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NON-DETECTION OF SERIAL CORRELATION IN LEAST SQUARES REGRESSION;
FREQUENCY AND CONSEQUENCES.

Jan F. Kiviet

University of Amsterdam,

Amsterdam, The Netherlands.
1. Introduction

In this paper we consider problems arising from the application of Ordinary
Least Squares (OLS) in situations where all assumptions of the classical linear
regression model hold, except the zero correlation of the disturbances.
More precisely, we consider the case where the OLS results are accepted,
because the standard assumptions are found to be tenable on a priori grounds or
after testing, while in fact the basic assumption of no Serial correlation - and
only this one - is violated. We will try to outline the relevance of this
case and indicate the seriousness of the: ensuing. problems, viz.
the inefficiency and unreliability of OLS statistical analysis in the
presence of correlated disturbances. Especially the case of stationary
first-order serially correlated errors is considered.

Cochrane and Orcutt 3] and others have shown that the error terms
involved in most formulations of economic relations are highly positively
autocorrelated. Therefore it is general practice in the analysis of-
economic time series to test the independence of the disturbances.
In order- to_meet the case '.we cOnsider,here,

two conditions have to be satisfied. The first is the presence of serial
correlation in the disturbances, the second is a test result that does not
contradict the hypothesis of no serial correlation. Together these conditions
give rise to what in the statistical theory of hypothesis testing is called
a type two error. In the following we shall postulate the distribution
function of the disturbances and thus ensure that the first condition is
fulfilled. For -a specific test procedure, the probability of a type
two error can then be calculated for a particular model. Different test
procedures go with different probabilities of type two errors. We will show
that an attainable lower bound for-this probability can be calculated. Numerical
results for some particular models indicate that, whatever test procedure is
used, OLS results will be accepted frequently when in fact the disturbances
are: serially correlated.
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As the case appears to be relevant, we also investigate the consequences
of using the OLS technique in the presence of autocorrelated disturbances.
Up to now attention has mainly been paid to the non-optimality and to the
bias in the estimation of the variance of both the disturbances and the
coefficient estimator in this situation. Here we go on to consider the
robustness and efficiency of OLS statistical analysis, and to assess its
sensitivity to departures from the assumption of independent disturbances.

In section 2 we present the relevant OLS theory, go through the unreliability
of OLS-based inference in section 3, correct this inference in section 4

and indicate the inefficiency of OLS inference in section 5. The probability
of non-detection of serial correlation is considered in section 6. In 7

the outcome for some econometric case studies is presented, and in section
8 we come to the conclusions.

2. Ordinary Least Squares Qualities

The classical linear normal regression model is

(1) y = + e

where y is an n-vector of observations on the dependent variable, X is a non-
stochastic nxk regressor matrix of full column rank, P. is the coefficient
vector and e a stochastic disturbance vector, n-variate normally distributed
with zero expectation and covariance a

2
I .

The Ordinary Least Squares coefficient vector b = (X X) X y is the best
linear unbiased estimator of 13, its variance is a

2
(X X)

-1
, usually estimated

2 2 e'e 2by s(X
' -1
X), where s = TT is an unbiased estimator of a

 
with e = y - Xb

the OLS residual vector. The normality of the disturbances enables
us to construct the following confidence and prediction regions and tests.

Confidence Regions and corresponding Tests

Let C be an rxk transformation matrix of rank r < k. Then the quadratic form
2(Cb-U)t[a2C(X tX)-1C t]1(Cb-Cf3.) has a x
r 

distribution because the r-vector
2 ' -1 'Cb has expectation CP. and cov(Cb)= a C(X X) C . It is well-known that (n-k)s

2

is distributed as a
2 x2 
n-k 

and that b and s
2 
are independent. Now a Fisher

ratio leads to a confidence region for C13 of the form
1)

1)
See, for instance, Wonnacott and Wonnacott [113], pp. 248-256.
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( 2 ) (C-Cb)[C(X'X)-1C] 1(CIS-Cb) < rs2Fa
r,n-k

Here F
a

n-k
is the upper 100a percent critical value of the Fisher distri-

bution function with r degrees of freedom in the numerator and n-k in the

denominator. The region (2) is an r-dimensional ellipsoid with center at Cb.

It contains the true CP. with a probability of (1-a)-100%, and y = 1-a

is the confidence coefficient of the region. The region in the r-dimensional

space outside the ellipsoid (2) corresponds with the critical region for the

general linear constraints test Ho: C co versus H1: C co. The size of

the test is a and Ho is accepted when the ellipsoid contains the r-vector co.

This test is a likelihood ratio test
2)
.

For r = 1, C is a row vector and the confidence ellipsoid collapses to

an interval for a simple linear function of the coefficients. Taking one

element of this vector as unity and all other as zero we get a confidence

interval for a single coefficient, the same as that of the usual Student

procedure. More generally, a joint confidence region for r coefficients

simultaneously is derived as follows. Assume, without loss of generality, that

a confidence ellipsoid for the r coefficients 
Ci(r)' 

corresponding with the

last r columns of X, has to be constructed. X can be partitioned as

X =Ix : X ] and b as b' = (b' ,while the matrix C equals nowk-r . r (k-r),b(r))

10 Ir], where 0 is an rx(k-r) matrix of zeroes. It follows from (2) that a

confidence region for 13(r) is given by the set

( 3 )
(r)

[ 
a

-b(r) 
) X X -X X

k 
(X X

k 
) 1X X ](13 -b)< 

rs2 
Fr,n-k} 

•r r r -r k-r -r

When this r-dimensional ellipsoid does not contain any point with a

zero coordinate, we accept the hypothesis that the r coefficients f3(r)

simultaneously differ from zero.

