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1. Introduction

The purpose of this paper is to bring together those properties of the
(simple)Kronecker product, the vec operator, and O-1 matrices (commutation
matrix, duplication matrix) that are thought to be of interest to
researcﬂers and students in econometrics and statistics. The. treatment
of Kronecker products and vec operators is fairly exhaustive; the
treatment of O-1 matrices is (deliberately) selective.

The organization of the paper is as follows. In sections 2 and

3 we review (and prove) the main results concerning the Kronecker

product and the vec operator. The commutation matrix Kmn is introduced

as the matrix which transforms vec A into vec A' for any mxn matrix A.
Its algebraic properties are discussed in section 4, and its role in
normal distribution theory in section 5. Closely related to the

commutation matrix is the symmetric idempotent matrix Nn

defined as Nn = 5(In2 + Knn)' whose main properties are obtained in

section 6. .If A is a symmetric nxn matrix, its %n(n-1) supradiagonal
elements aré redundant in the sense that they can be deduced from the
symmetryf If we eliminate these redundant elements froﬁ vec A, this
defines a new vector which we denote as v(3). The matrix which

transforms, for symmetric A, v(a) into vecA is the duplication matrix—

Dn' The duplication matrix plays an essential role in matrix
differentiation involving symmetric matrices, and also in solving matrix
equations where the so{ption matrix is known to be symmetric. Its most
useful properties are given in section 7. The class of symmetric
matrices is the most important example of a much wider class of.matrices:
L-structures. An L-structure is the totality of real matrices of a
specified order that satisfy a given set of linear restrictionms. Other

examples of L-structures are (strictly) triangular, skew-symmetric,
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diagonai, circulant, and Toeplitz matrices. In‘section 8 the concept
of an L-structure is defined and some of its p;operties discussed.
Finally, in sections 9-11, we giye what we claim to be the only viable
definition of a matrix derivative (Jacobian matrix) - one which
preserves the rank of the transformation and allows a useful chain
rule. We also define the Hessian matrix. If the Jacobian matrix- is
square, its determinant is the Jacobian of the transformation. Some
examples show that the evaluation of Jacobia; matrices, Hessian
matrices, and Jacobians can be short, elegant, and eaéy, also if the
tr;nsformations involve symmetric (or L-structured) matrix arguments.

The historical references.in sections 2-4 are taken from Henderson
and.Searle's'(1981) interesting survey.

The following notation is used. Matrices are denoted by capital

letters, vectors and scalars by lower case letters. An mXn matrix is

+ .
one having m rows and n columns; A' denotes the transpose of A, A  its

Moore-Penrose inverse, and r (A) its rank; if A is square, tr A denotes

"its trace, lAl its determinant, and A_1 its inverse (when A is non-

Xn . . ' n
singular). B¥n n is the class of real mxn matrices and IR the class

X
of real nx1 vectors, so that R" = R" { The nxn identity matrix
~is denoted In' Mathematical expectation is denoted by E; variance

(variance-covariance matrix) by var.




2. The Kronecker product

Let A be an mXn matrix and B a pXq matrix. The mpXng matrix

defined by

is called the Kronecker product of A and B and written A @ B.

Observe "that, while the matrix product AB only exists if the
number of columns in A equals t@e number of rows in B or if either
A or B is a scalar, the Kronecker product A & B is defined for any
pair of matrices A and B. The following three properties justify

the name Kronecker product:
A@BRQC = (A@B)QC = 2@ (B&C);

(A+B)R(C+D) = ARQC+A@QD+BRC+BeRD,

if A + B and C + D exist; and

(A@B)(C@D) = AC @ BD,

if AC and BD exist.

If o is a scalar, then
(2.5)

(This property can be used, for example, to prove that (A & b)B =
(AB) & b, by writing B =B & 1.) Another useful property concerns

two column-vectors a and b (not necessarily of the same oxrder):

a'®@b = ba' = beaa'. (2.6)
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The transpose and the Moore-Penrose inverse of a Kronecker product are
given by
+ + +
(AreB)' = A'@B', (A®B =34 ®B. (2.7)

s

If A and B are square matrices (not necessarily of the same order),

then
tr(A & B) = (tr A) (tr B). (2.8)

(Of course, the trace of A @ B may exist even when A and B are not
square matrices; in that case the expression for tr(A @ B) is more

complicated}) If A and B are nonsingular, then

aem ™t = alapl - (2.9)

(The nonsingularity of A and B is not only sufficient, but also
necessary for the nonsingularity of A @ B; this follows from rank
considerations, see (2.11).)

All these properties are easy to prove. Let us now demonstrate

‘the followihg result.

Lemma 2.1. Let A be an mXm matrix with eigenvalues Al,lz,...,km,

and let B be a pxp matrix with eigenvalues ul,uz,...,up. Then the

.mp eigenvalues of A @ B are Aiuj (i=11...,m, 3=1,...,p).

Proof. By Schur's Theorem (Bellman (1970, p.202)) there exist

nonsingular (in fact, unitary) matrices S.and T such that

1) See Neudecker and Wansbeek (1983, Theorem 3.2).




where L and M are upper triangular matrices whose diagonal elements

are the eigenvalues of A and B respectively. Thus,

-1

st e )

(A@B)(SQT) = L &M

_ Since S‘_le'l‘“1 is the inverse of S& T, it follows that A 2 B and
-1 -1

(s 2T )(A @ B)(S 2 T) have the same set of eigenvalues, and hence
that A @ B and L 2 M have the same set of eigenvalues. But L @ M

is an upper triangular matrix by virtue of the fact that L and M

are upper triangular; its eigenvalues are therefore its diagonal

elements Aiuj.' This concludes the proof. ||

Remark. If x is an eigenvector of A and y an eigenvector of B,
then x @ y is clearly an eigenvector of A @ B. It is not generally
true, however, that every eigenveétor of A @ B is the Kronecker
product of an eigenvector of A and an eigenvector of B, as the
following example shows. Let

o1

o O

Both eigénvalues of A (and B) are zero and the only eigenvector is
e, .- The four eigenvalués of A @ B are all zero.}in concordance
with Lemma 2.1), but the eigenvectors of A & B are not just e; 2 ey
but also e, 2 e, and e, ] e -

Lemma 2.1 has several important corollaries. First, if A and
B are positive (semi)définite, then A é B is positive (semi)definite.

