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Bounds for the bias of the LS estimator of o
2 

in the case of a first-order

autoregressive process (positive autocorrelation).

Introduction

H. Neudecker

Consider the model

y = xa + c,

where c is the disturbance vector. X is of order (n,k) and rank k. The

disturbance elements c. e generated by the process
1

E. := pc. +
1 1-1 1

0 <p < 1

where the are uncorrelated random variables with zero mean and
21

variance a.
0 ,

For c we have the variance

1-p
2

e N

and V = 1 P P
2

• • . P 
n-1

n-2
p 1 P P
2 n-3

P P 1 P

. . . .

. . . .

. . . .

a
2

E cc' = a
2 
V, where a

2 0

n-1 n-2 n-3
p • • • 1

2 e'e• The LS estimator of a s where e = {I-X(X'X)
-1

i X'}e.
n-k

2e'e a
2 2

aE = trMV = a tr{I-X(XTX)
-1

X'}V = {n-trX(X'X) X'V} a
2
,n-k n-k n-k n-k

as trX(X 7X)
-1

X 1 V is in general not equal to k. The bias is
-
E 
ele 

a
2

n-k
2

-1
n-k

Hence ----is a biased estimator of a
2
.n-k

;1* Instituut voor Actuariaat en Econometrie, Universiteit van Amsterdam.

I am grateful to an unknown referee for drawing my attention to the work

of Anderson [1] and Grenander and Szeg6 [4], and commenting on an earlier

draft of this paper.
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Theil [7, p. 256 et seq.] evaluated trX(X X) X'V in the one-variable

regression with constant term, where k=2.

For not too small n and p such that p
2
 and higher powers can be neglected

he found the result

trX(XTX) 
2-1

X'V + 2 rp,
1-p

n-1
E X.X.

1..74 1 1+1
th

where r =   and X. is the 
.

observation measured from its mean.
n 2 1
E X.

1=1 1

2
• The expression ----+ 2 rp exceeds 2 when both r and p are positive.

1-p

Similar results for k > 2 are not available, it seems.
1 1

In this paper we shall establish bounds for E = trMV, by
a n-k n-k

applying a well-known theorem by Anderson [21.

We shall then show that the same bounds can be derived by a direct

application of the Courant-Fischer min-max theorem [3], as is being

demonstrated in an appendix.

Some remarks about possible approximations to these bounds, where reference is

made to Anderson [2] and Grenander and SzegO [4] conclude the paper.

Bounds for trMV (1)

It is obvious that V is positive definite. We shall denote its eigenvalues

by Ai where XI A2 > A .
n

MV (orMVM)willhaven-knonzeroeigenvalues,p.say, where

>1 ' 2
•••

•

1)
By theorem 10.4.3. in Anderson [2, p. 611] we then have

A. < p. < A. i=1...n-k
i+k 1 1

n-k n-k

Hence E A < trMV E A.
i=1 i+k 1=1 1

(1)

) Durbin and Watson [4] relied on the same result for their bounds test.



_3_

From [1] we derive an interval for the expected value of the LS estimator
over a

2
:

n-k
E A. ,

4=1 1:K

n-k
E A.

i=1 1
<  n-k

a
(2)

Explicit results for these A's are not available. According to Grenander

and Szeg5 [4, p. 69 et. seq.] evaluation in explicit terms does not seem

to be possible.

The A's can, however, be expressed in the form

X. =  
(n) 2

1-2pcosen+i_i+p
2

where the cose's are the roots of a certain n 
th
 degree polynomial in

cos e , namely

sin (n+1)0

sine
sin ne 

+ 
2 sin (n-1)0 2p p = 0

sine sine

Grenander and Szeg6 also show that the e's are bounded by

±-1 < (TO < Tr (i=1...n) (3)n+1 ± n+1

For sufficiently large n these bounds are quite tight.

-If, as in Anderson 12, formula (39).] one approximates V by V = (V - C)
1

l+p
where C = [c..] is such that c = c = 1 and c =0 otherwise, then
q, 11 nn ij
V has eigenvalues which can be expressed explicitly as

rki(n)
A.  1-p2

=
2

1-2pcos
(i-l)w. 