Prediction Region

Let the assumptions of the model still hold for m observations not included in the

sample. Let the m-vector.y4; contain those future values of the dependent variable

and the mxk matrix X4; those of the explanatory variables. Then y =X +

2)
See Theil [14], pp. 143-144.
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with e
* 

an m-variate normally distributed in-vector, uncorrelated

with c, and with covariance a
2
I
m
. Now the predictor X

*
b has a prediction

r - 1error y
* 
- X

*
b with zero expectation and cov(y -X b) = a

2 
LI +X (X

' X)1 
X
' 

j
** * m * .

Any other predictor that is linear in y and has zero expected prediction
error has a covariance matrix of the prediction error that exceeds cov(y

*
-X
*
b)

by a positive semidefinite matrix3). The statistic

(y
*
-X
*
b)?[I

m
+X
*
(X IX)-1X' I-1(y

*
-X
*
b) is a2x2 distributed. Using the independencein

of b and s
2 
and c and c

* 
we get the prediction ellipsoid

_
(4) (y

*
-X
*
b) [I

m
+X
*
(X X) Ti_1X

 
1(y
*
-X
*
b) ms

2
F
a
m,n-k

with center at X
*

 b, which contains the true future value vector y
* 

with a
probability y = 1 - a.

Non-scalar covariance matrix

When we relax the assumption about the distribution of the disturbances and
postulate instead

( 5 )
E(e) = 0 and cov(e) = a

2
0, where

Q is an nxn non-singular matrix,

the OLS coefficient vector, although still unbiased, will for general

X-matrices no longer be best linear. This property is reserved now for the

Generalized Least Squares (GLS) estimator, which, however, is only applicable
when is known.

Broadly speaking, the consequences of the generalization of the covariance
assumption are two-fold: OLS is no longer best linear and OLS statistical

inference is no longer reliable. This unreliability is caused by the change in
the distribution of the OLS estimates that follows from the change in the
distribution of the disturbances. For now

cov(b) = a
2
(X

t
X)

_1
X

t
2X(X

I
X)

(6)

and

(n-k)Es2 = [n-tr{(X
1
X)-1X'QX1

2
 .

2 . -1Thus s is no longer unbiased and s
2
(X X) is no longer an adequate estimator

of cov(b). Several textbook writers, among others Malinvaud [131 and

Theil [14], investigate the bias of the OLS variance estimators s
2 
and

3)
See Theil [14], pp. 122-124.
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2
(X
'
X)
-1 

for some typical models. In Kiviet 9] extensions of their results
are presented. The bias of these variance estimators, however, is just an
intermediate indication of the unreliability which ensues. The change in the
distribution of b ans s

2
, changes the distribution function of

the statistics used in constructing confidence and prediction regions. Neither
2 the numerator nor the denominator of the ratios have x distributions now, and

moreover they are no longer independent. So the probability that the ellipsoids
(2) and (4) contain CP. and y respectively may differ from y. The change in
confidence coefficient can be seen as the ultimate indication of the unreliabi-
lity of OLS-based statistical inference.

3. The confidence coefficient of OLS regions when disturbances are correlated

The confidence and prediction ellipsoids (2) and (4) can be written as quadratic
forms in the disturbances. By means of a technique introduced by Imhof [8]
the cumulative distribution function of quadratic forms in normal variables
can be calculated by numerical integration of an inversion formula. Thus given
the distribution of the disturbances, the true confidence coefficient of the
regions can be found. In the following we shall distinguish between the null-

hypothesis Ho:c = N(0,a2In) and the alternative Hi: c = N(°,a20). When

prediction regions are considered, we have H
0 
:(e',E T )' = N(0,a

2
I
n+m
) versus

N(°,a
2*

), with Q
* 

an (n+m)x(n+m) non-singular matrix.
Hi. 

*

Confidence Regions and corresponding Tests

When the disturbances are not serially correlated, the confidence ellipsoid
(2) for C(3. has probability

(7) 14(CIS-Cb) [C(X'X)-1C T]-1(Cf3-Cb)
2 a

< rs F
r,n-k

The probability of the same ellipsoid under Hi may differ from y. Using

Cb - C(3. = C(X X) 1X c and s
2 
= e'eAn-k) = c'McAn-k) with M = I

n 
- X(X X) 1X

we can write for the true confidence coefficient "ie":
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' - 'r ' - '1-1 ' - '(8) = P{e'X(X X)
1 
C LC(X X)

1 
C j C(X X)

1 
X c < rF

a
== r,n-ke'Me/(n-k)

{= P c'Zc < 0 Hi}

with

I _ _ r_ r a
- 
n-k 

F
r,n-k

M and
Z = X(X X) 1C [C(X X) 1C] /C(X X) 1X

SO t= N(0,0) .a

Hi}

This probability can numerically be evaluated by the method of Imhof. Let
A (i=1,...,n) be the eigenvalues of ZQ, then

(9) ▪ 1
2

[ 

0
_ 1

n
sin 1 E arctan(X.03 11 i=1 _ 

Tr n0 22 4u H (1+A.0 )
1i=1

du .

