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1 INTRODUCTION

In this paper we consider a consistent and asymptotically normally distri-

buted estimator that is appropriate for estimating the parameters of a

single (non-linear) structural equation of a simultaneous equation system

without using explicite information about the other equations of the system.

In contrast with the model considered by Amemiya (1974), the structural

equation involved may be non-linear in the disturbance variable as well.

Besides, Amemiya's non-linear two-stage least-squares estimator needs some

explicite information about the other equations in the system in order to

select an appropriate set of instrumental variables [see Jorgenson and

Laffont (1974) and Amemiya (19755j, and is therefore less useful for models

with errors in variables. (Note that the "errors in variables" model can be

,considered as a structural equation of .an incomplete simultaneous equation

system).

One of our mean assumptions is that the disturbance variable is symmetrically

distributed, so that, roughly speaking, the true values of the parameters

can be identified using the well known property that the imaginary part of1-1•2

characteristic function of this disturbance variable is zero everywhere.



2 THE MODEL AND ITS ESTIMATOR

The model to be considered has the structure

, j=1,2,.. (1)

where the Y .'s are observable scalar random variables, the usj

a are

observable p-component vectors consisting partly of endogenous

variables correlated with the disturbance variable 114, and partly of

exogenous variables, and 80 is an unknown q-component parameter

vector.Theexogenouscmponentsofz.may be considered .as random
3

variables taking the value of the exogenous variable involved with

probability one. If equation (1) can be solved for u d ifj an Yj

is ,one of the components of z. , this model can be written as
3

)=u. j=1,2,..
3 o

We now assume:

(a) The function g(7,0) is continuous on the product space RPx.0

and for every zeRP twice continuous differentiable on 0 ,

where 0 is a compact subset of the q-dimensional real space

Rq and 130v0 . The z.'s are independent p-variate distributed
3

random) , respectively. The u.'s
3 3

are independent identically distributed random variables and their

common d. f. is symmetric.

Let
i n

STI(t,()1--Lin(tg(z.,13)) •
113=1

Then

1.I
ES (tO )7.--y, E sin(tu.)- for every t

n o . 3n3=1

since E sin(tu.) is the imaginary part of the characteristic function
J

of the symmetric error distribution. On the other hand, if

(b) for every eEcNeo} there exists at least one positive integer m

lr 2m-1 .
such that lim Eg(z.,0) exists and is non-zero,

3nj=1

(2)

(3)



-4-

then for all sufficient large n and every f>0 5

ES
n
(te)1--o for some tc(0j] if ec®\{°.}

since then

• m+1 n 2m-1
1

0/3-02111-1ESII(t,E0=(-1) .--O(z,e).cos(tg(zOncTs(z ). 3n3.1

is non-zero at t=0 . Thus under the assumptions (a) and (b)

{ES
n
(t,6)}

2
dt>0

while

if 060\{60} and n is large

(5)

(6)

{ES
n
(t,0

o
)}2dt=0 for all (8)

This suggests the following estimator:

A ^ 2 o  
n
:I S

n
(t,e

n
) dti=nf s

n
(t,e)

2 
dt

660
0 0

At least one of the solutions of (9) is measurable [lee Jennrich

(1969, lemma 21jbecause of the continuity of 
r 2

S
n
(t

5 
6) dt on 0 and

the compactness of 0 .

Assumption (b) plays an important rale in our analysis. Its plausibility

needs therefore attention. As an example, let us consider the linear model

with errors in variables:

g(z.,6 )=z.'6 =u.
3 3 o 3

Assumingthatthefirstcomponentof. z.is the dependent variable,
3

we have to put the first component' of 00 equal to one. The same applies

for other O's to be considered. Therefore we assume that 0={1}xelt
p-

where '0 R
1

is a compact subset of . Furthermore, let z, be

p7variate normal distributed with mean p. and variance E :

z. N (P -5E) 53 P

5

where the matrix E may contain zero columns and rows corresponding

with "non-random" components of z, . Then pie must be zero because
3 o

of the symmetry of the distribution of the u.'s.
3

(9)

(10)



