

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
<http://ageconsearch.umn.edu>
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

AMSTER

AE 20/84

FACULTY OF
ACTUARIAL SCIENCE
&
ECONOMETRICS

PIANNINI FOUNDATION
AGRICULTURAL ECO-
LIBRARY
DRAWN 0 1980

A & E REPORT

REPORT AE 20/84

COMPUTING MOMENTS OF COMPOUND DISTRIBUTIONS

R. Kaas

M.J. Goovaerts

University of Amsterdam

Title: Computing moments of compound distributions

Authors: R. Kaas

(University of Amsterdam)

M.J. Goovaerts

(University of Amsterdam and K.U. Leuven (Belgium))

Address: University of Amsterdam

Faculty of Actuarial Science & Econometrics

Jodenbreestraat 23

1011 NH Amsterdam

Date: 15.10.1984

Series and Number: AE-Report 20/84

Pages: 6

Price: No charge

JEL subject classification: 213, 520

IAR subject classification: M11

Keywords: moments, compound distributions

Abstract: The first few moments of compound distributions may be obtained by conditioning on the number of terms. It is shown how this method can be adapted to construct a recursive scheme for computing higher order moments of compound distributions.

1. Introduction

Suppose that the random variable S , representing e.g. the total amount of claims on an insurance portfolio in a certain year, may be written as

$$S = \sum_{i=1}^N X_i \quad (1)$$

where X_1, X_2, \dots are i.i.d. random variables (claimsizes), independent of the random variable N (the number of claims). We know of two algorithms to compute the moments of S when N is Poisson distributed. When λ is the Poisson parameter and $p_j = E X^j$, according to [4] we have

$$E(S - \lambda p_1)^k = k! \left\{ \frac{\lambda p_k}{k!} + \frac{\lambda^2}{2!} \sum_{k_1+k_2=k} \frac{p_{k_1} p_{k_2}}{k_1! k_2!} + \frac{\lambda^3}{3!} \sum_{k_1+k_2+k_3=k} \frac{p_{k_1} p_{k_2} p_{k_3}}{k_1! k_2! k_3!} + \dots \right\}$$
$$k_1, k_2 \geq 2 \quad k_1, k_2, k_3 \geq 2$$

and [2], page 12, gives a useful recursion formula

$$E(S - \lambda p_1)^{k+1} = \lambda \sum_{t=0}^{k-1} \binom{k}{t} E(S - \lambda p_1)^t p_{k+1-t}$$

We will present in section 2 a recursive scheme to compute moments $E(S^k)$ when the distribution of N is arbitrary.

The number of arithmetic operations required for computing $E(S^k)$ increases with k^3 , the storage needed is proportional to k^2 .

In section 3 we show how by the same algorithm the moments of the ruin probability function ψ can be computed.

2. Algorithm

First we will compute conditional expectations of S given $N = n$. Observe that by symmetry, Newton's Binomial Theorem and independence, for all $n = 0, 1, \dots$

$$\begin{aligned}
 E\left(\sum_{i=1}^n x_i\right)^k &= \sum_{i=1}^n E x_i \left(\sum_{j=1}^n x_j\right)^{k-1} \\
 &= n E x_n \left(\sum_{j=1}^n x_j\right)^{k-1} \\
 &= n E x_n \sum_{t=0}^{k-1} \binom{k-1}{t} x_n^t \left(\sum_{j=1}^{n-1} x_j\right)^{k-1-t} \\
 &= n \sum_{t=0}^{k-1} \binom{k-1}{t} p_{t+1} E \left(\sum_{j=1}^{n-1} x_j\right)^{k-1-t} \tag{3}
 \end{aligned}$$

Letting $n!^k = n(n-1) \dots (n-k+1)$, we will show that coefficients a_{jk} , $j = 1, 2, \dots, k$; $k = 1, 2, \dots$ exist, such that for all $n = 1, 2, \dots$

$$E\left(\sum_{i=1}^n x_i\right)^k = \sum_{j=1}^k a_{jk} n!^j \tag{4}$$

Indeed, suppose that such a_{jl} have been computed for $l < k$, taking of course $a_{11} = p_1$, then by (3)

