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I. Introduction

In input-output analysis it is usually assumed that there exists a linear

relationship between intermediate deliveries and total production. We write

x. = a. .x., where x. represents the deliveries of sector i to sector j,13 133' lj
x. represents the total production of sector j, and a. is a constant, the

so called technical coefficient. Let us denote the elasticity of 
ij

with
1j

respect to x. E(x.. ,x.). The assumption of linearity thus implies
3 i3

E(x. ,x.)=1 for all i,j.
lj 3

It is not difficult to think of cases where the assumption that E(x. ,x.)=1
13 3

seems a bit implausible. In empirical systems, some factors may be fixed;

(for example: the total amount of land, the labor force). In that case there

may well be diminishing returns for some inputs, implying that E(x. ,x.) > 1.

On the other hand, inputs may have the character of overhead costs, in which

case we would expect E(x.. ,x.) < 1. An example of diminishing returns could be
i3

the delivery of fertilizers to agriculture, an example of increasing returns

could be the use of paper for administrative purposes by a steel factory.

It thus seems possible to obtain more realistic models by allowing the E(x. ,x.)

'to be different from 1. We therefore consider input-output relationship -

of the form x. = (x.), where the (1). (x.) are assumed to belong to a
lj ij lj 3

family of nonlinear functions including the linear specification as a special

case. The logarithmic derivatives of the a (x.) may be smaller than or greater

than 1.

The following questions now arise:

(a) Theoretical: How do we know whether solutions to the non-linear model

exist? How do we obtain these solutions? Can we say something about the

properties of these solutions?

(b) Practical: Are the results of non-linear models, in terms of forecasting

performance, sufficiently better than the results of the linear model to

justify the greater complexity of the non-linear. model?

Question (b) seems particularly interesting in view of the fact that in many

cases one has no alternative but to use linear models due to the lack of data.

We could have more confidence in the linear model if it were possible to give

a negative answer to question (b). On the other hand, a clear positive answer

to question (b) implies that it would be possible to obtain better sectoral

forecasts in those cases where sufficient data exist to implement non-linear

models.



The above considerations suggest a research programme, in which non-linear

specifications are compared with the standard model. Before embarking on

such a programme we must answer question (a). This will be the main purpose

of the present paper. We shall develop and analyse an algorithm by which a

wide dass of input-output models can be solved. This algorithm will sub-

sequently be applied to a small nonlinear I-0 model of the Dutch economy.

II. The model

As the x. are supposed to be functions of the x. becomes
13

x=E4)(x.)-Ff.which is a system of N non-linear equations, from whichi
ij 3 1,

we want to solve the x..
1

LettheeconomybedividedintoNsectors.Letx.be the total output of

sector j, x.j the deliv
eries of sector i to sector j, and f. the (exogenously

i 1

given) final demand in sector i. As the total product of a sector can be devided

intointemediatedeliveriesandfinaldeliveries,wehavex.=Ex.. + f..
j
1]1 1

In order to facilitate the discussion we introduce the following notation:

a. (x.) = (13 (x )/x ; x is the vector with x. in the i'th position; f is the
1j 3 1

vector with f in the i'th position; A(x) is the matrix with a (x.) in the
ij 3

i,j'th position. The system may then be written as [I-A(x).]wx = f.

We shall consider systems of the above form, satisfying the following

restrictions and assumptions:

1 We consider only x > 0 and f > 0.

2 The (I) .(x.) are assumed to be either identically zero for all values of

x,
.ortobenon-decreasingcontinuousfunctionsofx.,tending to infinity
3 
as x. tends to infinity. The a. .(x.) are thus non-negative.

3 13 3
0 for all i, j.

13

3 There exist values x
.
..x

n 
beyond which the a. (x.) are either monotonic

1 aj 3

non-decreasing or monotonic non-increasing (or constant). This condition

is mathematically convenient, and it does not cause too much pain on the

economic side. One would expect the graphs of the (Dij to be gently bending

curves like diagrams (I) or (II). The exclusion of curves like (III) does

not seem to be a great loss from the economic point of view.

x..

