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ABSTRACT

In this paper we discuss the consequences of omitted
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1. INTRODUCTION

Survival analysis is a flourishing branch of statistics. Applications

range from reliability testing to clinical trials, life tables and un-

employment durations. The popularity of the subject is partly due to

the availibility of flexible models and simple estimation methods for

these models. Especially, the contribution of Cox (1972) who introduced

the proportional hazards specification and a semi-parametric estimation

method for this model, was important.

The proportional hazards model has been applied in experimental and

non-experimental situations. In non-experimental situations (and even in

some experimental situations e.g. clinical trials) the control of the data

generating mechanism is imperfect. For that reason analysts usually

include a number of covariates in the model in order to measure the effects

of interest with more precision. Or they randomize the treatment allocation,

so that the omitted covariates are not correlated with the treatment.

For comparison we give a short review of regression methods for the

analysis of experimental data. If we consider a simple randomized

experiment then we can analyse the data from the experiment with a simple

analysis of variance model

Y = o 
+ Ps

1
d + 

—
c

with y the response variable, c the error and d the indicator of treatment.

(We underline random variables). Of course, the randomized allocation of

treatments implies that d is random as well. However, because d is ancillary

for the parameters of interest we can consider d as a given constant.

Because the treatment allocation is random, we have

(1.2) E(cid=1) = E(cid=0) = 0,

a sufficient condition for unbiased estimation of the treatment effect.

If

(1.3) E(c d=1)> E(c d=0)
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i.e. if c and d are positively correlated, then the treatment effect

will be overestimated. If d is replaced by a vector x of covariates

then a sufficient condition for unbiased estimation is that c and x

are not correlated (if x is ancillary for the parameters of interest,

then x can be considered as a random vector or as a vector of constants).

If x and E are correlated then the ordinary least-squares estimates of

the regression parameters are biased (for the direction of the bias,

see Theil (1.971), pp. 549-550).

In this paper we show that imperfect control of experimental conditions

has different consequences for the estimates of treatment effects in

survival analysis. Neglecting omitted covariates (even if they are not

correlated with the treatment allocations) leads away to underestimation of the

treatment effect. We assess thisbias by a combination of a Monte Carlo

analysis and an analytical derivation.

The plan of the paper is as follows. In section 2 we discuss a model

for survival data in the presence of omitted covariates. In section 3 we

consider the effects of omitted covariates on the popular semi-parametric

estimation method for the proportional hazards model. Section 4 contains

some conclusions and suggestions.
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2. THE PROPORTIONAL HAZARDS MODEL AND THE MIXED PROPORTIONAL HAZARDS MODEL

We consider the well-known Proportional Hazards (PH) specification

introduced by Cox (1972) and discussed in e.g. Kalbfleisch and Prentice

(1980). Under this specification the hazard function is given by

(2.1) A(t,x;13) = cp(x;f3)11)(t)

where i(t) is the base-line hazard function and (x;f3) describes how this

base-line hazard varies with the covariates x;13 is a vector of regression

parameters. It is common practice to assume that

(2.1a) (1)(x;f3) = exp(xv) .

Further we assume that the regressors x are constant over time. Most results

obtained below also apply if there are time-varying regressors.

In most applications the number of covariates in the model is small.

There are several reasons for this. In non-experimental situations one is

usually limited by the number of available covariates, but even in

experimental situations it may be impossible to obtain observations on all

(potentially) relevant explanatory variables (if one knew this set in the

first place). Moreover, it is common practice (see e.g. Kalbfleisch and

Prentice (1980) pp.89-98) to identify relevant covariates by including them

in the model one at a time. These observations indicate that in most

applications the heterogeneity in the sample will only be partially

described by the included covariates.