_5_

p.'es =0
j o

•5 z.'10 N(p.'0,0'Ee) (12)

and ccnsequently
i n

ES
n
(t,0)={±-Y sin (tp.'0}exp(-it2O f Ee)

n: 
3=1

Let occ\{eo} be given and put v.=z.-p. . Then
3 3 3

z.0=11.'0-tv.
3

t o v.,0 N(o,eyEe)

and thus
2-- m-112m-i- 2k 2(m-k)-1

E(z.'8) 
=X 12k 

(.'O) E(v.'8)
R=OL

m 2m-I 2k-1
E(v 

k)

2k-1 (11P)) .
k=1

—2m-f

2k-1
k=1

2k-1

(u
j
'e) E(v

1 
,e)2(m-k)

since E(v.'10)2(1m-i( D and E(v.'0)
2(m-k)

is independent of j

Hence, assumption (b) implies in this case that there exists at least

i n 2k-1

one positive integer .k such tflat lim (p.10) t which in
nizi 3

its turn implies that for all sufficient large n and every i,>() ,

(13)

(1m)

(is)

lr
-1 sin(tp.'0$0 for some tc(0,fi.] if 860\00} (16)
n. 3
3=1

Since pla 

I 

Sin(tp .1 e ) is the imaginary part of the characteristic
J=1

function of the empirical distribution of p
I
'e p

n
'e , (16)

and consequently assumption (b) imply in this case that this empirical

distribution is non-symmetric if ecoMe
o
} and n is large. Moreover,

if this empirical distribution is non-symmetric if eco\001 and n is

large, it is easily checked that there exists a positive integer m such

1
n 2m-1

that T11 E(z.'8) tO . This result suggests that assumption (b) is not

3=1 3

very restrictive.
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3 CONSISTENCY

First we shall give conditions such that ( also holds in the limit.

Of course this limit must exist:

ln
(c) Esin(tg(z.,0)) exists for every 0c0 and every

3
t in a compact interval containing zero.

Let 860\{00} and let m be the smallest positive integer for which

assumption (b) is satisfied. Then for every positive integer k<m

2k-I
{( a/at) 

k+1 
Eg(z.,0)

2k-1 .,0ES
n
(t
'

0)}
t=o

=(-1
n.
3=1

while for k=0,1,2,.... 5

ES (t,0)}
0 
=0

n t= 

Therefore the Taylor expansion of ESn(t,0) yields in the limit

in
lim ESn(t,0)=(-1)

m+1
(lim T 

2m-1 2m-1 
11 Eg(z. )t 
j=1 3 (2m-1):

where

IRn(t,e) k-n-L Eg(z.,8)
2m

j=1 3

Now put a=lim Eg
n4=1

5

(17)

(18)

(lim Rn(t,e))t2m (19)
(2m)!

m-1
and b=limsup-- Eg(z1,e)2m

=1 -

Then it follows from (19) and (20) that

(-1)
m+1 

t
2m-1

(a-b-)<s(t,0)<(-1)
m+1 

t
2m-1 

(a+bt)
(2m-1)! 2111 (2m-1)! 2m

so that Is(t,0)1>0 if tc(0 2mIal, b and b<co Hence,

s(t50)2dt >0 if 0E0\{00} 5

provided that

(20)

(21)
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n
(d) for every' ece\{00} , where m is, limsup —1 Eg(z ,e)2m<co

n
j=1 

j

the smallest positive integer for which assumption (b) is satisfied.

Next we shall give an additional condition such that

plim supIs
n
(t,6)-ESn(t,0)1 0

Oce,tcD,o_i

and

lim sup IES
n
(t,0)-s(t,0)1=0

Oce,te[0,1]

Let N be a neighbourhood of O*60 and let tleD 50

Then for every 001 and every tc[M1 ,

I lY 3 3ni

1 lr t.1
)13=1 3=1

Nti r t * 17
<It-t 171v. ig(zi3O )1+NO-0

1
sup10/Wg(zi3O)1

3=1 3=1 804

<It-t1-1-16,-(3*-1+1t-t ez.01)2
j=1

i n
f3.10-e1±

• 
1 sup1(3/Wg(z.,e)

12
5n.