(I)
x.
J

x.
3 (III)

x.
3



3

4 We consider only a.. such that lim a. .(x.) > 0 for all i and j.13 13

Like condition (3) this is very convenient mathematically, while it does
not great harm to the economic content of our model.

5 We assume that A(x) is indecomposable. If this were not the case, we could
decompose our system into smaller subsystems, and apply the theory to each
subsystem in turn. This would make matters more tedious, without adding
anything essential.

The only study of nonlinear I-0 models that we know of is I.W. Sandberg's
article in Econometrica [1973]. An important difference between Sandberg0474,,model and the present one is that we allow for diminishing retufts. Neither '
a priori reasoning nor visual inspection of time series of technical coef-
ficients suggest that diminishing returns do not occur. It therefore seems
too restrictive to exclude them.

III. Solution of the model

We shall first discuss the solution of the model in an intuitive way, laying
stress on economic interpretation. Then we shall back up this discussion '
with mathematical arguments.

The problem is to solve the system x = (I)(x + f for given f. Here (1) denotes
the vector with E (1) 

ij
(x.) in the i-th position. Imagine the following.  3

3 '
sequence of events, which resembles the well-known dynamic multiplier process
in a simple Keynesian model: In the first round, producers decide to produce
f. They therefore need a production of intermediate goods, (1)(f). Hence, total
production must be at least x

(1) 
= f + (I)(f). In order to be able to produce(1)

x producers need an input of intermediate goods (1)(x
(1)

). Hence production
is increased to x

(2) 
= (1)(x

(1)
) + f. In general, we shall have

) + f in the (n+1)-th round. If this process converges, it
will reach a solution (within a prescribed level of accuracy) in a finite
number of rounds.
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The sequence f, x
(1)

, x
(2)

, ..., which we denote as {x
(n)

}, will in case of
convergence produce a solution. It will be proved that the existence of a
solution is sufficent to ensure convergence of {x

(n)
}. We conclude that the

sequence of rounds defined above always leads to a solution if there exists
one. The question now is: what will happen if no solution exists? How do
producers in that case decide that the above process is not going to conVerge
and. that it will be impossible to satisfy the final demand f?

The answer is that in case of divergence there exists a point x
* 

beyond which
no positive value added can be realized in at least one sector. The existence
of this point depends only on the fact of divergence of {x

(n)
} and not on the

price system. We assume that producers will refrain from increasing output at
ever increasing losses. Hence if production grows above x production will
stop without a solution being reached. The interesting point here is that the
physical fact of the nonexistence of a solution has its economic reflection
in the fact that it is impossible to realize a positive value-added.

The sequence {x
(n)

} will thus come to an erid in a finite number of steps,
either by providing a solution (within a prescribed level of accuracy) or•
with the conclusion that no solution exists.

We now turn to a formal analysis of the solution procedure in the form of
a few theorems.

Theorem 1. If there exists a solution C > 0 to the system x = (1)(x) + f, then
sequence fx(n)} defined by x(n) = (1)(x(n-1)) + f; x(0) = f converges to a
solution and < C.

Proof. As all the (1). are monotonic non-decreasing we have (1)(x) > (1)(y) if(1) _ ij (1)x > y. Now x (1)(f) + f. As f > 0, (I)(f) > 0 so x = (1)(f) + f > f=x
(0)
,

1) (0)so x
(1) 

> x
(0)
. As x

(1) 
> x

(0) 
we have x

(2) 
= (1)(x( ) + f> (1)(x ) + f = x

(1)

()so x(2) > x(1). By iteration: x(n) > x(n-1) for all n. The sequence Inx } is
thus monotonic increasing. By assumption, there exists C > 0 such that
= A(c) + f. As A(C) > 0 we haveC>f-+C = A(C) +f> A(f) +f= x

(1) 
so

, ,> x
(1)

. Then C = A(C) + f > (1))Akx  + f = x
(2)

, so C x
(2)

. Iterating, we
have C > x

(n) 
for all n, and x

(n) 
is bounded from above. As {x

(n)
} is mono-

tonic increasing and bounded from above, it must possess an unique limit E.
Clearly, E is a solution and E <t. Q.E.D.



