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Bounds for the bias of the LS estimator of a
2
 in the case of a first-order

(positive) autoregressive process when the regression contains a constant

term.

H. Neudecker

Introduction

In a recent paper [ 2 2 we considered the model
y = X13. + 6,

where E is the disturbance vector, X is of order (n,k) and rank k,

the disturbance elements e. of c are generated by the prOcess

E. = pc. + t.1-1 1
0 <p <1

where the . are uncorrelated random variables with zero mean and variance a
2
.a. 0

We established bounds for 1"---- E !.1 
' 

where e is the LS residual vedtor,
a2 a2 n-k

2 0 
G = &

2
1-p

This led to the interval

n-k n-k
IX. IX.
. i+k
1=1  1 eie i=1 1

< E <
n-k == n-k==

a
2 n-k

(I)

where the X. are the eigenvalues of the covariance matrix V of E and further

> X .A1 X2 • • =n

Intervals were then computed for various values of n,k and p. They appeared to

be asymmetrical around 1, and suggested a negative bias.

No restrictionwas put on X.

In this paper we want to incorporate a constant term in the regression, which

implies that X should contain a column of ones.

In an appendix we discuss the incorporation of additional columns in X.

*
Instituut voor Actuariaat en Econometrie, Universiteit van Amsterdam.



2

Bounds for tr MV

We shall apply the same procedure as before. It will, however, be a little
more streamlined.

1 e'e 1It is well-known that ---E = tr MV, where M = I-X(X'X)
-1
X' X is

a
2 n-k n-k

an (n,k) matrix, hence M is idempotent of rank n-k.

Further Ms = 0, if the regression contains a constant term, where s' = (1....1).

M can be expressed as BB', where B'B = I
n-k ' 

B is of order (n,n-k). Further

BB's = 0 or, equivalently, B's = 0.

We shall interpret B as a variable matrix, subject to the constraints

B'B = I
n-k (1)

B' = 0 • (2)

1By maximizing and minimizing tr BB'V subject to (1) and (2) we shall thenn-k
e'e be able to establish an interval for 1—E = 

1
tr MV.

a
2 n-k n-k

We form the Lagrangian function

(I) = tr BB'V - tr L(B1 B - I) - m'B's

where L and m' are Lagrange (matrix and vector) multipliers.

Necessary for an extremum is

0 =d4= tr B'VdB - tr - tr ms'dB

- tr(B'B - I) dL - (dm)'B's,

(1,
where L = L + L'

This leads to the conditions:

B'V = LB' + ms'

B'B = I

B's = 0 .

We postmultiply (3) by s, use and get

1
m = — B'Vs

(5)

(6)
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n-k
E p.
. 1+k-1 '
1=1

(Vs 0 as V is regular).

This leads to

B'VA =

1
where A = I - —

n 
ss'

We shall rewrite (3
*
) as

B'AVA = TAP ,

by virtue of (5).

% .
L is symmetric. It can therefore be diagonalized:

Qt(LiQ = A, say. Q is orthogonal.

"

We rewrite (3"), (4) and (5) as follows:

B'AVA= 
(30)

B'B = I (4°)

% (50)
B's = 0

where B = BQ.

(3
0
) states that the diagonal elements of A are n-k eigenvaltes Of'AVA, or

%
equivalently VA. B' is a matrix whose n-k rows are the correspondine.

eigenvectors.

As s' is an eigenvector of AVA (corresponding to zero eigenvalue), requirement

(5
0
) can easily be met. should not contain this particular eigenvector.

Let us denote the eigenvalues of AVA by pi and let pi p2 >== • Pn-1 > 0.
(AVA clearly has only one zero eigenvalue).

r‘As 'VA) 1 1
As tr BB'V = tr BB'V = tr BB'(A+ -ss')V(A+ -ss')

= tr BB'AVA = tr BAB' = tr A,

n-k
tr BB'V will have as its maximum value E p. , and as its minimum value

. 1
1=1



We can thus establish the inequality

n-k n-k
pE p

i+k-1 E i
i=1  1 

E < 
e'e i=1 < n-k == a2 n-k .. n-k

It is obvious that this interval is tighter than the previously established
one (I), because there are more constraints.

values of n,k and p
1)
.

a

The results are shown in Table 1.

1 e'eWe have computed bounds for ---E ----
k 

according to formula (II) for various2 n- 

e'eThe results are very satisfactory. It appears that for p= 0.8 is biased
n-k

toward zero for all values of k considered by us. For p = 0.5 there is a
negative bias in case k=2 or 3, whereas for p = 0.3 a negative bias is
established for k=2 only. These results hold for all values of n considered
by us.

e'e The computations show that Theil's (3, p.257) conclusion that -
n-2 

is
biased toward zero for positive p can to some extent be generalized for
other values of k.

Increasing the number of parameters k clearly tends to undermine the conclusion
about the sign of the bias for low or intermediate values of p. An obvious
remedy for this is increasing the number of observations n.

