



***The World's Largest Open Access Agricultural & Applied Economics Digital Library***

**This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.**

**Help ensure our sustainability.**

Give to AgEcon Search

AgEcon Search  
<http://ageconsearch.umn.edu>  
[aesearch@umn.edu](mailto:aesearch@umn.edu)

*Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.*

*No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.*

Report AE7/77

Amsterdam University, Institute of  
actuarial science and econometrics

# Instituut voor Actuariaat & Econometrie

*On the inverse of the autocovariance matrix for a  
general mixed autoregressive moving average process*

by J.G. de Gooijer

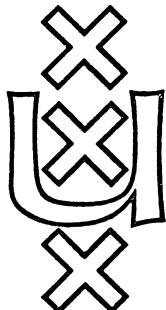
Classification : AMS(MOS) subject classification scheme (1970):  
62M10.

Some key words : Autoregressive and moving average processes,  
Autocovariance, Autocovariance matrix.

Abstract: Extending an approach given by Tiao & Ali (1971) the  
exact inverse of the autocovariance matrix of a  
general mixed autoregressive moving average process  
is obtained. Next the existence and form of this  
matrix is established for a general non-stationary  
process. An explicit expression for the inverse  
autocovariance matrix is given for the second order  
mixed autoregressive moving average process.

GIANNINI FOUNDATION OF  
AGRICULTURAL ECONOMICS  
LIBRARY

AUG 21 1978



Free copies are obtainable from  
Interfakulteitsbureau Aktuariaat en Ekonometrie  
Jodenbreestraat 23 - Amsterdam, 'phone: 020-5254217

## Universiteit van Amsterdam

## 1. Introduction

An autoregressive moving average process  $\{z_t\}$  of orders  $p$  and  $q$  is defined by

$$\sum_{j=0}^p \phi_j z_{t-j} = \sum_{j=0}^q \theta_j a_{t-j} \quad (1.1)$$

where  $\{a_t\}$  is a set of uncorrelated, identically distributed, variables with mean zero and unit variance and where the parameters  $\phi_j$  and  $\theta_j$  are real and  $\phi_0 = \theta_0 = 1$ . We assume that the stationarity and invertibility conditions for this process are satisfied and we define the autocovariance, at lag  $k$ , of  $\{z_t\}$  by

$$\gamma_k = E[z_t z_{t-k}] . \quad (1.2)$$

Given an observed  $z_1, \dots, z_n$  the autocovariance matrix, of order  $n$ , is given by

$$P_n = (p_{ij}) \quad (1.3)$$

where  $p_{ij} = \gamma_{|i-j|}$ . For the process (1.1) we rewrite  $P_n$  as  $P_n(p, q)$  which reduces to  $P_n(p, 0)$  and  $P_n(0, q)$  respectively for an autoregressive process of order  $p$  and a moving average process of order  $q$ .

When the  $z_t$  are normally distributed the inversion of the autocovariance matrix and its determinant are important, in order to obtain the likelihood function of the process. Therefore several authors have been motivated by this to obtain  $P_n^{-1}(p, q)$  and the determinant  $|P_n(p, q)|$ . Shaman (1969), Uppuluri & Carpenter (1969) and Prabhakar Murthy (1974) have given exact expressions for the inverse for a first-order moving average process ( $p=0, q=1$ ). Shaman (1973) has extended his results to the general autoregressive moving average case and gives an exact expression for  $P_k^{-1}(0, 2)$ . Tiao & Ali (1971) have given an exact expression for  $P_n^{-1}(1, 1)$  and the determinant  $|P_n(1, 1)|$ . Newbold (1974) has obtained the same results as Tiao & Ali (1971) by means of an other approach, although his method is in fact the same

as that given by Galbraith & Galbraith (1974). Recently Anderson (1976 a,b) showed how general expressions for  $P_n^{-1}(0,q)$ ,  $P_n^{-1}(p,0)$  and  $P_n^{-1}(p,q)$  could be obtained by means of a generalization of an algorithm given by Sherman & Morrison (1950), though he does not give any exact expression for low order models.\*

In this paper, making use of the notation given in Anderson (1976b), we extend the approach given by Tiao & Ali (1971) to obtain a general expression for  $P_n^{-1}(p,q)$ . Results for a strictly autoregressive and a strictly moving average process follow quickly from it. In section 3 we discuss the existence and form of the inverse autocovariance matrix for a general autoregressive integrated moving average process. Finally, in section 4, we give an explicit form of  $P_n^{-1}(p,q)$  for  $p = q = 2$ .