3=1 OcO

where the first and the thirth inequality in (24) follow from the

mean value theorem. Moreover, it is obvious from the strong law of large

numbers that

S
n
(t,0)-ESn(t,0)÷0

and consequently

plim {S (t,0)-ES
n
(t,0)}=0

a. e .

(22)

(23)

(24)

(25)

(26)



since S (t,e) is the mean of n independent uniformly bounded

random variables. Comparing (23) and (24) with part (ii) of theorem A

in the appendix, we see that (22) holds if

(e) for every Oc® there exists a neighbourhood N={0EG:1e-e*H6}
1r

(S>0 such that lim—L Eg(z.,0)
2

and
nj=1 j

. lr lr
lim—LEsup10/90)g(z.,0)

12 
exist; while limsupT11, Eg(z.,0)

3nj=1 OEN

and limsupilEsup10/9E0ez.)14 are finite,
nj=1 OcN

since then by the weak law of large numbers

e le)2=linl172, • 5e ) 
2

n . n .
33=1 =1

and

( 27)

1 2 1irl,pliYsup1(3/Wg(z.,0)i =lim-1 E sup10/90)g(z.,0)12 (28)
n. 3]=1 OEN nj=1 OEN

Furthermore, taking expectations of the random variables in (24)

and using part (iii) of theorem A it follows by the same kind of

argument that (23) also holds. Hence,

plim sup IS
n
(t,0)-5(t,0)1=0

Oce,tc Lo,13.1.
5

Moreover, (23) implies that s(t,O) is uniformly continuous on

D,&0 , since ESn(t,0) is continuous and [04.1x0 is compact.

These results imply that

plim suplf S (t,0)
2
dt-f s(t,O)

2
dt=0

0E0 n

and
, 2

s(t,O) dt is uniformly continuous on 0

(29)

( 30)
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and

From (30) it follows now

^ 
plim ff (t,0 )

2 
dt-

n
^ 2

s(t,On) dt}=0 ( 31 )

and together with (9)

O<Ia" 
S
n
(t,8

n
)
2 
dt4 S (t,8

o
)
2 
dt.±0 in prob., (32)

since s(t,80)2dt=0, Hence

plim s(t,8
n
)
2 
dt=0

which, together with (21) and the continuity of

plim
n
ze

We have proved by now:

s(t,8)
2
dt, implies

(33)

(34)

THEOREM 1. Under the assumptions (a) through (e),
n 

is weakly consiotent.

A stronger result can be obtained if we assume that

lr
-1. F.(z)-4-F(z) vaguely

1)

5n: 3
3=1

where F is a distribution function and the F.'s are distribution

functions defined in assumption (a), because then by theorem B in the

appendix

(35)

I 
(36)s(t,6)= sin(tg(z,6))dF(z)

sup IS (t,e)-s(t,0)14-0 a.e. (37)
....--, n

Oce,teEp,u

so thal

suplf S (t,8)
2
dt

_
f%(t5 8)dtki-0 a.e. Oa )

8c0
Ii

1) See Chung (19714, p. 80 and 85) for a definition of vague convergence.



Thus if if the assumptions (c) and (e) are replaced by (35), then

o
n
,e a.e.

THEOREM 2. Let the assumptions (a), (b) and (d) be satisfied.

1If -4 F.(z) converges vaguely to a distribution function, then
nj.1

0
n 

is strongly consistent.

(3y)
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4 ASYMPTOTIC NORMALITY
•••

.„

Deriving the limiting distribution of our estimator
n 

we need

A 2 1)
the following Taylor expansion of (3/ae)j Sn(t'0n) dt :

^ 
(3/384 Sn(t,011)

2 
dt=(D/H S (t,0 )

2 
Pdt+(0 -0 (/30)(/98)f S (t e*)dt (40)

0 no n ' n 

If

(f) 0 is convex and eo is an interior point of 0

then it follows from Jennrich (1969, lemma 3) that at least one of the
*,e
n 
s for which (40) holds is measurable and that

le-eo 1<len -eo I a.e. (41)
n 

Moreover, by the same kind of argument as in the proof of Jennrich

(1969, theorem 7) it follows that under the conditions of theorem 1 ,

A 
in(2/90')I S

n
(t

n
)
2 
dt-4-0 in prob. 5 (42)

0

where 0 is a zero vector:

(Note that under the conditions of theorem 2 , (42) holds a.e.)

