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1 INTRODUCTION

In this paper we consider a consistent and asymptotically normally distri-
buted estimator that is appropriate for estimating the parameters of a
single (non-linear) structural equation of a simultaneous equation system
without using explicite information about the other equations of the system.
In contrast with the model considered by Amemiya (1974), the structural
equation involved may be non-linear in the disturbance variable as well.
Besides, Amemiya's non-linear two-stage least-squares estimator needs some
explicite information about the other equations in the system in order to
select an appropriatedset of instrumental variables [see Jorgenson and
Laffont (1974) and Amemiya (19752], and is therefore less useful for models

with errors in variables. (Note that the "errors in variables'" model can be

.considered as a structural equation of an incomplete simultaneous equation

system).

One of our mean assumptions is that the disturbance variable is symmetrically
distributed, so that, roughly speaking, the true values of the parameters
can be identified using the well known property that the imaginary part of the

characteristic function of this disturbance variable is zero everywhere.




2 THE MODEL AND ITS ESTIMATOR

The model to be considered has the structure

yj=f(zj,uj,80) s j=1,2,...

where the yj's are observable scalar random variables, the

are non-observable scalar random disturbance variables, the
observable p-component vectors consisting partly of endogenoué
variables-coprelated with the disturbance variable wu., and partly of
exogenous variables, and 80 is an unknown q—compon;nt parameter
vector. The exogenous components of zj may be considered as random
variables taking the value of the exogenous variable involved with
probability one. If equation (1) can be solved for uj and if yj

is one of the components of zj , this model can be written as

g(zj,eo):uj j=1,2,...

We now assume:

(a) The function £(z,0) <is continuous on the product space RPx0
and for every 2eRP twice continuous differentiable on 0 ,

where © 1s a compact subset of the q-dimensional real space

RY  and 6,c0 . The zj’s are independent p-variate distributed
random vectors with unknown d.f. Fj(z) , respectively. The uj's
are independent identically distributed random variables and their

common d.f. s symmetric.
Let
1D
S (t,G)Z;Z sin(tg(z.,0))
n nz_ )
j=1
Then
10
ES_(t,6 )==) E sin(tu,)=0 for every t
n 0o° n&%_ j
J=1
since E sin(tuj) is the imaginary part of the characteristic function

of the symmetric error distribution. On the other hand, if

(b) for every eeo\ieo} there exists at least one positive integer m

n
such that lim %Z Eg(zj,e)gm Y exists and is non-zero,
i=1




then for all sufficient large n and every B8>0
ES_(t,8)70 for some te(0,6] if 6eo\(6 }

since then

2m-1

. m+l .n 2m-1
(3/3t) J

ES (1,6)=(-1) 3V |g(2,8)  cos(tg(z,8))dF,(z)
n ni.g j

is non-zero at t=0 . Thus under the assumptions (a) and (b) ,

B .
J {ESn(t,é)}th>O if 650\{60} and n is large ,

)
while

B : .
f {ESn(t,eo)}thZO for all n .
)
This suggests the following estimator:

- B ~ 9 ) 5
0 :J S (t,8 ) dt=inf J S (t,8)"dt
n n n n
6e0
[e] ) (o]
At least one of the solutions of (9) is measura%}e [}ee Jennrich
(1969, lemma QZ]because of the continuity of I Sn(t,e)gdt on O and
the compactness of 0 .- 0
Assumption (b) plays an important rdle in our analysis. Its plausibility
needs therefore attention. As an example, let us consider the linear model

with errors in variables:
' = ! = : A .
g(zj,eo) Zj 60 uj . » (10)

Assuming that the first component of =z, is the dependent variable;

we have to put the first component of eo equal to one. The same applies
for other 6's to be considered. Therefore we assume that G={1}x®x .
where ©F is a compact subset of Rp-l . Furthermore, let z. be

p-variate normal distributed with mean uj and variance I
z. v N (. Z).
j p i’ ’
where the matrix I may contain zero columns and rows corresponding

with "non-random'" components of zj . Then pj'eo rnust be zero because

of the symmetry of the distribﬁtion of the uj's.




hus

p.'o =0 3 z.'0 v N(p.'e,0'I8)
RERY J J

nd consequently

n
v . 2
ES (t,9)={1) sin (tp.'6)Yexp(-3t“6'16)
n nj:l ]

Let SEG\{GO} .be given and put vj=zj—uj . Then
1
z.0=pu.'04tv.'0 3 v.'6 ~n N(0,8'%Z8)

ALt RS ’

and thus .