This fact has been noted by several authors (e.g. Vaupel, Manton and

Stallard (1979),Lancaster (1979), Lancaster and Nickell (1980)). They note

that as a consequence of unobserved heterogeneity observation units with

identical x and t will have different hazard rates. More specifically they

assume that the additional heterogeneity can be introduced in the hazard as

follows

(2.2) A(t,x,v;f3) = (1)(x;12.)flt)v

-41
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where the positive random variable v has a distribution with d.f. G.

We assume that E(v) < co . The random variable v is analogous to the

disturbance term in a regression model and therefore it is natural to

assume that the distribution of v does not depend on x. In experimental

studies x will contain the treatment variables and therefore a randomized

allocation of treatments will ensure the independence of v and x. Of

course, chosing flx0) = exp(x T ) leads to a multiplicative specification

of the disturbance term v. In the following we will restrict attention to

this form of (j).

Two of the three factors in the PH-specification (2.2) have to be

normalized. We will chose

(2.3a)

and

(2.3b)

E(v) = 1

= 1 .

However, for reasons indicated below we will use another normalization in

our Monte-Carlo study.

The survivor function corresponding to (2.2) is

00

(2.4) F(tlx;) 13) z(t) vldG(v)

0

with

(2.4a) z(t) = f ip(s)ds.

For obvious reasons we refer to the specification (2.2) as the Mixed

Proportional Hazards (MPH) specification. The MPH-model has been considered

by several authors, in most cases with a specific choice of G. (Vaupel,

Manton and Stallard (1979), Lancaster (1979), Lancaster and Nickell (1980),

Hougaard (1983)).

The MPH-model is characterized by a function (P which,describes the

observed heterogeneity, a time-dependence function IP and a d.f. G of the

distribution of the unobserved heterogeneity. One can ask whether Lhis

characterization is unique. Elbers and Ridder (1982) have shown that if

takes on at least two distinct values and E(v) < co , then to every

MPH-model corresponds just one triple If (I) is a constant

different combinations of {11),G} may lead to the same MPH-model. In

(i)
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particular, every MPH-model has an equivalent PH-specification, so that

the unobserved heterogeneity can be completely absorbed into the time-

dependence For if F(t) is the survivor function of an arbitratry

MPH-model with constant cl), then

(2.4b) Z(t) = -1nF(t)

where z(t) is differentiable on (0,co) with z' (t) > 0, z(0) = 0 and

z(co) =co. Therefore

(2.4c) F(t) = exp t)

where the right-hand side is a survivor function of a proper PH-model.

If flx;fi) varies with x, misspecification of G or IP can result in biases

in the estimates of the regression coefficients or the base-line hazard.

Specifically, application of the semi-parametric estimation method suggested

by Cox with the implicit assumption that v has a degenerate distribution can

result in biased estimates.

We conclude this section with a closer examination of the MPH-model

and a comparison of this model with other models that have been proposed for

the analysis of failure-time data. For this purpose we prove the following

theorem (the symbol = indicates that two random variables have the same

distribution).

Theorem 2.1

If the distribution of t is of the MPH-type with base-line hazard IP, observed

heterogeneity (1)(x;1i) and unobserved heterogeneity v with d.f. G then

(2.5a) 2)
in z(t) = -in 4)(x;(3) + w- lnv

with z(t) given by (2.4a) and w a random variable with a Type-1 Extreme Value

distribution (Johnson and Kotz (1970) p.272). w is stochastically independent

of (x,v). Conversely, if t has a distribution such that (2.5a) holds for a_ _

differentiable and monotonically increasing function z (the distribution of w

is as before), then this distribution is of the MPH-type with time-dependence

Z'
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Proof

We first prove the second assertion.

Define ra w- ln(1)(x;)- lnv . Because w has a Type-1 Extreme Value

distribution and is independent of (x,v) it follows that

Pr (r >

(2.5b)

1 vix = Pr(w >ln(j)(x;f3) lnv + riv,x)

expi -(x; ()ver .

From (2.5a) -0-4-z-1(e-r-) Then it is easily seen that t has a MPH-distribution with

heterogeneity 4)(x;(3) , unobserved heterogeneity v and time-dependence z' (t).^1_

Next, we prove the first assertion.

