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ABSTRACT 

Policy enabling tropical forests to approach their potential contribution to global-

climate-change mitigation requires forecasts of land use and carbon storage on a large scale 

over long periods.  In this paper, we present an integrated modeling methodology that 

addresses these needs.  We model the dynamics of the human land-use system and of C pools 

contained in each ecosystem, as well as their interactions.  The model is national scale, and is 

currently applied in a preliminary way to Costa Rica using data spanning a period of over fifty 

years.  It combines an ecological process model, parameterized using field and other data, 

with an economic model, estimated using historical data to ensure a close link to actual 

behavior.  These two models are linked so that ecological conditions affect land-use choices 

and vice versa.  The integrated model predicts land use and its consequences for C storage for 

policy scenarios.  These predictions can be used to create baselines, reward sequestration, and 

estimate the value in both environmental and economic terms of including C sequestration in 

tropical forests as part of the efforts to mitigate global climate change.  The model can also be 

used to assess the benefits from costly activities to increase accuracy and thus reduce errors 

and their societal costs. 

Keywords: carbon, sequestration, climate change, land use, modelling.
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1 INTRODUCTION 

The Clean Development Mechanism (CDM) under the Framework Convention on 

Climate Change is the institutional structure for the sale to developed countries of credits 

from net C emission reductions in developing countries.  Afforestation and reforestation 

activities carried out since 2000 are eligible for such credits.  Avoiding deforestation has been 

ruled ineligible, however, despite its potentially large contribution to short-run climate-change 

mitigation and the suite of possible ancillary benefits.  The developed countries that demand 

C credits to satisfy their obligations under the Kyoto Protocol are also constrained.  These 

countries are limited to purchasing CDM credits from C sequestration up to only one per cent 

of their 'assigned amount' or total allowable net emissions.  These constraints limit the global 

societal gains from C sequestration in the tropics. 

One key reason for these limitations is the uncertainty inherent in predictions of land 

use and C storage and dynamics.  Prediction and measurement difficulties raise environmental 

integrity, efficiency and equity concerns.  The difference between accurately measured actual 

C pools and the 'baseline' level of C storage expected to occur without a CDM is the ideal 

measure of ‘certified emission reductions’.  If C is measured poorly and baselines are 

inaccurate, trading could lead to increased global net emissions and efforts to sequester C will 

be misdirected and inefficient.  Further, stakeholders must feel that rewards are fair.  Over-

rewarding additional sequestration would anger environmentalists and the supplier's 

competitors, while underpaying for honest effort may discourage suppliers.  Thus, accurate 

baseline predictions and C measurements are valuable.  For practical reasons, however, the 

effort put into them should be limited.  If we spend excessive time and money on 

measurement and prediction, we are wasting resources that could be used directly for 

mitigation. 

These concerns highlight the need for high-quality integrated models.  This paper 

describes and illustrates how an integrated model can be built on strong empirical 

foundations. Our model can be used to generate land-use baseline and C estimates; to simulate 

policy scenarios; and to assess the benefits of predicting land use and measuring C accurately.  

We model an international climate policy that rewards all forms of sequestration and avoids 

deforestation and allows national level 'projects' in developing countries.  This is not in line 

with Kyoto but rather aims to illustrate the potential benefits and the risks from a more 
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comprehensive policy.  Our model could be restricted to the Kyoto case as one scenario.  We 

hope models such as ours can be used to inform future policy-makers. 

This paper is drawn from work by an interdisciplinary team of ecologists, economists 

and geographers who are creating such a model for the whole of Costa Rica over a period of 

over 50 years.  For more details see Pfaff et al. (2000).  This approach could be replicated in 

other developing countries, at either a regional or national level. 

2 CONCEPTUAL DESIGN OF ICEE (INTEGRATED C ECOLOGY & 
ECONOMICS) MODEL 

2.1 Concepts 

Our ICEE model integrates, both spatially and temporally, ecological modeling of C 

dynamics with economic modeling of land use.  To our knowledge, interactions in which land 

use affects forest ecosystems on this scale have been considered only implicitly through the 

use of historical land-use and land-cover databases in ecological simulations (Reiners et al., 

2002; VEMAP, 1995; Foley et al., 1996; and Houghton et al., 1999).  Antle et al., (2001) have 

created a similar coupled model that focuses on C-sequestration in agricultural soil.  Linkages 

from ecology to land use are often incorporated, in the sense that ecological conditions are 

understood to constrain economic outcomes.  But many analyses have ignored all linkages, 

and even when linkages have been modeled, the dynamic interactions and feedback 

mechanisms between ecosystems and land-use changes have largely been ignored. 

