

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
<http://ageconsearch.umn.edu>
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

AMSTERDAM

N2/85

FACULTY OF
ACTUARIAL SCIENCE
&
ECONOMETRICS

GIANNI FOUNDATION OF
AGRICULTURAL ECONOMICS
LIBRARY
OCT 10 1985

A & E NOTE

NOTE AE N2/85

*ON THE DISPERSION MATRIX OF A MATRIX QUADRATIC FORM
CONNECTED WITH THE NONCENTRAL WISHART DISTRIBUTION*

H. Neudecker

University of Amsterdam

ON THE DISPERSION MATRIX OF A MATRIX QUADRATIC FORM CONNECTED WITH THE
NONCENTRAL WISHART DISTRIBUTION

NOTE AE N2/85

H. Neudecker
University of Amsterdam
Faculty of Actuarial Science & Econometrics
Jodenbreestraat 23 - 1011 NH Amsterdam

Abstract

Recently Magnus and Neudecker [3] derived the dispersion matrix of $\text{vec } X'X$, when X' is a pxn random matrix ($n > p$) and $\text{vec } X'$ has the distribution $N_{np}(\text{vec } M', I_n \otimes V)$.

This note is concerned with the matrix quadratic form $X'AX$, where X' is as defined above and A is a nonrandom (not necessarily symmetric) matrix. The dispersion matrix of $\text{vec } X'AX$ will then be derived by applying results of Magnus and Neudecker [3] and Neudecker and Wansbeek [4].

It will be shown that an earlier partial and special result of Giguère and Styan [2] which assumes a symmetric A agrees with our result.

1. INTRODUCTION

Let x_i for $i=1, \dots, n$ be $p \times 1$ random vectors that are jointly independent with (normal) distribution $N_p(\mu_i, V)$.

If we define $X' := (x_1, \dots, x_n)$ and $M' := (\mu_1, \dots, \mu_n)$, then $S_I := X'X$ will have a (noncentral Wishart) distribution $W_p(n, V, M'M)$, provided $n > p$.

Magnus and Neudecker [3] derived the dispersion matrix of $\text{vec } S_I$, viz.

$$D(\text{vec } S_I) = (I_p \otimes K_{pp}) [n(V \otimes V) + V \otimes M'M + M'M \otimes V] \quad (1.1)$$

where K_{pp} is a $p^2 \times p^2$ commutation matrix.

Although V was taken to be positive definite in their derivation, it is easy to prove that the result generally holds for nonnegative definite V .

In this paper we shall consider the matrix quadratic form $S_A := X'AX$, where $X'X$ is distributed as stated above and A is a nonrandom (not necessarily symmetric matrix) and derive the dispersion matrix of $\text{vec } S_A$.

After establishing this result in an earlier version [5] of this paper, we became aware of a paper [2] by Giguère and Styan, who presented [see their (2.2.12)] an expression for the cross-covariance matrix T_{ij} , say, between the i -th and j -th columns of S_A ($i, j = 1, \dots, p$) for symmetric A .

One can relatively easily derive the complete dispersion matrix $T = \{T_{ij}\}$ if one uses the commutation matrix and properties of Kronecker multiplication.

Whereas the procedure followed by Giguère and Styan is unclear and their result is a partial and special one, we shall give a full derivation of the complete dispersion matrix.

We shall apply some earlier results concerning Kronecker multiplication and the commutation matrix, viz.

$$(1) \quad \text{vec } ABC = (C' \otimes A) \text{vec } B, \text{ for compatible matrices } A, B \text{ and } C \quad (1.1)$$

$$(2) \quad K_{mn} \text{vec } A = \text{vec } A', \text{ where } A \text{ is an } mxn \text{ matrix} \quad (1.2)$$

$$(3) \quad K_{pm} (A \otimes B) K_{nq} = B \otimes A, \text{ where } A \text{ and } B \text{ are } mxn \text{ and } pxq \text{ matrices} \quad (1.3)$$

$$(4) \quad (\text{vec } A)' \text{vec } B = \text{tr } A'B. \quad (1.4)$$

These results are collected in
Magnus and Neudecker [3].

$$(5) \quad \text{vec}(A \otimes B) = (I_n \otimes K_{qm} \otimes I_p) (\text{vec } A \otimes \text{vec } B), \text{ where } A \text{ and } B \text{ are arbitrary } mxn \text{ and } pxq \text{ matrices.} \quad (1.5)$$

This is Theorem 3.1(i) of Neudecker and Wansbeek [4].

$$(6) \quad \mathcal{D}(\text{vec}(X \otimes X)) = (I_{m2n2} + K_{nn} \otimes K_{mm})(I_n \otimes K_{nm} \otimes I_m) \times [V \otimes V + V \otimes \text{vec } M(\text{vec } M)' + \text{vec } M(\text{vec } M)' \otimes V](I_n \otimes K_{mn} \otimes I_m) , \quad (1.6)$$

when X is an mxn matrix and $\text{vec } X$ has distribution $\mathcal{N}_{mn}(\text{vec } M, V)$.

