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1. Introduction •

An autoregressive moving average process {z
t
} of orders p and q is

defined by

6.a
j=0 3 t-j j=0j t-j

where {a
t} 

is a set of uncorrelated, identically distributed, variables with

mean zero and unit variance and where the parameters 4). and 0. are real and
3 3

(I) = 0 = 1. We assume that the stationarity and invertibility conditions0 0

for this process are satisfied and we define the autocovariance, at lag k,

of {z
t} 

by

Yk = [
ztzt_i]

Given an observed 
z1,...,zn 

the autocovariance matrix, of order n, is

given by

P
n 
= (pij)

(1.2)

(1.3)

where pij = For the process (1.1) we rewrite P
n 
as P

n
(p,q) which

reduces to P
n
(p,O) and P

n
(0,q) respectively for an autoregressive process

of order p and a moving average process of order q.

When the z
t 

are normally distributed the inversion of the autocovariance

matrix and its determinant are important, in order to obtain the likelihood

function of the process. Therefore several authors have been motivated by

-
this to obtain P

1 
(p,q) and the determinant fP (p,q)l. Shaman (1969),

- n

Uppuluri & Carpenter (1969) and Prabbakar Murthy (1974) have given exact

expressions for the inverse for a first-order moving average process (p=0,

q=1). Shaman (1973) has extended his results to the general autoregressive

moving average case and gives an exact expression for P
-1
(0;2). Tiao & Ali

-(1971) have given an exact expression for P
n
1 
(1,1) and the determinant

IP
n
(1,1)1. Newbold (1974) has obtained the same results as Tiao & All

(1971) by means of an other approach, although his method is in fact the same



-2

as that given by Galbraith & Galbraith (1974). Recently Anderson (1976 a,b)

-1 -1
showed how general expressions for P

n
-(0,q), P

-1
(p,O) and P

n 
(p,q) could be

obtained by means of a generalization of an algorithm given by Sherman g

Morrison (1950), though he does not given any exact expression for low order

models.

In this paper, making use of the notation given in Anderson (1976b), we

extend the approach given by Tiao & Ali (1971) to obtain a general expression

for P
-1
(p,q). Results for a strictly autoregressive and a strictly moving

average process follow quickly from it. In section 3 we discuss the existence

and form of the inverse autocovariance matrix for a general autoregressive

integrated moving average process. Finally, in section 4, we give an explicit

form of P
n
1(p,q) for p = q = 2.

2. The inverse in the general case

Let Un,r(a) denote the nxn upper triangular matrix whose elements in

the i-th row and j-th column (i<j) are 1 for i=j, a. for i<j<r+i and 0 for
1-i

j>r+i. Let further L
r
(a) denote the rxr lower triangular matrix, whose element

in the i-th row and j-th column is 
ar-i+j 

(i>j) and let Z and A standv,w 
v,w

for the column vectorS

Z' (zz
v,w 

= 
v
,

v-1'''''zv-w+1
)

A' = (a ;,
v-w+1

)v,w

where ' denotes the transpose of the vectors.

It is easy to show that equation (1.1), for n>p and q, may now be written

U
n,p
()Z

t,n 
= U

n,q
(OA +

t,n 

0

L (8)
A
t-n,q

0

L
P

Z
t-n,p 

(2.1)

Since A
t,n 

is uncorrelated with any combination of the elements of 
At-n,q 

and

Z
t-n,p' 

it follows from (2.1) that the n-th autocovariance matrix for an

A list of other references to authors who gave exact expressions for the
exact inverse in various cases of the autoregressive moving average model
can be found in Shaman (1975).
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autoregressive moving average process of orders p and q is given by

(D,q)
n

-1
= u

-1 U(0)(I+(U(0)A)V (U-1 WA) U (e)u (2.2)n,q n,qn,p m n,q n,q n,p

where A is an nxm matrix, with m = max(p,q), of the form

and where V
m 
is an mxm variance-covariance matrix of the vector

(Yt-n+1'Y -n+2"."Yt-n+m)'''L (8)At-n,q41J
D(e) z_

The inverse autocovariance matrix follows from (2.2)