The process thus always finds a solution if there exists one. The solution
that is found will be economically meaningful in the sense that it is the
smallest possible production vector that is needed in order to satisfy the
given final demand.

The question of existence of a solution is a bit more complicated. In the
following we use a number of properties of non-negative matrices. As this
materical is nowadays standard in mathematical economics, it is assumed
here that the reader is familiar with it. Good references include, on the
mathematical side, the books by Gantmacher [1960]and Seneta 973J,D and
on the economic side the books by Nikaido [i712] , Takayama [1974], and
Lancaster Elci‘gi.

It will turn out that the existence of a solution depends on the behavior
of the dominant eigenvalue of A(x). Let us denote this dominant eigenvalue
as A(A(x)). By the theorem of Frobenius, this is a real number. It is a well-
known fact in input-output analysis that, for a meaningful solution to an
input-output system to exist, it is a necessary condition that the dominant
eigenvalue of the matrix of technical coefficients be smaller than 1. Hence,
if E is a solution to our system, we must have X(A()) < 1. It is also well-
known that the condition that A(A) < 1 is equivalent to the so-called
Hawkins-Simon conditions which demand, that all principal minors of the
matrix (I-A) be positive. See Hawkins and Simon [194,]. Furthermore, as
the determinant of a matrix is equal to the product of its eigenvalues, we
must have that the absolute value of these minors be smaller than 1. We
intend to show that, in case of divergence of fx

(n)
}, X(A(x )) will even-

tually become greater than 1, and remains greater than 1. First we need
the following lemma:

()Lemma. Either the sequence ix
(n)

converges or all elements of x
n go to

infinity.

Proof. By assumption (4), the matrix A(x) is indecomposable. Suppose all
elements of {x

(n)
} are bounded. Then, as {x

(n)
} is monotonic non-decreasing

(it must have a limit, and the sequence converges. Suppose that {x
n)
i 1

and{x(211)}...ixnareallbounded-Asx(:°1--E a. .(x) + f.. This1 13 j 1

implies,in view of assumption (5), that a21(x1) E . . E a
N1
(x

1
) E O. This

however contradicts assumption (6). Hence at least one of the elements
(n) (n)x
2 

... x
N 

goes to infinity.

co
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(n)
Without loss of generality we assume that {x2 

} co. Suppose the sequences

(n) (n)
{x
3 

} ix
4 

I are all bounded.

This would imply a
31
(x

1
) E a

32
 (x

2
) E E a

1
(xi) E a

N2
(x
2
) E 0, again

contradicting assumption (6). By repeating this argument N-2 more time,

we prove the lemma.

From lemma, we conclude that divergence of fx
(1)

1 implies that all elements

of x
(n)

diverge. We will now show that in case of divergence the Hawkins-

Simon conditions on A(x) will be violated if x becomes greater than a certain

bound x.

Let us define the matrix A (x) as follows: a. (x ) = a. .(x.) if a. .(x.) isij j 1] J 3.3 3

(beyond a certain point) monotonic non-decreasing a. (x ) = Eij 
(the lower

jij 

bound of a..(x.))if a.. is monotonic decreasing. By assumption, A
* 

is inde-
13

1 * -
composable. As A

4. 
< A we have X(A) > X(A

*
). We define B = (-)

N-1 
(I+A )

N1
 .

2

The indecomposability of A* implies B > 0. For a proof of this, see e.g.

Gantmacher [1960] vol. II, p. 51.

Clearly, A(A*) < 1 implies -5(B) < 1.

