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Asymptotic Properties of Maximum Likelihood Estimators in a Nonlinear

Regression Model with Unknown Parameters in the Disturbance Covariance Matrix

By Risto D.H. Heijmans and Jan R. Magnus

University of Amsterdam, Amsterdam, The Netherlands

1. Introduction and summary

Almost all results on the asymptotic properties of maximum likelihood (ML)

estimators relate to the standard cases where the observations are independent

and identically distributed random variables. Two recent exceptions are papers

by Weiss [8] and Crowder [1]. Both authors study general cases and give

conditions for consistency and asymptotic normality. Weiss also discusses

asymptotic efficiency in some sense. It appears, however, that their conditions

are quite gruesome and hard, if at all, to verlfy
1)
 .

In the present paper we shall focus on the ML estimation of the parameters

in a nonlinear model

Yt = xt(13) + et
(t=1. ..n),

where the disturbance vector E = (El.. .611)' is distributed N(0,0). The positive

definite matrix Q may depend on a fixed number of parameters 0= 01...0
m
P. In

this case the observations yt are neither independent nor identically distributed.

Therefore new theorems had to be developed. Earlier work on ML estimation of

linear regression models with unknown parameters in the disturbance covariance

matrix has been done by Hildreth [3] and Magnus [41. The first author studied

asymptotic properties of ML estimators in an autoregressive model. The second

derived the ML equations and the information matrix for the general linear model,

and studied finite properties of the ML estimators, but little was said about

asymptotic properties. The present paper, generalizing both [31 and M, fills

this gap. Throughout there is some stress on precision and verifiability of

assumptions.

The plan of this paper is as follows: In section two we present the model and

derive the ML equations and the information matrix. The loglikelihood appears

to be regular with respect to its first and second derivatives. This is proved

in section three. Next, we establish strong consistency of the ML estimators
A A
a and 8. At that point we allow ourselves a digression into the study of

quadratic forms which may prove of independent interest. Sufficient conditions

are derived for the asymptotic normality of c'Ac, where A is symmetric and

c = N(O,). Also a vector generalization is presented. In section 6 this theory
A A

is applied to prove the asymptotic normality of and 0. We conclude the paper

with a short discussion of our findings.

1)
Recently, Vickers [71, by strengthening Weiss' conditions, obtained

more tractable results.
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2. The maximum likelihood equations and the information matrix

We shall consider models of the following structure

( 1)

or, in vector notation,

( 2 ) Y = g(0) 6 2

(t=1...n)

where y contains n observations on the dependent variable, g(0) contains
the regressors as (nonlinear) functions of k parameters 13.1... k, and e is
the disturbance vector.

We shall not assume that the errors e
t 

are independently or identically
distributed. Instead we shall make the following three assumptions:

Al: e is normally distributed, Ec=0, Eee'=Q, where R is a positive definite
matrix whose elements are twice differentiable functions of a finite
and fixed number of parameters 01,02... ,0, i.e. o4(0), 6 6 0.

A2: The xt are known twice differentiable functions of the k parameters

le 
The (n,k) matrix of first derivatives H=(h ) with

tj
htj = Dxt/30i has full rank. n>k.

A3: The parameters in 0 are independent from those in e.

The probability density of y takes the form

' -1(3) (20 RI 2 exp - lcS e.

The loglikelihood is

- ' -(4) A = y + log 
1

iR 1 - le ie 2

where y is a constant.

THEOREM 1

The nonlinear regression model (2) under the assumptions Al, A2, and A3
has the following first-order ML conditions:

(5)

^'^-1
H e = 0

3Q
-1

ae
h

(h=1...m) .tr{-5-57 Q) ^ = e'{]

-1

) ̂ e e=ee=e
NNW

A A A A A A
Here and 0 denote the ML values of fis and 6, R=0(6), H=H(3), and e=y-g().
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The information matrix of the loglikelihood function (4) is

H
t
Q
_1
H 0

(6) 2

where T is a symmetric (m,m) matrix with typical element0

(7)

PROOF

tr{22
,n-1 11 „-1
2.-- a"

e ao
i 

De
cJ (i,j=1...m).

The proof is basically similar to the proofs of theorems 1, 2 and;3.in

Magnus [ 14], but it is much shorter since we do not need an explicit

expression for the Hessian matrix.

Let V=S2
-1
, then upon differentiating the loglikelihood (4)

-1
dA = (dV) - eV(dc) - lc (dV)c

- '
= -fftr(V

1 
-cc )(dV) + c V(dg)

_
(8) itr(V 1-Ec )(dV) + c VHda .

Necessary for a maximum is that dA=0 for all daf0 and,d0f0. This-gives the ML

equations (5). The differential of ,A can be explicitly expressed in terms

of (de) and (df3):

TvecV 
1 

I f

(9) dA = i(d0) ao vec(V -Ec ) + (a) H VC .