Zr-1 m=1{2m-1 2k 2{m-k)-1
E(z.'6) :z (p.'e) E(v.'8)
i K=o |2¥ J i

[2m-1] 2k-1

1 ' Q(m—k)
2k-1 (uJ ) E(vj 8) "

[2m-1| 2k -1

peor |10 E(v;'8)

2(m-k)

since E(vj'e)g(m_k)—l=0 and E(vj'e)z(m—k) is independent of j

Hence, assumption (b) implies in this case that there exists at least

n 2k-1
one positive integer &k such that lim %{ (uj'e) 30, which in
o j=1 :

its turn implies that for all sufficient large n and every g>0
n

=)

sin(tuj'e)#o for some ta(O,é] if 85@\{80}
j=1 , ,

n
Since %{ sjn(tujlg) is the imaginary part of the characteristic
g

function of the empirical distributign of ul'e geees un'e , (16)

and consequently assumption (b) imply in this case that this empirical

distribution is non-symmetric if eeO\{Oo} and n 1is large. Moreover,

if this empirical distribution is non-symmetric if eee\{eo} and n is

large, it is easily checked that there- exists a positive integer m such
2m-1

n
that %{ E(zj'e) $0 . This result suggests that assumption (b) is not
3=1 ' . |

very restrictive.




3 CONSISTENCY

First we shall give conditions such that (7) also holds in the limit.

Of course this limit must exist:

(c) s(t,0)= llm-2 FSln(tg(z ,0))  exists for every 6e¢0 and every

t tna conpac% znterval contaznzng zero.

Let 8e0\{6_} and let m Dbe the smallest positive integer for which

assumption (b) is satisfied. Then for every positive integer k<m .

(or o)™ s (t,0)) _ =(-1)" 1X £a(z, 0% 20
j =1

while for k=0,1,2,...,
o/ o)X ES (t,0)}._ =0
n > 77t=0

Therefore the Taylor expansion of ES (t 9) yields in the limit

m+l(llm —E Eg(z . )Qm l)t2m 1 +

Bi=z =1 (2m-1)!

1lim Esn(t,e)=(~1)

(llm R _(t, 6))t
n (211'1)'

where

n
-‘Rn(t,e)lS%E 'Eg(z.,e)Qm
. j=1 I

10
Now put a=lim *{ Bg( 2m ! and = b=limsup —z Eg(z ,9)

=1 : ' ' ‘ J =1
Then it follows from (19) and (20) that

m+1 t2m—1

(-1) (a-bE)<s(t,0)< (-1)™1 2™ (apr)

(2m-1)! 2m (2m-1)!  2m

so that |s(t,8)]|>0 if te(O,gﬁgﬂ—)~ and b<e

'I s(t,9)2dt >0 if eee\{eo} s
o ' .
provided that




n .

- 2m .

(d) for every - 650\{60} >, limsup %z t.g(zj,e) <o, where m 18
3=1 |

the smallest positive integer for which assumption (b) 1s satisfied.

Next we shall give an additional condition such that

plim sup IS

(t,8)-ES (t,8)]=0
GEO,tdb,E]

n

and

lim sup - |ES (t,8)-s(t,8)]|=0
0e0,te[0,8] o

Let N be a neighbourhood of 6%e0 and let txe[b,é}
Then for every 6eN and every ts[p,é] ’

n
% X 1 * *®
ISn(t,8)~Sn(t ,0 )‘fggzlltg(zj,6)~t g(zj,e )|

210 .1 1p *
ilt—t'l;{ lg(z.,8")|+t=) lg(z,,8)-g(z,,07)|
j=1 - 3 M= ) |

n n '
<le-t*]2) le(z2,6™)|+8l0-6" 2] sup(a/39)g(z.,0)|
521 4 j=1 oeN J

' n
<|t-t*|+8|o-6%|+]t-t*| Ly g<zj,e*)2 +

nj___l
. n
Ble—e#l%{ supl(a/ae)g(zj,e)l2 ,
P31 ge0 ~ .

