingular E. This fact suggests that It

might be more appropriate to regard L as function of D rather than A.

It is, however, the basis matrix A which is relevant in applications

such as matrix equations and Jacobians, so we find it convenient to

retain Definition (8.1) as it stands.

The class of real symmetric nxn matrices is clearly an L-structure,

the linear restrictions being the 2.1n(n-1) qualities 2=x -, ,,soxii 
31

that the dimension of the L-structure is 12n (n+1). One choice for A would

be the duplication matrix D. Other examples of L-Structures are (strictly)

triangular, skew-symmetric, diagonal, circulant, and Toeplitz matrices.

Now consider a member A of the class of real mxn matrices

defined by the L-structure L(A) of dimension s. Since A e L(A), the
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4›

vector vec A lies in the space V spanned by the columns of A, and hence

there exists an sxl vector, say tP(A), such that

All)(A) = vec A . (8.2)

Since A has full column-rank s, we obtain

A
+
A= I

s 
(8.3)

which implies that 11)(A) can be solved uniquely from (8.2), the unique

solution being

11) (A) = A+ vec A E L(A)) . (8.4)

Thu, given the choice of A, tP is uniquely determined by (8.2).

(Of course, a different choice of A leads to a different IP.) In

the case of symmetry, the choice of the duplication matrix for A

determines the choice of v(.) for IP. One may verify that for

arbitrary A, DvecA = ½ v(A+A ); for symmetric A this becomes

• D
+
vecA = v(A).

Of special interest is the symmetric idempotent sxs matrix NA

defined as

N
A 

= AA .

(In the case of symmetry, this is the matrix N.) If we

substitute A
+
vec A for ti) (A) in (8 . 2) , we obtain

N
A 
vec A = AA

+ 
vec A = vec A .

(8.5)

(8.6)

for every A e L(t). We shall show that the matrix N
A 
is invariant to

the choice of A. Let A and -Li be two basis matrices for D. Since A

and "A" span the same subspace, there exists a nonsingular sxs matrix

E such that -A- = AE. Also,
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(AE) (AE)
+ 

= (AE) (AE) = (AE) E A

4.1 I I 4. +1
= (AE) E A AA = (dE)(AE):

"
LEE

-1
A
+

- +
= (AE ) (AE)

+ 
AE ) E

1 
A AEE = AA .

Hence N
A 
is invariant to the choice of A.

•

Now suppose that A and B are square matrices of orders nxn and

mxm, respectively, possessing the property

BXA' E L(A) (8.7)

for every X E L (A) . (For example, in the case of (skew-)symmetry,

AXA' is (skew-)symmetric for every (skew-)symmetric X47 in the case of

(strict) lower triangularity, if P and Q are lower tmlangular, PXQ

is (strictly) lower triangular for every (strictly) lower triangular

X.) Then,

AA
+ 
(A B)A = (A 0 B)A ,

and, if A and B are nonsingular,

and

-
(A
+
(A 0 B)A)

1
 = A

+ 
(A
-1 
0 B

-1
)A

(A (A B),6) = A
+
(A
-1

To prove (8.8), let X E L(A). Then

AA
+
(A 0 B) Alp = AA

+
(A 0 B) vec X =

+vec BXA

(8.8)

(8-9)

(8.10)

= vec BXA = (A 0 B) vec X = (A 0 B)All)(X) .

The restriction X E L(A) does not restrict *(X); hence (8.8) follows.
•

Property (8.8) together with (8.3) implies (8.9), since
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- +
A (A GB

1 
)Ad(AC B)A = d

+
(A
-1

61B
-1
) (AB)A = d

+
A = I,

while (8.10) also follows from (8.8) and (8.3), using the 
symmetry

of AA'.

Examples of L-structures. The following six L-structures are most

likely to appear in practical situations. Each defines a class of

square matrices, say of order nxn. The L-structures are (with their

dimensions in brackets): (1) symmetric [n(n+1)/2], (2) lower

triangular [n(n+1)/2], (3) skew-symmetric [n(n-1)/2]r (4
) strictly

lower triangular [n (n-1)/2], (5) diagonal [n],and (6) c
irculant In].

For n=3 sensible choices for A are (with dots represent
ing zeros):

3

1 ▪ . . -
. 1 • 1 • .

• . I

. 1 . 1 . . 1 .

A = • • • 1 1 . I .
I

• . . 1 . l .
I-

• • i i . . 1 .