## 2. The inverse in the general case

Let  $U_{n,r}(\alpha)$  denote the  $n \times n$  upper triangular matrix whose elements in the  $i$ -th row and  $j$ -th column ( $i \leq j$ ) are 1 for  $i=j$ ,  $\alpha_{j-i}$  for  $i < j \leq r+i$  and 0 for  $j > r+i$ . Let further  $L_r(\alpha)$  denote the  $r \times r$  lower triangular matrix, whose element in the  $i$ -th row and  $j$ -th column is  $\alpha_{r-i+j}$  ( $i \geq j$ ) and let  $Z_{v,w}$  and  $A_{v,w}$  stand for the column vectors

$$Z'_{v,w} = (z_v, z_{v-1}, \dots, z_{v-w+1})$$
$$A'_{v,w} = (a_v, a_{v-1}, \dots, a_{v-w+1})$$

where ' denotes the transpose of the vectors.

It is easy to show that equation (1.1), for  $n > p$  and  $q$ , may now be written

$$U_{n,p}(\phi)Z_{t,n} = U_{n,q}(\theta)A_{t,n} + \begin{bmatrix} 0 \\ L_q(\theta) \end{bmatrix} A_{t-n,q} - \begin{bmatrix} 0 \\ L_p(\phi) \end{bmatrix} Z_{t-n,p}. \quad (2.1)$$

Since  $A_{t,n}$  is uncorrelated with any combination of the elements of  $A_{t-n,q}$  and  $Z_{t-n,p}$ , it follows from (2.1) that the  $n$ -th autocovariance matrix for an

\* A list of other references to authors who gave exact expressions for the exact inverse in various cases of the autoregressive moving average model can be found in Shaman (1975).

autoregressive moving average process of orders  $p$  and  $q$  is given by

$$P_n^{-1}(p, q) = U_{n,p}^{-1}(\phi) U_{n,q}(\theta) \left[ I + (U_{n,q}^{-1}(\theta)\Delta) V_m (U_{n,q}^{-1}(\theta)\Delta)' \right]^{-1} U_{n,q}'(\theta) U_{n,p}^{-1}(\phi) \quad (2.2)$$

where  $\Delta$  is an  $n \times m$  matrix, with  $m = \max(p, q)$ , of the form

$$\Delta = \begin{bmatrix} 0 & 0 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & 0 \\ 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix} \quad (2.3)$$

and where  $V_m$  is an  $m \times m$  variance-covariance matrix of the vector

$$(y_{t-n+1}, y_{t-n+2}, \dots, y_{t-n+m})' = \begin{bmatrix} 0 \\ L_q(\theta) \end{bmatrix} A_{t-n,q} - \begin{bmatrix} 0 \\ L_p(\theta) \end{bmatrix} Z_{t-n,p} \quad (2.4)$$

The inverse autocovariance matrix follows from (2.2)

$$P_n^{-1}(p, q) = (U_{n,q}^{-1}(\theta) U_{n,p}(\phi))' \left[ I + (U_{n,q}^{-1}(\theta)\Delta) V_m (U_{n,q}^{-1}(\theta)\Delta)' \right]^{-1} (U_{n,q}^{-1}(\theta) U_{n,p}(\phi)) \quad (2.5)$$

Now using the following well-known relation between matrices

$$(A + BDB')^{-1} = A^{-1} - A^{-1}B(B'A^{-1}B + D^{-1})^{-1}B'A^{-1} \quad (2.6)$$

where  $A$  and  $D$  are nonsingular matrices of orders  $m$  and  $n$  and  $B$  an  $m \times n$  matrix,