Formula (8) shows that ".?" depends on C, X, Q and y only, and that the value
of the true confidence coefficient of a 100y% OLS confidence region for Cf3
is independent of f3. itself and of a

2
. Also the value of the sample y-vector,

which is indispensable to calculate the ellipsoid itself, does not influence
its true significance. In Appendix A we prove that in the case of a confidence
ellipsoid for r coefficients simultaneously, as given in (3), not
X = : X

r
], but only the spaces spanned by the columns of X

r 
and X

k-r 
are

relevant for the value of .

It is evident that & = 1 - will be the true significance level of the
general linear constraints test on the coefficient vector, Ho: Cf3 = c0
versus H1. c

0' 
• C13 = where the ellipsoid (2) is the region of acceptance.

Prediction Region

When dealing with prediction regions we have the prediction error
y - X

4;
b = e - X

*
(X X) 1X c. We define the mx(n+m) matrix

G = (X X) X : Im] and the n+m disturbance vector 6, with

6' = (e',6), and get y* - X b = G6. Let e be the (n+m)x(n+m) matrix

0 0
, so e'Me = 6'M

*
6. The probability of ellipsoid (4) under H1 can

then be written as



(10)

'r '1-1= P{S'G UDG j GS < mF
a

== m,n-k6'm 6/(n-k)

where (5

H
1}'

Here we have a quadratic form in n+m normally distributed variables whose
cumulative distribution function at zero can be evaluated when X, X4;,
and y are known.

In section 7 the formulas (8) and (10) will be used to illustrate for several
X, X

* 
matrices to what extent OLS confidence fades away when the matrices

Q and Q
* 

depart from I.

4. Correction of OLS confidence and prediction regions when disturbances
are correlated

The robustness of OLS statistical analysis in the presence of correlated
disturbances can be established in two ways. In the previous section we
presented a method to register the change in confidence of OLS regions. In
addition to this approach, we now construct regions with given confidence
coefficient y for Ce and y

* 
around Cb and X

*
 b, and register the changes in

the regions caused by departures of Q
* 
from I. The first approach reveals

the reliability of the statistical inference based on standard OLS procedures.
The second approach gives the inferences that should be made on the basis of
the OLS coefficient estimator.

Confidence Regions

A confidence region for Ca based on OLS, given Q, can be obtained by con-
structing a statistic that is a function of C and of OLS sample statistics.
This statistic must have a distribution fuction that is independent of the
parameters 13 and a

2
. An ellipsoidal region with center at Cb can be obtained

from the statistic q, where

-
(11) q 

" - '(Cf3-CbPA(C13-Cb) _ C'EX X) 1C AC(X X) 1X C =
e'e CMC

with A an rxr matrix independent of a and a2, and = N(0,Q). For a criticala 
value Q, with P{q < Q

a
} = 1 - a = y, the 100y percent confidence region is

a(12) (C13-Cb)'A(Ca-Cb) < e'eQ 
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where A determines the shape of the ellipsoid. Without loss of generality
A and Q

a 
can be scaled so that trA = n. The Imhof technique enables the

calculation of P{c]. < Q0} for given Q0. So the root Qa of the equation
P{q < Q} = y can be found numerically.

The matrix A still has to be defined. Because of the non-optimality of OLS,
a method for constructing a confidence region in terms of b and e'e that is
in some sense optimal is not directly available. When r = 1, the ellipsoid
reduces to an interval and A to a scalar equal to unity. The construction of
a symmetric confidence interval with confidence coefficient y for a linear
combination of the regression coefficients is straight forward. Here we
confine ourselves to the interval for a single coefficient.

Let be the j-th element of (XX)
-1:
] the j-th diagonal element of
jj

(X X) and Q. the critical value such that

- " - 'X(X X) lC C(X X) lX c al(13) Piq Qcj = P Q. = 1 - a = y

where C C now is a kxk matrix with its j-th diagonal element equal to unity
and all others zero. A lOOy percent confidence interval for 

. 

is given by

a-b < ife'eQ bj is the j-th element of b, j=1,...,k. In comparison
j , where 

with the corresponding 100.1," percent OLS confidence interval, where

, -, aW-b.1 < s i(x x) 1 1..F . , the length of this interval has changed by] ] == ]J k

a factor

r -11 a
(11-)

jj. 1,n-k

This multiplicative correction factor can be applied to single coefficient
confidence intervals to allow for a covariance matrix I. Apart from y and
j it depends on X and Q.

Prediction Regions

For 37;1, too, an ellipsoid with confidence coefficient y centered at its
OLS estimate can be constructed. The statistic

1
(y -X„b) B(y-X4;b) „...

6'G'BG6(15)  * l'
e'e 1 *

6M 6

is distributed independently of e. and a
2
, with B an mxm matrix and 6, G and M

*

as in (10). We will just look at the case m=1, where B may be ornittrtd from (15).
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The critical value Q
a 
can numerically be found so that*

t

14(y+-X+b) (y4;-X4;b) = P{:1::6
  

< = 1 - a

aThen a 100y percent prediction interval for y* is given by IX4;b-37*1 'eQ
and the factor

(16)
* 

= icTSTIT,:x (X'X)-1X' ]Fa
* * * 1,n-k

indicates the change in length of the prediction interval when e differs

from I.

In section 7 the factors (14) and (16) will be calculated for several X, X*

matrices and specific matrices 0 and 0

5. The inefficiency of OLS inferences

After indicating the unreliability of OLS inferences, we now concentrate
on the other consequence of the generalization of the covariance assumption,
viz, the inefficiency caused by the fact that OLS is no longer best linear.