Differentiating (9) yields

dA
' reel

i(d0) d ae vec(V
-1 TN

66 ) L(d.0)f recV)
De

d(vecV -1)

ecV f f I

1(de)
f1v

@e d(vecEE ) + (da) d(i 17)6 + (da) H V(dc) .

From here we could proceed as in [4] to derive the Hessian matrix. However,

since we only need the information matrix, we can take a considerable

shortcut. Taking expectations it is easily seen that the first, third, and

fourth term in the above expression vanish. This gives

t
- Ed

2
A = - i(d0)

1vecV)
d(vecV 1) + (a) H 1.7(dg)

De

,,IDvecV)(v-lov-14DvecV)
t de (c113)H

t
VH(da) 2= 2 uu, De DO



and hence

H VH 0

0 "Ity
2 e

2

where
DvecV), 

kV 
-1 -1

OV )
= [ ae

DvecV)
DO

DV -1)[DV -1
with typical element (T ).. = tr[77-- V V ) . (Q.E.D.)

0 ij "i

Remark 1

The linear regression model y=n+c, of course, is a special case of the

structure (2). The relevant formulae are found by putting H=X everywhere.

The ML estimates for 13. and 0 are those values which satisfy (5). If more
than one solution of (5) is found, we choose those values which maximize
the loglikelihood (4). In this paper we shall not be concerned with how to
solve the ML equations (5). Several methods are feasible, e.g. the Newton-
Raphson iterative procedure.

3. The regularity of A

In this section we shall prove the following

lemma 1

The loglikelihood A is regular with respect to its first and second

derivatives, i.e.

EdA = 0 and -Ed
2
A' = E(dA)

2 
.

2)
proof 

Starting from (8) we have

dA = ltr(V 1-cc )(dV) + c VH(d)

_ 1 1

= i(vecdV) vec(V 1-cc ) + (a.) H Vc

Now, EdA=0, since EEC =V and Ec=0.

Further,

(dA)
2 

vec= 1(dV) vec(V
- 

ee
1
-4 vec(V

-1
-cc )..] vecdV

1 t 1

(c43) H Vcc VHdfi

- '
+ (vecdV) [vec(V

1 
-cc )j c VHd13 .

2)
We provide an alternative (and hopefully a simplification) to the.corres-
ponding proof in [4]. This proof was proposed to us by H. Neudecker.
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It is easy to see that E[yec(V -cc )jc = 0, since 
EE.a.C.6k 

=0 for all
3 

i,j,k. Further,

- ' - -1 '
Evec(V

1 
-cc )[yec(V

1 
-66 = var[yec(V -EE )j = var(veccc ) = var(c0c).

This leads to

f

E(dA)
2 
= 1(vecdV) var(c0c) vecdV + (d0 H VH(d0) .

At this point we need two results from

commutation matrix K
n
:

[51 concerning the symmetric (n 2,n2)

K
n 
vec A = vec A , where A is some (n,n) matrix

var(c0c) = (I+Kn)(V- 
10v-1) .

Since dV is a symmetric matrix, we find that

1 f 
1 

1

4(vecdV) var(c0c) vecdV = -(vecdV) (I+K
n
)(V

-1
OV
-1

)vecdV

= i(vecdV)
'
(V

-1
OV
-1

)vecdV .

Thus,

E(dA)
2 1 _ _ I T
= i(vecdV) (V 10V 1)vecdV + (df3) H VH(cW

(de)' 
DTV (v-10v-1)

 
vec 

T d0 + (c1(3)'H'VH(di3)= 1 

= - Ed
2
A . (Q.E.D.)

4. Strong consistency of the ME estimators

When y1.. .y are independent observations and a parameter to be estimated,

then it is well known that the ML equation has a root with probability 1

as n±0., which is consistent for if the loglikelihood A is differentiable

in an interval including the true value 
3)
. Rao's proof can be summarized as

follows: Let be the true value and consider two values t; + 6. Since the
0 0

. (i=1...n) are independent we have, as n400
Yi

1 1
-A - -EA -÷ 0 with probability 1.
nn nn

Thus, as a+.0.

lr
- A

n
 

0
)1] < 0 with probability 1.

n n 0

If A
n
() is differentiable in ( y6), then An() attains a (local) maximum

within (t; ±6) and its derivative vanishes at that point. A root so located
0

is consistent for

Rao [6, pp. 364-5].



6 -

In the present case, however, we estimate the parameters from a sin&le 

(vector) observation on y. Therefore we must show that, even when the .371

are not independent, lA converges to its expected value with probability
n n

From now on, a subscript will denote the number of observations. Thus, An

n
, etc. denote the loglikelihood and the covariance matrix based on n

observations.

The loglikelihood of the first k observations is

-11 ' -1
A
k 
= - + iloglOk - -2-ekOk ek (k=1...n) ,

where e
k 
contains the first k elements of c

n' 
and

k 
is the north-west

(k,k) submatrix of 2
n. 