Secondly, since the determinant of A @ B is equal to the product of

its eigenvalues, we obtain

2) This fact is emphasised here becauée it is often stated
incorrectly, see e.%. Bellman (1970, p.23§).




laes| = [al® |8|®, (2.10)

where A is an mXm matrix and B is a pxp matrix. Thirdly, we can obtain
the rank of A @ B froh Lemma 2.lLas follows. The rank of A @ B

is equal to the rank of AA' @ BB'. The rank of the latter (symmetric,
in fact positive semidefinite) matrix equals the number of nonzero

(in this case positive) eigenvalues it possesses. According to

Lemma 2.1, the eigenvalues of an' @ BB' are Aiuj’ whexe Ai are the
eigenvalues of an' and uj are the eigenvalues of BB': ﬁow, Aiuj
is'nonzero if and only if both ki agd uj are nonzero. Hence, the
number of nonzero eigenvalues of An' @ BB' is the product of the

number of nonzero eigenvalues of AA' and the number of nonzero

eigenvalues of BB'. Thus the rank of A @ B is

r(A@B) = xr(A) x(B).

Historical note. The original interest in the Kronecker product

‘focussed on the determinantal result (2.10) , which seems to have

been first studied by Zehfuss (1858). The result was known to

Kronecker who passed it on to his students in Berlin, where
~he began lecturing in 1861 at the age of 37. The exact origin of
the association of Kronecker's name with the @ operation is still

obscure.




3. The vec-operator

. . .t
let A be an mxn matrix and aj its j h column, then vec A is the

mnXl vector

(3.1)

Thus the vec-operator transforms a matrix into a vector by stacking
the columns of the matrix one underneath the other. .Notice that
vec A'is defined for any matrix A, not just for square matrices.
Also notice that vec A = vec B does not imply A = B, unless A and
B are matrices of the same order.

A ‘very simple but often useful property is

vec a' (3.2)

for any column-vector a. The basic connection between the vec-

operator and the Kronecker product is
vec ab' = b®Ra (3.3)

for any two column-vectors a and b (not necessarily of the same

order) . This follows because the jth column of ab' is bja.

Stacking the columns of ab' thus yields b ® a.

The basic connection between the vec-operator and the txrace is

(vec A)'vec B = tr A'B, (3.4)

where A and B are matrices of the same order. This is easy to
verify since both the left side and the right side of (3.4) are

equal to I I a,.b,..
iq ij7ij




Lét us now generalize the basic properties (3.3) and (3.4).

The generalization of (3.3) is the following well-known result.

Lemma 3.1. Let A, B, and C be three matrices such that the matrix

product ABC is defined. Then,
= (c' @ a) vec B. (3.5)

Proof. Assume that B has g columns denoted’bl,bz,...,bq. Similarly
let YRR eq denote the columns of the gXg 1dent:1:ty matrix Iq,
so-that B = b.e;. Then, using (3.3),

j=1 *

q
vec ABC vec ) Abel!C = % vec (Ab.) (C'e.)'
5 33 551 3 it

3 (c'ej @ Ab.) = (c' @A) ? (e4 @ by)
j=1 J j=1 |

(c' @ A) % vec bje% = (c' @ A) vec B. ||
j=1 '

One special case-of Lemma 3.1 is
vec AB = (B' @ Im) vecA = (B' @ A) vecI =~ = (Iq @ A) vecB, (3.6)

where A is an mXn matrix and B is an nXq matrix. Another special
case arises when the matrix C in (3.5) is replaced by a vector.

Then we obtain, using (3.2),

2Bd = (' Q@A) vecB = (A@d') vec B',

where d is a gXl vector.

The equality (3.4) can be generalized as follows.




Lemma 3.2. Let A, B, C, and D be four matrices such that the matrix

product ABCD is defined and square. Then,
traBCD = (vec D')'(C' @ A)vecB = (vecD)'(ae@ch) vecB'. (3.8)
Proof. - We have

tr ABCD tr D(ABC) = (vec D')' vecABC (by (3.4))

(vec D')'(Cc' @ B) vecB (by (3.5)).

The second equality is proved in precisely the same way starting from

tr aBcD = tr D' (c'B'A"). ||

Historical note. The idea of stacking the elements of a matrix in

a vector goes back at least to Sylvester (1884a,b).  The notation "vec"
was introduced by Koopmans, Rubin and Leipnik (1950) . Lemma 3.1

ié due to Roth (1934) .




The commutation matrix K

. \ ]
Let A be an mXn matrix. The vectors vec A and vec A clearly
contain the same mn components, but in a different order. Hence
there exists a unique mnxXmn permutation matrix which transforms

vec A into vec A'. This matrix is called the commutation matrix

and is denoted K . Thus
mn
K vec A = vec A'.
mn

Since K is a permutation matrix it is orthogonal, i.e., K' =x .
. mn mn mn
iplyi 4. X iv =
Also, premultiplying (4.1) by nm gives Kanmn vec A = vec A so that

Hence,

Further, using (3.2),

Knl = Kln (4.3)

The key property of the commutation matrix'(éndufﬁg—one from
which it derives its namé}&éﬁdbLes us to interchange ("commute") the

two matrices of a Kronecker product:

Lemma 4.1. Let A be an mXn matrix and B a pXg matrix. Then

Kpm(A @ B) = (B® A)an. (4.4)

Proof. Let X be an arbitrar§ gxn matrix. Then, by repeated

application of (3.5) and (4.1),
K (A & B) vec X K _ vec BXA' = vec AXx'B'
pm pm

' -—
(B & A) vec X = (B @ A)an vec X.




Since X is arbitrary the result follows. ”

~

Immediate consequences of Lemma 4.1 are

= QA
Kpm(A Q B)an B

= A, K (bRA) = A®D
Kpm(A@b) bea, mp( ) r

where b is a pXl vector.

aAll these properties follow from the implicit definition (4.1)
of the commutation matrix. The following lemma gives an explicit

expression for Kmn which is often useful.