A great number of techniques have been devised to improve on OLS estimates,

when the scalar covariance assumption is untenable on a priori grounds or
after testing. We will not consider these technique here, but just try to
indicate the maximum improvement with regard to OLS that can be obtained.
We do this by comparing OLS and GLS inference on single coefficients and
prediction of one value. The inefficiency of OLS relative to GLS will be
expressed in the (relative) length of confidence and prediction intervals.

So apart from the covariance of the coefficient estimator, the estimation

of a
2 
and the distribution of the relevant statistics are also taken into

account.

The GLS coefficient vector b = (X t0-1X)-1X'0-ly has variance a2(X 10-1X)-1,
' - - 2 -1Aestimated by s (X 

1 1 
0 X) , where g = eAn-k) is an unbiased estimator

of a, with & = y - Xb the GLS residual vector.

Confidence Regions

The GLS confidence ellipsoid for Ca is given by

(C13-Cb)i[C(X f0-1-X)-1C T1-1(CB-Cb) < reFa
r,n-k •
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The (1-a)-100% confidence interval for the j-th coefficient is then
expressed by

(17) 
2 
<

3 3

,2[(x'o-lx\ 1 -1 .Fa
Jj3 1,n-k

The length of this interval, and of the corresponding OLS interval

(18) (0.
3

-b.)
2

3 
s2[(X'X)-1]..Fa

jj 1,n-k '

A2can only be compared when s and s
2 
are calculated. So apart from X and Q,

the sample y-vector is also needed. In order to eliminate the disturbing
influence of the accidental value of this stochastic vector, we take ex-
pectations. We now define the factor q)i as the square root of the ratio of
the expectation of the right sides of (18) and (17). Recalling (6), this
leads to

(19) j

_ 
(n-tr{(X X) 1X

/ 
OX})[(X X) 1]..

(p.-k) [(X TC/X)-1]..
33

This factor indicates the ratio of the expected lengths of OLS and GLS
confidence intervals respectively. But as we have earlier shown, the con-
fidence coefficient of the OLS interval is erroneous, and should be corrected
by the factor (14). If we allow for this correction factor, we obtain

(20) = yj

This 
th confidence

2 3coefficient 1-a, based on the OLS statistics b and s , is expected to be wider
than the GLS interval with the same confidence coefficient. It just depends
on X, Q and, of course, on a and j.

Prediction Region

The vector y4; = X*13. + 64; has to be predicted, where the combined disturbance
vector 6' = (6' ' 6') is supposed to have covariance matrix*

E66 a
2
0 = a

2
0

•
•

•
•

qi

' 4) ' -1„The GLS predictor Xb+TQ ehasaprediction error with zero expectation4

4)
See Theil [14], pp. 288-289.



and covariance matrix a
2
0, where

(21) 0 =
* 

Q 1X) /X + 2 - T r[Q-1-0-1X(X'0-1X)-1X t2-1 IT
' - - ' _ _ f _ _ f

- X (X 2 1X) 
1x 0 1T T 0 1x(x Q 1x) 1x

Any other predictor that is linear in y and has zero expected prediction

error has a prediction error covariance matrix that exceeds a20 by a

positive semidefinite matrix.

We can construct the prediction ellipsoid

^ ' -1, ' -1 ^ ' -1, „2 a(y)F-Xb-T e) 0 (y4.-X*b-T 2 e) ms Fm,n_k

In the case where m=1, X
* 

and T are row-vectors and y
* 

and 0 are scalars.
Then the GLS (1-a).100% prediction interval is expressed by

^ ' -1, 2 „2_„a(y
*
-X
*
b-T e) Uf

1,n-k •

Now the factor

(22) lp

- -tri(X
' 
X)

1 
X QX1)1.

r 
1+X

*
(X X) X

'1
*
j

(n-k) 0

relates the expected length of the corresponding 100.1+% OLS interval (10)

to this GLS interval. When the difference in confidence coefficient of these

intervals is again taken into account, the factor

( 23 )
* 

=
**

indicates the inefficiency of OLS in terms of GLS prediction. This factor

depends on X, X4;,
* 

and a.

In section 7 the factors and IP
* 

will be calculated for some empirical

models. By definition they exceed or equal unity.

6. T1e probability of non-detection of serial correlation

The calculation of the actual confidence of the OLS ellipsoids and of the

necessary change in length of the OLS intervals is proper only when: it

happens thatlqLS-lis erroneously applied in the presence_ of serially correlated
disturbances. The probability that the hypothesis Ho: c = N(002I) and

the OLS inferences are accepted, while the covariance matrix is not scalar,

depends of course on the particular test procedure'that is used. In a test,of
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H
0, 

the probability that serial correlation is not detected, that is the
probability of committing a type two error, equals one minus the power.
The,)3Wilt way“toguardagainst the-,errOneous application of OLS is therefore
to use a powerful test.

,2In Appendix B, we prove that the ratio of s and s
2
, that is the test-

statistic

(24) t(0)
-1 LI e eyt[I-X(X X) X ly

r -1 -1-1 ' -1,ytL0 -42 X(X 0 X) X 0 ly etcle

has the attractive property of providing the most powerful invariant test of
the hypothesis H0: c = N(0,a

2
I
n
) against the simple alternative

H1. 
• c = N(0,a

2
0. In practice, however, we usually cannot specify a specific

simple-, alternative hypothesis, but a whole class of alternatives has to
be covered by H1. The class_ of first-order autoregressive processes has
attracted much attention in this context. We too adopt the assumption that
the disturbances are generated by the scheme

C. = Pe. + n.1 ; i=2,.. .,n

. (25) with e
1 
= N(0,a

2
)
2ni 11(0,an) ; i=2,...,n where = 

n. and n. are independent for i f j.
1 3

One can distinguish the stationary first-order autoregressive process, where

P I a
2 
= (1-p

2 
)a
2<1 and

11

and the non-stationary first-order autoregressive process where

2 2
= a and p arbitrary .