We partition O
k 
as follows

O
k -1 

d
k

d
k wkk

It is easy to verify that

and

O 
-1 

7-

where

a

and

zk

Define

Then

= a
k
10
k-1

I

w

-1
k-1 

0

- dO
-1 

d
k k-1 k

-Q
k-1 

d
k

1

X
1 

E A
l 
=

1

a
k 

k k

- ilog2ffw 11 - 2wil 1

A
k EAk 

- A
k-1

A =ZA..
n . 1

1

(k2... n)

(k=2...n) ,

(k=2...n)

(k2. .n) .

1 
- -1-log2ra 7 -(Z 6 

)2
2 k 2a

k 
k k 

(k2.. .n) .

We shall prove that the A
i 
are stochastically independent. Let p

k 
be some

nonstochastic real-valued k-vector and Tr
k 
its last element. Then



COV P E
1

'zkEk) = E(PkEk)(ckzk) =PkkZk

-2k-1 dk 
d

k-1 k

d
k 

w
kk

0

Trkak

1

The following properties of zkck are now straightforward

1 1

(1) 
zk k 

e is normally distributed, Ez
k
E
k
=0, var(z

k
E
k
)=a

k '

(ii) z
h
E
h 
and z

k
E
k 
(*) are stochastically independent,

(iii) z
k
e
k 

and e
1 
are stochastically independent.

Thus {A.}, i=1,2,... is a sequence of independent random variables. Further1

var (A.) = 1 (i=1...n) ,1
var(X.) 2

E
1 Tr

.2 12 3

i 1

and

EA.= - ilog2Tra. .

Hence, by Kolmogorov's theorem (Rao [ 6, p. 114]), the sequence A
i 
obeys

the law of large numbers, that is, as n400

1
E E(X.)

n. 1
1=1

Now, since EA = A
' 

we have, as n4
n 

00

-
1
A - -

1
EA --O

n n n n

which proves the desired result.

with probability 1.

with probability 5

A A
Before turning to the asymptotic normality of f3 and 0 we shall study the

asymptotic behavior of quadratic forms in normal variables. This theory

will be applied in section 6.
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5. The asymptotic normality of quadratic forms in normal variables

Let A
n 

be some symmetric (n,n) matrix with rank r
n
. The elements of A

may depend upon n which implies that An...1 may not be the north-west sub-

matrix of A
n
. As before, e

n 
is a normally distributed n-vector, EE

n
=0,

Ee
n
e
n=S2n' 

and rank (S-2
n
)=n. The elements of

n 
may also depend upon n.

Consider the quadratic form enAncn. Its expectation and variance are given

by

E(e
n
A
n
e
n
) = tr(A

n
Q
n
)

and

var(c
n
A
n
c
n
) = 2 tr(A

nn
)

We shall first derive sufficient condition for the asymptotic normality

of EAe
n nn

.

THEOREM 2

Assume that, as n -+

(i) r
n

(10) (ii) (h/r
n
) tr(A

nn)
2 
÷

(iii) (1/1/T)A 0,
n nn

some finite positive number,

then 
enAnen 

is asymptotically normally distributed, that is, as n -+

(1/1/17) e A e - tr(A)) N(0,20 .n nnn nn

Remark 2

Condition (i) ensures that 6 A E becomes an infinite sum. The secondnnn,
condition states that (1/r

n
) var(e

n
A
n
e
n
) has a finite limit. The last

condition implies that X(A
nn

)/717-->- 0 (and vice versa), where X(.) stands

for any eigenvalue.

Remark 3

It is well known (Rao [6, p. 188]) that 
enAnen f

orllows a x2(r
n
) distribution

if and only if AnQnAn = An. In that case AnQn is idempotent and thus

r
n 
= rank(A

n
) = rank(A

nn
) = tr(A

nn
) .

Therefore, the conditions (10) are fulfilled, provided only that ri.;+co. This,

of course, is as expected, since a x
2 
distribution converges to a normal

distribution.
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proof

-1
Since A

n 
is symmetric and 2

n 
is positive definite, there exists a non-

singular matrix F
n 
such that

F2
1
F = 

In
F
n
A
n
F
n 
= A

n 
and

nn n

-11 4)where A
n 
is a diagonal matrix containing the roots of A

n
-
A
2
n 

= 0

Note that a root A so obtained is also a root of A Q.
nn

-1
Let v

n 
= F
nn' 

then v
n 
= N(0,I) and

2
EAE =vAv = ElI A.v • 5
n n n n n n

j=1 
nj nj

where A
nj 

denotes the j-th nonzero root of Anqn and vnj the corresponding

component of V. Obviously

(11)

where

(12)

E
n
A .(v

2
.-1)

E
n
A
n
E
n
-trA

n
0
n j=1 

nj nj r
n

  = E
= 11J

/2tr(A 0 )
2

nn 
1/2tr,A

n
Q
n
)2 

j1

A(v
2 
-1)E =  nj nj 

nj
I2tr(A

nn
)2

The 1.1i are stochastically independent variables, and,as v
2
. follows a x

2
(1)

nj
distribution, it is easy to verify that

;
var(E.)..- A

2 
./tr(A 

2 
< 1 ,

nj nj nn

1 ,nj nj

max A
2
/r

j nj n
lim max var(Eni) = lim   = 0 .
n400 1...j.5J,

n 
n400 tr(A 2 )

2
/r

nnn

The last equality flows from conditions (ii) and (iii). In other words,

the stochastic variables E
nj 

form an elementary system 
5)
.

