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1. Introduction

An autoregressive moving average process {Zt} of orders p and q is

defined by
b
r ¢.z, . = 6.a, . (1.1)

3=0 ] t-] $=0 J t-]

where {at} is a set of uncorrelated, identically distributed, variables with
mean zero and unit variance and where the parameters ¢j and ej‘are real and
¢O = 90 = 1. We assume that the stationarity and invertibility conditions

for this process are satisfied and we define the autocovariance, at lag k,

of {zt} by

Yy = ﬁ[ztzt-k] . ‘ (1.2)

Given an observed ZiseeesZ the autocovariance matrix, of order n, is

given by
(1.3)

where Pi = Yli_jl. For the process (1.1) we rewrite P as Pn(p,q) which
reduces to Pn(p,O) and Pn(O,q) respectively for an autoregressive process
of order p and a moving average process of order q.

When the z, are normally distributed the inversion of the autocovariance
matrix and its determinant are important, in order to obtain the likelihood
function of the process. Therefore several authors have been motivated by
this to obtain P;l(p,q) and the determinant “+?n(p,q)|. Shaman (1969),
Uppuluri & Carpenter (1969) and Prabhakar Murthy (1974) have given exact
expressions for the inverse for a first-order moving average process (p=0,
q=1). Shaman (1973) has extended his results to the general autoregressive
moving average case and gives an exact expression for P;l(052). Tiao & Ali
(1971) have given an exact expression for P;l(l,l) and the determinant

an(l,l)';' Newbold (1974) has obtained the same results as Tiao & Ali

(1971) by means of an other approach, although his method is in fact the same




as that given by Galbraith & Galbraith (1974). Recently Anderson (1976 a,b)
showed how general expressions for P;l(o,q), P;l(p,o) and P;l(p,q) could be
obtained by means of a generalization of an algorithm given by Sherman &
Morrison (1950), though he does not given any exact expression for low order
models.*

In this paper, making use of the notation given in Anderson (1976b), we
extend the approach given by Tiao & Ali (1971) to obtain a general expression
for P;l(p,q). Results for a strictly autoregressive and a strictly moving
average process follow quickiy from it. In section 3 we discuss the existence
and form of the inverse autocovariance matrix for a general autoregressive
integrated moving average process. Finally, in section 4, we give an explicit

-1
form of P (p,q) for p = q = 2,

2. The inverse in the general case

Let Un r(oc) denote the nxn upper triangular matrix whose elements in
b

the i-th row and j-th column (i<j) are 1 for i=j, ai . for i<j<r+i and 0 for
- S

j>r+i. Let further Lr(a) denote the rxr lower triangular matrix, whose element

in the i-th row and j-th column is o, . (i>j) and let Z and A stand
r-i+j = VoW VW

5 k]

for the column vectors

= (Zv’zv-l""’zv-w+l)

.,a )
YTv-wtl

where ' denotes the transpose of the vectors.
It is easy to show that equation (1.1), for n>p and q, may now be written

. 0 0
U  (¢)Z =U (8)A + A - Z . (2.1)
n,p ¢ t,n n,q ) t,n L (8) t-n,q L (¢) t-n,p
q P

Since At n is uncorrelated with any combination of the elements of At~n q and
N b

Zt—n o’ it follows from (2.1) that the n-th autocovariance matrix for an
bl

A list of other references to authors who gave exact expressions for the

exact inverse in various cases of the autoregressive moving average model
can be found in Shaman (1975). '




autoregressive moving average process of orders p and q is given by

(o). Hs) (2.2)
q n,p

bl

(0) (1+(u”" () (Ut (8)8) ') U
n.,q m n,g n

b bl

-1
Pn(p,q) = Un,p(¢) u,

b]

where A is an nxm matrix, with m = max(p,q), of the form

0 0 ... 0]

and where Vm is an mxm variance-covariance matrix of the vector

0 0
LI .
(yt—n+l’yt—n+2""’yt~n+m) '[Lq(e)]At-n,q [Lp(e)]zt—n,p :

The inverse autocovariance matrix follows from (2.2)

-1 _ (-1 ' -1 -1 -1 -1
P "(p,q) = (Un’q(e)un’p(¢)) [I+(Un’q(6)A)Vm(Un,q(e)A) ] (Un,q(e)un,p(¢)),<2.5)

Now using the following well-known relation between matrices

1,-1 -1

1 ) TB'A (2.8)

(a+BpB) L = a7t - a7 lg(mralein”

where A and D are nonsingular matrices of orders m and n and B an mxn matrix,

(2.5) can be written

-1 A -1 -1 '
P(pia) = (U] (U (9) [ﬁ (W, L@ (U (e)n) .