Now H
1
: p f 0 or the one-sided hypothesis H

1
: p > 0 and H p < 0 are useful

composite alternatives.

In the following the non-stationary type of first-order autocorrelation
will be left out of consideration as are higher order and moving average
types, Attention is only paid to :matricesQ of the type

-(26) Q = (w..) , with w. = p lij1 and I13 P 1 <1.
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Against this alternative, the exact Durbin and Watson test
5) 

is locally
most powerful invariant for p 0. The Berenblut and Webb test

6)
, although

developed for testing autocorrelation of the non-stationary type, is
locally most powerful invariant for p 1, if an overall mean is included
in the regression. A test with uniformly most power against a composite
alternative for general X matrices does not exist, so no test is preferable
in all circumstances.

We now consider the qualities of a test of the type given in 24). Let V
be an nxn matrix with typical element v.., where

ij

V = (v..), with v.. = pij 1.] 1 
and I p

1
<1

It is evident that the test-statistic t(V) is locally most powerful in the
neighbourhood of p = pl when Ho: p = 0 is tested against the composite
alternative H

1
: p f 0. So, for every p1 €.(-1,+1), the maximum attainable

power can be calculated in the same way as Koerts ans Abrahamse [11] cal-
culated the power of the exact Durbin and Watson test. First the critical
value at significance level a has to be found. This significance point
T
a
(V) .is the root of the equation

CIV-1-V-1X(X t V-1X) lic
< T = N(0,I) = a_ 

[I-X(X X) 1X

Now the lower bound for the probability of an error of the second kind at
p
1 
at significance level a for some regression matrix X is given by

( 27 ) P  

[v-1_v-lx(x'v-1x)-lx'v-11

' - 'v[I-x(x x) 1 
x

> Ta(V) = N(0,V)} .

In the neighbourhood of pl = 0, this lower bound is approximated by the
Durbin and Watson test, and for p -÷ 1 by Berenblut and Webb's. It is easy
to prove that the lower bound and the powers of the Durbin and Watson and

.the Berenblut and Webb test do not depend on X itself, but only on the
column space of the X matrix.

5)
See Durbin and Watson [6], pp. 10.
N.B. Their formula (8), which is to be compared with formula (B.2) of ourAppendix B, is inaccurate. However, their theorems can be proved after someslight corrections.

6)
See Berenhlut and Webb [1], pp. 39-40.
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In order to indicate the frequency that OLS inference is erroneously accepted
we will calculate the lower bound (27) in section 7 for several X matrices
at some values of p. Because these values do not result from a single test
statistic, they are in practice only attainable when a series of tests is
performed. We therefore also calculate the probability of type two errors
for the exact Durbin and Watson test. But even then we get a too favourable
picture of what is done in practice. Often just the Durbin and Watson bounds
test is applied. The actual power and significance then depend on the

treatment of the inconclusive region.

7. Numerical Results

The frequency of non-detection of serial correlation and the indicators of

its consequences all depend on the X matrix, or on its (sub)spaces(s), and
are independent of 13, of the sample y-vector and of a

2
. Therefore, to

illustrate the features we have considered, we must select some design
matrices. The illustrations here will be limited to five data sets that
enjoy prodigious popularity in the research on serial correlation. They
all include a constant term vector. One consists of four (k=5), the others
of two (k=3) exogenous variable vectors. From these five sets we took a
subset of 15 successive annual observations (n=15), and from two a subset
of 30 successive annual observations (n=30). Thus, seven X matrices are

considered. As for prediction, only one period ahead (m=1) is analysed.
Here we list the origins of the data sets, their names, the order of the
subsets considered and, between brackets, the date of the first observation
in the subset(s).

P: Pears data 1925-1940: Henshaw [7], Table 1.

P
2 
is supply of California pears,

P
3 
is supply of other pears,

P
4 
is an index of U.S. nonagricultural income and

P
5 
is a trend term.

Subset (1925): 15 x 5.

T: Textile data 1923-1939: Theil [14], Table 3.1.

T
2 
is log real income per head and

T
3 
is log relative price for the Netherlands.

Subset (1923): 15 x 3.
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C: Consumption data 1921-1941: Klein [1°I,

C
2 
are profits and

C
3 
are wages for the United States.

Subset (1923): 15 x 3.

P• 135.

A: Automobile data 1921-1953: Chow [2], Table 1.
A
2 
is log automobile stock per capita and

A
3 
log personal money stock per capita for the U.S.

Subsets (1921): 15 x 3 and 30 x 3.

S: Spirits data 1870-1938: Durbin and Watson [5], Table 1.
S
2 
is log real income per capita and

S
3 
is log relative price of spirits for the U.K.

Subsets (1870): 15 x 3 and 30 x 3,

As already stated, we assume that the disturbances are normally distributed
according to a stationary first-order autoregressive process. The conclusions
that can be drawn from the figures that follow are limited to the seven
adopted X matrices. As we have proved, some of the probabilities do not
depend on X itself but only on its column space or on the spaces of partitions
of the X matrix. Further, as to the shape of the explanatory variables and
to the sample size, we think that these seven X matrices are typical of a
great number of design matrices in econometric analysis.