where the first and the thirth inequality in (24) follow from the
mean value theorem. Moreover, it is obvious from the strong law of large

numbers that

sn(t,e)—ESn(t,e)+o |

and consequently

plim {Sn(t,e)*ESn(t,e)}IO




since Sn(t,ef is the mean of n independent uniformly bounded
random variables. Comparing (23) and (24) with part (ii) of theorem A

in the appendix, we see that (22) holds if

(e) for every 6%co there exists a neighbourhood N={6e0: 0-6%| <8} s
Y g

n
6>0 , such that llm—X Eg(zj,e )2 and
M= :

n
1im l{ E qupl(a/ae)g(z ,8)[ exist, while llmsup~{ Eg(z.,8" oy
n& 3
j=1 ©6eN ] =1

and llmsup~{ E supl(a/ae)g(z ,6){ are finite,
"3z1 geN

since then by the weak law of large numbers

pllm—X g(z ,0 ) —llm—z Eg(z. e*)z
M= RS

and
n

m%i sup[(a/ae)g(z ,0)| —llm~z E supl(a/ae)g(z ,8)[
. J=1 BeN j =1 8eN

Furthermore, taking expectations of the random variables in (24)
and using part (iii) of theorem A it follows by the same kind of

-argument that (23) also-holds. Hence,

plim sup |s (t,8)-s(t,8)|=0
0e0,te[0,8] »

Moreover, (23) implies that s(t,8) is uniformly continuous on

[@,é]x@ , Since ESn(t,e) is continuous and [p,é]xo is compact.

These results imply that

6 2 8 2
plim sup[[ Sn(t,e) dt—f s(t,8)“dt|=0
8e0 o

[0}

B8
and I s(t.e)QQt is uniformly continuous on ©0

o]




From (30) it follews now

8

1im { BS (t 8 )th— s(t 5 )th}zo
pLim “nt o 'n >“n

o o
and together with (9) s

B

B8 -
2 - 2 .
Qi[ Sn(t,en) dtij Sn(t,eo) dt+0  in prob.,

0] [0]

8 )
since J s(t,eo)thzo, Hence

[¢]

B~
plim J s(t,en) dt=0
o
B 2 .
which, together with (21) and the continuity of j s(t,0)"dt, implies

- 0
plim Snzﬁo

We have proved by now:

THEOREM 1. Under the assumptions (a) through (e), 6 18 weakly consistent.

A stronger result can be obtained if we assume that

n
%{ Fj(z)+F(z) vaguelyl) s

3=1

where I' is a distribution function and the F.'s are distribution

tfunctions defined in aésumption (a), because then by theorem B in the

appendix

s(t,e):Jsin{tg(z,s))dF(z)

and

sup |¢ (t,6)-s(t,8)|+0 a.e.
8e0,te[0,5]

so thau

8 L 2
sup]J Sr(t,s)'dt—J s(t,9) dt‘+0 a.e.

6ed
[e] [o]

1) See Chung (1974, p. 80 and 85) for a definition of vague convergence.




Thus if the aésumptions (c) and (e) are replaced by (35), then

0 -8 a.e.
n o

THEOREM 2. Let the assumptions (a), (b) and (d) be satisfied.

n
If %Z Fj(z) converges vaguely to a distribution function, then
J:l . .

0 18 strongly consistent.




4 ASYMPTOTIC NORMALITY

A

Deriving the limiting distribution of our estimator en , we need

)

. B ~
the following Taylor expansion of (B/BG)J Sn(t,en)thl

(o)
B ‘ ~ . (B
~ 2 2 % .
(a/ae)J S (.8 ) dt-(a/ae)J 5 (t,8,) dt+(en—eo)'(a/ae)(a/ae)J s (t,67)dt  (40)

[¢] (@] : [0}

B

If

(f) 0 s convex and 6, 18 an interior point of ©

then it follows from Jennrich (1969, lemma 3) that at least one of the

ei's for which (40) holds is measurable and that

le*-6 |<|6. -6 | a.e.
n o'—' n o

Moreover, by the same kind of argument as in the proof of Jennrich
(1969, theorem 7) it follows that under the conditions of theorem 1 ,
B ~ o .
/n(a/ae')[ Sn(t,en) dt+0  in prob. ,
o
where 0 1is a zero vector:

(Note that under the conditions of theorem 2 , (42) holds a.e.)

