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Abstract: The first few moments of compound distributions may be obtained

by conditioning on the number of terms. It is shown how this method can
be adapted to construct a recursive scheme for computing higher order moments

of compound distributioﬁs.




1. Introduction

Suppose that the random variable S, representing e.g. the total amount of

claims on an insurance portfolio in a certain year, may be written as
(1)

where X ... are i.i.d. random variables (claimsizes), independent of
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the random variable N (the number of claims). We know of two algorithms

to compute the moments of S when N is Poisson distributed. When A is the
Poisson parameter en p., = EXJ , according to [4] we have
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and [2], page 12, gives a useful recursion formula
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We will present in section 2 a recursive scheme to compute moments E(S )
when the distribution of N is arbitrary.
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The number of arithmetic operations required for computing E(S ) increases
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with k=, the storage needed is proportional to k .

In section 3 we show how by the same algorithm the moments of the ruin

probability function § can be computed.




2. Algorithm

First we will compute conditional expectations of S given N = n. Observe

that by symmetry, Newton's Binomial Theorem and independence, for all
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Letting n'k = n(n-1) ... (n-k+1), we will show that coefficients ajk ,

exist, such that for all n =1, 2,

(4)

Indeed, suppose that such ajl have been computed for & < k , taking of
course a =Py v then by (3)
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Using (4) we directly obtain

E(Sk) P(N=n)E(Sk|N=n)

The coefficients ajk in (7) are computed using (6); the factorial moments
of N can be computed from the ordinary moments, but in fact often are more
easilv calculated themselves. In [3] one finds expressions for factorial
and ordinary moments of many counting distributions, including those used

in actuarial work.




Application

Consider the compound Poisson process (cf. (1D

X. t >0}
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where
{N(t) t > 0}

is a Poisson stochastic process with E(N(t)) = t and Xy X2, ... is a
sequence of i.i.d. random variables with distribution function P and
moments Py p2, PN
Let for some A > 0 ,

N(t)

Z=su [ I X. - t(p,+N)]
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If X is the safety loading included in the premium, and u is the intitial
reserve, ruin occurs in case of the event Z > u . So if P*¥ is the

distribution function of Z, we have for the ruin probability function P
Pu) =1 - v¥(u)

Now by the theorem on p. 67/68 of [1] we have
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with H*n the n-fold convolution of the following distribution

X
H(x) = I 1-P(t)

0 Py

dt (for x > 0 , 0 elsewhere) (9)

We may apply the algorithm of the preceding section to compute the moments

of V¥ , as Y* is by (8) a compound Geometric ( A+A) distribution. The
P1

moments of H can be obtained by partial integraﬁion:
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