Frequency of non- detection of serial correlation

Table 1 presents the probability of a type two error when testing Ho: p = 0,
evaluated along the lines of section 6. The table shows the lower bounds (27)
for arbitrary tests against composite alternatives as well as the results
for the exact Durbin and Watson test against specific alternatives; for p < 0
the alternative hypothesis was H1: p < 0, and for p > 0 we took H1: p > 0.
All numerical values refer to the significance level a = 0.05.

We note the following characteristics:

- The figures suggest that as the number of degrees of freedom increases,
probabilities of non-detection of serial correlation decrease, and the
power of the exact Durbin and Watson test tends to optimality.

- Acceptable test results are obtained when there are 27 degrees of freedom
and p > .7.
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Table 1. Lower bound for the probability of accepting Ho: p = 0 at significance
level a = 0.05. Between brackets the corresponding probabilities for the
exact Durbin and Watson test.

data set

n=15;k=5 n=15;k=3 n=30;k=3

P T C A S A S

-. .64(.68) .54(.58) .53(.57) .53(.56) .53(.56) .19(.21) .19(.21)
-.3 .83(.83) .79(.80) .78(.79) .78(.79) .78(.79) .57(.58) .57(.58)
.3 .84(.85) .81(.81) .79(.80) .80(.81) .79(.80) .59(.59) .59(.60)
.5 .72(.73) .67(.67) .62(.62) .64(.65) .62(.63) .25(.25) .26(.26)
.7 .58(.59) .53(.54) .43(.45) .47(.51) .45(.46) .07(.07) .08(.08)
.9 .46(.48) .42(.46) .27(.31) .31(.43) .31(.35) .02(.02) .02(.02)

- The results for the case n-k < 12 show that non-detection of serial correla-
tion may be omnipresent. Even when autocorrelation is considerable (p=.7),
non-detection will occur in one case out of two.

Dubbelman, Abrahamse and Louter [q used the same matrices of order 15 x 3 as
we do, in comparing the qualities of different autocorrelation tests.
They regard the power of the exact Durbin and Watson test as
the maximum attainable, although they note that this is only legitimate in
the neighbourhood of p = 0. Table 1 shows the deficiency of their supposition.
In view of the meagre optimal power values for X matrices of order 15 x 3,

the justification of a test procedure with less power than Durbin
and Watson's has, computational costs apart, to be

based on an appraisal of the consequences of non-detection of serial
correlation. So we reserve our judgment concerning the choice of-
a test procedure and first establish these consequences.

Confidence of joint confidence regions

The true confidence coefficients of 95% OLS confidence ellipsoids for all
k coefficients simultaneously,and for the k-1 coefficients relating to the
exogenous variables, are given in Table 2. These values correspond to
equation (9) of section 3. Inspection of these values reveals:

- In all cases considered, positive serial correlation causes OLS

regions to be too small, negative autocorrelation leads to overpessimistic
inferences.
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Table 2. Numerical value of the true confidence coefficient of the OLS

confidence region for all coefficients simultaneously at y = 0.95.

Between brackets the value for the same region, the constant term

excluded.

P  

data set

n=15;k=5 n=15;k=3 . n=30;k=3
_ ,

P T C A S A S

-.5 .97(.96) .998(.997) .997(.995) .996(.993) .997(.995) .999(.998) .999(.998)

-.3 .97(.97) .99(.99) .99(.99) .99(.98) .99(.99) .99(.99) .99(.99)

.3 .90(.93) .80(.83) .84(.88). .83(.87) .82(.86) .80(.84) .79(.83)

.5 .77(.86) .59(.69) .69(.80) .66(.76) .66(.76) .62(.72) .59(.69)

.7 .53(.74) .33(.51) .48(.71) .41(.61) .42(.63) .38(.57) .33(.50)

.9 .21(.56) .10(.32) .22(.60) .14(.41) .16(.47) .13(.37) .08(.25)
,

- An increasing number of degrees of freedom doesnot seem to push the true

confidence towards y at all.

- We notice the following unfortunate connexion in the four 15:x-3

cases: The smaller the probability to detect serial correlation, the more

unreliable OLS inference is.

- At p = .3 the reliability of these joint confidence regions is seriously

affected. To confide in these OLS inferences at higher values of p appears

to be absurd. At p = .9 general linear constraint tests on the coefficient

vector involve probabilities of type one errors of 80%.

Reliability and inefficiency of single coefficient intervals

Table 3A illustrates the consequences of serial correlation on OLS single
coefficient confidence intervals for the exogenous variables of the four
15x3-X matrices. For each coefficient we present if" of equation (9) section
3, (I) of equation (14) section 4 and tP of equation (20) section 5. We notice:

- exceeds y for p < 0 and < y for p > 0 in all cases.

- The deviation of ie" from y is less than for the two and three dimensional
ellipsoids of Table 2.

- Because of the values, the 4) values exceed unity when p is positive. The
necessary enlargements of the intervals are far from negligible.

- The IP values show that the difference in efficiency between OLS and GLS
is moderate for I p J< .5.
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Table 3A. Numerical value of the indicators (true confidence coefficient

of OLS region), (1) (correction factor to uphold 100y% confidence)
and lp (inefficiency of OLS inference compared with GLS inference)

for single coefficient confidence intervals for the exogenous

explanatory variables of the data subsets of order 15 X 3, at

= 1 - a = .95.

A

indicator exogenous explanatory variable

T2 T3 C C A
2

A
3

S
2

S
3

?