(2.3)

(2.4)

— 
P-1(p,q) = 

(U1 
n,q

(e)u
n,p
()) 

[ 
I+(U

n

i• 
q
(e)A)v

m
(U

n
:

q
(8)A)T1 (U-1 (0)U ()).(2.5)

n,q n,p

Now using the following well-known relation between matrices

(A+BDB')-1 = A-1 - A-1B(B'A-1B+D-1)-1B'A-1 (2.6)

where A and D are nonsingular matrices of orders m and n and B an mxn matrix,

(2.5) can be written

- -1 -
P
n
1(p,q) = 

(IJ1 
Ia,q(e)un,p()) k-(U

n,q

(0)A)((U1 
n,q(0)A) .

-1 -1)-1 -1
.(U

n,q
(0)A)+V

m 
(U

n,q
(0)A) (U (0)U (0)

n,q n,p

N't -
= (u-1 (e)u (15)J (u

1 
(0)U()) +n,q n,p n,q n,p

( -1 , ( -1
-

n,q
(0)U

n,p
(4)) (U

n,q
(0)AWU

n,q
(0)A)'(U-1 (0)A) +

n,q

+ V-1)-1(U-1 (0)A)T(U-1 (0)U ()) .
n,q n,q n,p

(2.7)

For a strictly autoregressive process U
n,q

(0) = I and equation (2.7)

reduces to

-1 -1 "P
n
1(p,0 =

n,p 
U
n,p 

- (U
n,p

WA)(I+V
m 
) (A U

n,p()).
(2.8)



•

Since the first n-p rows of U
n,p
WA consists of zeros the second term

on the right-hand side of (2.8), whatever the composition of (I+V
-1
)
-1

5 is

a matrix of zeros except for the pxp submatrix in the lower right corner.

The elements of P
-1
(p,O) are, appart from the pxp lower right submatrix,

1

equal to the corresponding elements of U
n,p()

U
n,p
(). When n>2p the elements

-1
of P

n 
(p,O) can be deduced by computing U

n,p
()U

n,p
() and taking advantage

-of the double symmetric property of the matrix P
1 
(p,q), i.e.

ij ji n+l-j,n+
/ = p

n+1-i,n+1-j
where pis the (i,j)-th element

of P
n 
(p,q), in the same way as was done in Box & Jenkins (1970, appendix

A 7.5) and in Siddiqui (1958).

For a strictly moving average process U
n,p 

= I and the matrix

-1
P
n 
(p,q) can be written in the form

-1 ,t
P
n 
(0,q) = (U-1 (e)J (e)) — (u-1- (e)) 7(u-1 (n,q n,q n,q n,q

(U
n,q

(e)A) (u
n,q
WA) + (o ,( 1w u (0))— 

n,q n,q
(2.9)

The matrix U' (0) is an nxm lower triangular matrix which can be partitionedn,q

as follows

1

U
n-1,4 

0) *.cf
••

(0,...,00
q (1-1"—,e1):1

The inverse of this matrix is given by

\1 -
(U

n,q
(e)) =

(u
n-1,q

-1 . o

1 t 
- 1 •

-d 
(u'Un-1,q

( )) :
•

(2.10)

(2.11)

where d
n 

= (0,...,0,0qq-1,...,e1),In this way we have reduced the inversion

of an nxn lower triangular matrix to the inversion of the same matrix with

order n-1. We can apply the same process to the inversion of (U
n-1q

(0)) and
,

on repeating this procedure we finally arive on the n-th step at the completely
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t t t t
inverted matrix (Un,q(0))- . It is easy --) see that

n,q
(0))-1 Is of the

same form as U' (0) with the iil-th element of the first column given byn,q

the recursive relations

1 
-(0i u1i1 

+0 u
2 
+... 

 
+ 01ui) for i=1,...,q-

U. =
1+1

-(0 u + e u. + u.) for i=q+1,...,n-1iq +q+1 q+1 1-q+2 1 i

(2.12)

with u
1 
= 1.