'Hence, if /n(D/30')1 Sn(t,00 converges in distribution to a

0-yariate.norNa1 distribution with zero mean vector and variance matrix

t 2, and if plim (a/N))(3/3e) snct,en) dt=r , where r is a non-

singular qxq matrix, trAn 41(8
n
-9

o
) converses in distribution to a

s-variate noiml distrjbution with zero mean vector and variance matrix

1) The notatton (a/O0f(e) denotes a row vector of pe.:q.ial derivatives

of the function f(0) In thr, point e* , while (3/30')f(0) denotes

its transpose. The notation (3/3e)(3/ae)f(et) denotes the matrix of

second partial derivatives. of f(0) in the point
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I 

f3,
First we consider the asymptotic normality of Vn(3/90') Sn(t,00

For m=1,2,..., q we have o

1)/n(9/30
m 

S
n
(t,e)2dt-2rin Sn(t,00)E(a/Hm)Sn(t,00)dtl

0 0

<2&up 1(/30m)Sn(t500)-E(3/90m)Sn(t00)
te[0,0

Furthermore, if tED,5-.1 and ttcD,61 5

I ( a iaem)sn( t ,ea )-(/Hm)sn(tt,e0 )I <

l
Ii
r t<-1. It cos(tu. 

t
coskt u.

—n. 3
3=1

II(VHm)g(zj,00)

i n
1(/ae )g(z.,0 )

nj.1 m 3 o

* 1n
sup10/90ez.50)121

j=1 DeN

where N is a neighbourhood of e
o 5 and

5

dt .

Vn S (too)i dt (43)

n
1 r i 1 r

var{(9/98 )S (t 0 
)1<2 

2
f3 E((ne )g ,e 

)12 2 
Esupl(/De)g(zm n 5 0 .

n 71=1 
m j o 

.n
2
1=1 ecll

From (44), (45), assumption (e) and part (ii) of theorem A in the

appendix it follows now that

plim sup i(/3em)Sn(t,00)-E(3/Hm)Sn(t,00)
te [0,13]

Since lin Sn(t,0)1<31-inSn(t,e)
2 
. we have

0
"

Ef 1)/n s (t,e )Idt<D3+-21-2, f Efsin(tu.)}2dt<
n o . 3IIj.

1o

and thus by Chebishev's inequality

P{f 1)/n Sn(t,e0)!dt>!-}<6

for every c>0 . Hence we obtain from (43), (46) and (48)

a
p1im{)/110/H S 

n - 
(t50 

o
)2dt-21 in

m  m n o

using the same kind of argument as in the proof of theorem 4.4.6.b

in Chung (1974) .

5

(44)

(145)

(45)

(47)

(148)

(49)
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Now let

c
m,n

O(LE(DA0 )S (t.e )m n - o 
c

Li
( Y-7(ci,n(t) ,

fi ax1/24 S (1,0 )c
1 

(t)6tn , n 0 ,n '' 
.., 

j 
S
n
(t,0

o
)c
q,n

(t)dt)

o o
and choose “Rq arbitrarily . Then

a 
1.n fax,

f 
..-: s 

n
(t,e )c (t)'d.t=± J sin(tuj)cn(t)',dtn on nj=i

o o

The u.'s are symmetrically distributed. Therefore3

sin(tu.)c (t)'t;dt=0
Jn

Moreover,

•

(t))
q,n

var(x,c)=--
2 

Eff sin(tu
j
)c
n
(t)'dt)2=-4 Ip(t

1' 
t
2 
)Cc ('

1 
)c (tn . n n ` n

1

n 3=1

where

1
=TIC , say

IP(t1,t2)=E sin(t u.)sin(t u.)1 3 2 3

and

00

B =(b (i'j))=(f)(t . (t )c. (t )dt dt )n n 1 1,n 1 3,n 2 1 2
00

We assume now

'cit
1
dt
2

in
(g) 1C( -0=.1.11MjtE cos(tu.)(3/W)g(zi,e) exists for every t in a

J 1

compact interval. c(t)'=(c
(1) 

c
(q)