• • H. 1 1 .

1

• • I ...10

• 4
=

• 1

-1

1

• •

1

• •

• J

5

1

• • • • I •

• • 1 • • 
1
•

• • • • •

1
• 

••

. .

• • • 1 •

J. ▪ 1 4.

• . I.

I 1 I 1

1 • . 1 • •

• • . • 1 •

• • • . • 1

• 1

•

• 1

a6 1

• 1

• •

• 1

1

• 1

•
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Let ,A := (a..) be an arbitrary nxn matrix. We have already encountered
13

the n
2 
xl vector vec A and the ½n (n+1) x 1 vector v(A) , which is

obtained from vec A by eliminating all supradiagonal elements of A.

We now define the 1.2 n (n-1) x 1 vector v
s
(A), which is obtained from

vec A by eliminating the supradiagonal and the diagonal elements of

A. For example, if n=3, then

vs (A) = (a21,a31,a32)

We also define the nxl vectors

and

11' 22'= (a a 
N'nfl

v(A) = (a
11
,a
21"."

a
nl
)'

1

(8.11)

(8.12)

(8.13)

The vector v
d
(A) thus contains the diagonal elements of A; the

vector v1(A) contains the first column of A.

The tP-vectomassociated with the six above 1k-matrices are then

tPicA) =''11)2(A) =

11)5 
(A) = vd 

(A) , 00 = v1
(A) .

Historical note. Patterned matrices (with only equality relationships)

IP (A) = 4)4 (A) = vs (A) ,

among their elements were studied by Tracy and Singh (1972) with the

purpose of finding matrix derivatives of certain matrix transformations.

Lower triangular (and symmetric) matrices were discussed by Magnus & Neudecker

(1980)1 and skew-symmetric, strictly lower triangular and diagonal matrices

by Neudecker (1983). The present section is based on Magnus (1983)

who introduced the concept of an L-structure in the context of solving

linear matrix equations where the solution matrix is known to be

L-structured.
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9. Matrix differentiation: first derivatives

Let f = (f
1
,f
2'
...,f

m
) be a vector function with values in le

which is differentiable on a set S in le. Let D.f.(x) denote the
J 1

partial derivative of with 
.

respect to the 3 
th
 coordinate. Then

the mxn matrix

(x) D f
1
(x) ... D f (x)"

n 1

1
f
2
(x)

2
f
2
(x)

n
f
2(x)

•
•

D f (x) D
2m 
f(x) D

n
f
m
(x)

•m

(9.1)

is called the Jacobian matrix of f at x (the gradient vector, if m=1)

and is denoted Vf(x) or 3f(x)/3x'.

The generalization to matrix functions of matrices is straight-

forward. Let F :S leP be a matrix function defined and

hxq
differentiable on a set S in IR Then we define the Jacobian matrix

of F at X (the gradient vector, if m= p = 1) as the mpxnq matrix

3 vec F (X) 
VF (X) =

3 (vec _X)
(9.2)

.th
whose i3 element is the partial derivative of the i 

th
 component of

.th
vec F(X) with respect to the 3 coordinate of vec X.

We emphasize that (9.2) is the only sensible definition of a

matrix derivative. There are, of course, other ways in which the

mnpq partial derivatives of F-could be displayed (Bal(a!s-tra (1976),

Rogers (1980)), but these other definitions typically do not preserve

the rank of the transformation (so that the determinant of the matrix

of partial derivatives is not the Jacobian), and do not allow a

useful chain rule. These points are discussed in more detail by

Pollock (1984) and Magnus and Neudecker (1984).
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The computation of Jacobian matrices is made extremely simple

by the use of differentials (Neudecker (1969), Magnus and Neudecker

(1984)). The essential property here is that

vec dF(X) = A (X) vec dX (9.3)

if, and only i

VF (X) = A (X) . (9.4)

Thus, if we can find a matrix A (depending, in general, on X, but

not on dX) satisfying (9.3), then this matrix is the Jacobian matrix.

Some examples will show that the approach via differentials is short,

elegant, and easy.