-1

-1 -1 -1 7, -1
.(Un’q(e)A)+Vm ) (Un’q(e)A) ](Un’q(e)un’p(¢))

_l 1 _l
(Un’q(e)un’P6¢)) (un’q(e>un,p(¢>} +

-1 ! -1 -1 ' -1
- (U g(e0u, () (U (@) (U]~ (8)a) (U~ (9)a) +

+ v o oy (w e 0) . (2.7)
m n,q n,q n,p

For a strictly autoregressive process Un q(6) = I and equation (2.7)
b
reduces to

-1 o ! -1.-1,, "7
PI(R0) = UL () U (9) = (U (0)W(I DTy

’p(¢)). (2.8)




1
Since the first n-p rows of Un p(4>)A consists of zeros the second term

H
on the right-hand side of (2.8), whatever the composition of (I+V;l)-l, is

a matrix of zeros except for the pxp submatrix in the lower right corner.
The elements of P;l(p,o) are, appart from the pxp lower right submatrix,
1
equal to the corresponding elements of U p(¢)Un P(¢). When n>2p the elements
2 2

._l 1
of P (p,0) can be deduced by computing R p(qb)Un p(¢) and taking advantage
2

b

of the double symmetric property of the matrix P;l(p,q), i.e.

pl] - pjl - Pn+l—j,n+1-1 - pn+l—1,n+l—j where pl]

is the (i,j)-th element
of P;l(p,q), in the same way as was done in Box & Jenkins (1970, appendix
A 7.5) and in Siddiqui (1958).

For a strictly moving average process Un,p(¢) = I and the matrix
P;l(p,q) can be written in the form
P (0,q) = (U;fq(e))f(un’q(e)) - (o

2

Do
q(e)) (U (8)8) (

.

. Wt o)) (vt (o) .
n,q n,q

9

W o)) Wt (o)) + v
n,q n,q m

The matrix Ué (6) is an nxm lower triangular matrix which can be partitioned
b

as follows

(v (8))" - (2.11)

1
where drl = (O,...,O,eq,eq_l,...,91).In this way we have reduced the inversion

of an nxn lower triangular matrix to the inversion of the same matrix with

1
order n-1. We can apply the same process to the inversion of (Un-l q(e)) and
b

on repeating this procedure we finally arive on the n-th step at the completely

i




1 - ! -
inverted matrix (Un q(G)J b1t s easy =< see that (Un q(G)) 1 ie of the
2 b

same form as U% q(6) with the i+l-th element of the first column given by

b]

the recursive relations

~(B 46, Ju 4+ ...+ 6,u) for izl,...,q

1 12 1

-( ... 8. u.) for i=zq+l,...,n-1

. + .
equl+q+l eq+luJ_—q-l>2 * 11
with u = 1.
. . . -1 Y-l
Using the above relations the matrix product (Un q(G)) (Un q(e)) can be
2 9

. . ! . -1 .
obtained and since Vm has the same basic form as Un (6) the inverse Vm is

H]

straightforward determinéd. The only remaining problem is the inversion of

1

b

the gqxq matrix ((U;lq(G)A)'(U; q(e)A)+V;l).

The calculations for obtaining P;l(O,q) can be slightly modified by applying
. . -1 vo-1 -1y-1 . .
relation (2.6) a second time to ((Url q(e)A) (U q(8)A)+Vm )”" which gives the
i ? ?

following expression

1

_l N {_l _l —l ' _.l . _l
(U €028) (@~ (W)™ = ((u " (om) (W]” (0)8)) ™ (

-1 1

9

._l ! -
((Un,q(e)A) (u_

-1 vo-1 -1 -1
((un,qwm (un’qwm)) + V) q(e)A)) :

Here no inverse of Vm has to be obtained.

3. The inverse for a nonstationary process

We now consider the general autoregressive integrated moving average process

; q
6. (‘il)(—l)l z s s = I 6.a . (3.1)

P
L 1 t-
j=0 I i=0 I §4=0 3

d
z
with ¢O = 60 = 1.

day, i
If we replace I (i)(—l) Zi3 by W the autoregressive integrated moving
i=0

average process for {zt} roduces to an autoregressive moving average process

(3.2)




The integrated process given by equation (3.1) can be taken up as the limit,
for € approaches one, of the process
d

d i :
iio (i)(-e) Zp_iog T . . r2 (3.3)

The equations (3.2) and (3.3) are related with each other in the following way

| 1
(21’22”'"Zd’wd+1’wd+2""’wn) = Mn(s)(zl,...,zn) (3.4)

where Mn(s) is an nxn lower triangular matrix whose elements in the i-th row

and j-th column are 1 for i=j, [j+j_i)(-e)l~] for j<igd+j with i=d+1,d+2,...,n
and zero for i>d+j or i<j with i=d+1,d+2,...,n.
The autocovariance matrix for (3.4) is given by the expression