B :
Hence, if /n(a/ae’)f Sn(t,eo)th' converges in distribution to a

. o) . . . . . D -
q-variate necrmal distribution with zero mean vector and variance matrix

L, and if plim (a/ae)(a/ae)J'sn(t,ei)thzr , where T is a

' )
singular gxq matrix, tran Vh(én-so) converges in distribution
g-variate normsl distribution with zerc mean vector and variance ma

rizceny”t o

1) The notation (3/55)i(8%) denotes a row vector of partial derivatives
of the function f(e) In the point ‘e* , while (3/36')f(0x) denotes
its transpose. The nctation (8/38)(8/86)f(6x) denotes the matrix of

second partial Jevivatives of F£(6) in the point o* .




, _ B
First we consider the asymptotic normality of /nCB/BG')J Sn(t,eo)zdt

For m=1,2,..., q we have ) o)

B 8
|/n(a/aem)f Sn(t,60)2dt—2J /n S (t,6 )E(3/98 )S (1,6 )dt|

0] o]

B
<2s.up |(a/aem)sn(t,eo)—B(a/aem)sn(t,eo)II | /n Sn(t,eo)ldt .

te[0,8]

0
Furthermore, if  te [O . 6__] and t*e [:0 s 81 s

' *
|(a/aem)sn(t,eo)-(a/aem)sn(t 8. )<

n )
§§Z~ |t cos(tuj)-txcos(txuj)ll(a/aem)g(zj,eo)|
<(1+8) |t-t llj l(a/ae )g(z ,8.)
j =1

<(1+g)|t-t [{1+—Z supl(a/ae)g(z ,6 )|2} ,
j =1 6¢eN .

where N 1is a neighbourhood of eo , and

var((3/56 )5 (1,0 )36 5T E{(5/30 )g(z. .0 1 < ~—1—rzl Esup| (3/20)g(z, 9)!
m’°n P 0’’- 2._ \ “mn g ja o P g a
=1 1 j=1 0eN

From (44), (45), assumption (e) and part (ii) of theorem A in the
appendix it follows now that

plim iifp g]I(a/aem)sn(t’eo)_s(a/aem)sn(t’eo)l:O

Since |vn Sn(t,e)[§%+%n8 (t,e)2 ~ we have

B e
J |Vn s _(t,0 )Idt<28+ Z JlE{sin(tuj)}thiB
! _

and thus by Chebishev's inequality

g
' il
P{l ]/n Sn(t,eo)!du>€}<e
[0}

for every e>0 . Hence we obtain from (43), (46) and (u8)

B B ’
plim{/n(a/Bem)j Sn(t,eo)zdt—Q[ Yn Sn(t,eo)E(S/BBm)Sn(t.Bo)dt}=0

0 )
using the same kind of argument as in the proof of theorem 4.4.6.b

in Chung (197%4)

(u

2

<

)

12




How let

n(t):h(a/eem)sn(t,eo) . cn(c) =(cl n(t) -

C
m, 5

B (S
'= ( c e, ... S_( > t
xn ([ Sn\,t,eo) 1 n(t)‘ Ly - J gn(t,eﬁ)(q,n( )dt)
(o}
T

b)
o]

and choose CgRq arbitrarily . Theun

B8 1B (B
1= o ¢ 1w 34 =2 2 (- . 1, 3+
xng I dn‘t’eo)cn(t) cdt n%—lJ 51n(Luj)cn(t) rdt

(¢] Q

The uj's are symmetrically distributed. Therefore

B
EJ sin(tuj)cn(t)'cdtzo
)

Moreover,

,(B(B
=1 ! .
== w(tl,12);'cn(Ll)cn(tQ)'cdtldt2

lo) ' o0

D B .
var(xég):—QZ:lE{[ sin(tuj)cn(t)'cdt}~

1
:Ei'Bnc ,.say

where
w(tl,t2)=E 31n(tluj)51n(t2uj)
and

n(tl)cj,n(tQ)dtldtQ)

9

_— BB
—n (1,304, :
Bn—(bn )-(I J w(tl,tQ)ci
O O

We assume now

n
.1 ' . .
(g) c(t)=lim ;{ tE cos(tuj)(a/ae')g(zj,eo) exists for every t 1in a
j=1