Define w= in z(t) + 1n(1)(x;13) + lnv . Then

(2.6) Pr(w> wlv,x) = Pr(lnz(t) > w - 1n4)(x;) - in v v,x)

= expf-e
w
1

Thus w has a Type-1 Extreme Value distribution and is independent of (x,v)._ _
The conditional distribution of r which is defined above given v, x is

given by (2.5b). It is easily seen that

(2.7) Pr (lnz(t) > r I v,x) = exp{-+(x;(3)ver}

Therefore the random variables on the left-hand and right-hand side of

(2.5a) have identical distributions.

Note that the representation in (2.5a) is unique (Elbers and Ridder

(1982)). Note also that in (2.5a) x is a random variable. If, as usual,

x is ancillary for the parameters of interest, there is no difference

between the fixed and random covariate case.

If (P(x;) = expfx 1 f31 it follows that the MPH-model is equivalent to

a linear regression model with an unknown form of the dependent variable

and a variance components error term. The PH-model is the special case in

which v is concentrated in 1. From (2.5) we see that there is a relation

between the MPH-model and the Accelerated Failure-Time (AFT) model. The AFT

model is specified as



8

(2.9) ln t = + e

where e is an error term with an unspecified distribution. All AFT-models

in which e is a convolution of a Type-1 Extreme Value distribution and a

distribution of a random variable v normalized such that E(e-17)=1 belong

to the class of MPH-models. As is well-known the only PH-model that leads to

a log-linear specification is the Weibull-model (Kalbfleisch and Prentice

(1980)).

Equation (2.5a) is useful in generating observations in a Monte-Carlo

study. We find

(2.10)
d -1, 

Lt = z exp{-8'x - ln v + w}]— —

Another application of (2.5a) is to a decomposition of the total

variation in ln z (t) into an observed and an unobserved part. The explained

fraction of the heterogeneity is

(2.11)
var ()11 ) 

R2-var(x 1 13) + var(ln v)

which as the notation suggests can be interpreted analogously to the

coefficient of determination in a regression model. This measure will

be used below.
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3. THE CONSEQUENCES OF UNOBSERVED HETEROGENEITY FOR THE SEMI-PARAMETRIC

ESTIMATION OF THE PH-MODEL

3.1. Preliminaries

We next consider the consequences of neglected heterogeneity for the

estimates of the regression coefficients and the time-dependence function

(the base-line hazard) of the PH-model. Throughout we consider situations

in which there is no censoring and there are no ties in the data. Therefore

if the data are (t.,x.) i=1,...,N (N is the number of observations) and
1 1

we order the observations according to t
1
< t

2
< ...< t

N 
, then the estimate

of is obtained by maximizing

(3.1) L(f3) =
N ( N

2 E e * xkl

i=1

Under the assumptions made above this likelihood can alternatively

be considered as the marginal likelihood based on the rank statistic

(Kalbfleisch and Prentice (1973)) and as a partially maximized (with 
respect

to the base-line hazard) likelihood of a multivariate counting pr
ocess (Johansen

(1983)). In both cases L(.) can be treated as an ordinary likelihood.

Given ML-estimates of f3, we can estimate IP. Instead of using a dis-

continuous estimator of the survivor function, we follow the suggestion of

Kalbfleisch and Prentice (1973) and approximate ip(t) by a piecewise constant

function i.e. we assume

(3.2)

1P(t) = 1P1 0< 
t<b1 ' 

• tE I
1

2
b
1 
< t< b

1 
+b
2 
; tE I

2— . 

b 
1 

..+b < t < tE I •
r--1— r

The estimates of 11)1,...,4)
r 

are (Kalbfleisch and Prentice (1973) give an

erroneous expression for 1-P
r
)

d.

i D.+b.C.
1 ii

(3.3)

i=1,... ,r-1

i=r ,
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with d, the number of failures in I. and
1 1

r A
(3.4a) C = E E expWx.1

i 3Z=i+1 jEJz

A
(3.4b) D. = •E (t.-b )expWx.}

JEJ j 1

where J. is the index set of observations with failure time in I
i
. The

1
reason for using the step-function approach is that it allows for a

clearer comparison of estimates under different assumptions.