Lemma 4.2. Let Hij be the mXn matrix with 1 in its ijth position

and zeroes elsewhere. Then

. : m n :
K _ = H.. @H'.), 4.7
- izl_j_i__l (Hyj @ B} (4.7

t
Proof. Let X be an arbitrary mXn matrix. Let e; denote the i h

column of I_ and u, the jth column of I_, so that H.. = e,u.. Then
m 3j n ij i’j

m 11

=1

n ' , &
I = Zl ujuj) X (ig e.e,)

3

Y u,(u!x'ede] = ) u,(e;Xu.e;
i3 j 3 i"71i i3 s R T R §
] (u.ex(u,el) =) B xH!. .
i3 34 ji i3 1377713

Taking vecs we obtain

LI ! [ = [
vec X' = ] vec Hy 4XH ) (Hy 5 @ B{,) vec X,

ij ij

using (3.5). The result follows. ”




Lemma 4.2 shows that Kmn is a square matrix of order mn,
partitioned into mn submatrices each of order nxm, such that the ij
submatrix has unity in its jith position and zeros elsewhere. For

example,

A S
-—— e = ] — - -

The explicit form (4.7) of K enables us to find the trace and

the determinant of K .
. mn

Lemma 4.3.3) The trace of the commutation matrix is

tr Kmn = 1 + gcd(m-1,n-1) , (4.9)

where gcd(m,n) is the greatest common divisor of m and n; its deter-

minant is

Ymn (m-1) (n-1) . (4.10)

|k

mn

| = (-1

" Proof. We shall only prove the case m=n. (For a proof of the
more difficult case m=%n, see Magnus and Neudecker (1979, Theorem 3.1.)

Let ej be the jth column of In. Then, from (4.7),

n n -
tr K tr ) ) (el @e.e) } tr (e el @ e.e!)
nn 51 501 L9 51 i5 i3 j i

X (tx e;

ij ij

' oL 2
ey (tr eje) = Y 815

3) For a discussion of the characteristic polynomial of the
commutation matrix, see Hartwig and Morris (1975) and Don
and van der Plas (1981).




where 6ij =0 if i + I, Gii = 1. Since Knn is real, orthogonal, and

symmetric, it has eigenvalues +l1 and -1 only. (The eigenvalues of
K , m + n, are in general, complex.) Suppose the multiplicity of

mn

-1l is p. Then the multiplicity of +1l. is (nz-p), and

= = ’ i ' = - 2_5 =n2-
= tr Knn sum of eigenvalues of Knn P +n“-p=n 2p,

so that p = % n(n-1). Hence

Ln(n-1) %n? (n-1) 2 “

k| = (1P = (-1

nnl (-1)
‘An important application of the commutation matrix is that it
allows us to transform the vec of a Kronecker product into the Kronecker
I

product of the vecs, a crucial property in the differentiation of

Kronecker products .
Lemma 4.4. Let A be an mXn matrix and B a pXq matrix. Then
vec (AR®@B) = (I @K ®@1I)(vec AR vec B). (4.11)
n qm P

Proof. Le£ a; (i=1,...,n) and bj (j =1,...,9) denote the columns
of A and B, respectively. Also, let e, (i=1,...,n) and uj
(j = 1,...,9) denote the columns of In and Iq' respectively. Then

we can write A and B as

n
A = z a.e:, = b.u: ’
i=1 ** j=1 74

and we obtain

n
vec (A @ B) ) % vec (a,e; @ b,u’})
i=1j=1 A9

) (e, @u.@a,  &b,)
i J 1 J

) vec (a, @ b,)(e, @ u,)' =
it MR S 25

ij
Yy (zex_e1)(e.,@a 2u, 2b)
g5 m @ p i TET 5T




(In R qu 2 Ip){(z vec aiei) Q@ (g vec bju;)}

(I @K @ 1I)(vec A @ vec B). I
n qm P
In particular, by noting that
vec A @ vec B = (I Q@ vec B)Jvec A = (vec A @ I ’) vec B,
nm ap

using (2.5), we obtain

vec (A & B) = (In R G) vecA = (H® Ip) vec B,

G = (qu 2 Ip)(Im ® vec B), H = (In 2 qu)(vec\A 2 Iq). (4.13)

Historical note. The original interest in the commutation matrix

focussed on its role in reversing ("commuting") the order of Kronecker
products (Lemma 4.1), a role which seems to have been first recognized
byLedermann (1936) and Murnaghan (1938, pp.68-69), while Vartak (1955)
'generalized‘Murnaghan's result to rectangular matrices. Tracy and
Dwyer (1969) rediscovered the commutation matrix and based their
definition on the fact that Kmn is the matrix obtained by rearranging

- the rows of Imn by taking every mth row starting with the first, then

eveerth row starting with the second, and so on. (For example, the

rows of K are rows 1,3,5,2,4, and 6 of I .) The fruitful idea of

23 6
defining Kmn by its transformation property (4.1) comes from Barnett
(1973), and is the definition adopted in this paper.

Among the many alternative names of the commutation matrix we
mention permutation matrix, permuted identity matrix, vec-permutation
matrix, shuffle matrix, and universal flip matrix. Alternative
nxm

, . p
notations for Kmn include Em,n' Ean, Umxn n,m’ I(n,m)' and In,m




Lemma 4.1 goes back at least to Ledermann (1936). Concise proofs
are given by Barnett (1973), Hartwig.and Morris (1975), and Magnus and

Neudecker (1979). Lemmas 4.2 and 4.3 are due to Magnus and Neudecker

(1979), and Lemma 4.4 to Neudecker and Wansbeek (1983).

For further reading on the commutation matrix we recommend Hartwig

and Morris (1975), Balestra (1976), Magnus and Neudecker (1979),

Henderson and Searle (198l), and Neudecker and Wansbeek (1983).
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5. The commutation matrix and the Wishart distribution

Somewhat unexpectedly, the commutation matrix also plays a role
in distribution theory, especially in normal distribution theory.