1.4)
fl

This follows from a theorem by Von Neumann E.

Clearly the angles fall within the same bounds (3):

i-1
< - < (i=1...n) (5)n+1 n n+1

1 eteWe have computed bounds for ----E ----according to formula (2) for various02 n-k
values of n,k and p

2)
. The results are shown in Table 1. (The results for

k=2 and k=4 have been represented in the form of two diagrams).

2)
Thanks are due to Messrs J. Broekhuis en J. Kiviet for performing

the computations.
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The intervals are asymmetrical around 1. They clearly suggest a negative bias.
For higher values of p the interval grows rapidly given n. Here the practical
use of the method becomes limited.

We have used formula (4) to approximate the eigenvalues. The results are
shown in Table 2. If can be concluded that this approximation can be used
to approximate the limits of the inequality (2), for small values of p.
Computationally, however, there is no gain from using Anderson's

approximation (4); an equal computational effort is required.

Bounds for trMV (2)

Theorem 10.4.3. as stated by Anderson 2, p. 6113 is rather difficult

to prove.

We can, however, derive result (1) in a much simpler way. We rewrite

trMV = trV - trX(XTX) 1X 1V

= n-tr(MX) .2'X'VX(X'X)

and consider the problem of maximizing (minimizing) trY'VY subject to Y'Y=I,

It is well-known that where Y is (n,k).

max trY'VY = E A.
YiY=I 1=1 1

and min trY'VY = E A.
1

YIY=I i=n-k+1
•

We refer to Courant and Hilbert E3, ch. I, §41. (See also the appendix to

the present paper)
1 1

X(X'X)- 2, obviously, satisfies the constraint: {X(XTX)- 2},x(xlx.-2) = I
n - k

hence E A trX(X'X) 1X 1V < iyi
i=n-k+1 i

n-k n-k
and E A. < trMV < E A.i=1 i+k ̀  i=1 1

because E A. = n
1=1 1

(1)



Appendix

Maximization (minimization) of tr Y'VY with respect to Y. 

Define the Lagrangean function

(1) = itr Y'VY trM(Y'Y-I) , where M is a Lagrange multiplier matrix .

Necessary for an extremum is

0 = = trY'VdY tAY'dY - tr(YIY-I) dM,

where it‘4' = m + m'.

Hence Y'V = MY'

Y'Y

= Y'VY is positive definite of order k. It can therefore be diagonalized

into T'MT = A, with T orthogonal. Clearly T and A are functions of Y.

Define: Z= YT.

We can then rewrite 6 and (7) as:

Z T V = AZ' (e)

Z'Z = I (rn

Z is seen to be an (n,k) matrix of k orthonormal eigenvectors of V, A is the

(k,k) matrix of associated eigenvalues. trY'VY = tr A.

Hence max tr Y'VY =A
1
+

YiY=I

and min tr Y'VY 
Y'YI 

=A
n-k+1 

+ +
n 
, where

=

1
, ,

n 
are the eigenvalues of V in descending order of magnitude.







Table 1

1
Bounds of -----E ror various n, k and p

a
2 n-k

p = 0.3

k lower bound

2 0.82911
n=10 3 0.75511

4 0.69405
5 0.64562

2 0.88224
n=15 3 0.82557

4 0.77381
5 0.72805

2 0.91100
. n=20 3 0.86641

4 0.82374
5 0.78395

2 0.92875
n=25 3 0.89243

4 0.85682
5 0.82262

2 0.94071
n=30 3 0.91025

4 0.87999
5 0.85040

2 0.96472
n=50 3 0.94651

4 0.92811
5 0.90965

2 0.97495
n=70 3 0.96207

4 0.94902
5 0.93586

upper bound

1.10993
1.17986
1.26114
1.35438

1.06948
1.11071
1.15670
1.20782

1.05066
1..07958
1.11108
1.14533

1.03982
1.06201
1.08581
1.11131

1.03279
1.05075
1.06983
1.09004

1.01919
1.02935
1.03989
1.05083

1.01356
1.02063
1.02789
1.03534

p = 0.5 p = 0.8

lower bound upper bound lower bound upper bound

0.66266 1.16220 0.30340
0.55458 1.27074 0.21957
0.48034 1.40449 0.17651
0.42905 1.57095 0.15134