Our modeling of C pools begins with a dynamic process model of below- and above-

ground C.  This is calibrated along a range of land-cover types, both natural and intervened, 

using field data including C and N pools in both vegetation and soils, some collected as part 

of our project.  Then the model is deployed at the local to national level using GIS data on soil 

types, climatic conditions and land-use/cover types to simulate C dynamics in space and time. 

Our economic modeling combines a dynamic model of individual landowner choices 

with an underlying model of spatial economic development.  Individual land-use decisions 

change over time with economic and physical conditions.  Decisions by landowners in turn 

change local conditions, which affect their own and others’ future individual land-use 

decisions. We estimate the effects of driving factors on forest clearing outcomes, using 
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remotely sensed observations of actual land cover at several points in time as well as socio-

economic, biophysical and ecological data.  The results, i.e. predicted clearing probabilities 

for all plots in the country, are applied to GIS data on distributions of the independent 

variables. 

Cross-disciplinary integration of these modeling efforts takes three forms.  First, we 

allow soil fertility, which both influences and is influenced by C stocks, to affect human land-

use choices. Second, land-use choices affect C dynamics.  Third, any rewards offered for C 

sequestration that are based on current and potential C storage, will affect land-use choices. 

These interactions occur in real time and, combined with the non-linear dynamics of each of 

the individual systems, create a complex set of possible paths of C storage and land use. 

Our land-use and C predictions, at local or national scales, are evaluated in terms of 

both in-sample fit and prediction of out-of-sample data.  We also consider economic and 

environmental costs of inaccuracies in land-use and C predictions.  Because baseline and C 

measures have direct real-world applications, the inaccuracies can be viewed in light of the 

costs of real-world errors. 

2.2 Design 

Our Integrated Carbon Ecology and Economics model, ICEE, explicitly models the 

interactions and feedbacks between ecosystems and human land-use activities using a 3-

component integrated model shown in Figure 1.  
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Figure 1 Diagram showing the interactions among various components of the 
Integrated Carbon Ecology & Economy (ICEE) model. 
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The left hand side of the figure (the first component) represents the ecological model 

that uses climate, soil, and land-use and land-cover information to predict C stocks and soil 

quality for a range of physical conditions and land uses at time t0, as well as their evolution 

over time. The right hand side (the third component) represents the equivalent economic 

modeling. Exogenous (i.e. determined outside the model) economic factors such as 

international prices, agricultural technology and C sequestration policy, and endogenous 

(altered within the system) economic factors, such as the history of land use and the road 

network in an area, determine the economic conditions for each plot.  The endogenous factors 

evolve over time in response to individual land use choices. 

The middle section (the second component) couples the ecological and economic 

models through the land manager’s choice of land use at each point in time.  This choice 

depends on expected economic returns from a range of land uses.  The expected economic 

returns depend on both current and expected future ecological and economic conditions.  For 

6 



 

example, if landowners expect land to degrade (i.e., lose site crop production potential) under 

a given use, this will affect their assessment of optimal land use.  At the same time, land-use 

choices alter endogenous ecological and economic conditions in the next period.  Land-use 

choices also affect nearby plots by changing access, market conditions, and ecosystem 

parameters (for instance, they have effects on seed dispersal dynamics and fire regimes). 

The exogenous variables are predicted outside the model as scenario assumptions. 

Endogenous conditions at the beginning of the prediction period are used as initial conditions 

from which the model is run forward to predict the endogenous variables and the economic 

and ecological outputs.  These predictions will depend not only on the conditions at each plot 

but also on the location of the plot and conditions on other plots located nearby.  The output 

of the model includes C stocks and land use for every point in space in every time period.  

Kerr et al. (2002) use a simplified version of this approach to predict the evolution of C stocks 

in Costa Rica.  