(t))

Then c(t)=1im c(t) uniformly on [O,] , which can be proved using

(44), part (iii) of theorem A and assumption (e). Hence

lim
• n 1,3 l' 2 1

o o
and

E

:5=1

1( sin(tu.)c (t)70t
3 n

ivarWx )

3

<n 4 7B 0-3/2Tic t 'Cldt}
3

(50)

(51)

(52)

(53)

( 5 it)

(55)

(56)

=0(n-1) if c'B>0 (57)
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From (51) through (57) it follows now by Liapounov's central limit

theorem that for every ERcl such that '13.c.-0

/n x 1 r,-*N(0,VBc) in distr.

while plim Vn xi'lc=0 if CB0 . Hence

x -*N (0 B) in distr.,
n q

where B may be singular

CompF.ring this result with (50) and (49), we see now:

THEOREM 3. Under the assumptions (a), (e) and (g),

in(a/30')J S (t,8 
o
)
2 
dt-qi (9,4B) in distr.,. where B is de lilac? in 55).

n 
0

6

(59)
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5 THE LIMITING DISTRIBUTION OF THE ESTIMATOR

f3.
1 Next we consider the probability limit of 

(3/30)(3/a0)f 
S
n
(t,8

n
)
? 
t .

Let N be a neighbourhood of 00 and put

ri
lr 1 2

a suldO/Wez-0)1n n. 33=1 004

q q
b x sup1(9/R3

k
)(3/30m) ,,e)1n •

k=1 m=1 OcN

By the mean value theorem and the trivial inequalities

+1Y211xl-x21 and lxyl) we then have

for every OcN and every teD,0

1(a/am)Sn(t,0)-(3/Mm)Sn(t,00)1<13
2
10-0 a

n
+*-e

o
lb
n 

;

I(/am
)S

n
( t ,e )1 <43+3ga

and

•

1
10/a0

k/m
),S
n
(t,0)&

2 
a
nn

so that

(60)

(61)

( 6 2)

( 6 3)

(60

1(a/ap00/30m)Sn(t,O)
2
-2{(3/DeldSn(t,e0)}{(Dnem)Sn(t,00)11

<21{(?/aeldSTI(t,0)}(a/98m)Sn(t,0)}-{(3/30k)Sn(t,00)1{0./@em)Sn(t,00)}1

1-21Sn(t,a)' I ek)(VandS (t,6 )1

‹2(0 -1)(
D
i-Wi

n
)! -e 1+203" a -i-ab )sup IS(t0)1n 0 n n ro n

Assumption (e) implies that plim an exists and is finite. If we assume

(h) There exivr8 reghbourhec.d N of e
o 

such that fnr k,m=1,2,.
n
lr i ,, ,,, l'lim --2, E sup' kci/0.9 AO/DO )g(z.,01 converges andn. k m ,J]=1 .66N

lirnsu 
lr

E sup{(3/a0,)V3e )g(z
j 
OH

2 
is finite ,m nj=1 Seh

(65)
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then by the weak law of large numbers, plim bn exists and is finite.

Since by (41) plim 0%=0 and thus by (29) ,
n o

plim sup. IS (t ON zplim sup Is(t,e)i=sup Is(t,0 )1=0
n n

te L.° ,C 
n t c En ,R:i 0

it follows from (65) that

plim[(3/30 )(3/30 S (t,e%)2dt-2f {(3/30
m n n
0 • 0

Furthermore,

plirrEr {(9/30k)Sn(t,80 )1{(9/90
m 
S 
n 

,O(t)}dt-
0

o •

(66)

t,e0 )}{ (3/30m)Sn(t,e0 ] )}dt =0 . (67)

c
k,n

(t)c
m,n 

t)d-..1=0 (68)

by (46), (50) and (63), while assumption (g) implies

limf
a
c
k,n

(t)c
m,

0

Hence

(k) 
(t)dt 

(m)
=rc (t)c (t)dt

'
p1im(3/38 )(3/30

m 
S (-t,e)

2 dt=2f c(k) 
(t)c

(m) 
(t)dt

n n

Let

A:-.(a
k,m
)( c(k)(t)c(m).(t)dt

Then it follows from (40), (42), (70), (71) and theorem 3

A
241(0 -6 )A>11 (0,4B) in distr.

n o q

(69)

(71)

(72)

•
so that

41(0
n
-0

o
)41'i

q
(0,A-1BA) in distr. (73)

provided that

(i) the matrix A , defined by (71) , is non-singular.