1.22047
1.37501
1.57638
1.84866

0.75133 1.10134 0.39470 1.13628
0.65387 1.16289 0.28995 1.22077
0.57727 1.23334 0.23140 1.31971
0.51813 1.31433 0.19525 1.43699

0.80554 • 1.07358 0.46932 1.09858
0.72117 1.11616 0.35298 1.15630
0.64945 1.16322 0.28310 1,22091
0.58998 1.21534 0.23810 1.29366

0.84126 1.05772 0.53035 1.07720
0.76842 1.09017 0.40877 1.12093
0.70337 1.12532 0.33101 1.16868
0.64572 1.16341 1.27896 1.22099

0.86630
0.80289
0.74438
0.69165

1.04748 0.58058 '1.06344
1.07366 0.45789 1.09861
1.10163 0.37502 1.13640
1.13154 0.31752 1.17710

0.91881 1.02775 0.71205 1.03703
0.87833 1.04247 0.60209 1.05671
0.83879 1.05778 0.51557 1.07722
0.80071 1.07372 0.44821 1.09863

0.94198
0.91271
.0.88363
0.85497

1.01960 0.78375 1.02614
1.02982 0.69130 1.03979

. 1.04034 0.61210 1.05385
'1.05116 0.54556 1.06833



Table 2 1e'
Bounds for 

_
02-

 for various n, k and p

(Established by using Anderson's approximation method)

p = 0.3 p = 0.5 p = 0.8

lower bound upDer bound lower bound upper hound lower bound upper bound

2 0.81537 1.09791
n=10 3 0.72690 1.17156

4 0.67849 1.25109
5 0.62172 1.35688

2 0.86821 1.05709
n=15 3 0.80610 1.09759

4 0.75830 1.14443
5 0.70845 1.19480

0.63711
0.50970
0.45939
0.40265

0.72235
0.61511
0.55186
0.48986

1.14067
1.25105
1.38228
1.56092

1.07402
1.13361
1.20320
1.28186

0.26819
0.18546
0.16273
0.13790

0.34389
0.24611
0.20956
0.17630

1.49764
1.69385
1.94923
2.30469

1.17761
1.26569
1.36947
1.49213

2 0.89736 1.03782 0.77563 1.04498 0.40569 1.06545

n=20 3 0.85047 1.06648 0.68691 1.08629 0.30154 1.12139
4 0.80987 1.09744 0.62228 1.13174 0.25367 1.18393
5 0.76737 1.13178 0.56184 1.18265 0.21409 1.25458

2 0.91543
n=25 3 0.87805

4 0.84278
5 0.80775

li.02704
1.04878
1.07228
1.09734

2 0.92761 1.02002
n=30 3 0.89664 1.03763

4 0.86637 1.05633
_ 5 0.83648 1.07623

2 0.95201 1.00658
n=50 3 0.93382 1.01649

4 0.91520 1.02679
5 0.89692 1.03746

2 0.96239 1.00104
n=70 3 0.94956 1.00792

'4 0.93634 1.01501
5 0.92334 1.02227

0.81130
0.73682
0.67546
0.61908

0.83651
0.77278
0.71615
0.66443

0.88858
0.84995
0.81031
0.77388

0.91300
0.88449
0.85512
0.82779

1.0288.8
1.06013
1.09411
1.13087

1.01852
1.04372
1.07065
1.09950

0.99882
1.01293
1.02764
1.04292

0.99075
1.00054
1.01063
1.02010

0.45669
0.35139
0.29438
0.25019

0.49935
0.39583
0.33171
0.28429

0.61571
0.52813
0.45154
0..39994

0.68252
0.61003
0.53549
0.48607

1.01443
1.05536
1.10009
1.14906

0.98659
1.01895
1.05372
1.09119

0.94208
0.95974
0.97817
0.99738

0.92605
0.93820
0.95073
0.96362
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