$$\begin{aligned}
 E\left(\sum_{i=1}^n x_i\right)^k &= n \{ p_k + \sum_{t=0}^{k-2} \binom{k-1}{t} p_{t+1} \sum_{j=1}^{k-1-t} a_{j,k-1-t} (n-1)!^j \} \\
 &= n p_k + \sum_{t=0}^{k-2} \binom{k-1}{t} p_{t+1} \sum_{j=1}^{k-1-t} a_{j,k-1-t} n!^{(j+1)} \\
 &= n p_k + \sum_{j=1}^{k-1} n!^{(j+1)} \sum_{t=0}^{k-1-j} \binom{k-1}{t} p_{t+1} a_{j,k-1-t} \\
 &= n p_k + \sum_{j=2}^k n!^j \sum_{t=0}^{k-j} \binom{k-1}{t} p_{t+1} a_{j-1,k-1-t} \\
 &= \sum_{j=1}^k a_{jk} n!^j \tag{5}
 \end{aligned}$$

if we take $a_{1k} = p_k$, and for $j = 2, 3, \dots, k$

$$a_{jk} = \sum_{t=0}^{k-j} \binom{k-1}{t} p_{t+1} a_{j-1, k-1-t} \quad (6)$$

Using (4) we directly obtain

$$\begin{aligned} E(S^k) &= \sum_{n=0}^{\infty} P(N=n) E(S^k | N=n) \\ &= \sum_{n=0}^{\infty} P(N=n) \sum_{j=1}^k a_{jk} n^{\cdot j} \\ &= \sum_{j=1}^k a_{jk} E(N^{\cdot j}) \end{aligned} \quad (7)$$

The coefficients a_{jk} in (7) are computed using (6); the factorial moments of N can be computed from the ordinary moments, but in fact often are more easily calculated themselves. In [3] one finds expressions for factorial and ordinary moments of many counting distributions, including those used in actuarial work.

3. Application

Consider the compound Poisson process (cf. [1])

$$\{Y(t) = \sum_{j=1}^{N(t)} X_j, \quad t \geq 0\}$$

where

$$\{N(t), \quad t \geq 0\}$$

is a Poisson stochastic process with $E(N(t)) = t$ and X_1, X_2, \dots is a sequence of i.i.d. random variables with distribution function P and moments p_1, p_2, \dots

Let for some $\lambda > 0$,

$$Z = \sup_{0 \leq t \leq N(t)} \left[\sum_{j=1}^{N(t)} X_j - t(p_1 + \lambda) \right]$$

If λ is the safety loading included in the premium, and u is the initial reserve, ruin occurs in case of the event $Z > u$. So if ψ^* is the distribution function of Z , we have for the ruin probability function ψ :

$$\psi(u) = 1 - \psi^*(u)$$

Now by the theorem on p. 67/68 of [1] we have

$$\psi^*(u) = \frac{\lambda}{p_1 + \lambda} \sum_{n=0}^{\infty} \left(\frac{p_1}{p_1 + \lambda} \right)^n H^{*n}(u) \quad (8)$$

with H^{*n} the n -fold convolution of the following distribution

$$H(x) = \int_0^x \frac{1-P(t)}{p_1} dt \quad (\text{for } x > 0, 0 \text{ elsewhere}) \quad (9)$$

We may apply the algorithm of the preceding section to compute the moments of ψ^* , as ψ^* is by (8) a compound Geometric $(\frac{\lambda}{p_1 + \lambda})$ distribution. The moments of H can be obtained by partial integration:

$$\begin{aligned} \int_0^\infty x^j dH(x) &= \frac{1}{p_1} \int_0^\infty x^j (1 - P(x)) dx \\ &= \frac{1}{p_1} \left(\frac{x^{j+1}}{j+1} (1 - P(x)) \Big|_0^\infty + \int_0^\infty \frac{x^{j+1}}{j+1} dP(x) \right) \\ &= \frac{p_{j+1}}{p_1 (j+1)} \end{aligned} \tag{10}$$

References

- [1] Beekman, J.A., "Two stochastic processes",
Almqvist and Wiksell, Stockholm (1974)
- [2] Goovaerts, M.J., F. de Vylder and J. Haezendonck,
"Insurance Premiums", North-Holland (1984)
- [3] Janardan, K.G., "Moments of certain series distributions and
their applications", SIAM J. Appl. Math. 1934: 854-868
- [4] Shiu, E.S.W., "Moments of two distributions in collective
risk theory", Scandinavian Actuarial Journal 1977: 185-187