4)
See Rao [ 6, p. 41].

5) 
See Gnedenko [ 2, p. 332].
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I X I ›T

In the present case the elementary system is normalized by

and

0E.=
nj

E E
nj

We are now in a position to apply a theorem in Gnedenko [ 2, p. 330] which

states that the sequence of distribution functions of E E converges to

a standard normal distribution if (and only if)

limEri fx2 dFili(x) = 0 for all T>0 ,
n4o j=1 lxi>T

where F •(.) denotes the distribution function of •. Now, in view ofnj nj
(11) and condition (ii),

-± N(0,1)

J
nj

is equivalent with

(1/ '1/T) c A -tr(A
nn

))n nnn
N(0,211) .

The only thing to be shown, then, is that

2(13) lim En .1 x fnj(x) d = 0 for all T>0 .
n40° j=1 lx1>T

2 
Here f .(.) is the density of . Let a = 2 tr(A)

2 
, thennj nj n nn

(14) f .(x) =n3

a x-FA .
a
n 
exp - L( nx nj) a x+A .

nj n nj 
for > 0

127 . /]A 1 la x+X I 
A .
nj

nj n nj

0 

elsewherewhich follows from (12) and the fact that 

 ,

2 . 2
X(1) distributed.

n3
Suppose A .<0 (The case A .>0 can be treated in a similar fashion). Then,nj nj

-A ./a
2 -T 2 nj n

2
./. x f .00,01x = ' f x f Jx)clx + f x f .(x)dx .n] nj 

T 
nj

-0. 

For n sufficiently large, the expression - A 
nj/an 

will be smaller than T

and the second integral on the right hand side will equal zero. So we need

only investigate the behavior of the first integral on the right hand side.



Now,

-T -Tan
x2 

exp

I x2 fni(x)dx = f  
1

-. /TT-. —co 11 X ni I 1- anx+Xnji

a
n
(exp-i) -T x2 exp-1(ax/X .)

_ n nj 
I dx

i2TrIXIaj l -. Via
n
x+X

nj
1

1
an(exp) co x

2 
exp-.2-(a x/IX .1)

-  f  
n nj 

dx
127IX d T iax+IX

j
1

nj n n

G X
- 2(A

n
+1)

nj
dx

a
n 

ax03 

(eu-)  <   f x' exp 1(t An 
i 

1) dx==
ifX 

 
• .1(a T+IX .1) T I nj i

nj n

(exp-) 
a
n  

-G T 2LXII.J IT2 161Ani 1 3

•, jexp2ix a
n 

2 0
a)/-7T17 X . 1(a ' nj 
nnj n

(exp-1)

127

We may then write

2T2+8T 1 X +16A2da2
nj n nj n

4+0 T/IA .1
n nj

lim E I x
2
f
nj
(x)dx

r14.. j

(exp-1) urn

1/-27

(exp-)

1-2-71rr

n-±co

lim
n-±co

max

G
n
T

exp
21X

nj

2T2+8T 1 X i/a +16A
2 
./a

2
nj n nj n G

n
T

)(-1+a T/IX .1
n nj

2T2+8T1X 
nj 

I/a +16X
2
da

2
n nj n

)(1+a T/IX .1
n nj

exp -

2IX .1
nj

E exp
2IA

nj
1

-G T
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Now,

anT
E exp 

2IX
nj

I j k=0 k!

(a T/2IA .1)2
n nj

2

03

8 
22

T
n

1 k -1
(a

n
T/21A

nj
I)

,,2 4

J
nj T2

Further, we know from conditions (ii) and (iii) that lim Ix .I/u = 0 for
nj n

all j. Thus,

lim E
n400 j -c

2
xf

nj
(x)dx

(exp-1) 4
. lim max• 2

n400 j

This proves (13).

n40.

2T2+8TIA .1/a +16X
2
./G

2
n3 n nj n

/1+0- T/IX .1
n n3

= 0.

(Q.E.D.)

The vector generalization of theorem 2, which we shall need in the next

section, can be stated as follows

THEOREM 3

Suppose we are given m symmetr,ic

r =rank(A )6) . Again, c
n 
is a

n1
Ec cy =, rank( 0

n
) = n.

nn n 
Assume that, as 11-4-(00

(i) r co

(n,n) matrices A
ni
(1=1...m). Define

normally distributed n-vector, Ecn = 0

Tn

(ii) let b = (b ...b be some real m-vector, and r(b) = rank( b.A .).1 m n i=1 ni

Then there exists a finite function (1)(b) such that

r
n
(b)/r

n
411)(b) for all b 0.

