

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Bounds for the bias of the LS-estimator of σ^{2} in the case of a first-order autoregressive process (positive autocorrelation).

AE2/76

Classification

AMS (MOS) subject classification scheme (1970): 15A18, 26A60, 62M10, 62P20.
Keywords: Courant-Fischer min-max theorem, multiple regression
Abstract: The LS-estimator $\frac{e^{\prime} e}{n-k}$ of σ^{2} and its bias are considered. Bounds are then established for $\frac{1}{\sigma^{2}} E \frac{e^{\prime} e}{n-k}$ by means of a well-known theorem by Anderson. The same bounds can be derived by a direct applicant of the Courant-Fischer min-max theorem. Following Anderson and Grenander-Szegö one can find approximations to these bounds.

Free copies are obtainable from Interfakulteitsbureau Aktuariaat en Ekonometrie Jodenbreestraat 23 - Amsterdam, 'phone: 020-5254212

Bouncis for the bias of the LS estimator of σ^{2} in the case of a first-order

 autoregressive process (positive autocorrelation).H. Neudecker ${ }^{*}$

Introduction

Consider the model

$$
y=x \beta+\varepsilon,
$$

where ε is the disturbance vector. X is of order (n, k) and rank k. The disturbance elements ε_{i} are generated by the process

$$
\varepsilon_{i}=\rho \varepsilon_{i-1}+\xi_{i} \quad 0<\rho<1
$$

where the ξ_{i} are uncorrelated random variables with zero mean and variance σ_{0}^{2}.
For ε we have the variance

$$
\begin{aligned}
& \varepsilon \text { we have the variance } \\
& E \varepsilon \varepsilon^{\prime}=\sigma^{2} \mathrm{~V} \text {, where } \sigma^{2}=\frac{\sigma_{0}^{2}}{1-\rho^{2}}
\end{aligned}
$$

and $V=\left(\begin{array}{lllll}1 & \rho & \rho^{2} & \cdots & \rho^{n-1} \\ \rho & 1 & \rho & & \rho^{n-2} \\ \rho^{2} & \rho & 1 & & \rho^{n-3} \\ \cdot & \cdot & \cdot & & \cdot \\ \cdot & \cdot & \cdot & & \cdot \\ \cdot & \cdot & \cdot & & \cdot \\ \rho^{n-1} & \rho^{n-2} & \rho^{n-3} & \cdots & 1\end{array}\right)$.

The LS estimator of σ^{2} is $\frac{e^{\prime} e}{n-k}$, where $e=\left\{I-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right\} \varepsilon$.
$E \frac{e^{\prime} e}{n-k}=\frac{\sigma^{2}}{n-k} \operatorname{tr} M V=\frac{\sigma^{2}}{n-k} \operatorname{tr}\left\{I-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right\} V=\frac{\sigma^{2}}{n-k}\left\{n-\operatorname{trX}\left(X^{\prime} X\right)^{-1} X^{\prime} V\right\} \neq \sigma^{2}$, as $\operatorname{trX}\left(X^{\prime} X\right)^{-1} X^{\prime} V$ is in general not equal to k. The bias is $E \frac{e^{\prime} e}{n-k}-\sigma^{2}=$

$$
=\frac{\sigma^{2}}{n-k}\left[k-\operatorname{tr} X\left(X^{\prime} X\right)^{-1} x^{\prime} v\right]
$$

Hence, $\frac{e^{\prime} e}{n-k}$ is a biased estimator of σ^{2}.

[^0]Theil [7, p. 256 et seq.] evaluated $\operatorname{trX}\left(X^{\prime} X\right)^{-1} X^{\prime} V$ in the one-variable regression with constant term, where $k=2$.

For not too small n and ρ such that ρ^{2} and higher powers can be neglected he found the result

$$
\operatorname{tr} X\left(X^{\prime} X\right)^{-1} X^{\prime} V \approx \frac{2}{1-\rho}+2 \mathrm{r} \mathrm{\rho}
$$

$$
\mathrm{n}-1
$$

where $r=\frac{\sum_{i=1}^{X_{i} X_{i+1}}}{\sum_{i=1}^{n} x_{i}^{2}}$ and X_{i} is the $i^{\text {th }}$ observation measured from its mean.

$$
\sum_{i=1}^{1} X_{i} X_{i+1}
$$

The expression $\frac{2}{1-\rho}+2$ ro exceeds 2 when both r and ρ are positive.

Similar results for $k>2$ are not available, it seems.
In this paper we shall establish bounds for $\frac{1}{\sigma^{2}} E \frac{e^{\prime} e}{n-k}=\frac{1}{n-k} \operatorname{trMV}$, by applying a well-known theorem by Anderson [2].
He shall then show that the same bounds can be derived by a direct application of the Courant-Fischer min-max theorem [3], as is being demonstrated in an appendix.
Some remarks about possible approximations to these bounds, where reference is made to Anderson [2] and Grenander and Szegö [4] conclude the paper.