This is application 3 of Neudecker and Wansbeek [4].

The result will be reached in stages. First an intermediate result will be derived.

2. AN INTERMEDIATE RESULT

LEMMA.

Let the $px1$ random vectors x_i be independently distributed each as $\mathcal{N}_p(0, V)$ for $i=1, \dots, n$. Let

$$X := (x_1, \dots, x_n)' \quad \text{and} \quad M := (\mu_1, \dots, \mu_n)'.$$

Consider the quadratic form $S_A := X'AX$, where the nxn matrix A is a random (not necessarily symmetric) matrix. Then the dispersion matrix

$$\mathcal{D}(\text{vec } S_A) = (\text{tr } A'A)(I_p^2 + K_{pp})(V \otimes V). \quad (2.1)$$

Proof. We write

$$\text{vec } S_A = \text{vec } X'AX = (X' \otimes X') \text{vec } A \quad (2.2)$$

$$= \text{vec}[I_p^2(X' \otimes X') \text{vec } A] = (\text{vec } A \otimes I_p^2)' \text{vec}(X' \otimes X') , \quad (2.3)$$

by means of (1.1).

Using (1.6), (1.2), (1.3) and (1.4), we get

$$\begin{aligned} \mathcal{D}(\text{vec } S_A) &= (\text{vec } A \otimes I_p^2)' (I_{n2p2} + K_{nn} \otimes K_{pp})(I_n \otimes K_{np} \otimes I_p) \times \\ &\quad (I_n \otimes V \otimes I_n \otimes V)(I_n \otimes K_{pn} \otimes I_p)(\text{vec } A \otimes I_p^2) \end{aligned} \quad (2.4)$$

$$= [\text{vec } A \otimes (I_p^2 + K_{pp})]' (I_{n2} \otimes V \otimes V)(\text{vec } A \otimes I_p^2) \quad (2.5)$$

$$= (\text{vec } A)' \text{vec } A \cdot (I_p^2 + K_{pp})(V \otimes V) \quad (2.6)$$

$$= (\text{tr } A'A)(I_p^2 + K_{pp})(V \otimes V). \quad (2.7)$$

3. THE MAIN RESULT

THEOREM

Let the $p \times 1$ random vectors x_i be independently distributed each as $N_p(\mu_i, V)$ for $i=1, \dots, n$. Let

$$X := (x_1, \dots, x_n)' \quad \text{and} \quad M := (\mu_1, \dots, \mu_n)' .$$

Consider the matrix quadratic form $S_A := X'AX$, where the $n \times n$ matrix A is a random (not necessarily symmetric) matrix. Then the dispersion matrix

$$\mathcal{D}(\text{vec } S_A) = (I_p^2 + K_{pp}) [(\text{tr } A'A)(V \otimes V) + M'A'AM \otimes V + V \otimes M'A'AM]. \quad (3.1)$$

Proof. We write $Y := X - M$. Hence

$$S_A = (Y + M)'A(Y + M) \quad (3.2)$$

$$= Y'A Y + Y'A M + M' A Y + M' A M . \quad (3.3)$$

As $\text{vec } Y'$ has distribution $N_{np}(0, I_n \otimes V)$, any third moment about the mean is zero. See Anderson [1, p.39]. Therefore

$$\mathcal{D}(\text{vec } S_A) = \mathcal{D}(\text{vec } Y'A Y) + \mathcal{D}((I_p^2 + K_{pp})(M'A' \otimes I_p) \text{ vec } Y') \quad (3.4)$$

$$= (\text{tr } A'A)(I_p^2 + K_{pp})(V \otimes V)$$

$$+ (I_p^2 + K_{pp})(M'A' \otimes I_p)(I \otimes V)(AM \otimes I_p)(I_p^2 + K_{pp}) \quad (3.5)$$

$$= (I_p^2 + K_{pp})[(\text{tr } A'A)(V \otimes V) + M'A'AM \otimes V](I_p^2 + K_{pp}) \quad (3.6)$$

$$= (I_p^2 + K_{pp})[(\text{tr } A'A)(V \otimes V) + M'A'AM \otimes V + V \otimes M'A'AM], \quad (3.7)$$

by virtue of the Lemma, (1.2) and (1.3).