(1)

compact interval. c(t)'=(c ’(t),..., c(q)(t))

Then c<(t)=1lim cn(t) uniformly on [O,é] » which can be proved using
(44), part (iii) of theorem A and assumption (e). Hence

B (B . .
. e - , (1) (3)
lim Bn—B—(bi,j)—(J J w(tl,tz)c (tl)c (tQ)dtldtQ)
00
and
3

l(Bein(t )c (t5’ dt
nj ~ Y57% 5

-1 _3/0 (B
e #(g'B ) 3/2{j EXCEITISS
/var(c'xn) o o)
-1
=0(n ?) if ¢g'Bg>0




From (51) threugh (57) it follows now by Liapounov's central limit

theorem that for ever Cqu such that ¢z'Bg>0 5 -
y

Vo xé§+N(O,§'B;)‘ in distr.
while plim vn xéc=0 if ¢z'Bz=0
Yn xn+Nq(O,B) in distr.,

where B may be singular .

Comparing this result with (50) and (49), we see mow:

- THEOREM 3. Under the assumptions (a), (e) and (g),

B , » L
/n(a/ae*)J Sﬁ(t,eo)QdHNq(Q,uB)_- in distr., where B ts defined in (55).

(o]




5 THE LIMITING DISTRIBUTION OF THE ESTIMATOR

- B
Next we consider the probability limit of (3/39)(8/86)[ Sn(t,ei)zdt

Let N be a neighbourhood of eo and put o

n

1 2
a == sup| (3/98)g(z.,8)]
j=1 gell ]

a

q
b =)y ) - sup|(3/36,)(3/38 )g(z.,8)]
" k=1 m=1 geN k me

By the mean value theorem and the trivial inequalities
2.2 )
|x1yl—x2y2|ijxl[[yl—y2|+|y2[[xl—x2| and |xy|<3(x“+y°) we then have
for every 6eN and every te[p,E]
. 2
| (3738 )8 (,0)-(3/36 )S_(t,0 )|<B Ie—eolan+sle-eolbn
|(a/36 )s_(t,0)|<3B+iga
and
2
|(a/aek)(a/aam)sn(t,e)]is a_+gb_
<o that
/o Yee2 /
|(a/eek)(a,uom)sn(t,e( 2{(a/38,)8 (t,8 )}{(d/38 )S (t,6 )}|
” . ' ‘ . - N -

ic,{(E/OBk)bn(t,O)}{\B/BGm)Sn(t,e)} {(a/aek)sn(t,eo)}{(a/aem)on(L,eo)}l

+2|s_(t,8)1] /00, 5(a/80 )S_(t,8)]

i?(gjgan)(g'an+89n)!6-Bo[+2(8 an+8bn)sup “1|Sn(t,6)l

~ te [0,8]
Assumption (e) implies that plim a evists and is finite. If we assume
(h) There exivcrs o weighbourhocd N of eo such that jor k,m=1,2,...,q,
lim %{ E (a/ask)(3/aem)g(z4,eﬂ converges and

3=

n .

. 1 X .

llmsup;{ E sup{(a/aeb)(a/aem)g(zj,e)}2 is finite |,
j=1 8eN "




then by the weak law of large numbers, plim bn exists and is finite.

Since by (41) plim 6§=60 and thus by (29) ,
. * . ®,
plim sup |s (t,867)| =plim sup |s(t,0 )| =sup |s(t,8 )|=0
te[0,8] " " te [0,8] te[0,R] °

it follows from (65) that

B B : ,
plim[ka/aek)(a/aem)j Sn(t,G:)th~2I {(a/aek)sn(t,eo)}{(a/aem)sn(t,eo)}dﬁjzo.
(o] ‘ (o] '

Furthermore,

. B B .
plln{Jl{(B/BGk)Sn(t,Go)}{(B/BGm)Sn(t,GO)}dt—I ck’n(t)cm,n(t)d£]=0
o) . . o -

o by (46), (50) and (63), while assumption (g) implies

B 8 '
limJ Ck,n(t)cm,n(t)dtzj c(k)(t)c([.n)(t)dt
o) ’ o]

Hence

: g (B
plim(a/aek)(a/aem)j Sn(t,6§)2dt:2j c(k)(t)c(m)(t)dt

[¢] (o)

Let

.
A:(ak,m)=<[ )M t)ar

. [¢] ‘
Then it.follows from (40), (42), (70), (71) and theorem 3

2¢h(en—eo)A»Nq(o,uB) in distr.

so that

1

Yn(© -6 )N (0,A "BA) in distr.
n o q

provided that

(i) the matrix A , defined by (71) , is non-singular.