This role is based on the following lemma.

Lemma 5.1. Let u be an nxl vector of independent aand standard

normally distributed random variables u ,...,un, that is, u = N(O,In) .

1
Then,

var(u @ u) = In2 + Knn . (5.1)

Proof. Let A be an arbitrary nxXn matrix and let B = (A+A')/2.
Let T be an orthogonal nXn matrix such that T'BT = A, where A is the
diagonal matrix wlhosediagonal elements kl,...,ln are the eigenvalues

of B. Let v = T'u with components VireeesV . Then,
u'TAT v

Since v = N(O,In) , it follows that vi,. ..,vi are independently distri-

buted with var v% = 2, so that

var u'Au var z A v2 = Z }\i(var v

2 - 2
L Agvi ) = 2trA
i

i
2trB2 = tr A'Aa + tr a2 = (vec A)'(I+Knn)vecA.

using (3.4). Also, since u'Au = vec u'au = (u 2 u)' vec a,

var u'au = var((u @ u)" vecA) = (vec A)'(var ufu) vecA.

(vec A) ' (var uQu) vecA = (vec A)' (I + Knn) vec A

for every nxn matrix A. The result follows. “
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We can generalize Lemma 5.1 by considering normal random variables
which are not necessarily independent or identically distributed. This

leads to Lemma 5.2.

Lemma 5.2. Let x 2 N(y,V) where V is a positive semidefinite nxn

_matrix. . Then

var(x & x) = (Inz-fxnn)(v ev+veu' +u'ev. (5.2)

Proof. We write = VBu + 3 with u N(O,In),so that

Vku e VBu + Vﬁu Qu+ue VBu + uReyu

(VE 2 V&)(u 2 u) + (I + Knn)(vsu 2 u) +uy

(V12 2] V%)(u Q u) + (I + Knn)(V& RUYu+ U,

using (4.6) and (2.5). Since the two vectors u @ u and u are uncorrelated

with var(u @ u) = I + Knn and var u = In' we obtain

3 3

- var(x 8 x) var{(Vv: @ V) (ueu)} + var{ (I + Knn) (V;2

e u)ul

P ok % Y
(v'ev )(I+Knn) (V'ev?) + (I+Knn) (Vvieu)(viau) (I+Knn)

+ + ' '
(T+x D (vev) + (x+x_)(vew' +x_(m'ev)
(I+K ) (Vev +veu' +wm'ev) ,

using (4.4) and the fac? (implied by (4.2)) that (I + Knn)Knn =1 + Knn' ”

Let us now consider k random nXl vectors yl,...,yk, distributed

independently as

N(ui,V), i =1,...,k).




o
The joint distribution of the elements of the matrix

is said to be Wishart with k degrees of freedom and is denoted by

wn(k,V,M), where M is the kXn matrix

M = (ul,uz,...,uk)' .
(If M=0 the distribution is said to be central.) The following theorem

gives the mean and variance of the (noncentral) Wishart distribution in

a compact and readily usable form.

Theorem 5.1. Let S be Wishart distributed Wn(k,V,M), V positive

semidefinite. Then,

= kV + M'M

var(vec §) = (I, +K ){k(vev) +ven'n + m'mevl. (5.4)

k
Proof. We first note that 2 .yl o= M'M. Then
- . “i=1 11

1] s
L ( U.u.) M ’

L
var (vec S) var (vec g yiyi) = var(g Y, ] yi) = g var(yi 2 yi)

- L} 1
+ + VvV +
E(I Knn)(V e v 2 uiui uiui @ V)

(T+x )kwew +ve MM+MMe V),

using (5.2). ||




Historical Note. The results in this section are taken from Magnus

and Neudecker (1979), but the proofs are somewhat simplified. More
general results can be found in Magnus and Neudecker (1979) and
Neudecker and Wansbeek (1983). In the latter paper it is shown, inter

alia, that the normality assumption in Lemma 5.1 is not essential.

More precisely, if u is an nx1l vector of independent random vaxriables

. 2
ul,...,un with Eui = 0, Eui

n
_ 4
var(u @ u) = o© (In2 + Knn + v iZl(Eii 2 Eii))'. (5f5)

where y = (w4/04) ~ 3 (the kurtosis) and Eii is the nXn matrix with

1l in its ith diagonal position and zeros elsewhere.
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6. The matrix N1

1
In the previous section the n2xp? matrix In2+Knn played a
central role. This matrix appears in many applications and we shall
now study it in more detail. For reasons which will become apparent
shortly it is convenient to investigate the properties not of I +Knn,

but of the n2xn2 matrix
= ¢ + .
N Y (Inz Knn)

n

This matrix, is symmetric and idempotent,

(6.2)

and, since trKnn n, its trace (and hence its rank) is easily shown

to be
r(N) = trN = Xn (n+l) .
n n

‘The matrix Nn transforms an arbitréry nxXn matrix A into the

symmetric matrix % (A + a'):
N vecA = vecka+a'), (6.4)

Of course, if A is symmetric to begin with, the transformation has
no effect. (This shows again that Nn must be idempotent.)

Further properties of Nn include
N K

n nn

and, for any two nXn matrices A and B,

N (A@ BN = N (BQ A)N , : (6.6)
n n n n

Nn(AQB + B@ A)Nn = Nn(AQB + BRA) = (A®B + B@A)Nn, (6.7)




N (A@A)N = N _(A@A) = (AQA)N_,
n n n n

Nn(AQb) = Nn(bQA) = 4(a@b + bRA),

for any nXl vector b.