We use a Monte Carlo approach to study the behaviour of the

estimates of and tl) . However, before we describe the design of the

experiments and the results, it is useful to reflect on the likely

outcome of the experiments. In their paper Lancaster and Nickell (1980)

study the hazard of the MPH-model. They find that the observed time-

dependence function of the MPH-model i.e. the function

(3.5) (t) = 
f(tlx;f3) 

(1)(x;13)P(tlx;)

with F given by (2.4) and f the corresponding density, is always smaller than

the underlying time-dependence function TP(t) and that the difference increases

with t. Furthermore, they conclude that the effect of x on the hazard of

the MPH-model is smaller (in absolute value) than the true effect which is

given by

In advance, it is not clear how this will affect the estimates

of and the iv.. After all, the semi-parametric estimates make use of

only a part of the information (the rank statistic). The above suggestions

contradict the conjecture of Andersen (1983) that neglecting unobserved

heterogeneity will only lead to underestimation of the variances of the

regression parameters.

3.2. The Monte Carlo design and the simulation results

(3.6)

Throughout we generate durations according to

a. )
-1 -1

t. = z
-1 x!(3.

e v.
-1
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The components in (3.6) are specified as follows

a. Random variables

(3.7)

a = • exponential ; mean 1

V = • lognormal ; mean 1, variance differs between experiments

x = • multinormal ; diagonal covariance matrix (independent

regressors), means (3.5, 1.0, -.5), standard deviations

(.35, .90, .50).

b. Parameters

= -.80
1

= -.40
2

3 
= -.50

c. Time-dependence function

(t) = 1

= 1.25.

0 < t< 10

10 < t< 40

.75 t > 40 .

The values of the parameters and the means and variances of the covariates

are inspired by the study of Lancaster (1979). Note that we do not

specify a value for 130 , the constant in the regression part of the

model. The reason for this is that we varied the value of P. from
0

experiment to experiment.

The location of the distribution of t is very sensitive to changes in e.g.

the variance of the distribution of V. To control for this, we adjusted 130

between experiments, so that the median of t in every case was approximately

equal to 20. In estimating the base-line hazard we used the following five-

step approximation

(t)

(3.10)

0 < t< 10

10 < t< 20

20 < t< 40

40 < t< 80

80 < t
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i.e. we estimate the normalized time-dependence function characterized by

1P2,••.,11)5•

The results of the Monte Carlo experiments are reported in

Table 3.1-3.2. In these tables R
2 

refers to the measure defined in (2.11).

We first consider the results for the correctly specified model (R
2
=1).

Here Table 3.1

Here Table 3.2

The biases in the regression coefficients are small. The standard errors

of the regression coefficients are correctly estimated. The asymptotic

normal distribution of the regression estimates applies. The biases in the

estimates of base-line hazard funtion are small.

We also considered samples of size 50. For that sample size we obtained

the same results, except that the step sizes of the time dependence

functions are clearly overestimated. For samples of size 50 we also

studied the quality of the normal approximation to the distribution of

We concluded that the construction of e.g. confidence intervals

for tP. should be based on the aymptotic normal distribution of in ti)
1—s

Moreover we found that the estimated standard errors of in 11)4 only slightly
--L

underestimated the sample standard deviations.

If there is neglected heterogeneity (R
2
<1), we find that the

regression coefficients are biased towards 0 . The size of the bias

increases as the importance of the neglected heterogeneity increases

(i.e. if R
2 

decreases). Note that the relative bias is substantial only

if R2<.5. It is interesting to note that the estimated standard errors of

the regression coefficients are approximately correct. Therefore, tests

of no effect of a particular covariate have correct size but lower power.