Using the above relations the matrix product (U-1 (0))'(U-1 (0)) can be
n,q n,q

-obtained and since V
m 

has the same basic form as Un,q(0) the inverse V
m
1 
is

straightforward determined. The only remaining problem is the inversion of

the qxq matrix ((U-1 (0)A)(U-1 (e)A)+v-1).
n,q n,q

-
The calculations for obtaining P

1
n 
(0,q) can be slightly modified by applying

- ' - -)-1relation (2.6) a second time to 
( (U1 

n,q(0)A) 
(U1 

n,q
(0)A)+V

m
1
) which gives the

following expressidn

(Cu 1 OW (un,q(0)A))-1n,q

' -
((U-1 (0)A) (U

1 
n,q

(0)A))-1
n,q

- ((U-1 (0)A)(U-1 (0)A))-1 (
n,q n,q

+ V )-1 ((.1-1 (0)A)1 11( -1 (0)A))-1.

Here no inverse of V
m 

has to be obtained.

3. The inverse for a nonstationary process

(2.13)

We now consider the general autoregressive integrated moving average process

(I" E ((!)(-1)1 z . . = E 6.a
j=0 i=0 1 

L-1-] j=0 3 t_j

with (1) = = 1.
0 0

(3.1)

If we replace E (.)(-1)1 z . by w , the autoregressive integrated movingt-ii=0 1

average process for {zt} rycluces to an autoregressive moving average process

E 4. w . = E 0. a .
j0 3

t- 
j0 3

3 t-]== 
(3. 2 )

It



a

The integrated process given by equation (3.1) can be taken up as the limit,

for e approaches one, of the process

E 4)1 E (.)

J=O i=0 1
-e) -E0a

3 j=0 j t-j.
(2 3 (3.3)

The equations (3.2) and (3.3) are related with each other in the following way

1

(Zz
2'
...
'
z
d'

w
d+1'

w
d+2'

w
n
) = M

n
(c)(z

1'
.z

n
) (3.4)

where M
n
(e) is an nxn lower triangular matrix whose elements in the i-th row

d
and j-th column are 1 for i=j, fj+d-ij(-e)

i-j 
for j<i<d+j with i=d+1,d+2,...,n

and zero for i>d+j or 1j with i=d+1,d+2,...,n.

The autocovariance matrix for (3.4) is given by the expression

P
n(p,q) =

V (z'z) : V(z'w)%

(z'w)• V(w'w),

(
m,(0)-1
n

(3.5)

where V(z1z) is the dxd variance-covariance matrix of (z
1' z2' ...,zd ' 

) V(w'w)

is the n-dxn-d variance-covariance matrix of (w
d+1' wd+2"." 

w ) and V(z'w) is
n

the n-dxd cross-covariance matrix between the vectors (z
1'
z
2''

z
d
) and

(w
d+1'

w
d+2"

w
n
).

Using the well-known expression for the partitioned inversion of a nonsingular

matrix on (3.5) yields

-1
P
n 
(p,q) = M f(c)

V
-1
(z'z) + V

-1
(z1z)V(z'w) R V (z'w)V

-1
(z1z)

- R V
'
(z'

w
)V
-1
(z'z)

1(z'z) V(z'w) R M
n
(e)

i-1
with R = [V(Ww) - V(z'w) V 1(ziz) V(z'w).1

(3.6)

When e approaches one several things happen. First of all it is obvious from

(3.3) that the dxd matrix V(z'z) tends to infinity. Second, the matrix V(z'

remains a finite matrix as e goes to one. This can be easily seen from writing

(3.3) in the random shock form
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[o 
1

z = ti) 
0 
a +(d64)

0 +4)1 
)a 

1 
(d(d+1) 62

o 
+ delp

1 
+ 
*2)at-2 

+
t t t- 2!

rd(d+1)(d+2)3
ipo

+i + 
2! 1 

d(d+1) 
6
2

3 
* + dell)