~

The explicit form of Nn is easily derived from Knn'

example, for n=2 and 3, we have

(100,000(00
o&ol&oolob
ookx'ooo!xo
oloniHoo}o»o
©000,010,00
ocoolookl o
ookslooolxoo
ooo'oo&to’:o

000,0001001

/

Historical note. . The matrix Nn was introduced by Magnus and

Neudecker (1980, p.424).
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7. Symmetry: the duplication matrix 9_1

Let A be a square nxn matrix. Then v(A) will denote the
Ln (n+l) X 1 vector that is obtained fror vec A by eliminating all

supradiagonal elements of A. For example, if n=3,

)

vec A = (3, a,) a5y ;5 85, 33, 813 353 233

v(@a) = ( )

811 221 231 322 332 %33
In this way, for symmetric A, v(A) contains only the distinct
elements of A. Since the elements of vec A are those of v(a) with

some repetitions, there exists a unique n? x % n (n+l) matrix which

transforms, for symmetric A, v(A) into vec A. This matrix is called

the duplication matrix and is denoted Dn. Thus,

Dnv(A) = vec A . (7.1)

‘Let A =24 and Dnv(A) = 0. Then vec A = O, and so v(A) = O. Since

the symmetry of A does not restrict v(A), it follows that the columns
of Dn are linearly independent. Hence Dn has full column-rank
~%n (n+l), D;an is nonsingular, and D:;, the Moore-Penrose iverse of

D uals
n' 4

- ]
ot = bp) i .
n nn n

For n=3, we have
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Some further properties of Dn are easily derived from its implicit

definition 7.1. For symmetric A we have

K Dv(A) = K _vecA = vVecA = D v(a)
nn n nn . n

NnDnV (a) = NnvecA = vecA = Dnv(A).

Again, the symmetry of A does not restrict v(a), so that

+
D K

Finally, we obtain

+ _ +
DnDn = Il;n(n+1) ’ DnDn Nn . (7.6)

The first of the two equalities in (7.6) is an immediate consequence

)

of (7.2), while the second follows from NnDn = Dn (see (7.4)) .4

4) Let A be an idempotent, symmetric nXn matrix, and B an
n Xr matrix with full column-rank r. Then AB = B if and
1 .

only if A = B(B'B) B'.




Much of the interest in the duplication matrix is due to the
+
importance of the matrices Dn(A e A)Dn and D;l (A @ A) Dn' whose properties

we shall now investigate. We first prove Lemma 7.1.
Lemma 7.1. Let A be an nXn matrix. Then,
DD+(AQA)D (A @ A)D
n n n n’
+ + +
D (A 2 A)DD D (A 23a),
n nn n
and, if A is nonsingular,

1 1

+ -1 _+, -1 -
(Dn(AQA)Dn) = Dn(A e A )Dn».

Proof. The first two equalities follow from DnD: = Nn’

= = + = +
Nn (A2 = (ARA) Nh ' an?n Dn and DnNn Dn. (See (7.6),
(6.8), (7.4), and (7.5).) The last equality follows by direct

verification since

pfaempdatealp = pfaemmateat)p =pp = I,
n nn n n n nn

using (7.7) and (7.6). ||

In fact, the property DnD: (A 2 A)Dn = (A 2 3) Dn for arbitrary
. square A is the Kronecker counterpart to DnD;: vecA = vecA for
symmetric A, just as the property Knn(A 2 A) = (A @23) Kon is the
Kronecker counterpart to Knn vechA = A' . We see this immediately if
we let X be symmetric and substitute the symmetric matrix AXA' for X

+
in DnDn vec X = vec X, yielding

+
DnDI.1 (A 2 A) Dnv(x) = (A ® A) Dnv x) .




Next we show that if A has a certain structure (diagonal,

~

triangular), then D;(A 2 A)Dn often possesses the same structure.

Lemma 7.2. Let A be a diagonal (upper triangular, lower triangular)
nxn matrix with diagonal elements §11’a22""’ann' Then the

Ln (n+l) x %n (n+l) matrix D:(A 4] A)Dn is also diagonal (upper
triangular, lower triangular) with diagonal elements aiiajj

(1 £j<isgn).

" .t c s
Proof. Let Ejj be the nxn matrix with 1 in the ij h position and

zeros elsewhere, and define
T, .
1]
Then, for i 2 j,
+ +
D(AR@ADV (E,.) = D (AQADV (T_.)
ij 1]
+ + '
= D (AR A) vec T,, = D vec AT, .A
1] 1]
and therefore, for i 2 j and s 2 t,,
v+ _ ' ]
(v (Est)) D (A 2 ADvV (Eij) (v(Est)) v (ATijA )
T
= BT R = agag taggdy 84853 -
In particular, if A is upper triangulaxr, we obtain

a (tsssj=4ior tgj<ssgi),

.a, .
si tj

£s €3 <i
it * AP (t £ s 3j<i),

v+
(V(Est)) D (A ® ADV (Eij) = ]a

0 (6therwise),

+
so that D (A 8 A)D is upper triangular if A is, and




UG & s e 4
(v (Eij))D (A R ADvV (Eij) = aiiajj {3 = 1)

are its diagonal elements. The case where A is lower triangular is

proved similarly. The case where A is diagonal follows as a special

case. ||

Lemma 7.2 is instrumental in proving our main result concerning

+
the matrix Dn(A 2 A)D.

Theorem 7.1. Let A be an nxn matrix with eigenvalues kl,kz,..,,kn.
—_— . -
Then the eigenvalues of the matrix Dn(A e A)Dn are Ailj(l <ig<3jsn),

and its trace and determinant are given by

2

tr (D:(A 2] A)Dn) = Mtra® + h(tr A)2

ID;(A enp | = |a|P* . (7.11)

Proof. By Schur's Theorem (Bellman (1970, p.202)) there exists a

1 -

. nonsingular matrix S such that S AS = M, where M is aﬁ ﬁpﬁéf fi{éngular

matrix with the eigenvalues kl,...,kn of A on its diagonal. Thus

- - + + +
ptis™ @ shHpp'(a ea)p D (s @ S)D pT (M@ MD_.
n nn nn n n n

+ =1 - + -
Since Dn(S ® S l)Dn is the inverse of Dn(s 2] S)Dn (see (7.9)), it follows
o+ + '
that Dn(A ] A)Dn and Dn(M ] M)Dn have the same set of eigenvalues. By
Lemma 7.2, the latter matrix is upper triangular with eigenvalues

(diagonal elements) kikj (L <3 i € n). These are therefore the

+
eigenvalues of Dn(A 2 A)Dn too.