We now consider two cases:

(I) e (and hence A) has no limit, i.e. there exist i, j such that

lim a. .(x.)
13

x.-+co

(II) A* has a limit, i.e. there exists a matrix C such that lim a.. = c...13 iJ

For case (I) we prove the following

Theorem 2. In case I, divergence of fx
(n)

1 implies that, beyond .a certain

point x, (I-A) will no longer satisfy the Hawkins-Simon conditions.

Proof. Consider B as defined above. For A(A) to be smaller than 1, it is

necessary that A(B) < 1. Hence for (I-A) to satisfy the Hawkins-Simon condi-

tions, it is necessary that (I-B) satisfies these conditions. 4s some elements

of A go to infinity, some elements of B go to infinity, and as all elements

of A are monotonic increasing, all elements of B are.

Now let us consider first the diagonal elements of I - B. If one of the

elements b11 bNN increases beyond all bounds, say b.. then 1 - b..
11 11

eventually becomes negative, and the Hawkins-Simon conditions are no longer

satisfied.
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Let us now suppose that all elements b.. < 
= 
1, whatever the value of x.

11 =
Consider then the second principal minor of I - B:

det

1-b
11 

-b
12

21
1-b22

= (1-b
11
)(1-b

22
) b

21
b
12 

= det[I-B]
22 •

If one of the elements b
21 

or b
12 

(or both) increase beyond all bounds,

this expression will eventually become negative, thus violating the'

Hawkins-Simon conditions.

Suppose then that all elements of the second principal minor are bounded

and that [I-B]22 satisfies the Hawkins-Simon conditions. Consider the

third principal minor:

1-b
11 

-b12

det(I-B)
22 

= det -b
21 

1-b
22

We denote this as det

-b
13
)

-b
23

-b
31 

-b
32

-q

1-b33

1-b33

, where q =
13

b
23

1-1
33

Clearly, this is equal to det[1-14.]
22 

( 1-b -p [I-PU q).
22

P =

Now det(I-B)
11 

> 0, 
1-b33 

> 0, (I-B)
-1 

> 0, p > 0 and q > 0. So if either
== /2

p or q (or both) contain elements that increase beyond all bounds, the second

principal minor will eventually become negative. If all elements of p and q

are bounded, we repeat the same discussion for the third principal minor, and

so on. As B is supposed to possess at least one element which increases beyond

all bounds, we conclude that (I-B) cannot possibly satisfy the Hawkins-Simon

conditions f{x
(n)

} diverges. The same conclusion must then hold for (I-A). Q.E.D.

For case (II), we consider two possibilities:

X(C) < 1 , IIb. X(C) > 1. The possibility X(C) = 1 we shall rule out• 

as having probability 0 in any practical application.

For case II
a 

we prove the following

Theorem 3: In case II
a 
there is no divergence of {x

(n
possible.



Proof. Define A
*
(x) in the following way:

a..(x.) = c.. for those a. .(x.)that are monotonic increasing13 3 13 13 3

a..(x.) = a. .(x.) for those a.. that are monotonic decreasing.13 3 13 3 13

It then follows that A(A*(x)) is a monotonic decreasing function of x,

and lim A(e(x)) = X(C) < 1. Hence there exists an x such that for all
x.÷.0

(n) - ( n,)x > x we have X (A kx )) < 1.

Suppose now that the sequence {x
(n)

} diverges. It then follows from
(n)lemma 2 that there exists a number m such that for n > m we have x > x.

* * - (n)Hence A (x) > A
*
(x
(n)
) > A(x

(n)
), and A (x). x > A(x) . x

(n), for all
n > m.

+ A*(x)k- fil .It follows then that xm+k < [e6O]kxm + [I+A*(X) +

As X(e60) < 1, we have lim[A+670]k = 0, and

lim[I+A
4,
(X) + + Aw(x)k-11 = EI-e601-1. Hence lim xn < [I-A(x)] if

k-÷00 n-+00

We conclude that the sequence is bounded. By theorem 1 it must then converge.