3 DISCIPLINARY MODELING 

3.1 Ecological modeling 

The ecological component models the dynamics of endogenous ecological and 

physical conditions, such as C and N stocks and fluxes, in response to changes in exogenous 

conditions such as climate and to endogenous land use choices.  The model can assimilate 

land-cover/use information from remote sensing, agricultural census statistics, and projected 

land-cover/use from the economic model.  The ecological model provides input to the land-

use-choice model through estimates of biomass productivity. It also provides estimates of C 

stocks at each point in time, which depend on ecosystem conditions and interventions. 

About a dozen models can be used to predict the dynamics of soil C in ecosystems 

(Smith et al., 1997). We have elected to use the well-established ecosystem model 

CENTURY. This model, developed at Colorado State University (Parton et al., 1987), 

simulates C, N, P, and S cycles in various ecosystems, including pastures, forests, crops, and 

savannas, and can model the impacts of management practices such as fertilization, and 

cultivation, as well as natural disturbances such as fire and hurricane (Parton et al., 1987, 

1993).  This model has also been tested extensively against field measurements from various 

ecosystems around the world (e.g., Parton et al., 1993; Schimel et al., 1994; Smith et al., 
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1997) and used for biogeochemical simulation purposes at the regional, continental, and 

global scales (e.g., Schimel et al., 1994; VEMAP, 1995; Schimel et al., 1997).  CENTURY 

has already been adapted for simulating nitrogen and C dynamics in various ecosystems in the 

Atlantic lowlands of Costa Rica, including primary forests, secondary forests, pastures, and 

banana plantations (Liu et al. 1999, Liu et al. 2000, Reiners et al. 2002). 

Major inputs for the monthly-time-step version of CENTURY include land-use and 

land-cover type, monthly average maximum and minimum air temperature, monthly 

precipitation, lignin content of the plant material, C:N plant tissues, soil texture, initial soil C 

and N levels, atmospheric N deposition, and management practices such as fertilization.  

Many of these inputs come from field measurements; others come from existing literature.  

Past land-use and land-cover changes are interpolated, while future land-use changes are 

predicted using the economic model of land use described in the next section.  The major 

outputs of CENTURY include net primary productivity, crop yields, C decomposition, C 

exchange rates between ecosystems and the atmosphere, and C stocks in vegetation and soils. 

In order to scale up the plot-level CENTURY model over large areas such as an entire 

country (even one the size of Costa Rica), a General Ensemble biogeochemical Modeling 

System (GEMS) GEMS was developed that incorporates spatially and temporally explicit 

information into the simulations (Liu et al., 2003).  In GEMS, the CENTURY model is 

encapsulated within a data assimilator, through which input files are updated automatically 

using information from GIS data sets as well as results of the economic model of land use.  

This GEMS is currently being used to quantify the spatial and temporal dimensions of C 

dynamics within the coterminous Unites States.  A modified prototype was also used for the 

estimation of the total flux and spatial pattern of nitrous oxide emissions from soils in the 

Atlantic Zone of Costa Rica (Reiners et al. 2002). 

A primary strength of GEMS lies in its ability to make explicit use of the joint 

frequency distribution (JFD) over space of the critical driving variables such as land cover, 

soils and climate.  Specifically, a fundamental construct of the GEMS is that variances and 

covariances of given variables in space, information which can be provided in a JFD table, are 

necessarily incorporated in the simulation process.  This is crucial for simulations that 

aggregate up from plot-level results, as it forces the model to be explicit in beliefs about key 
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distributions.  It also permits explicit uncertainty estimates for the results, via ensemble Monte 

Carlo simulations. 

The JFD table gives a discrete partitioning over the relevant space (e.g., Costa Rica) 

of: 

∫= dXfpEpE )()]([)( XX      (1) 

where p is the process-based environmental model, X is a vector of model variables, 

and f is the joint frequency distribution of X. Generally, it is impossible to analytically 

integrate equation (1) because the models are usually complex. Therefore, using a GIS, the 

JFD table provides: 

         (2) ∑
=

=
n

i
ii FpEpE

1
)()]([)( XX

where n is the number of strata or unique homogeneous regions as defined by the GIS 

overlays of the major inputs, and F is the frequency of cells or the total area of strata i as 

defined by Xi. 

Before GEMS is run, the underlying biogeochemical model CENTURY should be 

calibrated and validated with field data collected in each dominant life zone in Costa Rica.  