The trace and determinant, being the sum and the product of
the eigenvalues, respectively, are

+ _ _ 2
trD (A @ A)D_ ) MA o= E E SR ) "y

i23 ij

Hiu:Az + 5(tr A)zr,

n+l

ID:(AQA)DnI = T A gxi = |a

|n+l . “
i23 ]

Let us now establish the nature of the nonsingular % n (n+l) X

. 1 = .
kn (n+l) matrix DnDn' Let B (bij) and C (cij) be arbitrary

symmetric nXn matrices, and let Eii be the nxn matrix with 1 in the

i~ diagonal position and zeros elsewhere. Then

(v(B)) DnDnV(C)

(vB) 'viE; ) (v vE)

(v(B)) ' (2r - E v(E; ) (V(E, ) Iv(E),
so that

n .
L} L]
DD = 2Ty - izl V(E; ;) (V(E;,)) - (7.12).
Hence, D;Dn is a diagonal matrix with diagonal elements 1 (n times)

and 2 (% n (n-1) times) -and determinant

‘D'D l = 2Hn(n—l)
nn

.

With the help cf (7.13) we can now prove Lemma 7.3.




- 28 -

o
Lemma 7.3. Let A be an nXn matrix. Then

ID;(A 8 R)D_ | = 2Bn(n—l)lA|n+l .

and, if A is nonsingular,

[ “l l —l +'
(Dn(A -] A)Dn) ® A )Dn

+ -
= D (A
n

Proof. Since, from (7.7),

] _ ] +
Dn (A @ Aa) Dn = (DnDn) (Dn (A @ A)Dn) ’

(7:14) follows from (7.13) and (7.11), and (7.15) follows from (7.9)

and (7.2). ”

Historical note. The idea of putting into a single vector just the

distinct elements of a symmetric matrix goes back at least to Aitken
(1949) . Properties of the duplication matrix were studied, inter alia,
by Tracy and Singh (1972), Browne (1974), Vetter (1975), Richard
(1975), Balestra (1976), Nel (1978), and Henderson and Searle (1979).

- For further properties.of the duplication matrix the reader should

consult Magnus and Neudecker (1980).




8. A generalization: L-structured matrices

The class of symmetric matrices is just one example of a much
wider class of matrices: L-structures. An L-structure ("L" stands
for linear) is the totality of real matrices of a specified order that
satisfy'a given set of linear restrictions. . To define the concept
of an L-structure more formally, let D be an s-dimensional subspace
(or linear manifold) of the real vector space ngmn' and let

dl'd2""’d§ be a set of basis vectors for D. The mnXs matrix
A = (dl’dz""’dé)

is called a basis matrix for D, and the collection of real mxn

matrices
L) = {x|x€ ®™®, vec x € D} (8.1)

is called an L-structure; s is called the dimension of the L-structure.
A basis matrix is, of course, not unique: if A is a basis matrix for

D, then so is AE for any nonsingular E. This fact suggests that it

might be more appropriéte to regard L as function of D rather than A.

It is, however, the basis matrix A which is relevant in applications
such as matrix equations and Jacobians, so we find it convenient to
retain Definition (8.1) as it stands.

The class of real symmetric nxn matrices is clearly an L-structure,
the linear restrictionﬁ.being the ¥n(n-1) equalities xij = xji' so
that the dimension of the L-structure is %n(n+l). One choice for A would
be the duplication matrix Dn' Other examples of L-Structures are (strictly)
triangular, skew-symmetric, diagonal, circulant, and Toeplitz matrices.

Now consider a member A of the class of real mXn matrices

defined by the L-structure L(A) of dimension s. Since A € L(A), the




e
vector vec A lies in the space D spanned by the columns of A, and hence

there exists an sX1l vector, say Y (A), such that
AY(A) = vec A .
Since A has full column-rank s, we obtain
(8.3)

which implies that Yy (A) can be solved uniquely from (8.2), the unique

solution being

v@a) = Atveca (a € L(A)) . (8.4)

Thus, given the choice of A, V is uniquely determined by (é.Z).
(Of course, a different choice of A leads to a different V.) In
the case of symmetry, the choice of the duplication matrix for A
determines the choice of v(.) for V. One may verify that for
arbitrary A, D+vecA =% v(A+A'); for symmetric A this becomes
'D+vecA = v(a). -
Of special interest %; the symmetric idempoteﬁt sXs matrix NA

defined as

(In the case of symmetry, this is the matrix N.) If we

substitute A+vecA for ¢ (A) in (8.2), we obtain

NAvecA = AA+vecA = wvec A . (8.6)

for every A € L(4). ‘We shall show that the matrix NA is invariant to
the choice of A. Let A and A be two basis matrices for D. Since A

and A span the same subspace, there exists a nonsingular sXs matrix

E such that A = AE. Also,




(ag) (E)* ™ en = emtE

[ | ’ L -
aey Eataat = mt (amr aEeiat

_"Jl.m—f' =

ey ey (ap "Rt = aEE

Hence NA is invariant to the choice of A.
Now suppose that A and B are square matrices of orders nxn and

mXm, respectively, possessing the property
Bxa' € L(A) ‘ (8.7)

for every X € L(4). (For example, in the case of (skew-) symmetry,
AXA' is (skew-)symmetric for every (skew-)symmetric X7 in the case of
(strict) lower triangularity, if P and Q are lower txriangular, PXQ
is (strictly) lower triangular for every (strictly) lower triangular

X.) Then,

mtaesas = @aena,

and, if A and B are nonsingular,

e e B)A) T arat et

' @aemnt atat e 57 hat

To prove (8.8), let X € L(4). Then
+ + + '
AA (A @ B)AY(X) AA (A @ B) vecX = A&A vec BXA

(A2 ByvecX = (A @ B)AY(X).

The restriction X € L(A) does not restrict Y(X); hemce (8.8) follows.