-.5 .995 .995 .996 .99 .99 .99 .99 .99

-.3 .99 .99 .99 .98 .98 .98 .98 .98

.3 .87 .86 .87 .92 .88 .90 .90 .89

.5 .79 .75 .79 .89 .80 .83 .86 .84

.7 .71 .60 .71 .85 .71 .71 .82 .77

.9 .64 .41 .62 .77 .64 .51 .76 .71

4)

-.5 .63 .62 .61 .73 .64 .77 .68 .66
....3 .76 .75 .75 .84 .77 .85 .80 .79

.3 1.34 1.38 1.34 1.16 1.31 1.23 1.23 1.26

.5 1.64 1.79 1.62 1.27 1.60 1.46 1.39 1.46

.7 1.97 2.46 1.94 1.39 1.93 1.79 1.55 1.67

.9 2.21 3.59 .2.15 1.54 2.21 2.23 1.81 1.86

IP

-.5 1.09 1.07 1.07 1.10 1.08 1.17 1.09 1.09

-.3 1.03 1.02 1.02 1.03 1.03 1.06 1.03 1.03

.3 1.02 1.02 1.03 1.04 1.02 1.07 1.03 1.03

.5 1.07 1.08 1.10 1.13 1.09 1.20 1.07 1.11

.7 1.16 1.20 1.28 1.31 1.18 1.47 1.15 1.25

.9 1.26 1.47 1.60 1.68 1.34 1.95 1.30 1.47

In Table 3B we see that the Pears data are distinct from the others because:

- P
3 
shows it- values with if" > y for p > 0 and the inference towards P

2 
is

hardly affected by autocorrelation.

- P
1. 
(the constant) and P

5 
(the trend) are the most sensitive to autocor-

relation.
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Table 3B. Numerical value of the indicators it, (1) and tl) for single coefficient
confidence intervals for the five explanatory variables of the
Pears data, at y = 1 - a = 0.95.

p

indicator
P
1

P
2

P
3

P
4

Y-

-.5 .99 .96 .89 .91 .99

-.3 .98 .96 .92 .94 .98

.3 .89 .95 .97 .94 .89

.5 .84 .95 .98 .91 .81

.7 .77 .95 .98 .88 .69

.9 .68 .95 .99 .85 .51

(P

-.5 .75 .96 1.29 1.20 .71

-.3 .83 .97 1.16 1.07 .81

.3 1.26 1.02 .89 1.07 1.29

.5 1.48 1.02 .83 1.19 1.60

.7 1.72 1.01 .78 1.32 2.12

.9 2.08 .98 .74 1.40 3.22

IP

-.5 1.05 1.20 1.05 1.08 1.10

-.3 1.02 1.06 1.02 1.02 1.03

.3 1.02 1.05 1 03 1.02 1.02

.5 1.06 1.13 1.07 1.06 1.05

.7 1.14 1.24 1.13 1.14 1.09 '

.9 1.22 1.34 1.21 1.24 1.14

The reason for this will be the different shape of the variables P2 and P3.
In contrast with the other variables, which are annually slowly changing,
these variables, especially P3, show waves of high frequency.

Table 5 presents outcomes for the two data sets with a sample size of 30.
Only p = .5, where non-detection of serial correlation occurs in one case
out of four, is considered. The left part of the table shows that a more
extensive sample is no guarantee for more reliable inferences on the
coefficients.
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Reliability and inefficiency of prediction intervals

Table 4 reveals that prediction is much more robust against autocorrelation,
than the inferences concerning confidence regions are. We calculated ".,.?

* 
of

equation (10) section 3, (I)), of equation (16) section 4 and 11) of equation
(23) section 5. Only at p = .9 two if'4 values depart from y rather seriously.
Although the necessary corrections of the intervals are limited, they cannot
be neglected and so are the losses in efficiency.

Table 4. Numerical value of the indicators 'ie.*, 4)4. and 11); for prediction one

period ahead for the data subsets of 15 observations, at

y = 1 - a = 0.95.

A

indicator

.

data subset

P T A SC

-.5 .95 .96 .95 .95 .96

-.3 .95 .96 .95 .95 .96

.3 .94 .93 .95 .94 .93

.5 .93 .92 .94 .94 .91

.7 .92 .89 .93 .92 .88

.9 .91 .85 .91 .91 .84

-.5 1.00 .93 .98 .99 .94

-.3 .99 .95 .99 .99 .95

.3 1.05 1.07 1.02 1.03 1.08

.5 1.09 1.14 1.05 1.07 1.17

.7 1.13 1.23 1.10 1.12 1.27

.9 1.16 1.34 1.15 1.17 1.37

1Pni

-.5 1.16 1.14 1.15 1.17 1.17

-.3 1.05 1.04 1.05 1.05 1.05

.3 1.05 1.04 1.04 1.05 1.05

.5 1.11 1.11 1.11 1.13 1.15

.7 1.21 1.22 1.25 1.25 1.32

.9 1.32 1.37 1.49 1.41 1.57

Rather satisfactory prediction results are obtained at sample size n = 30

and p = .5, as the right part of Table 5 shows.
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Table 5. Numerical value of the indicators "1, (1) and lp for single coefficient

confidence intervals and of (1)4; and tP 4z. for prediction one period

ahead for the data subsets of 30 observations at p = .5 with

= 1 - a = 0.95.