Bounds for trMV (1)
It is obvious that V is positive definite. We shall denote its eigenvalues by λ_{i} where $\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{n}$.
MV (or MVM) will have $n-k$ non zero eigenvalues, μ_{i} say, where
$\mu_{1} \geqslant \mu_{2} \geqslant \cdots \geqslant \mu_{n-k}$.
By theorem 10.4.3. 1) in Anderson $[2, \mathrm{p} .611]$ we then have

$$
\begin{align*}
& \lambda_{i+k} \leqslant \mu_{i} \leqslant \lambda_{i} \\
& e \quad \sum_{i=1}^{n-k} \lambda_{i+k} \leqslant \operatorname{trMV} \leqslant \sum_{i=1}^{n-k} \lambda_{i} \tag{1}
\end{align*}
$$

1) Durbin and Watson [4] relied on the same result for their bounds test.

From $\left[\frac{1}{2}\right]$ we derive an interval for the expected value of the $L S$ estimator over σ^{2} :

$$
\begin{equation*}
\frac{\sum_{i=1}^{n-k} \lambda_{i \div k}}{n-k} \leqslant \frac{1}{\sigma^{2}} E \frac{e^{\prime} e}{n-k} \leqslant \frac{\sum_{i=1}^{n-k} \lambda_{i}}{n-k} \tag{2}
\end{equation*}
$$

Explicit results for these λ 's are not available. According to Grenander and Szegö [4, p. 69 et. seq.] evaluation in explicit terms does not seem to be possible.
The λ 's can, however, be expressed in the form

$$
\lambda_{i}^{(n)}=\frac{1-\rho^{2}}{1-2 \rho \cos \theta_{n+1-i}^{(n)}+\rho^{2}}
$$

where the $\cos \theta^{\prime}$ s are the roots of a certain $n^{\text {th }}$ degree polynomial in $\cos \dot{\theta}$, namely.

$$
\frac{\sin (n+1) \theta}{\sin \theta}-2 \rho \frac{\sin n \theta}{\sin \theta}+\rho^{2} \frac{\sin (n-1) \theta}{\sin \theta}=0
$$

Grenander and Szego also show that the θ 's are bounded by

$$
\begin{equation*}
\frac{i-1}{n+1} \pi<\theta_{i}^{(n)}<\frac{i}{n+1} \pi \quad(i=1 \ldots n) \tag{3}
\end{equation*}
$$

For sufficiently large n these bounds are quite tight.

If, as in Anderson $[2$, formula (39) $]$ one approximates V by $\tilde{V}=\left(V^{-1}-\frac{\rho}{1+\rho} C\right)^{-1}$, where $c=\left[c_{i j}\right]$ is such that $c_{11}=c_{n n}=1$ and $c_{i j}=0$ otherwise, then \tilde{V} has eigenvalues which can be expressed explicitly as

$$
\begin{equation*}
\tilde{\lambda}_{i}^{(n)}=\frac{1-\rho^{2}}{1-2 \rho \cos \frac{(i-1) \pi}{n}+\rho^{2}} \tag{4}
\end{equation*}
$$

This follows from a theorem by Von Neumann [6]. Clearly the angles fall within the same bounds (3):

$$
\begin{equation*}
\frac{i-1}{n+1} \pi \leqslant \frac{i-1}{n} \pi<\frac{i}{n+1} \pi \quad(i=1 \ldots n) \tag{5}
\end{equation*}
$$

We have computed bounds for $\frac{1}{\sigma^{2}} E \frac{e^{\prime} e}{n-k}$ according to formula (2) for various values of n, k and $\rho^{2)}$. The results are shown in Table 1. (The results for $k=2$ and $k=4$ have been represented in the form of two diagrams).
2)

Thanks are due to Messrs J. Broekhuis en J. Kiviet for performing the computations.

The intervais are asymmetrical around 1. They clearly suggest a negative bias. For higher values of ρ the interval grows rapidly given n. Here the practical use of the method becomes limited.

We have used formula (4) to approximate the eigenvalues. The results are shown in Table 2. If can be concluded that this approximation can be used to approximate the limits of the inequality (2), for small values of ρ. Computationally, however, there is no gain from using Anderson's approximation (4); an equal computational effort is required.

Bounds for trMV (2)
Theorem 10.4.3. as stated by Anderson [2, p. 611] is rather difficult to prove.