If R
2 
decreases the sample variance of the estimates does not increase.

Note the difference with the result that would obtain in a linear

regression model. The normal approximation to the asymptotic distribution

of the (biased) estimates is quite good. Unobserved heterogeneity affects

the location of the likelihood function but not its curvature.

Neglected heterogeneity also leads to underestimation of the IP
i
is.

This implies that unobserved heterogeneity gives an estimate of the base-

.4

,10,4
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line hzard which is less increasing or more decreasing than the true

base-line hazard. The bias is considerable and increases if R
2 
decreases.

The sample variances of the estimates (and also the estimated variances)

decrease if R
2 
decreases.

For samples of size 50 we obtained the same results. However, the

overestimation of the IP
i
's if R

2
=1, led to smaller biases if R2<1.

In a preliminary study (Verbakel (1983)) it was found that if R
2
=1 the

discrete approximation to a continuous time dependence function is

accurate. Moreover, it was found that the conclusions in the text are

not altered if we choose (in the generating model) another form of the

base-line hazard or another distribution of the unobserved heterogeneity.

From these results it can be concluded that the semi-parametric

estimates share the properties of the corresponding components of the

MPH-model. In the next section we give an analytic derivation of the

biases which also allows for an interpretation of the results obtained

in the Monte-Carlo study.

*-
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3.3. Interpretation of the bias

In this section we present a heuristic analysis of the results of

section 3.2. We focus on the bias in the regression coefficients. We will

show that the bias arises because of a dynamic selection process which

causes a correlation between the covariates and the unobserved hetero-

geneity. This correlation biases the estimates (see section 1).

We assume that we have observations (t., x.); i = 1,...,N with
1 1

.<tN.LettheeventH.denote the failure history of the sample

overthetimeintervalrecords the failure times during

[0,t.) and the failure of a subject with an as yet Unknown identity at ti.

For simplicity of exposition we assume that there is no censoring. The

population hazard is given by

(3.11) xtkA (t " x v• 13 ) = e o(t)—v .o o

The assumed hazard in the construction of (3.1) is

(3.12) A(t, x; P.) = ex 131P(t) .

Let 1 denote the random index of the subject failing at t.. Of course,

thesamplespaceof1istherisksetatt..The contribution of the

i-th (ordered) observation to the

(3.13) =
1 N

xk 0
E e

e 1
x. 1 13. .

•

likelihood (3.1) is

If (3.12) were correct, (3.13) would be Pr(Z=i I Hi)

probability of this event is

(3.14) Pr(l=i11.1.)= E
v1

x.'
e 1 y..;

E e -vk
k=i

t > t.
- - 1

. However, the true

where the expectation is taken with respect to the joint distribution of

given t > t..
—
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then the expected (the expectation is with respect to the distribution

of 1) conditional score is given by

N

(3.15b) E(U (13) 1 H.) = E ai)Pra = i 1 H.)J .
1 1 

U j 
--

-- 
1

j=i

where .e. the
3 I

risk set is the same). Because

(3.16)

we find

(3.17)

U.(13)
k=i

e
xk'13

xk

E e
x
in
'13

m=i

=E(U (R) I H.) E
v

k=i xkzke
t t.

PO iE v e xk

k=i

E ek xk
k=i

f3'x
E e k

k=i

Let ic_k; k = 1, 2, ... be a sequence of i.i.d. random variables (or

vectors). This covers the cases of randomized experiments and behavioral

studies. We make this assumption for expositional reasons; the non-

random covariates case can be analyzed in a similar fashion. Then for

k = i, i+1, ... the vectors (:sk, ..y.k) in (3.17) are i.i.d. random vectors with a