indicator
exogenous explanatory variable

indicator
data set

A
2

A S S A .S

.84 .77 .82 .81 ?*
.94 .94

(I) 1.41 1.68 1.50 1.52 (P.*
1.03 1.05

IP 1.07 1.07 1.10 1.10 11)*
1.14 1.14

8. Conclusions

Our results show that the statistical analysis of the classical linear

regression model can seriously be damaged in the case of unknown serial

correlation of the disturbances. OLS prediction appears

vulnerable than significance tests of the coefficients.

those cases (given n and k) where OLS inference is most

correlation, this serial correlation

must turn to the strategy pursued in

view of the maximum attainable power

sample is small (say n-k<25) and the

is least detected.

testing for serial

of autocorrelation

seriousness of the

non-detected serial correlation, it seems good practice

to be less

Unfortunately in

affected by serial

For prevention we

correlation. In

tests when the

consequences of

to use a much

higher level of significance a than the customary 5%. At what level a

should be set depends on the statistical technique that will be applied

when autocorrelation is detected. As Q is unknown, this technique will be

haunted by the same problems as OLS: Non-optimality relative to GLS and

inaccurate or vague statistical inference. It is not quite clear to what

extent OLS can be surpassed. Evidently the possibilities of improvement

are best (and most needed) when there is high positive serial correlation.

That means that we have to support the view of Berenblut and Webb that

their test is preferable to Durbin and Watson's.

When one need not spare computational effort, one can use the following

procedure when sample size is small. Compute at some likely value(s) of

Q (not necessary of the first-order autocorrelation type) the locally

most powerful invariant test statistic. Then r:alculate thr- proLability

that this test statistic does not exceed this value und .r tly: null hypothels.
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Then we have the maximum significance level at which the null hypothesis will be
rejected. We suppose one is obliged to a cautious attitude towards OLS
inference when this critical level is below 15-25%.
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Appendix A

Theorem

Consider the confidence ellipsoid (3) for r-coefficients simultaneously,
where these coefficients relate with the last r columns of X = EX.

k-r 
: X

r
].

Then for ?, as given in (8) with C = : I
r
1, not X itself, but just the

spaces spanned by the columns of X
r 

and X
k-r 

are relevant.

Proof

Let R be an nxk matrix so that R R = I
k 

and X = RL, with L a non-singular
kxk matrix that gives the location of X in the space spanned by the orthogonal
columns of R. R can be partitioned in [R

k-r 
: R

r
] and L can be choosen so that

L =
•

L21 • 22

with L
21 

an r x (k-r) matrix of zeroes. Thus X
k-r 

= RL
k-r 11

and X
r 
= R

k-r
L
12 

+ 
RrL22. 

Now we substitute this decomposition of X in the

_matrix Z of formula (8) with C = [0 I
r
]. We have M = I - X(X X) 1X = I - RR

= I - R
k-r

R
k-r 

- R R . Partitioned inversion of X X gives:r r

-1 '[C(X t X)-1C 11-1 = X
r

LI-X
k-r

(X
k-r

X
k-r
) X

k-r
IX
r 

= L
22
L
22

C(X
'
X) 
-1

X

So Z equals R R
r r

t r -1 -1= (L
22
L
22
) X

r
LI-X

k-r
(X

k-r
X
k-r
) X j 

k-r 
= L 122

r a
F. [I-Rk-rRk-r-RrRr] and appears to be invariantn-k r,n-k

for the location of X
r 

and X
k-r 

in the spaces spanned by the columns of R
kand R

k-r 
respectively.

Appendix B

Theorem

-,The test-statistic e
11
0 e/ele performs the most powerful invariant test of

the hypothesis H
o
: y = N(XP.,(5

2
I
n
) against the simple alternative

H1. 
• y

7)
A closelysimilar theorem is indicated in Berenblut and Webb [1],Appendix C. ...
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Proof

The problem is invariant under transformations of the form L(y) = 
0
y +

with finite 
20 

4 0 and 2, a vector of k finite elements. The density function
associated with H

1 
is

; _
f(y;X,a20) = (2a2) 

2 
ffa2) 0 1-- exp{-1(y-Xa) 0 1(y-X)/a21

Now according to Lehmann [12], the most powerful invariant test is given by
the rejection region

0
I --- I a lf(y;Xa,a

2
0)d

1
a ...da

k
do.

Co Co CO
  > T

0
I a

-1
f(y;Xa,a

2
I
n
)da1...dakda0 -00 -00

Like Durbin and Watson
8) 

we make use of the substitution y - Xa = c = e - X(a-b)
'-1 -1,giving (y-X) 0 (y-n) = 16'0 e + (3-b) X 0 X( -b). As

CO Co " _1
exp{-1(a-b) X Q X( aa-b)/

2
ldal...dak

(2ffa2)1</2 x'clx

the numerator of (B.1) is equal to

1 2 5

Co
(270-1(n-k) I ri 

' -1 1
X X a-n+k-1

exp{-18 
,c1e/a2}da

and after transformation w = e

27T)7.4.

a we get

n-k-2
Co

-k) P1X-1XF(e ,' 
-1, -1(n-k) (20 2 exp(-w)dw .

100 0 e)
0

The denominator of (B.1) is found when 0 is replaced by I and 6' by e. The
substitution of e is overlooked by Durbin and Watson. Now the rejection region
takes the form

or

(B.2)

1Q1 -1-1X f0-1:Xli(VQ-le)
q-(n-k)

I X X1 2(ele) 2"1-A) 

T
o

-1,.e'Q T1 5ete

which proves the theorem.

See Durbin and Watson [6], pp. 10, where the same theorem for a lessgeneral matrix 2 is considered.