We can, however, derive result (1) in a much simpler way. We rewrite $\operatorname{tr} M V=\operatorname{tr} V-\operatorname{tr} X\left(X^{\prime} X\right)^{-1} X^{\prime} V$
$=n-\operatorname{tr}\left(X^{\prime} X\right)^{-\frac{1}{2}} X^{\prime} V X\left(X^{\prime} X\right)^{-\frac{1}{2}}$
and consider the problem of maximizing (minimizing) try'VY subject to Y ' $Y=I$, It is well-known that where Y is (n, k).

$$
\max _{Y^{\prime} Y=I} \operatorname{tr} Y^{\prime} V Y=\sum_{i=1}^{k} \lambda_{i}
$$

and $\min _{Y^{\prime} Y=I}^{\operatorname{tr} Y^{\prime} V Y}=\sum_{i=n-k+1}^{n} \lambda_{i} \quad$.

We refer to Courant and Hilbert [3, ch. I, 54]. (See also the appendix to the present paper)
$X\left(X^{\prime} X\right)^{-\frac{1}{2}}$, obviously, satisfies the constraint: $\left\{X^{\prime}\left(X^{\prime} X\right)^{-\frac{1}{2}}\right\}^{\prime} X\left(X^{\prime} X\right)^{-\frac{1}{2}}=I$,
hence $\sum_{i=n-k+1}^{n} \lambda_{i} \leqslant \operatorname{tr} X\left(X^{\prime} X\right)^{-1} X^{\prime} V \leqslant \sum_{i=1}^{k} \lambda_{i}$
and $\quad \sum_{i=1}^{n-k} \lambda_{i+k} \leqslant \operatorname{trMV} \leqslant \sum_{i=1}^{n-k} \lambda_{i}$
because $\sum_{i=1}^{n} \lambda_{i}=n \quad$.

Appendix

Maximization (minimization) of tr Y'VY with respect to Y.
Define the Lagrangean function

$$
\phi=\frac{1}{2} \operatorname{tr} Y^{\prime} V Y-\operatorname{tr} M\left(Y^{\prime} Y-I\right) \text {, where } M \text { is a Lagrange multiplier matrix . }
$$

Necessary for an extremum is
$0=\mathrm{d} \phi=\operatorname{tr} Y^{\prime} V d Y-\operatorname{tr} \mathrm{M}^{\prime} \mathrm{d} Y-\operatorname{tr}\left(Y^{\prime} Y-I\right) d M$,
where $\tilde{M}=M+M^{\prime}$.
Hence $Y^{\prime} V=\tilde{M} Y^{\prime}$
$Y^{\prime} Y=. I$
$\hat{M}=Y$ YY is positive definite of order k. It can therefore be diagonalized into $T \mathcal{M T}=\Lambda$, with T orthogonal. Clearly T and Λ are functions of Y. Define: $Z=Y T$.
We can then rewrite (6) and (7) as:

$$
\begin{align*}
& Z^{\prime} V=\Lambda Z^{\prime} \\
& Z^{\prime} Z=I
\end{align*}
$$

Z is seen to be an (n, k) matrix of k orthonormal eigenvectors of V, Λ is the (k, k) matrix of associated eigenvalues. $\operatorname{tr} Y^{\prime} V Y=\operatorname{tr} \Lambda$.
Hence $\max _{Y^{\prime} Y=I} \operatorname{tr} Y^{\prime} V Y=\lambda_{1}+\ldots+\lambda_{k}$,
and $\min _{Y}$ tr $Y^{\prime} V Y=\lambda_{n-k+1}+\ldots+\lambda_{n}$, where
$\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of V in descending order of magnitude.

${ }^{\prime}$ Bounds for $E \frac{e^{\prime} e}{n-k} / \sigma^{2}$ for $k=2$ and $e=.3, .5,8$.

Bounds for $E \frac{e^{\prime} e}{n-k} / \sigma^{2}$. for $k=4$ and $e=.3, .5, .8$.

Bounds of $\frac{1}{\sigma^{2}} E \frac{e^{\prime} e}{n-k}$ for various n, k and ρ
$0=0.3$

$n=10$	$\frac{k}{2}$	Iower bound		upper bound
	2	0.82911	1.10993	
	3	0.75511	1.17986	
	4	0.69405	1.26114	
	5	0.64562	1.35438	

$p=0.5$
lower bound
0.65265
0.55458
0.48034
0.42905
0.75133
0.65387
0.57727
0.51813
1.10134
1.11071
1.15670
1.20782
1.05066
1.07958
1.11108
1.14533
1.03982
1.06201
1.08581
1.11131
0.84126
0.76842
0.70337
0.64572
1.05772
1.09017
1.12532
1.16341
0.86630
0.80289
0.74438
0.69165
0.91881
0.87833
0.83879
0.80071
1.02775
1.04247
1.05778
1.07372
$\begin{array}{lr}0.94198 & 1.01960 \\ 0.91271 & 1.02982 \\ 0.88363 & 1.04034 \\ 0.85497 & 1.05116\end{array}$
1.04748
1.07366
1.10163
1.13154
$p=0.8$

lower bound	unper bound	
0.30340		1.22047
0.21957		1.37501
0.17651		1.57638
0.15134	1.84866	