(2.5) can be written

$$\begin{aligned} P_n^{-1}(p, q) &= (U_{n,q}^{-1}(\theta) U_{n,p}(\phi))' \left[ I - (U_{n,q}^{-1}(\theta)\Delta) \left( (U_{n,q}^{-1}(\theta)\Delta)' \right. \right. \\ &\quad \left. \left. \cdot (U_{n,q}^{-1}(\theta)\Delta) + V_m^{-1} \right)^{-1} (U_{n,q}^{-1}(\theta)\Delta)' \right] (U_{n,q}^{-1}(\theta) U_{n,p}(\phi)) \\ &= (U_{n,q}^{-1}(\theta) U_{n,p}(\phi))' (U_{n,q}^{-1}(\theta) U_{n,p}(\phi)) + \\ &\quad - (U_{n,q}^{-1}(\theta) U_{n,p}(\phi))' (U_{n,q}^{-1}(\theta)\Delta) \left( (U_{n,q}^{-1}(\theta)\Delta)' (U_{n,q}^{-1}(\theta)\Delta) + \right. \\ &\quad \left. + V_m^{-1} \right)^{-1} (U_{n,q}^{-1}(\theta)\Delta)' (U_{n,q}^{-1}(\theta) U_{n,p}(\phi)) \quad (2.7) \end{aligned}$$

For a strictly autoregressive process  $U_{n,q}(\theta) = I$  and equation (2.7) reduces to

$$P_n^{-1}(p, 0) = U_{n,p}^{-1}(\phi) U_{n,p}(\phi) - (U_{n,p}^{-1}(\phi)\Delta) (I + V_m^{-1})^{-1} (\Delta' U_{n,p}^{-1}(\phi)) \quad (2.8)$$

Since the first  $n-p$  rows of  $U'_{n,p}(\phi)\Delta$  consists of zeros the second term on the right-hand side of (2.8), whatever the composition of  $(I+V_m^{-1})^{-1}$ , is a matrix of zeros except for the  $p \times p$  submatrix in the lower right corner.

The elements of  $P_n^{-1}(p,0)$  are, apart from the  $p \times p$  lower right submatrix, equal to the corresponding elements of  $U'_{n,p}(\phi)U_{n,p}(\phi)$ . When  $n \geq 2p$  the elements of  $P_n^{-1}(p,0)$  can be deduced by computing  $U'_{n,p}(\phi)U_{n,p}(\phi)$  and taking advantage of the double symmetric property of the matrix  $P_n^{-1}(p,q)$ , i.e.

$p^{ij} = p^{ji} = p^{n+1-j, n+1-i} = p^{n+1-i, n+1-j}$  where  $p^{ij}$  is the  $(i,j)$ -th element of  $P_n^{-1}(p,q)$ , in the same way as was done in Box & Jenkins (1970, appendix A 7.5) and in Siddiqui (1958).

For a strictly moving average process  $U'_{n,p}(\phi) = I$  and the matrix  $P_n^{-1}(p,q)$  can be written in the form

$$P_n^{-1}(0,q) = (U'_{n,q}(\theta))' (U_{n,q}(\theta)) - (U'_{n,q}(\theta))' (U'_{n,q}(\theta)\Delta) (U'_{n,q}(\theta)\Delta)' (U'_{n,q}(\theta)\Delta) + V_m^{-1})^{-1} (U'_{n,q}(\theta)\Delta)' (U'_{n,q}(\theta)) . \quad (2.9)$$

The matrix  $U'_{n,q}(\theta)$  is an  $n \times m$  lower triangular matrix which can be partitioned as follows

$$\begin{pmatrix} U'_{n-1,q}(\theta) & \vdots 0 \\ \hline \cdots & \vdots \\ (0, \dots, 0, \theta_q, \theta_{q-1}, \dots, \theta_1) & : 1 \end{pmatrix} . \quad (2.10)$$

The inverse of this matrix is given by

$$(U'_{n,q}(\theta))^{-1} = \begin{pmatrix} (U'_{n-1,q}(\theta))^{-1} & \vdots 0 \\ \hline \cdots & \vdots \\ -d_n (U'_{n-1,q}(\theta))^{-1} & \vdots 1 \end{pmatrix} \quad (2.11)$$

where  $d_n' = (0, \dots, 0, \theta_q, \theta_{q-1}, \dots, \theta_1)$ . In this way we have reduced the inversion of an  $n \times n$  lower triangular matrix to the inversion of the same matrix with order  $n-1$ . We can apply the same process to the inversion of  $(U'_{n-1,q}(\theta))$  and on repeating this procedure we finally arrive on the  $n$ -th step at the completely