Our previous modeling efforts using CENTURY indicated the importance of the water cycle 

in the tropical moist to wet forest life zones to nitrogen trace gas emissions, which is tightly 

coupled with the C cycle (Liu et al., 2000, Reiners et al., 2002).  Few models, including 

CENTURY, have been tested in all the dominant life zones in Costa Rica.  To calibrate and 

validate our ecological model we use newly collected ecological field data that quantify C and 

N stocks in soils and aboveground biomass of ecosystems, with systematic sampling of the 

variation in edaphic, climatic, and land use conditions.  Model validation performed so far, 

using field measurements collected from 13 sites from five dominant life zones (i.e., tropical 

montane rain forest (TM-rf), tropical pre-montane moist forest (TP-mf), tropical moist forest 

(T-mf), tropical dry forest (T-df), and tropical wet forest (T-wf)), indicates that simulated 

results of aboveground live biomass, large woody debris, and fine litter agreed well with field 

measurements; simulated net primary production values agreed well with data reported from 

literature (Clark et al., 2001); and total amounts of soil organic carbon (SOC) in the top 20-cm 

soil layer were well simulated in TM-rf and TP-mf, significantly under-estimated in T-df 

9 



 

(α=0.05), and significantly overestimated in T-mf and T-wf (α=0.05).  The overestimation of 

SOC by the model in T-mf and T-wf was consistent with our previous findings that the 

default maximum decomposition rates for the slow and passive SOC in CENTURY, 

originally parameterized for the Great Plains, were too low for the tropical moist and wet 

forests (Liu et al., 2000).  A comprehensive assessment of the performance of the CENTURY 

in Costa Rica has been planned as we are collecting additional field data in different life 

zones. 

3.2 Economic modeling 

Our theoretical modeling of land-use choices generates testable hypotheses about 

causation, motivating the use of data on real behavior across time and space in a revealed 

preference approach to estimate coefficients representing causal effects, not simply 

correlation or trends.  Early applications of this approach to analyze deforestation include 

Stavins and Jaffe (1990), and it has been used to consider C sequestration in the United States 

(Stavins, 1999; and Plantinga et al., 1998).  For tropical settings, applications include Pfaff 

(1999) in Brazil, and our work in Costa Rica (Kerr et al., 2002). 

An alternative approach is to develop models that specify human behavior (see, e.g., 

Richards et al. 1993).  On a larger scale, Sohngen et al. (1999) consider C sequestration in 

commercial forestry using an optimization model of global timber markets.  While these 

models have value for understanding the effects of economic forces, if used for prediction 

they are forced to assume that people will behave in exactly the ways they specify – i.e. 

optimize in a narrowly defined sense.  This is extremely problematic when we consider the 

complexity of the situations and motives real people face.  Thus, in generating predictions we 

prefer to let the data on past human behavior speak for themselves.  We use econometric 

analysis of human responses to ecological and economic conditions to generate the 

parameters of our predictive simulation model. 

The economics has two steps.  First, we model the behavior of individual land-users, 

taking outside conditions as given for a particular location and point in time.  This is the basis 

of the second component in our integrated model (see Figure 1).  Second, we explicitly model 

the interactions among these individuals.  We empirically test spatial assumptions about the 

effects of land use choices of conditions on neighboring plots.  Interactions among plots 
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create potentially persistent and non-linear compound effects of shocks such as a new road.  

This is the basis of the third component in our integrated model. 

3.2.1 Individual land-use behavior 

The land manager of each plot i faces a dynamic optimization problem that we model 

with two stages.  First, the land manager decides what he would do with the land if he cleared 

it at time t. 

He chooses a crop xt, out of a set of crops X, to maximize the present discounted value 

of his expected utility (U is a von-Neumann Morgenstern utility function and r is the discount 

rate) from a combination of short and long run agricultural returns from a range of options. yt 

indicates the choice made.  The returns and hence choices vary across space and time because 

of physical and economic factors including productivity, crop prices and access to markets.  

The exogenous physical and economic conditions on the site are summarized in zt and the 

land use history is given by (y0…yt-1). xs* are optimal choices from s=t+1 onward given 

expected future conditions.  Current choices will depend on their effect on these future 

options.  Future options depend on previous choices of crop because of degradation of soil or 

investments in clearing, irrigation or permanent crops. 