The assumption of divergence of the sequence thus leads to a contradiction

and hence must be false. Q.E.D.

Theorem 2 holds good in case II
b. 

divergence of {x
(n)

} in this case implies• 

that from a certain point onwards the Hawkins-Simon conditions will be violated.

*Proof: Define A. as lim a. .(x.) for those a. that are decreasing, and as13 13 3 iJ

a. .(x.) for those a.. that are increasing.13 3 13

Then X(A*(x)) < A(A(x)). Lim X(e(x)) = X(C) >

such that X(e670) > 1.

1, hence there exists an x

In case of divergence of {x
(n)

}, by lemma 2 there exists a number in such ,

(m) - * (n) )that x
(n)

> x > x for all n > m. As A(A (x )) is monotonic increasing

(n) )with n, we have that, for all n > m, A(A(x )) > 1. Q.E.D.
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Anplicat ion

' In order to examine the applicebility of the present approach, a small
I-0 model of the Dutch economy was estimated. The coefficients were estimated
on the basis of a time series of input-output tables ranging from 1953 to 1962

*)
.

The algorithm was then used to generate "forecasts" for the years 1963-1976 on
the basis of known final demands. ,

The .(34 sector) CBS input-output tables were aggregated into the following
5 sectors:

(I) Agriculture, forestry, fishery, food and allied products, beverages and
tobacco, corresponding to the sectors 1, 4, 5 and 6 of the CBS tables.

(II) Textile industry, fooryear and clothes, wood-working and furniture,
paper industry, printing and publishing, leather and rubber, chemical
industry, oil refining, building materials, corresponding to sectos
7 through 14 of the CBS tables.

(III) Metallurgy, machines, electronics, transport equipment, metal processing
and diamond-industry (sectors 15 through 19 of the CBS tables).

(IV) Building industry (sector 20 of the CBS tables)
(V) Public utilities, transport, trade and services (sector 21 through 34

of the CBS tables)

Sectors 2 and 3 of the CBS tables, coal mining and other mining and
quarrying, were omitted because of the great structural changes that have
taken place in these sectors during the sixties: the shutdown of a number
of coal mines and the great finds of natural gas.

Bi4 tli4(t)The following relationships were supposed to hold: xij(t)=aijxj(t) ,Je

The relation of constant proportionality was thus replaced by a relation of
conotant elasticity. u..(t) is a stochastic disturbance.-ij

After taking logarithms we have:

logxij(t) = logaij aijlogxj(t) u1 (t) (1)

The u(t) are assumed to be normally distributed, with E(14j(t)) = 0.

We will allow them to be both autocorrelated and contemporaneously correlated:•
we write u(t) = p..u..(t-1) 

i vkjv..(t), and E(v..(t) (t)) = aiki. All other-13 13-13 -j 

covariances are assumed to be zero.

0 Data were taken from "de productiestructuur van de Nederlandse Volkshuis-houding" (the production structure of the Dutch economy) published by theCentral Bureau of Statistics (CBS) vols j[..7



-AO-

•

For the estimation of the relationships a variant of a three-stage method
developed by Parks C1967] was used.

Parhs t method is the following: after applying ordinary least squares to-(1)
an estimate of p

ij 
is obtained from the residuals. This estimate is sub-

sequently used to remove the autocorrelation from 1:

(2)3.3 13 ij 13 ij 3 3.3 3 13
The equations (2) are then subjected to the well-known Zellner procedure for
seemingly unrelated equations. See e.g. Theil [1.971].

Parks has shown that the resulting estimates have a number of desirable
properties (unbiasedness, consisteney, relative efficiency).

We have modified Parks' approach in one aspect: we did not estimate the
from the residuals of an ordinary least squares regression, but we estimated

from the regression (2) directly, ignoring the restrictions on the coef-

ficients that the specification of this equation implies. From simulation
studies conducted by Rao and Griliches F1969] it appears that this approach
leads to better results than estimation from residuals.