This assumption is not very restrictive, as will be shown below.

Since E Sn(t,00)=0 for every t follows from (50) that

(/36)(aiao)J {E Sn(t,0 )}2dt=2(fac (t)c (t)dt)=2A
n 

say .
o n, n,m

0 . 0

(74)
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This matrix is the Hessian of the function 
2

{E S
n
(t,0)} dt in the

minimum point 0
o 

(see (7) and (8)).We may therefore expect that An

is positive definite if n is large and thus that A=lim A
n 

is

positive definite, and hence non-singular.

We have proved :

THEOREM 4. Under the conditions of theorem 1 and the assumptions (c)

through (i)

^
vn(0

n
-0
oq

(0,A
71

BA
-1
) in distr. ,

where A is defined by (71) and B by (56).
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6 A WEAKLY CONSISTENT ESTIMATOR. OF THE ASYMPTOTIC VARIANCE MATRIX

In this section we shall derive a weakly consistent estimator of the

variance matrix A
-1

BA
-1

From the second inequality in (65) it follows that

plim If {(9/Hk)Sn(t,811)}{(3790m)S (t,811)}dt-

-J {(/3ek)sn(t,e0)}{(9/aem n(t,00)}dt

<f3(1-f3.plim an)(f32plim bn)plim1411-001=0

Thus if we put

An =4 {Wae )sn(t,en)}{(9/a0m)sn(t,en)}dt)

0

then it follows from (68), (69), (71) and (75)

plim A
n
=A .

Let.

1
n
(tt

2
)=- sin(t

1
g(z

j
,e
n
))sin(t ge

n
))

• 3=

and

1p
0
(t ,t

1 1n
sin(t g(z.,0 nsin(t g(z.,0 ))=-1 sin(t u.)sin(t u.)

n 1 2 1 3 o 2 3 o n. • 1 3 2jnj=1 
3=1

Then for every t
1' 

and every t2cD,131 ,

14)n(t
0 1

n A
)-tpn(t1,t2)1<21321TX Ig(z_i3On)-g(zi,(30)1

j=1

1^ 1 1r
<2f3.10,1 00 1 -1-v, sup10/ 

'
30)g(z. )

3=1 eEN

<0)11-00 1{11-i-1 )12)

A A
if

n
EN , where N is a neighbourhood of e

o 
. Since plim en=e0

it follows from assumptiOn (e) and from (80) that

0
plim sup.

tic FO ,13] , t2c[0,131 n

(75)

(76)

(77)

(78)

(79)

(80)

(81)
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Moreover, by the weak law of large numbers ;

plim

Since 0(t1,t2) by defined defi- 54), is uniformly continuous on E0Ax[0,0

and since

t 1
n

14/°(lt tt)-11? ,t )I<it iu.l+It -t I—I kid
3=1 

nj=1

it follows from assumption (e) and part (ii) of theorem A in the

appendix that (82) holds uniformly on

plim sup
t
i
c LO ,f3] , t

and thus by (81)

Co,gxEo,f3]

Lo 
]1 1°1(t

1
,t
2 
)-4)(tt

2
)1=0

plim sup IP n(t
t
1 
[0 ,131
' t2 - 

FO ,13]
Let

B
n
=(fri

n
(tt

2
){(9/DO

k 
)S (t

l )}{(9/30
m
)S
n
(t

2 n
)1dt

1
dt
2)nn

00

Then, analogous to (77), it is easily proved that

plim
n 

.

THEOREM 5. Let the matrices An and Bn be defined by (76) and (86),

respectively. Under the conditions of theorem 4,

plim A-1; A-1=A-1BA-1.
n n n

(32)

(83)

(84)

(85)

(86)

(67)
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APPENDIX

The following two theorems are generalisations of the theorems 4 and 1,

respectively in Jennrich (1969).