Example (i). The linear matrix function Y = AXE where A and B are

two matrices of constants. Taking differentials we have

dY = A(dX)B ,

from which we obtain, upon vectorizing,

vec dY = vec A(dX)B = (B' 2 A) vec dX. (9.5)

Hence the Jacobian matrix is

3 vec Y 
= B

t 
A

D(vec X)1
(9.6)

If X is constrained to be symmetric, we substitute D dv(X) for vec dX

in (9.5), where D is the duplication matrix. This. gives.

so that

vec dY = (B' A)D dv(X) ,
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3 (v (X) )
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= (131 0 A)D . (9.7)

Of course, we can also obtain (9.7) from (9.6) using the chain rule,

since for symmetric X,

3 vec X
3 (v (X) )

(9.8)

More generally, if X is L-structured, X e L(A), then the Jacobian

matrix is (B 1 0 A)A.

Example (ii). The nonlinear matrix function Y = X
-1
. We take

differentials,

and vecs,

dY = dX
-1 

= - X
-1

(dX)X
-1

vec dY = - ((X1)-1 0 X-1) vec dX,

thus leading to the Jacobian matrix

3 vec Y
a (vec X) = - (x')-1 0 x-1 . (9.9)

Again, if X is symmetric (L-structured), we postmultiply (9.9) by D

• (A, in general).

Example (iii). The real-valued function (1)(X) = tr AX, where A is

a matrix of constants. We have

d(X) = tr AdX = (vec vec dX,

so that the gradient vector is
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a4) (x) = (vec A')
3 (vec X)

(9.10)

(This is usually written as 34)(X)/3X = A', which, in spite of its

attractiveness, is not always commendable.) For symmetric X, we

proceed as before and find

3c1) (X)
3 (v (X) )

= (vec A I) ID = vec (A + A - dg (A) )) , (9.11)

where dg(A) is the diagonal matrix with the diagonal elements of

A on its diagonal.
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10. Matrix differentiation: second derivatives

Let 4): S MIR be a real-valued function defined and twice

2
differentiablemasetsirile.Letp..(x) denote the second-

13(P
e th .th

order partial derivative of cl) with respect to the i and 3

2
coordinates. Then the nxn matrix ( cl)(x)) is called the HessianDij

matrix of cl) at x and is denoted Hflx) or 34)(x)/3x3x l. Since (f)

is twice differentiable at x, 145(x) is a symmetric matrix.

Next, let us consider a real-valued function 4) : S MR defined

and twice differentiable on SC= leg. The .Hessian matrix of cP at

X is then the nq X nq (symmetric) matrix

Hcl)(X) =
(X)

a vec x ( vec X)
(10.1)

..
whose 13 

th
 element is the second-order partial derivative of cf) with

. .
respect to the 

th 
and 3

th
 coordinates of vec X.

that

The computation of Hessian matrices is based on the property

•

d
2
4) (X) = ( vec dX) B (X) ( vec dX

if, and only if,

HOX) = 1/2(B(X) + B1(X)) ,

where B may depend on X, but not on dX.

(10.2)

(10.3)

Example (i). The quadratic function 4)(X) = trAXBX 1, where A and

B are square matrices (not necessarily of the same order) of constants.

Twice taking.differentials, we obtain

d
2

4) (X) = 2 tr A (dX) B (dX) = 2( vec dX) (B' fa A) vec dX) . (10.4)



The Hessian matrix is therefore

a2 (x)

vec X 3 ( vec X) '
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= 13' 0 A+BOA' . (10.5)

If X is constrained to be symmetric, we have

a20x)
3v (X) (v (X) )

= D' (B' 0 A + B 0 A')D . (10.6)

Example (ii) . The real-valued function cj) (X) = tr X
-1
. We have

.•

-1 -
d(X) (X) = - tr X (dX) 

X1 

and therefore

cl
2
4) (X) = - tr (dX

-1
) (ax)x - tr X

-1 
(dX) (dX

-1
)

2 tr X- 1(dX)X-1(dX)X-1 = 2 ( vec dX y (X 10 X-4) vec dX)

= 2( vec dX) 1K(X‘ -2 2X 1) ( vec dX) , (10:7)

so that the Hessian matrix becomes

a2q(x)

vec X ( vec X

For symmetrix X, we find

= 1C(X1-2 0 X-1 + X'-1 0 X-2'•

a24) (x) 
= D X-2 2 X-1 + 2C2)-D

3v (X) a (v (X))'

= 2D' (X
-1 
0 X

-2
)D ,

using (7.4) and Lemma 4.1.