common distribution identical to that of (x, v) given t > ti. Therefore

if N

ils. PYIVX, 

— t.) E (xe(3 --it > t.)- —  
(3.18) E(U (R) I Hi av,x)4- —

i i l
—
x
It > . (vet3°'—xit > t) Ex(e t), — — — i — _

It is easily seen that if v E 1 and (3 = 130, the expected conditional

score vanishes. This ensures the consistency of the Cox-estimator under

these assumptions. The same conclusion can be drawn if x and v are

independent given t > ti (i.e. among the survivors at ti). However, x and

v are not independent given t > t_. To show this we consider the joint

distribution of v and x given t > t with density (we omit the normalizing
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k(v,x I t > t) g(v)h(x) expf-z(t)ex"3°

Next we show that x and v are correlated among the survivors at t.

For ease of exposition we consider the case with one regressor. Some

calculations give that if H(x)=E(vix,t>t) then (see Appendix)

(3.20) 11 1(x) =
o
z(t)e 

0
var(v1x, t>t) .

xf3

Therefore

(3.21) H' (x) 0 c= 0
0

From (3.21) we conclude that

(3.22) cov(x,v I t> t) > 04=:> /3 < 0
0> '

Returning to (3.18), denote this limit by KW).

Differentiation gives

(3.23) K'(13.) =

f3x
-1

E(x2e It> t )_ .

f3x
E (e I t > t. )

--

f3sx
E(x e It> t.)

--

k
E (e I t > t. )

--

2

An application of the Cauchy-Schwarz inequality for integrals gives for all 13

(3.24) K'((3) <0 .

Because (we omit the normalizing constant)

(3.25)
anx

k(v,x I t= t) m ve g(v)h(x)e-z 
(t)expWox)v

it follows that

(3.26) K() =

E = t.
v- 1

1 1
t= t.)E(-1t= t.) - E(it= ti.)

1 Y- 1

4

vot
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1
Thus t. does not contribute to the bias if and only if x and --are1
uncorrelatedamongthefanuresatt..A sufficient condition for this i, of

course, independence of x and v among the failures, which in turn is

equivalent to independence ofx and v among the survivors. The sign of K(80)

can be derived by noting that (3.22) was derived without making any

assumption about the distribution of x (given t>t). Rewriting K(8o) as

(3.27) K (13, 0) =

E(e t>t,)
-- 1

E(ve
13&-!

It>t

6 x x x
- 1 -1

E(xv e 
0 

it>t.) E(x e 
0-

it>t 
0 

ft ite xt
-- -- - i

x 80x

E(e 
0- 1

t>t ) E(e 
-1

t>t )

2

13.
0
-x

and replacing h(x) in (3.25) by h(x)e , gives on adjusting the normalizing constwits

(3.28) K(8) 0 4.* 13 .

If we define by

(3.29) K(13*) = 0

then combining (3.28) and (3.24) gives

(3.30) 0
0

One can ask whether there can be a change of sign. A necessary and 
sufficient

condition for this to occur is

(3.31) K(0) > 0 and 13
o 

< 0 .

Now it is easily seen that

(3.32)
x

K(0) = C coy (x, ve13°— I t > t.)
--

with C a positive constant. Now if 130 4- 0 then the covariance in (3.32) will

become negative (this follows from (3.22)). Therefore if is small, e may
0

have an opposite sign.
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If we use the first M observations (i.e. the sample is censored

after the Nth failure) we have if N 00 and if

(3.33)

that

(3.34)

U
m
(i3) = E u.(13)

i=
1

E(U
m
(13)) = E(UZ (13) I H.)

i=1 
.

Because for all i = 1, M the solution 13) of E(U (13) I H.)
1 Z. 1

satisfies (3.30) we have that the solution

of E(U (f3)) = 0 satisfies the same relation. This establishes the

direction of the bias.

Note that the essential point in this proof is that there is a

correlation between x and v among the survivors at t.

If e.g. 13 > 0 then subjects with a large value of x will leave first
0

except if this large value of x is ofset by a small value of v. So among

the survivors there will be a negative correlation between x and V.