Of course, r
n 
may be defined as rank (Ani) for any i (1 < i < m).



- 13 -

(15) (iii) The matrix (1/r
n
)T
n 

converges to a positive definite matrix T,

where T
n 
is a symmetric (m,m) matrix with typical element

(T ).. = tr A .0 A .0 .n 13 ni n n3 n

(iv) The matrices (1/171) A .0 (i=1...m) converge to the null matrix.n ni n

Under the conditions (i) - (iv) we have, as n40.

1
(16)

/71

remark 4

nn1n
Ae r A

n1
0
n

•
c'A C - tr A
n nm n nmn

N(0,2T).

Of course, each stochastic variable (1/VT71)(c 1 A E tr A .0 ), i=1...mni n ni n ni n
converges to a normal distribution if condition (10) holds for i=1...m.

In theorem 3, however, we demand that the joint distribution of these

variables converges to a normal distribution.

remark 5

Conditions (1),(iii) and (iv) are easy to verify. Condition (ii), however,

is a nasty one. It says that the rank of any linear combination of the

matrices A
ni 

goes to infinity with the same speed. In lemma 2 we give

sufficient and verifiable conditions under which (ii) holds.

PROOF

Let b = (b...b)' be some real m-vector. Define A = E b.A . and1 m n 
i=1 

1 na.'
r
n
(b) = rank (A

n
). Then, as n40.

(a) r
n
(b) 00

(b) tr(A )
2
/r (b) = tr(Eb.A .0 )(Eb.A .Q )/r (D)nn n 1 nl n n3 n n

= E b.b.tr(A .0 A .0 )
1

ij 
ni n n3

= (rn/rn
(b)).b'(1/r

n 
T
n
b

(b) b'T
n
b/r

n
(b)

b .b'Tb,

(c) A
n
0
n
/Vr

n
(b)1-+ 0.

Thus, An satisfies conditions (10) of theorem 2. This implies that



(1//r (b))(E'A c tr A
n
s2
nn n n

that is

or

-1
N(0,2

(1/A71) (E'A c - tr A Q ) N(0,2b'Tb),
n nnn n n

(1/17/7) E b.(E'A .E - tr A .Q ) -± N(0,2b'Tb).
n . a. n ni n ni n

1=1

Since this holds for every b 0, it follows that
7)

1

1/77

e t ti tr2
nn n1 n nm

E'A 6 — tr AQ
n nm n n

m
n

N(0,2T) (Q.E.D.)

As noted before, condition (ii) of theorem 3 is a troublesome one, since

it implies an uncountable number of conditions. The following lemma shows

that condition (ii) can be strengthened in such a way that is becomes

verifiable.

lemma 2

Theorem 2 remains true when conditions (ii) and (iv) are replaced by

.*
) There exist finite positive numbers a

i 
(i=1...m), such

that (1/rd rank (Alai) -4- a., as n400.
1

(Of course, a
1 
= 1)

(iv) The eigenvalues of A .Q (i=1...m) are uniformly bounded.
8)

ni n
(ThisisthecasewhentheeigenvaluesofQrl andAni (i=1.

are uniformly bounded).

PROOF

It is clear that (iv) i
m
plies (iv). Now, suppose that conditions (i), (ii),

(iii), and (iv) hold. We shall prove that (ii) holds.

Again, A = E b.A and r(b) = rank(A ). We know that
n i=1 ni n 

var(E'A c ) = 2 tr(A) = 2b'Tb.
n n n nn n

Therefore,

7)
See the multivariate central limit theorem in Rao [6, p.121.

8)
In this context, uniform means that the bound does not depend on n.
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bT(1/rT)b = (hr (b)) tr(A E2 . ) r(b)/rn n n nn n n 
.

Now, b'(1/r
nn

b converges to a finite limit unequal to zero (condition (iii)).
*Further, r

n
(b) E E rank(A

ni
)
9)
. It then follows from condition (ii) that

i=1
r
n
(b)/r

n 
is uniformly bounded. Therefore, if for all b 0 there exists a

positive number M(b) such that

(17) (hr (b)) tr(A 0 )
2 

<n  M(b),
n n

then r
n
(b)/r

n 
must converge to a finite positive limit. 

10)

Since r
n
(b) equals the number of nonzero eigenvalues of A

nn
, we have

(hr (b)) tr(A )
2 

< p(A 0 )
2

n n n n n '

where p(B) denotes the spectral radius of B.
11)
 Now,

p(A
n
Qn) = max

= max

max E lbi l
x i

Elb.I max

1 1

nn
x' 2A Ix

n

x'x

1
x'0--A

n ni n 
E b.

i=1 1 x'x

1 1
x'SVA .02x

n ni n

x'x

1 1
x'S2-2-A

n ni n

x'x

= E lb,1 p(AniQn) .
i

9)
For any two matrices A and B such that A+B is defined, rank (A+B) rank(A)

+ rank(B).