(10.8)

(10.9)
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11. Jacobians involving L-structures

mxp
Let F S IR be a matrix function defined and differentiable

on a set S in IR
nxq

If mp=nqt the Jacobian matrix VF(X) defined

by (9.2) is a square matrix. Its determinant is called the Jacobian

(or Jacobian determinant) and is denoted by J
F
(X). Thus,

J
F
(X) = IVF(X)I .

Example (i). The linear transformation F(X) = AXB, where X and F(X)

are mxn matrices, and A and B are nonsingular matrice-S of constants

of orders mxm and nxn, respectively. From (9.6) we know the Jacobian

matrix VF(X) = B' 0 A, so that the Jacobian is

J
F
(X) = IB' 0 Al= AlfiBim (11.2)

Example (ii). The nonlinear transformation F(X) = X
-1
, where X is

a nonsingular nxn matrix. The Jacobian matrix is given in (9.9) as

-
VF(X) =-(X') 1

 
- 0 X 1, so that the Jacobian of the transformation is

J
F
(X)

1)-1 0 x -11 n I-2n
= (-1) IXI . (11.3)

The evaluation of Jacobians of transformations involving a

symmetric nxn matrix argument X proceeds along the same lines, except

that we must now take into account the fact that X contains only

½n (n+1) "essential" variables.

Example (iii). The linear transformation F(X) = AXA', where X (and

hence F(X)) are symmetric nxn matrices. Takin4 differentials and

vecs, we have

vec dF(X) = (A 0 A) vec dX.

Since dX and dF(X) are symmetric, we obtain



dv(F(X)) = D
n
(A 0 A)D

n 
dv(X),

so that,

J
F
(X)

- using (7.11).

3v (F (X) )
a(v (X))

,
= ID

+

n
(A 0 A)D

n 
(AltHa (11.4)

Example (iv). The inverse transformation F(X) = X
-1 

for symmetric

nonsingular X of order nxn. Again taking differentials and vecs, we

obtain

so that

vec dF(X) = ((X')-1 0 X-1) vec dX,

- D+((X')-1 X-1)D
n 
dv(X).dv (FIX) )

The Jacobian of this transformation then follows from (7.11) :

3v(F (X))
(v(X))

= I- D((X1) 1 & X-1)Dn I = (-1)1/2n(r14-41xi- 
(n+1)

To evaluate the Jacobian matrix (arid the Jacobian) of a trans-

formation involving more general L-structures is straightforward.

Example (v). The transformation FIX) = X X, where X = x..) is a
13

lower triangular nxn matrix. From

dF(X) = (dX)‘X XidX

we obtain
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vec dF(X) = (X' 2 I) vec (dX) 1 + (I 2 X') vec dX

= ((X' 0 I)Knn + I 2 X') vec dX

= (I + K
nn
) (I 2 X') vec dX = 2N

n
(I 2 X') vec dX.

Now let L
n 

be the 1k-matrix with the property that

L
n
v (A) = vec A

for every lower triangular nxn matrix A. Then, since dX is lower

triangular and dF(X) is symmetric, we obtain

dv(F(X)) = 2 D
n
N
n 

1,(I 2 X)dv(X)

-
= 2(D

n
D 

1
n
) D

n
(I 2 X')L idv(X),

using (7.5) and (7.2). The Jacobian matrix is therefore

Dv (F (X) ) 
= 2(D'D ) 1(L (I2 X)D) ,

nn n n
•

and  its determinant is the Jacobian of the transformation. The

determinant is

Dv (F (X) )
a 07 (x)

n .
n 1. 2 H x.. ,

11
i=1

(11.5)

using (7.13) and Lemma 4.1(iii) of Magnus and Neudecker (1980).

Historical note. A variety of methods has been used to account for

the symmetry in the evaluation of Jacobians of transformations involving

symmetric matrix arguments, notably differential techniques (Deemer

and Olkin (1951) and Olkin (1953)), indiction (Jack (1966)), and

functional equations induced on the relevant spaces (Olkin and Sampson

(1972)). Our approach finds its root in Tracy and Singh (1972) who

used modified matrix differentiation results to obtain Jacobians in
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a simple fashion. Many further Jacobians of transformations with

symmetric or lower triangular matrix arguments can be found in Magnus

and Neudecker (1980); the matrix L
n 
introduced in example (v) is

their so-called "elimination" matrix. Neudecker (1983) obtained

Jacobians of transformations with skew-symmetric, strictly lower

triangular, or diagonal matrix arguments.

•-•
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