Some of the results (for k=2 and k=4) are represented in the form of diagrams.

1)
Thanks are due to Mrs Els de Bakker for performing the computations.



Table 1

1 ele
Bounds of E for various n, k and p

n-k

p = 0.3

a

p = 0.5 p = 0.8

k lower bound upper bound lower bound upper bound lower bound upper bound

2 0.83486 0.96478 0.67256 0.88242 0.31244 0.55709

n=10 3 0.75721 1.02059 0.55693 0.95668 0.22049 0.61917

4 0.69650 1.08728 0.48309 1.04905 0.17759 0.69924

5 0.64638 1.16567 0.42971 1.16465 0.15154 0.80555

2 0.88555 0.97554 0.75854 0.91770 0.40571 0.65081

n=15 3 0.82734 1.01065 0.65645 0.96534 0.29148 0.69538

4 0.77573 1.05024 0.58008 1.02010 0.23307 0.74745

5 0.72898 1.09479 0.51916 1.08331 0.19567 0.80895

2 0.91311 0.98130 0.81064 0.93694 0.48068 0.71473

n=20 3 0.86776 1.00681 0.72353 0.97202 0.35496 0.75008

4 0.82518 1.03480 0.65196 1.01091 0.28521 0.78962

5 0.78481 1.06541 0.59112 1.05489 0.23869 0.83409

2 0.93020 0.98487 0.84500 0.94893 0.54122 0.76010

n=25 3 0.89346 1.00489 0.77046 0.97671 0.41107 0.78952

4 0.85791 1.02647 0.70551 1.00685 0.33342 0.82164

5 0.82335 1.04969 0.64785 1.03958 0.27970 0.85681

2 0.94177 0.98729 0.86915 0.95711 0.59061 0.79358

n=30 3 0.91105 1.00376 0.80463 0.99010 0.46040 0.81881

4 0.88082 1.02131 0.74619 1.00469 0.37762 0.84593

5 0.85101 1.03996 0.69271 1.03103 0.31839 0.87512

2 0.96514 0.99226 0.92004 0.97388 0.71856 0.86852

n=50 3 0.94687 1.00188 0.87926 0.98749 0.60468 0.88462

4 0.92848 1.01189 0.83974 1.00165 0.51822 0.90142

5 0.90996 1.02227 0.80141 1.01640 0.44935 0.91894

2 0.97517 0.99444 0.94266 0.98123 0.78808 0.90383

n=70 3 0.96227 1.00123 0.91327 0.99089 0.69352 0.91565

4 0.94923 1.00822 0.88419 1.00083 0.61436 0.92784

5 0.93605 1.01540 0.85543 1.01107 0.54671 0.94039



e'e 2
Bounds for E /a for k=2 and p=.3,.5,.8.
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Appendix The incorporation of additional columns in X

It is easy to see that the incorporation of columns orthogonal to s in X

will further tighten the interval.

Let us incorporate a column t orthogonal to s.
2)

We then have to add an expression k'B't say to the Lagrangian function (1).

This leads to lp = - k'B't , where k' is a Lagrange vector multiplier.

We now get the following necessary conditions:

B'V = LB' + ms' + kt'

B'B = I

B's = 0

B't = 0 .

Further s't = 0.

We postmultiply (7) by s and t, using (9), (10) and (11), and find:

1
m = B ' Vs

1

= - D'Vl .
tit

(7) will now become:

B'VC =

1where C = I - tt' .
t't

We 'shall rewrite (71'5 as

B'CVC = ?),13'

by virtue of (9) and (10

We finally arrive at

% %
B'CVC = AB'

fb
13 1 13

B's

ft,
B't

=1

=0

=0

%
where B = BQ.

Further s't = 0

2 )

(12)

( 1 3 )

An obvious choice for t is a vector representing a linear trend e.g.

t' = [-1(n-1) ... 0 ... 1(n-1)] for odd n.

7
)F;t;



Both s' and t' are eigenvectors of CVC (corresponding to the two zero

eigenvalues). should therefore not contain these two particular eigen-

vectors.

Let the n-2 non-zero eigenvalues of CVC be denoted by vi where

V1 > v1 = 2
• • • >
= n-2

, then tr BB'V will have as its maximum value

n-k n-k
E vi and as its minimum value E V.

i+k-2 •L1 i=1

We have now found the interval
n-k n-k

E v.E v
i+k-1

i=1  1 efe < i=1 1
n-k == 2 n-k == n-ka

This interval is again tighter than (II).

1We can apply this theorem because C = I - - tt,t,t

- Z(ZTZ)
-1
Z , where Z = (s:t) .

The theorem implies:

A. . < v < A. i=1...n-251+2 = =

hence
n-k n-k
E V. < E A.

1
. 1

i=1 1=1

n-k n-k
E v. > E A

1+k-2 . 
A.

i=1 1=1
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