4
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4. CONCLUSIONS

We have shown that application of the semi-parametric Cox-method

in cases where there are omitted regressors, leads to underestimation

of the regression coefficients. We have also indicated the relevance of

this (asymptotic) result in a Monte Carlo study. As could be expected,

the magnitude of the bias depends on the relative importance of the

omitted regressors (relative to the importance of the included

regressors). The relative importance of the omitted covariates has to be

substantial before the bias in the regression coefficients, is sizeable.

In this sense the Cox-method is robust against omitted covariates.

A consequence of the results of this paper is that estimation of treat-

ment effects using data on heterogeneous individuals, will give under-

estimates of the true effects. Randomization does not alter this conclusion.

The estimated standard errors of the estimates are not affected by the

misspecification, so that the usual tests for = 0 have the correct size

but have less power. The proof suggests a test for omitted heterogeneity.

If we order the observed durations (which may be censored) in order of

increasing length and if we censor the sample at e.g. the median and

estimate the regression coefficients using this sample, then we can

compare these estimates with the estimates obtained from full sample.

If there is omitted heterogeneity, the estimate from the artificially

censored sample will be larger than the estimate from the full sample.
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APPENDIX. The derivation of (3.20).

From (3.19) it follows that

(A. 1) )°k(vix, > t) 
= g(v)exp{-z(t)e '°v} 

cx

g(v)exp{-z(t)ev}dv
0

If we define

(A.2)

then

(A.3)

H(x) = E(vix,t> t)

00 x co xf3
13 r

fg(v)exp 
0

{-z(t)e v}dv 
iv2 0 

g(v)exp{-z(t)e v}dv -xi3
0 0  0 H' (x) = -z(t)e 13. -"----
0 

"
r -
[ f g(v)expf-z(t)e °v}dv]
0

xf30 r 2 ,2
= -z(t)e (3 E(v Ix t> - [E(v x,t>0 - - — _

xf3
= -z(t)e 

o
f3 
0 - 
var (vix,t>

2
xf3.(1

fvg(v)expf-z(t)e

0



çi

CN

'Table 3.1. Regression coefficients, semi-parametric estimation N=500, 50 replications

2

Mean bias

(t-ratio;df. 49)

(3
1

Mean standard errors;
estimated (sample standard
deviation of estimators)

a
2 

a
3 a 12,2 a31

Normality of estimators;
significaue levels of
K-S test

1.0 -.029 -.000 -.015

(-1.59) (-0.00) (-1.26)

.75 0.051 0.019 .036

(2.60) (2.42) (2.97))

.50 .128 .059 .128

(5.74) (7.98) (10.25)

.10 .427 .203 .244

(25.93) (23.89) (21.62)

.135 .053 .093

(.129) (.067) (.084)

.134 .053 .093

(.139) (.056) (.085)

.133 .052 .092

(.157) (.052) (.084)

.131 .051 .090

(.116) (.060) (.080)

.89 .91 .51

1.00 .96 .88

1.00 .97 .89

.92 .97 .87

a) K-S tests Kolomogorov-Smirnov test for normality.

• tr
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Table 3.2. Base-line hazard , step estimates
N=500, 50 replications

Mean bias Sample standard
deviation of estimates

IP2  11)3 IP4 11)
5 

11)113 11)4 
I1)
5

(t-ratio; df.49)

1.0 -.001 -.002 .003 .013

(-.04) (-.09) (.24) (.73)

.75 -.079 -.087 -.098 -.157

(-3.60) (-4.22) (-7.44) -11.93)

.144 .150 .049 .128

.153 .145 .092 .092

.50 -.110 -.267 -.223 -.337 .129 .116 .078 .067

-6.00) (-16.15)(-19.91) (-32.26)

.10 -.610 -.828 -.578 -.696

-48.34) (-102.37)(-180.94)(-356.53)

.088 .057 .022 .014

*414
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