The computations produce unbiased estimates of aij. Taking the exponent

of loga. does not lead to unbiased estimates of a
ij
. Furthermore, even if we13

had unbiased estimates of the a.., we would not have E(x. )13 13
u.4

E(e -1J)

B.
= a .x., because

13 3

. We tried several ways of correcting the a
ij
's, but finally decided

x. .(T)
in our experiment to use a..

1J 

a.) 
1i a..

x.( T) 13last observation (T=1962). 3

, where T is the time-index of the

The following estimates for a
ij 

were found:

Sectors

1

2

3

14

1 2

1.0359---- 0.294212ft- 2.14607L..__ 0:6449L11-.0012111-

(2.667) (-11.602) -2290.7) (1.3378) (-7.5746)

1.92 14 0.8812T11- O.92751..._ 1.091 I". 0.977511.--
(9.7267) (-4.8718) (-1.5563) (3.6089) -0.5397)

1.1327 1 1.139211t- 1.148 I----•1.42911" 1.0976 1

(0.9814) (2.8834) (1.6347) (2.8635) (1.1677)

1.759311.1- 1.95181" 1.5515111- 1.04371.--- 1.34191.11-

(6.5116) (6.7106) (11.0684) (0.5816) (2.9429

1.5724 1-1-44 1.15201.--- 1.02931- 0.9949 1.---1.1559L---

(7.3291) (1.3610) (1.9330) 0.4532) -0.0355)



The numbers in brackets are the t-values obtained in the last stage of theAestimation procedure, for testing the hypothesis f3.. = 1 : t = (..-1)/S(B..),13 13 13
A 

Awhere S(6..) is the estimated standard deviation of /3... A * in the upper
3.3 

13Aright hand corner indicates that L. differs significantly from 1 at the 95%13A
level, a ** indicates that 13.. differs from 1 at the 98% level. A blank13
indicates a a.. not significantly different from 1.13

Of course it should be kept in mind that these tests are only approximationsas we do not know the exact distribution of the estimators resulting from athree-stage procedure.

For the following experiment, we replaced all the non-significant
13by 1 and retained the significant a.. . Then the a. •15 were estimated.3.3 13

We used data from the C.B.S. tables 1963 to 1967 to generate 'forecasts' .by the nonlinear method with 13..'s as above and by the usual method, using the
aggregated 1-0 table for 1962. As a convergence criterion for the algorithm

n 1 we used the following rule: stop whenx-x
n-11 

< 
'

If' where

i
Ifl Elf-I.1000 

Using the x-value of 1972 as a starting value, the algorithm converged reasonablyfast, the maximum number of iterations (obtained for 1967) being 8.
Let the forecast for the production of sector i be x, and let the true1

value of the production of sector i be x.. Let final demand in sect r i be f..1
We computed {(x

F
i
-f.)/(x.-f.)-1} = e. as a measure of the forecasting error.

The results for the nonlinear method and the usual method are displayedin the following table:

forecasting errors of intermediate demand for 1963-1967 by the non-linear methodand by the usual method

sectors

1963

nonl. usual

I -.038 -.013

II -.023-.013

III .0046 -.002

IV -.259 .024

V -.021-.023

1964 1965 1966 1967
nonl. usual

.020

-.001

.031

-.178

.054

.047

.003

.011

.086

.0008

nonl. usual

.016

.025

.048

-.234

.055

nonl. usual nonl. usual

.044 .002 .031 .020 .048

.029 .039 .042 .093 .089

.019 .057 .020 .102 .055

.030 -.156 .059 -.081 .116
-.006 .042 .023 .036 -.039



\,

- 12 -

The results do not indicate that introducing nonlinearity leads to a marked.
increase in forecasting performance, better results in some sectors being
offset by worse results in other sectors. However, we think that more research
is needed before we may conclude that no significant improvement is possible
by using non-linear specifications. We are working at it.
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