4. THE RESULT OF GIGUÈRE AND STYAN

Giguère and Styan presented the cross-covariance matrix T_{ij} between the i -th and j -th columns of S_A for symmetric A , viz.

$$T_{ij} = (\text{tr } A^2)(v_j v_i' + v_{ij} V) + h_j v_i' + v_j h_i' + v_{ij} H + h_{ij} V , \quad (4.1)$$

where

$$H = \{h_{ij}\} = (h_1, \dots, h_p) := M'A^2M$$

and

$$V = \{v_{ij}\} = (v_1, \dots, v_p) .$$

Clearly the (i,j) th submatrix of $V \otimes H$ is v_{ij}^H .

Further

$$\begin{aligned} K_{pp}(V \otimes H) &= K_{pp}(v_1 \otimes H, \dots, v_p \otimes H) = [K_{pp}(v_1 \otimes H) \dots K_{pp}(v_p \otimes H)] \\ &= (H \otimes v_1 \dots H \otimes v_p) . \end{aligned}$$

Its (i,j) th submatrix is $h_i^! \otimes v_j = v_j \otimes h_i^! = v_j h_i^!$, etcetera.

From this follows

$$T = \{T_{ij}\} = (I_{p^2} + K_{pp})[(\text{tr } A^2)(V \otimes V) + H \otimes V + V \otimes H]. \quad (4.2)$$

5. COMMENT I

When A is symmetric idempotent of sufficient rank, r say, then S_A will have a (noncentral) Wishart distribution.

In this case we get

$$\mathcal{D}(\text{vec } S_A) = (I_{p^2} + K_{pp})[r(V \otimes V) + M'AM \otimes V + V \otimes M'AM] . \quad (5.1)$$

The result of Magnus and Neudecker [3] is a special case of (5.1) for $A = I_n$. Another special case arises for $A = N$, $N := I_n - \frac{1}{n} s_n s_n'$, where $s_n' := (1, \dots, 1)$ is the n -dimensional summation vector. We then find

$$\mathcal{D}(\text{vec } S_N) = (I_{p^2} + K_{pp})[(n-1)(V \otimes V) + M'NM \otimes V + V \otimes M'NM] . \quad (5.2)$$

6. COMMENT II

The dispersion matrix for the symmetric case can, of course, be found very easily.

Let $R'AR = \Lambda$ be the diagonal representation of A . Let further $Y' := X'R$, and $Y' = (y_1, \dots, y_n)$. Then $E(Y') = M'R$ and $\mathcal{D}(\text{vec } Y') = I_n \otimes V$. Hence the vectors y_i are jointly independent with (normal) distribution $N_p(M'R_{\cdot i}, V)$, where $R_{\cdot i}$ is the i -th column of R . Then $X'AX = X'R\Lambda R'X = Y'\Lambda Y = \sum_i \lambda_i y_i y_i'$.

Further $\mathcal{D}(\text{vec } X'AX) = \mathcal{D}(\sum_i \lambda_i y_i \otimes y_i)$

$$\begin{aligned} &= \sum_i \lambda_i^2 \mathcal{D}(y_i \otimes y_i) = \sum_i \lambda_i^2 (I_{p^2} + K_{pp}) (V \otimes V + V \otimes M'R_{\cdot i}(R_{\cdot i})'M \\ &+ M'R_{\cdot i}(R_{\cdot i})'M \otimes V) = (I_{p^2} + K_{pp})[(\text{tr } A^2)(V \otimes V) + V \otimes M'A^2M \\ &+ M'A^2M \otimes V], \text{ by virtue of Theorem 4.3(iv) of Magnus and Neudecker [3].} \end{aligned}$$

We are grateful to Risto Heijmans, George Styan and unknown referees for their suggestions and criticisms.

- [1] T.W. Anderson, An Introduction to Multivariate Statistical Analysis. (Second Edition). John Wiley & Sons, New York, 1984.
- [2] M.A. Giguère and G.P.H. Styan, Multivariate normal estimation with missing data on several variates. Trans. Seventh Prague Conference on Information Theory, Statistical Decision Functions, Random Processes, and of the Eighth European Meeting of Statisticians (Technical Univ. Prague, August 1974), pub. Academia, Prague, and D. Reidel, Dordrecht, volume B (1978), pp. 129-139.
- [3] J.R. Magnus and H. Neudecker, The commutation matrix: some properties and applications. Ann. Statist. 7:381-394 (1979).
- [4] H. Neudecker and T.J. Wansbeek, Some results on commutation matrices with statistical applications. Can. J. Statist. 11:221-231 (1983).
- [5] H. Neudecker, The dispersion matrix of $\text{vec } X'AX$, $A' = A$, when $X'X$ is a Wishart matrix. Note N5/84, Faculty of Actuarial Science and Econometrics, University of Amsterdam, The Netherlands (1984).