2 
+ 
*3)at-3 

+:

00

= E 
Yza(k)at-k

k=0

where (l-CB)-d 0(B) / cp(B) = E
j=0

shiftoperator and where y za(k)
-

E[

00

00

(d+1+1)(03)i 2,%11)2,

ptat_kl . Then
= E 4).1' (j-t-2,)
j=t_44 za

• • •

B
2.
with B the backward

(3.7)

for 2,=1,2,...,d is finite, since yza(k) has a bound independent of for I

Because V(z'z) tends to infinity, as goes to one, it follows from

V 1(41 w)R 1 = V
-1
(WOLV(W 114)-V (ZIOV 1(Z1 Z)V(Z 1101

-= I - V 
1
(w'w)V (z'w)V

1 
(z'z)V(ziw)

-
that R tends to V

1 
(w'w). Hence, combining the above results, it follows that

-
the matrix P

1
n 
(p
'
q) goes to zero for 6 goes to one except for the matrix R and

the expression on the right of (3.6) becomes

M' M
0 V

-1
(w'w) 

n
(3.8)

-
with M

n 
= lim(6). So for 6=1 we have z'P

1 
(p,q)z = 'V

-1
(Ww)w. This means

6+1 
n n

that the likelihood function of n observations from (3.1) has the same

exponential form as n-d observations from (3.2).

4. A special case

To illustrate the results of section 2 we consider the case where the

series iz
t
1 is generated by the process

z
t +1zt-1 

+ (I)
2
z
t-2 

= a
t 
+ 01a 1 + e2at-2 •

The matrices U
n,p 

U
n,q

(0) and A are
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1

U
n,2 

=

(1)

1

2
0 • • • 0

1 (1)2
. 0

,U r,(0) =

1 e1 e
2 

0 0

1 e1 e o

•

2

o o 1

The vector (37t-n+1,yt-n+2) is given by

o e o
2

2
6 6
1 2

t-n

t-n-1
a
t-n
a
t-n-1

The variance-covariance matrix of this vector follows from the relations

1

1
r

11

1 8
1 

0 - y
za
(0)-

8
1 

6
2 

0 y
za
(1)

0
2 

0 , ( 0
J [2: za' - '

where y
za
(k) = Ep

t 
a ] and is given by

40.
0 Y 1 

y
za
( 0) 1za

(1)

q52 
0 0 0

2 Y1 Y0 
0 y 

za
(0)

01 e'd y
za
(0) 0 1 0

y
za
(1)y

za
(0) 0 1

with y, (0)= 1, y
za
(1) =

1 
+ 0

1' i  
= (det)

-1
{(1+q)

2
)(1+0

2
+8
2
-2¢ 0 ) +

1 2 2 2

+ 2,4)
1

(I)
2(c 1

-0
1
)} + (0

1 
-
1

(1) e
2 
)(1+q)

22
) + 8 0

2
+8 +

1 1 2 1 2 2 2 1

2 2
+(1)
1
0
1

-f-(P,
2
0
2
)1 and det = (1-q1/2)((1+,1)2

)2_21).
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The elements of V
m 
are

2 2
V11 

= (152Y0-2 262Yza")+62

= I +4)
2
Y )y (0)-q)

22
y
za
(1)+0

1
e
2

V12 = v91 12021 211 2 za

v22 -2 201yza(1)+0
21
+822

1 20 21 112 2 za

Using the recursive relations (2.12) the elements of 
,2

 are

U1

u = -(0
2
u
i-1

+8
1
u) for i=1,...,n-1

-1 ' -1
and the matrix product (U

n,2 
(U

n,9
(0)A) becomes

n-2

E U.U.
1+1

i=0

n-2 n-2
2

E u.u. E u.11±1 1
i=0 i=0,

t---If we apply relation (2.6) a second time to ((U- (0)A)(U 1 (0)A)+V 1) 1
n,q n,q

• -no inverse of V
m 
is needed and from here the matrix P

1

n 
(2,2) can be obtained

by straitforward matrix multiplication.
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