This assumption is not very restrictive, as will be shown below.

Since E Sn(t,eo)zo for every t , it follows from (50) that

S g " A
(a/ae)(a/ae)f {E Sn(t,eo)}th=2(J . k(t)cn’m(t)dt)=2An , say

)
(o] . 0




_ B
This matrix is' the Hessian of the function f {E Sn(t,e)}th in the

o
minimum point 00 (see (7) and (8)).We may therefore expect that A

IS

is positive definite if n is large and thus that A=lim An is

positive definite, and hence non-singular.

We have proved :

THEOREM 4. Under the conditions of theorem 1 and the assumptions (c)
through (i) ,

1 1

Yn(e_ -8 )»N (0,A "BA ) <in distr. ,
n o q .

where A 1s defined by (71) and B by (56).




6 A WEAKLY CONSISTENT ESTIMATOR. OF THE ASYMPTOTIC VARIANCE MATRIX

In this section we shall derive a weakly consistent estimator of the

variance matrix A_lBA.l .

From the second inequality in (65) it follows that

B R ~
plim lJ {(a/aek)Sn(t,en)}{(B/BGm)Sn(t,Gn)}dt_
-I {(3/98,)8 (t,8 )}{(3/36 )S (t,8 )}dt|
¢}

. 2 . . . 12 _
<B(B+B.plim a_)(B plim a +8plim bn)pllmlen-eo|—q .
Thus if we put

- B N ' N
AHZ(J {(a/aek)sn(t,en)}{(a/aem)sn(t,en)}dt)
(0]

then it follows from (68), (69), (71) and (75)

plim An:A .

Let
wn(tl,t2)55§2131n(tlg(zj,en))51n(t2g(zj?8n))
and
n n
020t 1,07 sin(t g(z.,0 ))sin(t,g(z.,6 )=y  sin(t u,)sin(t,u.)
n 1272 .nj:l 1 j*>7o 2 i o njil 173 273

Then for every tls[Q,QI. and every tQEEO,é] ;

n
~ O 1 ~
R CRNIEE CORRE SRR

n
~ 1
528|en—6015§:l gzgl(a/ae)g(zj,e)[

n
~ 1 2
5B|en-eol{1+;§:1 :zgl(a/ae)g(zj,e)l }
b

if eneN , where N 1is a neighbourhooed of 60 . Since plim 8n=60

it follows from assumption (e) and from (80) that

. - 0
plim sup- v _(t,5t)-p (t,,t,)]|=0
tIEEO,Q], tgefp’g] n l. 2° "n 71772




Moreover, by the weak law of large numbers ;

. o '
=u(t - : ]
plim wn(tl,tQ) y(tl,tz) . (82)

Since w(tl,tQ) , defined by (54), is uniformly continuous on [b,é]x[b,@]

and since

n n
o, % _k o : *®) 1 ®(1
'wn(tl’tQ)"wn(tl’tz)liltl'tllEX_ luj|+lt2—t2 EZ_ Iuj
1=1 j=1
it follows from assumption (e) and part (ii) of theorem A in the
appendix that (82) holds uniformly on [@,é]x[b,é] :
. : o ' ’
plim sup lp (gt -v(e 1) =0
t,e[0,8], tye[0,6] '
and thus by (81)
plim sup [t ,t)-p(t, ,t,)]=0
t c[0.6], t,ef0,8] " 1772 172

Let

- (BB LA ~ '
Bn:(J [ wn(tl,tQ){(a/aek)sn(tl,en)}{(a/aem)sn(tz,en)}dtldtQ)
5 _

[o]

Then, analogous to (77), it is easily proved that

plim BnZB .