inverted matrix  $(U'_{n,q}(\theta))^{-1}$ . It is easy to see that  $(U'_{n,q}(\theta))^{-1}$  is of the same form as  $U'_{n,q}(\theta)$  with the  $i+1$ -th element of the first column given by the recursive relations

$$u_{i+1} = \begin{cases} -(\theta_i u_1 + \theta_{i-1} u_2 + \dots + \theta_1 u_i) & \text{for } i=1, \dots, q \\ -(\theta_q u_{i+q+1} + \theta_{q+1} u_{i-q+2} + \dots + \theta_1 u_i) & \text{for } i=q+1, \dots, n-1 \end{cases} \quad (2.12)$$

with  $u_1 = 1$ .

Using the above relations the matrix product  $(U_{n,q}^{-1}(\theta))' (U_{n,q}^{-1}(\theta))$  can be obtained and since  $V_m$  has the same basic form as  $U'_{n,q}(\theta)$  the inverse  $V_m^{-1}$  is straightforward determined. The only remaining problem is the inversion of the  $qxq$  matrix  $((U_{n,q}^{-1}(\theta)\Delta)' (U_{n,q}^{-1}(\theta)\Delta) + V_m^{-1})$ .

The calculations for obtaining  $P_n^{-1}(0, q)$  can be slightly modified by applying relation (2.6) a second time to  $((U_{n,q}^{-1}(\theta)\Delta)' (U_{n,q}^{-1}(\theta)\Delta) + V_m^{-1})^{-1}$  which gives the following expression

$$((U_{n,q}^{-1}(\theta)\Delta)' (U_{n,q}^{-1}(\theta)\Delta))^{-1} - ((U_{n,q}^{-1}(\theta)\Delta)' (U_{n,q}^{-1}(\theta)\Delta))^{-1} ((U_{n,q}^{-1}(\theta)\Delta)' (U_{n,q}^{-1}(\theta)\Delta))^{-1} + V_m^{-1} ((U_{n,q}^{-1}(\theta)\Delta)' (U_{n,q}^{-1}(\theta)\Delta))^{-1}. \quad (2.13)$$

Here no inverse of  $V_m$  has to be obtained.

### 3. The inverse for a nonstationary process

We now consider the general autoregressive integrated moving average process

$$\sum_{j=0}^p \phi_j \sum_{i=0}^d \binom{d}{i} (-1)^i z_{t-i-j} = \sum_{j=0}^q \theta_j a_{t-j} \quad (3.1)$$

with  $\phi_0 = \theta_0 = 1$ .

If we replace  $\sum_{i=0}^d \binom{d}{i} (-1)^i z_{t-i}$  by  $w_t$ , the autoregressive integrated moving

average process for  $\{z_t\}$  reduces to an autoregressive moving average process

$$\sum_{j=0}^p \phi_j w_{t-j} = \sum_{j=0}^q \theta_j a_{t-j}. \quad (3.2)$$

The integrated process given by equation (3.1) can be taken up as the limit, for  $\epsilon$  approaches one, of the process

$$\sum_{j=0}^p \phi_j \sum_{i=0}^d \binom{d}{i} (-\epsilon)^i z_{t-i-j} = \sum_{j=0}^q \theta_j a_{t-j}. \quad (3.3)$$

The equations (3.2) and (3.3) are related with each other in the following way

$$(z_1, z_2, \dots, z_d, w_{d+1}, w_{d+2}, \dots, w_n)' = M_n(\epsilon)(z_1, \dots, z_n)' \quad (3.4)$$

where  $M_n(\epsilon)$  is an  $n \times n$  lower triangular matrix whose elements in the  $i$ -th row and  $j$ -th column are 1 for  $i=j$ ,  $\binom{d}{j+d-i} (-\epsilon)^{i-j}$  for  $j < i \leq d+j$  with  $i=d+1, d+2, \dots, n$  and zero for  $i > d+j$  or  $i \leq j$  with  $i=d+1, d+2, \dots, n$ .