THEOREM A.

Let ( n(0)) be a sequence of (random) functions on a compact subset 0

of a Euclidean space. Let (c,11(0)) be a sequence of (random) functions

on 0 such that for every 00c0 and every 6>0 in a bounded interval,

sup hbn(8)--if.
n
( o )k6r,n( 0o ) (a.e.)

ecu
6
0)

where U(0
o
)=060:10-0 <6

If for every eoco 5

(1) '4)11(eo)-*() 
a.e. and fl(80)-÷(00) a.e.

or

(ii) plim cpn(00)=0 and plim 1.1(00)=r,(e0)

or

(iii) 
(41.1(0o)=0 

and lim 11(e0)=r,(00) ,

respectively, where c(e
o
) is positive, finite and non-random, then

(i) suP1(0)14.0
eco

or

a.e.

(ii) plim sup1cpn(0)1=0
060

or

(iii) urn suplcp (e)I=o
ecO n

respectively

5

PROOF. Choose an E> 0 and let 6 (e
o 
) be such that 0<6 .c (0

o 
)<E and

6 (0o )<6

(i) Let (. 5F 5P ) be the probability space. The random functions (p
n
(0 )

and ) may now be written as cl)
n
(w ) and 

n
(w ) respectively,

where weS1 . Since (pb 
no 

}÷0 a.e. and 
n 

)-0-c (0
o 

a.e. for every

00E0 5 there exists a fuliction n
o 

50
o 
) and a null set N(0o 

) such
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that kn(JI,80)-(00)1<1 and 1 4' (w ,E) )I<c if n>n (6) ) andn  '

weQ\N(O
o
) . Hence,

14)n(w'e )1 < I Cb n(w'e )-4)n((j '60 )14-1-1-1(w 'e0)1<6(60)1Cn(0o )-1:(00 )1+6(e0 )Ci(.9-o)+c<3c

if
o
(w,c,e

o
)we\N(0

o
) and ecU (0

o
)

The compactness of 0 implies

m(E)
of points

m(e)
o.L)U (0.)
. (e.) 11.1

•

that there exists a finite sequence

in 0 such that

Now put n
*
(w,c)=max n (w,c0.)

i=1,2,...,m(E)

Then for every ()co ,

14)113c 
if n>n (13,c) and.wEQ\N

c •

Hence, sup1,4)11(0)1÷
0E0

a. e .

m( c)
and N= N(0i

1=1

since 6 is arbitrary .

(11) First we note that a sequence of random variables converges to

zero in probability if and only if

subsequence that converges to zero

Then for every 0.6{0 ...,e
a_ 1' m(E)

}

(n
k.
) such that

CO .n
k . 1
3

a.e.

every subsequence contains a further

a.e. . Let (n
k
) be a subsequence.

there exists a further subsequence

and cn i )4.0 (8 )
k . •

a.e.

Sinceweconsiderafinitesequenceofpointse.,this further subsequencE,

can be chosen equally for all the ei's . However, (nk.) may depend on c •
3

Hence, by the argument in the proof of (I) , there exists a function

jt(1),c) and a null set

suPI (I) n ,E) )1 < 36
6c0 k.

3

which excludes the

and a subsequence

N such that

if j> jt(w ) and wa\Ne

possibility that there exist

(u k) such that

5

positive numbers c and 6
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P{sup14) (0)1<c}<14 for 1(2=1,

0c0

Hence, lim Pfsup1(1)11(0)1<6
6c0

= which was to be proved.

(iii) This part of the theorem follows directly from part (1).

THEOREM B.

Let (!)(x,0) be a continuous and uniformly bounded function on Xx0 ,

where X is a Euclidean space and 0 is a compact sUbset of a Euclidean

space Y . Let xl,...,xn,. ., be a seqUence of independent random variables

in X with distribution functions F
1 
(x),...,F 

n
(x),.., respectively.

If F. (x) converges vaguely to a distribution function F(x) , then
nj=1 3

lv
s1114-1, (!)(x.,6)+(x,e)aF(x)r+0n. 3ece 3=1

alle •

This theorem can be proved in the same way as theorem 1 in Jennrich (1959).

The proof is therefore left to the reader.
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