-

THLOREM 5. Let the matrices A “and Bn' be defined by (76) and (86),
respectively. Under the conditions of theorem 4,

plim A7'B A”%=a"tBa™1,
n nn




APPENDIX

The following two theorems are generalisations of the theorems 4 and 1,

respectively in Jennrich (1969). St
THL.OCREM A.

Let (¢n(9)) be a sequence of (random) functions on a compact subset ©
of & Euclidean space. Let (cn(e)) be a sequence of (random) functions

on O such that for every 9069 and every 6>0 in a bounded interval,

sup ¢ _(8)-¢_(8 )|<6% (6 ) (a.e.)
6l (6 ) " noe noe

where U6(60)={6€O:|6—60|<6}

If for every eon N

(i) ¢n(eo)+0 a.e. and ;n(eo)+g(eo)

or

(ii) plim ¢n(eo)=0 and plim cn(60)=§(60)

or

@(Gii) lim ¢n(eo)=Q and 1lim ;n(eo)=c(60) .

respectively, where c(eo) is positive, finite and non-random, then

(1) sup|¢_(8)|+0 a.e.
0e0
or

(ii) plim sup|¢_(8)]|=0
) n
00 :
or

(iii) 1im sup|é _(8)]=0
n
0ed
respectively

PROOF. Choose an €>0 and let §(8_) be such that 0§§(90).;(60)<e and
6(60)<e

(i) Let (@, P) be the prcbability space. The random functions ¢n(e)
and Cn(e) may now be written as ¢n04,9) and ;nﬁu,e) respectively,
where wef2 . Since ¢n(60)*0 a.e. and cn(6°)+c(eo) a.e. for every

9060 , there exists a function noﬁu,e,eo) and a null set N(eo) such




that | (0,8 )-€(® )|<1 and |6 (w8 )l<e if wn_(w,,8)) and

weQ\N(GO) . Hence,

05 (w8)]<]o, (0,800 (0,0 M+l (w0 )] <8(0 M|z (8 )-c(8 )][+5(8 )a(B Irese
if n>n (w,e,8 JweQ\N(® ) and 0cU (8 ) .
— 0 o} : o] § o

The compactness of © implies that there exists a finite sequence

6 "sm(e) of points in O‘ such that

100

m(e)

o=\_J u

i=1

é(ei)(ei)

' : m(e
Now put n_ (w,e)=max n (w,e,06.) and N =(_/)N(e.)
* i=1,2,...,m(e) ° . € j=1

Then for every 6e0 |,

|6 (0,0)]<3e if n>n, (v,e)  and . weQW_ .

Hence, sup[¢n(e)|+0 a.e. since ¢ is arbitrary

SE{0) ‘
(ii) First we note that a sequence of random variables convebges to
zero in pfobability if and only if every subsequence contains a further
subsequence that converges to zero a.e. . Let (nk) be a subsequence.
Then for every eie{el,...,em(e)} there exists a further subsequence

(ny .

) such that
3 .

(ei)+o a.e. and Z (ei)+g(6i) a.e.

k. k
] J

Since we consider a finite sequence of points s > this further subsequence

can be chosen equally for all the ei's . However, (nk ) may depend on ¢
' 3

Hence, by the argument in the proof of (i) , there exists a function

jx(w,e) and a null set NE such that

sup|¢n (w,e)lgﬁe if jzj*(m,e) and meQ\NE s
0e0 kj ‘

which excludes the possibility that there exist positive numbers e and §

and a subsequence (uk) such that




Plsup|é_ (9)]<e}<1-6 For Kk=1,2,...,
e0 "k - ,

Hence, 1lim P{sup|¢n(0)|§;}=l , which was to be proved.
8ed

(iii) This part of the theorem follows directly from part (i).

THEOREM B.
Let ¢(x,9) be a continuous and uniformly bounded function on Xx0 |,
where X is a Euclidean space and © is a compact subset of a Euclidean

space Y . Let x ..,X_,..., be a sequence of independent random variables

1°° n’
in X with distribution functions Fl(x),...,Fn(x),;.., respectively.

n
If %{ F.(x) converges vaguely to a distribution function F(x) , then
i=1 |

n .
sup|3) ¢(X-,9)-J¢(X,9)HF(X)|+O a.c.
6e0 "5=1 I :

This theorem can be proved in the same way as theorem 1 in Jennrich (19569).

The proof is therefore left to the reader.
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