The autocovariance matrix for (3.4) is given by the expression

$$P_n(p, q) = M_n^{-1}(\epsilon) \begin{bmatrix} V(z'z) & \vdots & V(z'w) \\ \vdots & \ddots & \vdots \\ \vdots & \vdots & V(w'w) \end{bmatrix} (M_n'(\epsilon))^{-1} \quad (3.5)$$

where  $V(z'z)$  is the  $d \times d$  variance-covariance matrix of  $(z_1, z_2, \dots, z_d)'$ ,  $V(w'w)$  is the  $n-d \times n-d$  variance-covariance matrix of  $(w_{d+1}, w_{d+2}, \dots, w_n)'$  and  $V(z'w)$  is the  $n-d \times d$  cross-covariance matrix between the vectors  $(z_1, z_2, \dots, z_d)'$  and  $(w_{d+1}, w_{d+2}, \dots, w_n)'$ .

Using the well-known expression for the partitioned inversion of a nonsingular matrix on (3.5) yields

$$P_n^{-1}(p, q) = M_n'(\epsilon) \begin{bmatrix} V^{-1}(z'z) + V^{-1}(z'z)V(z'w)R V'(z'w)V^{-1}(z'z) \\ \vdots \\ - R V'(z'w)V^{-1}(z'z) \\ \vdots \\ - V^{-1}(z'z) V(z'w) R \\ \vdots \\ R \end{bmatrix} M_n(\epsilon) \quad (3.6)$$

with  $R = [V(w'w) - V'(z'w) V^{-1}(z'z) V(z'w)]^{-1}$ .

When  $\epsilon$  approaches one several things happen. First of all it is obvious from (3.3) that the  $d \times d$  matrix  $V(z'z)$  tends to infinity. Second, the matrix  $V(z'w)$  remains a finite matrix as  $\epsilon$  goes to one. This can be easily seen from writing (3.3) in the random shock form

$$\begin{aligned}
 z_t &= \psi_0 a_t + (\epsilon \psi_0 + \psi_1) a_{t-1} + \left( \frac{d(d+1)}{2!} \epsilon^2 \psi_0 + \epsilon \psi_1 + \psi_2 \right) a_{t-2} + \\
 &\quad + \left( \frac{d(d+1)(d+2)}{3!} \epsilon^3 \psi_0 + \frac{d(d+1)}{2!} \epsilon^2 \psi_1 + \epsilon \psi_2 + \psi_3 \right) a_{t-3} + \dots \\
 &= \sum_{k=0}^{\infty} \gamma_{za}(k) a_{t-k}
 \end{aligned}$$

where  $(1-\epsilon B)^{-d} \theta(B) / \phi(B) = \sum_{j=0}^{\infty} \binom{d+j+1}{j} (\epsilon B)^j \sum_{\ell=0}^{\infty} \psi_{\ell} B^{\ell}$  with  $B$  the backward shiftoperator and where  $\gamma_{za}(k) \equiv E[z_t a_{t-k}]$ . Then

$$E[w_t z_{\ell}] = \sum_{j=t-\ell}^{\infty} \psi_j \gamma_{za}(j-t-\ell) \quad (3.7)$$

for  $\ell=1, 2, \dots, d$  is finite, since  $\gamma_{za}(k)$  has a bound independent of  $\epsilon$  for  $|\epsilon| \leq 1$ .

Because  $V(z'z)$  tends to infinity, as  $\epsilon$  goes to one, it follows from

$$\begin{aligned}
 V^{-1}(w'w)R^{-1} &= V^{-1}(w'w)[V(w'w) - V'(z'w)V^{-1}(z'z)V(z'w)] \\
 &= I - V^{-1}(w'w)V'(z'w)V^{-1}(z'z)V(z'w)
 \end{aligned}$$

that  $R$  tends to  $V^{-1}(w'w)$ . Hence, combining the above results, it follows that the matrix  $P_n^{-1}(p, q)$  goes to zero for  $\epsilon$  goes to one except for the matrix  $R$  and the expression on the right of (3.6) becomes

$$M_n' \begin{bmatrix} 0 & 0 \\ 0 & V^{-1}(w'w) \end{bmatrix} M_n \quad (3.8)$$

with  $M_n = \lim_{\epsilon \rightarrow 1} M_n(\epsilon)$ . So for  $\epsilon=1$  we have  $z'P_n^{-1}(p, q)z = w'V^{-1}(w'w)w$ . This means

that the likelihood function of  $n$  observations from (3.1) has the same exponential form as  $n-d$  observations from (3.2).