Property (8.8) together with (8.3) implies (8.9), sdince -




1

states Hartaens = at@” ep Yy (a@B)A = ATA = I,

while (8.10) also follows from (8.8) and (8.3), using the symmetry

-+
of AA . ¢

Examples of L-structures. The following six L-structures are most

likely to appear in practical situations. Each defines a class of
square matrices, say of order nxn. The L-structures are (with their
dimensions in brackets): (1) symmetric [n(n+l) /2], (2) lower
triangular [n(n+l) /2], (3) skew-symmetric [n(n-1) /2], (4) strictly
loﬁer triangular [n(n-1)/2], (5) diagonal [n)],and (6) circulant [n].

For n=3 sensible choices for A are (with dots representing zeros):

1




Let A = (aij) be an arbitrary nxn matrix. We have already encountered
the nle vector vec A and the % n (n+l) x1 vector v(A), which is
obtained from vec A by eliminating all supradiagonal elements of A.

We now define the %n (n-1l) X1 vector vs(A), which is obtained from

vec A by eliminating the supradiagonal and the diagonal elements of

A. For example, if n=3, then

vs(A) = (a )

21'%317%32
We also define the nXl vectors

va®) = )

81178207+ 13m

%}A) = | ) .

811782170

The vector vd(A) thus contains the diagonal elements of A;
vector vl(A) contains the first column of A.

The Y-vectors associated with the six above A-matrices are then

Y A =9, () = v(a), V(@) =¥, (a) = v (),

Historical note. Patterned matrices (with only equality relationships)

among their elements were studied by Tracy and Singh (1972) with the

purpose of finding matrix derivatives of certain matrix transformations.

Lower triangular (and symmetric) matrices were discussed by Magnus & Neudecker
(1980), and skew-symmetric, strictly lower triangular and diagonal matrices

by Neudecker (1983). The present section is based on Magnus (1983)

who introduced the concept of an L-structure in the context of solving

linear matrix equations where the solution matrix is known to be _

L-structured.
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9. Matrix differentiation : first derivatives

Let £ = (fl,fz,...,fm)' be a vector function with values in IRm
which is differentiable on a set S in IRn. Let Djfi(x) denote the
partial derivative of fi with respect to the jth coordinate. Then

the mXn matrix

.
A
lel(x) D2fl(X) ... anl(x)

lez(x) D2f2(x) .o anz(X)

. . .
. . .
. . .

\lem(x) D2fm(X) .o anm(x)J

is called the Jacobian matrix of £ at x (the gradient vector, if m=1)

and is denoted Vf(x) or 9f(x)/dx'.
The generalization to matrix functions of matrices is straight-
X
forward. Let F: S » R P be a matrix function defined and

differentiable on a set S in IRnxq. Then we define the Jacobian matrix

of F at X (the gradient vector, if m=p=1) as the mpXng matrix

9 vec F (X)

VF (X) 57;gaj§77 '

(9.2)

whose ijth element is the partial derivative of the ith component of
vec F(X) with respect to the jth coordinate of vec X.

We emphasize that (9.2) is the only sensible definition of a

matrix derivative. There are, of course, other ways in which the

mnpqg partial derivatives of F-could be displayed (Balestra (1976),
Rogers (1980)), but these other definitions typically do not preserve
the rank of the transformation (so that the determinant of the matrix
of partial derivatives is not the Jacobian), and do not allow a

useful chain rule. These points are discussed in more detail by

Pollock (1984) and Magnus and Neudecker (1984).




The computation of Jacobian matrices is made extremely simple

by the use of differentials (Neudecker (1969), Magnus and Neudecker

(1984)). The essential property here is that
vec dF (X) = A(X)vecdX
if, and only if,
VF(X) = A(X). - (9.4)

Thus, if we can find a matrix A (depending, in generél, on X, but
not on dX) satisfying (9.3), then this matrix is the Jacobian matrix.
Some examples will show that the approach via differentials is short,

elegant, and easy.

Example (i). The linear matrix function Y = AXB where A and B are

two matrices of constants. Taking differentials we have

dYy = A(dX)B ,

from which we obtain, upon vectorizing,

vec @Y = vec A(dAX)B = (B' @ A) vec &X.
Hence the Jacobian matrix is

9 vecY

9 (vec X) (9.6)

If X is constrained to be symmetric, we substitute D dv(X) for vec dX

in (9.5), where D is the duplication matrix. This gives

vec &Y = (B' @ A)D dv(X) ,

so that




o vecY

I (B & A)D . (9.7)

Of course, we can also obtain (9.7) from (9.6) using the chain rule,

%

since for symmetric X,

3 vec X

3 (X)) (9.8)

More generally, if X is L-structured, X € L(A), then the Jacobian

matrix is (B' @ A)A.

Example (ii). The nonlinear matrix function ¥ = x'l. We take

differentials,

- x Hanx™?
and vecs,

1

(x"h " @ X—l) vec dX,

thus leading to the Jacobian matrix

-1 -1

dvecY - xY Tex . ' (9.9)

9 (vec X)°!

Again, if X is symmetric (L-structured), we postmultiply (9.9) by D

(A, in general).

Example (iii). The real-valued function ¢ (X) = tr AX, where A is

a matrix of constants. We have

d¢(X) = tr AdX = (vec A")' vec ax,

so that the gradient vector is




3¢ (X)
3 (vec X)'.

= (vec A")' ’ (9.10)

(This is usually written as 3¢ (X)/3X = a', which, in spite of its

attractiveness, is not always commendable.) For symmetric X, we

proceed as before and find

2000 Ny o . .
TGy = (vee 2D = (vec (a+a’-dgan) ., (9.11)

where dg(a) is the diagonal matrix with the diagonal elements of

A on its diagonal.




10. Matrix differentiation: second derivatives

Let ¢ : S - IR be a real-valued function defined and twice

differentiable on a set S in IR . Let D?_j¢ (x) denote the second-

order partial derivative of ¢ with respect to the ith and jth

coordinates. Then the n Xn matrix (Dijcb(x)) is called the Hessian

matrix of ¢ at x and is denoted H¢ (x) or 3¢ (x)/9xdx . Since ¢
is twice differentiable at x, H$ (Xx) is a symmetric matrix.