10)

11)

There cannot be two accumulation points. Suppose r(b)/rn has two accumulation

points yi and y2. Then (1/r
n
(b)) tr(A

nn
)
2 
also has two accumulation points.

Their product then has four accumulation points which must be all equal.

This implies yi
Y2*

The spectral radius p(B) of a square matrix B is the greatest of the 
absolute

values of its eigenvalues.
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Since we have assumed that the eigenvalues of A .Q are uniformly bounded,ni n .
p(A .0 ) is uniformly bounded, and p(A

nn
) is bounded by a function of b.ni n

Therefore, p(A
nn
)
2 
is bounded by a function of b. This establishes (17).

Thus, r
n
(b)/r

n 
converges to a finite positive limit. Finally we note that

P(A .Q ) = max
ni n

< max

1
x'O'A .Q2x

n ni n

x'Q x

y'Aniy

Y tY

xi
n
x

xtx

x'Q
n
x

. max  
x x'x

= p(Ani)11(Rn).

Thus, if the eigenvalues of Qn and Ani (i=1...m) are uniformly bounded, then the

eigenvalues of A 
ni

Q
n 

are uniformly bounded. (Q.E.D.

6. Asymptotic normality of the ML estimators

A
Four preliminary lemmas are needed to prove the asymptotic normality of P.A
and O. First, the following assumption is made:

A4: The matrix (1/n)HiQ
-1
H converges to a positive definite matrix Q as

n oo.

lemma 3

-The vector (1ar7)3A
n
/D13 is distributed N(0,(1/n)H'Q

1
n 
H). Further, if

assumption A4 is satilsfied,

(1/1-n1)3A
n
/D13 WO,Q), as n co.

proof

The lemma follows from the fact that @A /313=H'S2 lc (See (9)). (Q.E.D.)
n n

Let us now introduce some definitions

A
ni 
E1/D0

i 
(i=1. ..m),

rn 
= rank (A

ni
)
'
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nO 
is the symmetric (m,m) matrix defined earlier in (7), with

typical element (T ). = tr A .0 A .0 .ne ij ni n n] n

Some further assumptions will be needed:

A5:Theranksof-themmatrices) 
all go to infinity with the same

speed, that is

r
n cc.5 as n co

and

(h/r)rank(A (i=1. .m), as nn ni 1
00 

5

where the a. are finite positive numbers
' 

a
1
=1.

A6: The eigenvalues of A .0 (i1.. .m) uniformly bounded.
13)

ni n

A7: The matrix (151)T converges to a positive definite matrixn nO
T. as n
0

lemma 4

Under the assumptions (A5) - (A7)
14)
,

(1/47111)3An/H -3- N(0,1T , as n -± co.

proof

From (9) we know that_i
Dveca

(18) DA /DO = L( n ) vec(Q c') =n  -1
n n n

13)
Sufficient for the eigenvalues of A 

n'
.0 (i=1...m) to be uniformly bounded isn

that the eidgernbitheS of Rn and A. (i1.. .m) are uniformly bounded (see lemma 2).

c'A e - tr A
n1nn n1 n

c'Ae - tr A
nm
0
nn nm n

40110.

12) -1N sinceni
(30 1/30

i
)0

14)
It should be noted that assumptions A5 and A6 are stronger than necessary,
and may be replaced by conditions (15i),(1511) and (15iv). The reason why
we prefer A5 and A6 is that they allow verification, whereas condition

(15ii) usually doesn't.
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Applying theorem 3, we find the desired resu
lt. (Q.E.D.)

Thus, in lemmas 3 and 4, we have proved that 
(1/43)3An/n. and (1/1/)aAn/D0

are asymptotically normal. We shall now prove 
the asymptotic normality of

the joint distribution of these vectors.

lemma 5

Under the assumptions (A4) - (A7),

(1/1n)aA
n/

a13

(1bC)DAn/D0

proof

-->- N 0,

,Q

as n -÷5

For any positive definite (n,n) matrix P, t
he following equalities hold:

= pl
(19) f exp(-1x'P-ix)dxi dx

n 
(27)n/2 1 Ii 

5

and
1 n/2 1 _ 1 1

(20) I exp(-ix'P-ix+tfx)dx, dxn = (2) e l exp t'Pt.

The first equality simply states that the mult
ivariate normal density with

zero mean integrates to unity. The second eq
uality reflects the fact that,

if x = N(0,P), the moment generating function of t'x is exp t'Pt.