#### 4. A special case

To illustrate the results of section 2 we consider the case where the series  $\{z_t\}$  is generated by the process

$$z_t + \phi_1 z_{t-1} + \phi_2 z_{t-2} = a_t + \theta_1 a_{t-1} + \theta_2 a_{t-2}.$$

The matrices  $U_{n,p}(\phi)$ ,  $U_{n,q}(\theta)$  and  $\Delta$  are

$$U_{n,2}(\phi) = \begin{bmatrix} 1 & \phi_1 & \phi_2 & 0 & \dots & 0 \\ & 1 & \phi_1 & \phi_2 & \dots & 0 \\ & & \vdots & & & \\ & 1 & \phi_1 & \phi_2 & & \\ & 1 & \phi_1 & & & \\ & & 1 & & & \end{bmatrix}, \quad U_{n,2}(\theta) = \begin{bmatrix} 1 & \theta_1 & \theta_2 & 0 & \dots & 0 \\ & 1 & \theta_1 & \theta_2 & \dots & 0 \\ & & \vdots & & & \\ & 1 & \theta_1 & \theta_2 & & \\ & 1 & \theta_1 & & & \\ & & 1 & & & \end{bmatrix},$$

$$\Delta' = \begin{bmatrix} 0 & \dots & 0 & 0 & 1 \\ 0 & \dots & 0 & 1 & 0 \end{bmatrix}.$$

The vector  $(y_{t-n+1}, y_{t-n+2})'$  is given by

$$\begin{bmatrix} y_{t-n+1} \\ y_{t-n+2} \end{bmatrix} = \begin{bmatrix} -\phi_2 & 0 & \theta_2 & 0 \\ -\phi_1 & -\phi_2 & \theta_1 & \theta_2 \end{bmatrix} \begin{bmatrix} z_{t-n} \\ z_{t-n-1} \\ a_{t-n} \\ a_{t-n-1} \end{bmatrix}.$$

The variance-covariance matrix of this vector follows from the relations

$$\begin{bmatrix} 1 & \phi_1 & \phi_2 \\ \phi_1 & 1+\phi_2 & 0 \\ \phi_2 & \phi_1 & 1 \end{bmatrix} \begin{bmatrix} \gamma_0 \\ \gamma_1 \\ \gamma_2 \end{bmatrix} = \begin{bmatrix} 1 & \theta_1 & \theta_2 \\ \theta_1 & \theta_2 & 0 \\ \theta_2 & 0 & 0 \end{bmatrix} \begin{bmatrix} \gamma_{za}(0) \\ \gamma_{za}(1) \\ \gamma_{za}(2) \end{bmatrix}$$

where  $\gamma_{za}(k) = E[z_t a_{t-k}]$  and is given by

$$V_m = \begin{bmatrix} -\phi_2 & 0 & \theta_2 & 0 \\ -\phi_1 & -\phi_2 & \theta_1 & \theta_2 \end{bmatrix} \begin{bmatrix} \gamma_0 & \gamma_1 & \gamma_{za}(0) & \gamma_{za}(1) \\ \gamma_1 & \gamma_0 & 0 & \gamma_{za}(0) \\ \gamma_{za}(0) & 0 & 1 & 0 \\ \gamma_{za}(1) & \gamma_{za}(0) & 0 & 1 \end{bmatrix} \begin{bmatrix} -\phi_2 & -\phi_1 \\ 0 & -\phi_2 \\ \theta_2 & \theta_1 \\ 0 & \theta_2 \end{bmatrix}$$

with  $\gamma_{za}(0) = 1$ ,  $\gamma_{za}(1) = -\phi_1 + \theta_1$ ,  $\gamma_0 = (\det)^{-1}\{(1+\phi_2)(1+\theta_1^2+\theta_2^2-2\phi_2\theta_2) + 2\phi_1\phi_2(\phi_1-\theta_1)\}$ ,  $\gamma_1 = (\det)^{-1}\{-\phi_1(1+\theta_1^2+\theta_2^2) + (\theta_1-\phi_1\theta_2)(1+\phi_1^2-\phi_2^2) + \theta_2(\phi_2^2+\theta_1^2+\phi_1^2\theta_1+\phi_2^2\theta_2)\}$  and  $\det = (1-\phi_2)((1+\phi_2)^2-\phi_1^2)$ .