Next, let us consider a real-valued function ¢ : S + IR defined
and twice differentiable on SCIRnxq . The. .Hessia;l matrix of ¢ at
X is then the ng X ng (symmetric) matrix

3¢ (X)

Hp(x) = dvecX d3(vecX)' '

(10.1)

.t . . . . .
whose ij h element is the second-order partial derivative of ¢ with
respect to the ith and.jth coordinates of vec X.

The computation of Hessian matrices 'is based on the property

&®p(x) = (vecax)'B(X) (vecax)
if, and only if,

Hp(X) = %(B(X) + B' (X)) ,
where B may depend on X, but not on dX.

Example (i). The quadratic function ¢ (X) = tr AXBX', where A and
B are square matrices (not necessarily of the same order) of constants.

Twice taking.differentials, we obtain

d2¢(X) = 2trA(dX)B(dX)' = 2(vecdx)'(B' @ A)(vecdX). (10.4)




The Hessian matrix is therefore

32¢ (X)
dvec X 3(vecX)'

B e@a+BR@A" .

If X is constrained to be symmetric, we have

32¢ (X)
v (X) 3 (v(X))"'

p'B'2a+BRA")YD .

Example (ii). The real-valued function ¢(X) = trx-l.

ap(x) = - trx (dx)x'1

and therefore

a4 (x) - e @ @xt - trxhaxn @ h

strxt@xt@ox ! = 2(vecax") ' x' 1o x71) (vecax)

-2

2(vecax) 'k(x'™“ @ x‘i) (vecdx) , (10.7)

so that the Hessian matrix beccmes

324 (X)
dvecX 9 (vecXx)!®

= rx' % e xlixlgx?

For symmetrix X, we find

ov(x) a(v(x))'

2 - - R . |
89 (X) = D'(x29x1+X®X).D

-1 -2
' eax ),

using (7.4) and Lemma 4.1.
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11. Jacobians involving L-structures

X
Let F: S > R ° be a matrix function defined and differentiable
. nxq . . .
on a set S in R . If mp=ng, the Jacobian matrix VF(X) defined
by (9.2) is a square matrix. Its determinant is called the Jacobian

(or Jacobian determinant) and is denoted by JF(X)° Thus,
. = |wEm] . (11.1)

Example (i). The linear transformation F(X) = AXB, where X and F(X)

are mxn matrices, and A and B are nonsingular matrices of constants

of orders mXm and nxn, respectively. From (9.6) we know the Jacobian

matrix VF(X) = B' & A, so that the Jacobian is
g = [8'ea| = a"|s]® . (11.2)

Example (ii). The nonlinear transformation F(X) = x_l, where X is

a nonsingular nXn matrix. The Jacobian matrix is given in (9.9) as

1 1

VF (X) =-4X')— e X . so that the Jacobian of the transformation is

g = |- xH Tt e x| = 1 |x|7. (11.3)

The evaluation of Jacobians of transformations involving a
symmetric nXn matrix argument X proceeds along the same lines, except
that we must now take into account the fact that X contains only

Ln (n+l) "essential" variables.

Example (iii). The linear transformation F(X) = AXA', where X (and

hence F (X)) are symmetric nXn matrices. Taking differentials and

vecs, we have

vec dF(X) = (A @ Bp) vec d4X.

Since dX and dF (X) are symmetric, we obtain




+
dv(F(X)) = Dn(A 2] A)Dn dv (X),

éo that,

IV(F(X)) | _ + ~ o+l
dwv X' Io_@aemp | = [a", (11.4)

JF(X)
using (7.11).

. . . -1 .
Example (iv). The inverse transformation F(X) = X for symmetric

nonsingular X of order nXn. Again taking differentials and vecs, we

obtain

1

vec dF(X) = - (x'y " e X_l) vec dX,

1

av (F(X)) = - D;((X')- e x’l)nn av (X) .

The Jacobian of this transformation then follows from (7.11):

1 -1
JF‘X) f X

av<F(x))|
9(v(xX))!®

+ e
|- D_((x") )Dn| = (-1)

To evaluate the Jacobian matrix (and the Jacobian) of a trans-

formation involving more general L-structures is straightforwaxd.

Example (v). The transformation F(X) = X'X, where X = (xij) is a

lower triangular nxn matrix. From

dF(X) = (dx)'x + x'ax ,

we obtain

Ln (n+1)lx| -(n+1) .



(x' @ I)vec @X)' + (I @ X') vecdx

((x' 2 )X +IQ@X') vec dx
nn

<

(I+K )(Ie@x')vecdX = 2N (I @ X') vecdx.
nn n ]
1
Now let Ln be the A-matrix with the property that
L'v(a) = vec A
n

for every lower triangular nXn matrix A. Then, since dX is lower

triangular and dF (X) is symmetric, we obtain

+ ] !
dv (F (X)) 2 DnNn(I Q@ X )Lndv(X)

' e ' '
2(DnDn) Dn(I 2 X )LndV(X) '

using (7.5) and (7.2) The Jacobian matrix is therefore

v (F (X))

' -1 .
IR 2(p)p) (L (I &XD)

"and its determinant is the Jacobian of the transformation. The

determinant is

ov (F (X))
9(v(x))?

nooy
n ox-, , (11.5)
=1 11l

n

JF(X) 2

i

using (7.13) and Lemma 4.1(iii) of Magnus and Neudecker (1980).

Historical note. A variety of methods has been used to account for

the symmetry in the evaluationfof Jacobians of transformations involving
symmetric matrix arguments, notably differential techniques (Deemer

and Olkin (1951) and Olkin (1953)), indaction (Jack (1966)), and
functional equations induced on the relevant spaces (0Olkin and Sampson
(1972)). Our approach finds its root in Tracy and Singh (1972) who

used modified matrix differentiation results to obtain Jacobians in




a simple fashion. Many further Jacobians of transformations with
symmetric or lower triangular matrix arguments can be found in Magnus
and Neudecker (1980); the matrix Ln introduced in example (v) is

their so-called "elimination" matrix. Neudecker (1983) obtained

Jacobiahs of transformations with skew-symmgtric, strictly lower

triangular, or diagonal matrix arguments.
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