V (z'z)

_ ol
Pn(p,q) = Mn (g)

. i !
where V(z'z) is the dxd variance-covariance matrix of (21,22,...,zd) s V(w'w)

is the n-dxn-d variance-covariance matrix of (w 2,...,wn) and V(z'w) is

a+1°"a+

]
the n-dxd cross-covariance matrix between the vectors (zl,z2,...,zd) and

(wd+1,wd+2,...,wn).
Using the well-known expression for the partitioned inversion of a nonsingular

matrix on (3.5) yields

V—l(z'z) + V-l(z'z)V(z'w) R V'(z'w)V-l(z'z)

P;ll(p,q) = 1!(e) SRV 2wV z'z)

- v (z12) v(z'w) R Mn(e)

R

with R = EV(w'w) - V'(z'w) V_l(z'z) V(z'w)]-l.

When € approaches one several things happen. First of all it is obvious from
(3.3) that the dxd matrix V(z'z) tends to infinity. Second, the matrix V(z'w)
remains a finite matrix as € goes to one. This can be easily seen from writing

(3.3) in the random shock form




d(d+1) 2
= woat+(dewo+¢l)at_l+ C—-ET—~ € wo + dewl + th)at_2 +

d(d+1)(d+2 3 d(d+1 2
-rGJL——fgg———l ey, + ’£§T'l ey, +dey, + wa)at_3 Fous

z y__(kla__

K=o 22 t-k

where (1-¢B) % 6(B) / ¢(B) = = (d”%"l)(es)j LV, B with B the backward
j=0 2=0

shiftoperator and where Yza(k) 2 E[ztat_k]. Then
E[y z ] = & Y.y (5-t-2) (3.7)
: t L 5=t-2 Jza 7
for 2=1,2,...,d is finite, since Yza(k) has a bound independent of e for l€|é=-
Because V(z'z) tends to infinity, as € goes to one, it follows from
- - - 1 - :
VIR = v e [Ven-v (zrav 2 2) (2 )]
-1 ' -1
=I -V (wwV (z'W)V (2'2)V(z'w)

that R tends to V_l(w'w). Hence, combining the above results, it follows that
.. -1 .
the matrix Pn (p,q) goes to zero for € goes to one except for the matrix R and

the expression on the right of (3.6) becomes

o 0 T
M! -1 M (3.8)
o V “(w'w) n

with M_ = 1im M _(e). So for e=1 we have zﬁPgl(p,q)z = w'V_l(w'w)w. This means
- e>1

that the likelihood function of n observations from (3.1) has the same

exponential form as n-d observations from (3.2).

4. A special case

To illustrate the results of section 2 we consider the case where the

series‘{zt} is generated by the process

Ze v 012 g T2, T A v 0 g+ 0a .

The matrices U_ _(¢), U (8) and A are
n,p n,q

2




1

The vector (yt—n+1’yt—n+2) is given by

yt—n+l

yt-n+2

The variance-covariance matrix of this vector follows from the relations

I 6] [v,.(0)

0 Yza(l)

(n

F2 0] et

where Yza(k) = E[zt

y (0)o0
za
Yza(l)yza(o)

. _ _ 2
with Yza(o) =1, Yza(l) =-¢, + 8 1

_ -1
1 10 Yo © (det) {(l+¢2)(l+e

2
+82 2¢282) +

+ 2¢l¢2(¢l—el)}, Y, :(det)_l{-¢l(l+6 +0°) + (el~¢192)(1+¢i-¢§) + 92(¢§+el+

2
2
2
-

+¢§el+¢§ez)} and det = (1—¢2)[(1+¢2) -¢




The elements of Vm are

2
viq = 0Ypm20,8

2
11 (0)+0,

2Yza

= Vo1 T ¢1¢2Yo+¢§Y1'(¢ o,+6,8

211 2)\(za(o)~¢262\(za(l)+e

19

2
2
1

2,2 , - 2
Voo v(¢lA¢2)YO+2¢1¢2Y1-2(®191+¢292)Yza(O) 26,8y, (1)+67+6, .

' -
he recursive relations (2.12) the elements of (Un 2(6)) ! are
b

:1,

= -(qui_ +6 ui) for i=l,...,n-1

i+l 11

lo(G)A) becomes

- '
and the matrix product (U 1 (8)A) (U
n,2 n,2

+U.
Uititl

i=0

'~

- t - - -
f we apply relation (2.6) a second time to ((U ! (8)A) (U 1 (8)A)+V l) ;
n,q n,q m

inverse of Vm is needed and from here the matrix'P;l (2,2) can be obtained

straitforward matrix multiplication.
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