The elements of  $V_m$  are

$$v_{11} = \phi_2^2 \gamma_0 - 2\phi_2 \theta_2 \gamma_{za}(0) + \theta_2^2$$

$$v_{12} = v_{21} = \phi_1 \phi_2 \gamma_0 + \phi_2^2 \gamma_1 - (\phi_2 \theta_1 + \phi_1 \theta_2) \gamma_{za}(0) - \phi_2 \theta_2 \gamma_{za}(1) + \theta_1 \theta_2$$

$$v_{22} = (\phi_1^2 + \phi_2^2) \gamma_0 + 2\phi_1 \phi_2 \gamma_1 - 2(\phi_1 \theta_1 + \phi_2 \theta_2) \gamma_{za}(0) - 2\phi_2 \theta_1 \gamma_{za}(1) + \theta_1^2 + \theta_2^2$$

Using the recursive relations (2.12) the elements of  $(U_{n,2}^{-1}(\theta))^{-1}$  are

$$u_1 = 1,$$

$$u_{i+1} = -(\theta_2 u_{i-1} + \theta_1 u_i) \quad \text{for } i=1, \dots, n-1$$

and the matrix product  $(U_{n,2}^{-1}(\theta)\Delta)' (U_{n,2}^{-1}(\theta)\Delta)$  becomes

$$\begin{bmatrix} n-1 & n-2 \\ \sum_{i=0} u_i^2 & \sum_{i=0} u_i u_{i+1} \\ n-2 & n-2 \\ \sum_{i=0} u_i u_{i+1} & \sum_{i=0} u_i^2 \end{bmatrix}$$

If we apply relation (2.6) a second time to  $((U_{n,q}^{-1}(\theta)\Delta)' (U_{n,q}^{-1}(\theta)\Delta) + V_m^{-1})^{-1}$  no inverse of  $V_m$  is needed and from here the matrix  $P_n^{-1}(2,2)$  can be obtained by straightforward matrix multiplication.

REFERENCES

Anderson, O.D. (1976a). On the inverse of the autocovariance matrix for a general moving average process. *Biometrika* 63, 391-4.

Anderson, O.D. (1976b). An improved approach to inverting the autocovariance matrix of a general mixed autoregressive moving average time process. *Austral. J. Statist.* 18, 73-5.

Box, G.E.P. & Jenkins, G.M. (1970). *Time Series Analysis Forecasting and Control*. San Francisco: Holden-Day.

Galbraith, R.F. & Galbraith, J.I. (1974). On the inverse of some patterned matrices arising in the theory of stationary time series. *J. Appl. Prob.* 11, 63-71.

Newbold, P. (1974). The exact likelihood function for a mixed autoregressive-moving average process. *Biometrika* 61, 423-6.

Prabhakar Murthy, D.N. (1974). On the inverse of the covariance matrix of a first order moving average. *Sankhyā A* 36, 223-5.

Shaman, P. (1969). On the inverse of the covariance matrix of a first order moving average. *Biometrika* 56, 595-600.

Shaman, P. (1973). On the inverse of the covariance matrix for an autoregressive-moving average process. *Biometrika* 60, 193-6.

Shaman, P. (1975). An appropriate inverse for the covariance matrix of moving average and autoregressive process. *The Annals of Statistics* 3, 532-8.

Sherman, J. & Morrison, W.J. (1950). Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. *Ann. Math. Statist.* 21, 124-7.

Siddiqui, M.M. (1958). On the inversion of the sample covariance matrix in a stationary autoregressive process. *Ann. Math. Statist.* 29, 585-8.

Tiao, G.C. & Ali, M.M. (1971). Analysis of correlated random effects: linear model with two random components. *Biometrika* 58, 37-51.

Uppuluri, V.R.R. & Carpenter, J.A. (1969). The inverse matrix occurring in first order moving average models. *Sankhyā A* 31, 79-82.