0.39470	1.13628
0.28995	1.22077
0.23140	1.31971
0.19525	1.43699

0.46932	1.09858
0.35298	1.15630
0.28310	1.22091
0.23810	1.29366

0.53035	1.07720
0.40877	1.12093
0.33101	1.16868
1.27896	1.22099

0.58058	1.06344
0.45789	1.09861
0.37502	1.13640
0.31752	1.17710

0.71205	1.03703
0.60209	1.05671
0.51557	1.07722
0.44821	1.09863

0.78375	1.02614
0.69130	1.03979
0.61210	1.05385
0.54556	1.06833

Bounds for $\frac{1}{\sigma^{2}} E \cdot \frac{e^{\prime} e}{n-k}$ for various n, k and ρ
(Established Dj using Anderson's approximation method)

		$p=0.3$		$p=0.5$		$\rho=0.8$	
	!	Iower bound	upper bound	lower bound	upper bound	lower bound	upper bound
	2	0.81537	1.09791	0.63711	1.14067	0.26819	1.49764
$\mathrm{n}=10$	3	0.72690	1.17156	0.50970	1.25105	0.18546	1.69385
	4	0.67849	1.25109	0.45939	1.38228	0.16273	1.94923
	5	0.62172	1.35688	0.40265	1.56092	0.13790	2.30469
	2	0.86821	1.05709	0.72235	1.07402	0.34389	1.17761
$n=15$	3	0.80610	1.09759	0.61511	1.13361	0.24611	1.26569
	4	0.75830	1.14443	0.55186	1.20320	0.20956	1.36947
	5	0.70845	1.19480	0.48986	1.28186	0.17630	1.49213
	2	0.89736	1.03782	0.77563	1.04498	0.40569	1.06545
$\mathrm{n}=20$	3	0.85047	1.06648	0.68691	1.08629	0.30154	1.12139
	4	0.80987	1.09744	0.62228	1.13174	0.25367	1.18393
	5	0.76737	1.13178	0.56184	1.18265	0.21409	1.25458
	2	0.91543	1.02704	0.81130	1.02888	0.45669	1.01443
$n=25$	3	0.87805	1.04878	0.73682	1.06013	0.35139	1.05536
	4	0.84278	1.07228	0.67546	1.09411	0.29438	1.10009
	5	0.80775	1.09734	0.61 .908	1.13087	0.25019	1.14906
1							
	2	0.92761	1.02002	0.83651	1.01852	0.49935	0.98659
$n=30$	3	0.89664	1.03763	0.77278	1.04372	0.39583	1.01895
	4	0.86637	1.05633	0.71615	1.07065	0.33171	1.05372
	. 5	0.83648	1.07623	0.66443	1.09950	0.28429	1.09119
	2	0.95201	1.00658	0.88858	0.99882	0.61571	0.94208
$n=50$	3	0.93382	1.01649	0.84995	1.01293	0.52813	0.95974
	4	0.91520	1.02679	0.81031	1.02764	0.45154	0.97817
	5	0.89692	1.03746	0.77388	1.04292	0.39994	0.99738
	2	0.96239	1.00104	0.91300	0.99075	0.68252	0.92605
$\mathrm{n}=70$	3	0.94956	1.00792	0.88449	1.00054	0.61003	0.93820
	4	0.93634	1.01501	0.85512	1.01063	0.53549	0.95073
	5	0.92334	1.02227	0.82779	1.02010	0.48607	0.96362

[1] Anderson, T.W.: "On the theory of testing serial correlation", Skandinavisk Aktuarietidskrift, 31 (1948), 88-116.
[2] Anderson, T.W.: The statistical analysis of time series. New York: Wiley, 1971.
[3] Courant, R. and Hilbert, D.: Methoden der Mathematischen Physik I, Berlin: Springer, 1968.
[4] Durbin, J. and Watson, G.S.: "Testing for serial correlation in least squares regression I', Biometrika, 37 (1950), 409-428.
[5] Grenander, U. and Szegö, G.: Toeplitz forms and their applications. Berkeley and Los Angeles: University of California Press, 1958.
[6] Von Neumann, J.: "Distribution of the ratio of the mean square successive difference to the variance", Annals of mathematical statistics, 12 (1941), 367-395.
[7] Theil, H.: Principles of econometrics. New York; Wiley, 1971

[^0]: \% Instituat voor Actuariaat en Econometrie, Universiteit van Amsterdam. I am grateful to an unknown referee for drawing my attention to the work of Anderson [1] and Grenander and Szegö [4], and commenting on an earlier draft of this paper.