Let M
n,0

(t) = E exp t'(1/VP)DA n
/DO be the moment generating function of

n 

(1/i/P)DA /DO. Then,
n n

-n/21 1-:1
M = (27) 2 I ... I expW(1//7)DA /ae — -16,Q-16 )dE d

n 
E

n,0 n n 2 nn n 1 IC

Substituting for aAn/8 the expression in (1
8), we find

1
exp[E t.(1/Ictr(AniS2n)]

Mn,0(t)=(27)-n/21%1- j=1

_1 1 1 _1

• f expPE'S/ 2{1 +Et (1/V17-1)SP-A .S.2-2-}Q 2E Ide de .
nn n, j nnn3nnn1 n
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For n sufficiently large, the matrix

I + Et.(1/47")0.IA .02
n . n n n3 n

J

will be positive definite (Assumption A6)
15)

. Therefore, by (19) for large n

M
n,0

(t) = 10,1 1 2

_1 1 1
c 2(1 +Et.(1/ir )02A .Q2)Q 2
n n . j n n nj n n

J

0 exp(lEt.(1/)/17-)tr (A .0 ))
nj n

_1
2

= II +Et.(1/A771)0-2-A .02 1 -2 . exp(iEt.(1/../77)tr (A .R )).
n , 3 n n nj n n3 n

Let (1)n,e(t) be the characteristic function of (1/iT,DDAn/ae, and i=,/=1-, then

lim n(t) = lim exp(iiEt (1b/P)tr (A .0 )),
nj n

n'' n40. j
since

i
lim II +iEt(1/,';-)02A 02 1 =

n . j n n nj n
n4co j

•

Also, by lemma 4, we know that (1/471-1)3An/30 is asymptotically distributed

as N(0,1T0). Hence,

lim (1) n(t) = exp -it'T t4 0 5

n40. n"

and thus

(21) lim exp iiEt.(1/V7)tr (A .0 ) = exp -4t'Tet.
-4n n3 n

Let us now consider the moment generating function Mn(s,t) of

C(1/4-7)n
n
/BV, (1/VP)DA /DOT. In the same way as before, we can write

n n

15)
In fact, the moment generating function (instead of the characteristic

function) was used to ensure the positive definiteness of this matrix.
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M
n
(s,t) = E exp [s (1//)A/ + t (1//T)DA /DO)

n n

= (27)-n/21%1
1

-2 exp k- E t.(1/1;-)tr(A .2 ) •
j=1 3 

nj n

r- - • f...fexp s (1/Yn)H' 1 E -IE 2 2{1 +Et.(1/1;--)22A .22 }2-2E
[ 

nnmn nnnn nn n 3

dE,...dc .

By (20), we may evaluate the integral for large n. This gives for large n

M
n
(s,t) = 1%1 2(1 

1 1 1 1
+Et.(1/17-17)22A .22)2n n . j n nmn n
3

• eXpDEti(1/1117n-)tr (A .2 )]
nj n

_1
2

1
• exp[ _ls1(1/n)H'2 22{1 +Et.(1/47)21A .21}-1212-1Hs]

n n n.j n n nj n n n

Let (Pn(s,t) be the characteristic function corresponding to Mn(s,t). Then,

lim (Pn(s,t) = lim exp[liEt.(1/)/171)tr (AniQ)] . expDs'(1/n)F1'2-n-1Hs

= exp(-4t'Tet) . exp (-is' Qs),

by viitue of (21) and (A4). Thus,

lim (Pn(s,t) = exp -i(t'(-00)t + s'Qs).
11-+0.

This implies that, as n ÷ ....

, .
e 1 e \

(1/47)aAn/n Q 0

(1/V7)DA /DO o -1T

. J

-÷- N 0,

Let us now make two final assumptions:

2
@

n 
A8: (1/r

2
)tr 

Q 
-* 0 (i,j=1...m), as n -* co.

ii

A9: (1/n
2
) 

1 2g()1' -1[32g(1
n.a13.fi 
1 j 1 j

remark 6

(i,j=1...k), as n -4- 00.

(Q.E.D.)

Again,assumptions A8 and A9 are stronger than necessary. As will be clear

from lemma 6, it is sufficient to assume that, as n-÷00
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and

D O
n 

(1/r 
, 

n) 
n 

E
n 
- tr

De.DO.

(1/n)

1

Pa
2
g(0• 1

913.n. 
O
n 

c
n 

-4-
1 3

2 -1
D

n  
ji

DO.De. n
1 j

.4- 0 in probability (i,j=1...

0 in probability (i,j=1...k) .

Assumptions A8 and A9 imply even convergence in quadratic mean. However,

A8 and A9 allow straightforward verification, which we find important.

remark 7

It should be noted that A9 is the only assumption which arises typically

in the nonlinear case. The linear regression model y =X + E implies

D
2
g(13)/n.D13. =0, so that A9 is trivially true. As to the verificationj

of A9, it is easy to see that, if the eigenvalues of On are uniformly

bounded away from zero
16)
, stfficient for A9 is that

(1/n
2
) 0

2
g()/n. n.P(a

2
g(13)/n.n.) 0 (i,j=1...k), as na_ 3 j

lemma 6

Let B
n 

be the Hessian matrix of the loglikelihood (4) divided by appropriate

factors n and r
n
:

B
n 
=

(1/n)D
2
A /n4D13.'
n

(1/ 4771)D2An/D f3De'

(11/71-7)D2A /Boni-n n

(1/r
n
)9
2
A
n
/aeae,

Then, under assumptions A4, A6, A8 and A9,

B
n 

EB
n 

-± 0 in probability, as n ±00.

16)
This means the following: There exists a 6 > 0 such that for all n, X

n
) > 6,

where A(.) stands for any eigenvalue.



90 -

proof

From (6) we see that

(1/n)H'S2 1H

EB
n 

=

Further, from (9),

Hence,

and

0

0

(1/2r) 'i' 0

/n. = Og()/@I3.PQ-16 and DA /DO 
j 
= -1(e'A 6 - tr A .2

n 1 n n n n nj n nj n

@
2
ArMini = 0

2
g(f3)/n.n.PQ 16 - Og(Wn.PQ 10g(8)/ni),

ij nn j n

A /38.B(3. = Og(O/Dy n'A ien ,
n 3 1

D
2
A /DO.De. =-1[1,6'(D

2
Q
-1
/Be.ae.)c -tr(9

2
Q
-1
/DO.D0.)2 1 +1tr(A .m2 /Be.)

n 1 ] n n 1 n n 1 j n ni n

=-1[6;1(D20-1/30.D0.)6 -tr(D
2-1

/DO.30. )2 trA .2 A .r,2 .
n 1 n n 1 n ni n nj n

Thus, we have to show that, as n400

(a) (1/n) 0
2
g()/913.n.P2 lc 0 in probability,

ij nn

and

(b) (1/1/17-licd Og(Way'Anj6n -4- 0 in probability,

(c) (l/r) P(D22-1/DO.DO )6 - tr(D
2
Q
-1
/D0.90 )2 1 -± 0 in probability.n

n n ljn n I j n
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It is sufficient, though not necessary, to show that the variances of

(a), (b), and (c) vanish, as n4.00. Now, assumptions A8 and A9 say that

the variances of (c) and (a) vanish, as ro-co. As to (b),

varp/14-17c0g()/3y 1Anjcid

1 nj n nj

2
(1/nrn)(Qn2ag()/ni ) (qAniq) (Q112Dg(13)/9y

1 1 2
< (l/nr )1.1(Q2A .02) . Og(13)/43.)

n n nj n 1 n 1

where, as before, 11(J denotes the spectral radius. From A6 it follows that
12 12,(22A .22

" n nj n
) is uniformly bounded. Hence, (1/r )p(Q2A .Q2) 4- 0, as n.+00.n n nj n

' -Further, from A4, (1/n)(Dg(13)/DO) 
1
n 
(Dg(13)/) is uniformly bounded.

This establishes (b). (Q.E.D.)

We are now in a position to consider the asymptotic distribution of the MLA A
estimators 13 and 0. From the foregoing discussion it follows that all

conditions for the traditional proof of asymptotic normality are fulfilled
17)

:A A
13 and 0 are consistent, A

n 
is regular, and, as n-±co

and

B
n 
- EB

n 
0

(1/Vn)DAnin

,1/4711)3An/DO,
N

in probability

05

fQ 0

0 2

Hence, we may state the following result

THEOREM 4

Under the assumptions A4 - A9, the ML estimators and 0 are asymptotically

normal, that is, as n400

^
1/7r7

0A
VT,— (0-0)

5

, -1
Q

J7)
See e.g. Zacks [ 9, pp. 246-247].
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7. Discussion and conclusion

In this paper we have sought to establish verifiable conditions under

which the ML estimators and 0 of the nonlinear regression model (1)

are strongly consistent and asymptotically normal. The first three

conditions (Al) - (A3) describe the model. Of the remaining six assumptions,
A5 (the rank condition) deserves some special attention. In our opinion A5

is necessary, since without it, we may not have an infinite sum as n-.›.00 (see
theorem 2). However, no study is known to us where the rank condition is

explicitly formulated. All conditions can be straightforwardly applied to

the linear model y =X + c, by replacing H by X. Condition A9, being

typical for the nonlinear case, then disappears.

Our conditions (A4) - (A8) should be confronted with the corresponding
conditions (9) - (12) in N. These appear to be remarkably similar,
although their derivations are very different. However, two differences

are apparent: First, the rank condition does not appear in C4], and

secondly, convergence should be uniform in that paper.

Of course, future research 'should establish conditions under which 13 andA

0 are BAN estimators. Let us end with a conjecture: In theorem 2, the

three conditions (10) are sufficient for the asymptotic normality of c Ac.
The first condition is certainly necessary. Our conjecture is that the

other two conditions are necessary too, i.e. (10) is sufficient and

necessary for the asymPtotic normality of c Ac.
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