In the case of the individual decision, Zt will include not only truly exogenous 

characteristics such as initial soil and climate, that affect crop yields, and international crop 

prices, but also features such as access costs that are exogenous from the point of view of the 

land manager although they are determined within the wider model.  The land manager’s 

discount rate reflects the value of capital and his access to capital.  It also reflects his 

uncertainty about the future.  For instance, if he perceives his tenure security to be low, he 

will have a high discount rate and future options will be less important.  The land manager 

solves this problem at every point in time.0 

Maxx Xt ∈
 E U(xt| (y0…yt-1), Zt) + E U(x*∫

∞

+= 1ts

s | (x0…xt…xs-1), Zt) e-r(s) ds  (3) 

Rit, or the change in utility from the optimal choice of crop for plot i at time t, is 

defined as the return from the series of optimal choices now and in the future.  It is used as an 

input to the second stage of the problem. 
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The first stage of the problem can be estimated using a multinomial logit on crop 

choice data (McFadden, 1974).  This requires estimates of potential crop returns under a range 

of conditions.  We need to make explicit links between ecological characteristics of the land 

and economic returns.  Our earlier analysis of Costa Rica (Kerr et al. 2002) has found that 

even broad measures of biophysical conditions, lifezone and soil characteristics, have 

significant explanatory power with respect to land use choices.  CENTURY can predict 

biomass productivity for each plot at each point in time.  These predictions can be used to 

create models of crop yield calibrated with economic data on actual yields.  When we 

combine these with crop prices and transport cost measures, we obtain site-specific measures 

of economic returns that affect land-use choices and hence future soil quality.  This creates a 

spatially-specific dynamic feedback from land use to land degradation then back to land 

returns and land use.  

This estimation yields predicted probabilities of choices among different crops on land 

that is cleared.  The model is not deterministic because of the many unobservable factors that 

affect land manager decisions.  Land managers facing observationally similar conditions do 

not in reality all choose the same crop.  The estimated optimal return will be a weighted 

average of estimated returns for different crops based on the predicted probabilities that each 

is chosen.  Our current analysis (Kerr et al., 2002) models land use choices by correlating 

actual land use with lifezones and assigning probabilities to each major land use in each 

lifezone.  The predicted probabilities are combined with price and yield estimates to create 

estimates of potential returns if any plot of land were cleared at any time, Rit.  

In the second stage, given Rit, the land manager selects T, the time when the land is 

cleared (reforestation is treated as a new crop).  Below, Sit is the potential return (or rent) to 

forested uses of the land, while CT is the cost of clearing net of timber value (including lost 

option value): 

MaxT E U∫
T

0

i(Sit) e-rt dt + E U∫
∞

T

i(Rit) e-rt dt - CT e-rt  (4) 

Using the results from the first stage, for transitions data, the second stage of the 

problem could be estimated using methods developed primarily in labor economics 

(Lancaster, 1990) and the study of technology adoption (e.g.: Saloner and Shepard 1995, Kerr 

and Newell, forthcoming) as well as in medical research.  Continuous conditional 
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probabilities of transition from forest to cleared land on small plots would be estimated from 

observed discrete transitions and a range of explanatory variables by maximum likelihood 

using testable assumptions about the underlying population distribution.  Currently, Kerr et 

al. (2002) estimates this model for Costa Rica using data that groups discrete transitions at the 

plot level into fractions deforested in larger polygons. 

Current decisions by neighboring land managers are likely to be correlated with the 

land manager’s decision because of unobservable conditions such as tenure security that 

persist across space.  To both test and control for spatial correlation in grouped data, Kerr et 

al. 2002 applies standard spatial error corrections (Anselin 1988).  With plot-level data we 

will initially use a method known as the Gibbs Sampler, in a Bayesian approach (LeSage 

1999, Pinkse 1999). 

The quality of fit achieved in this model can be assessed by considering the R2 of the 

regression that underlies it and by comparisons with out-of-sample data.  We also explicitly 

model the uncertainty in each coefficient and in projections of independent variables to 

provide distributions of predictions (see Kerr et al., 2003 for more detail).  

3.2.2 Evolution of economic conditions & path-dependent spatial development 

The returns to forest and different crops and the costs of clearing depend on a 

combination of exogenous and endogenous forces.  Exogenous factors such as national 

population, international crop prices and global technology change over time.  Distances to 

key locations (ports or major cities) do not change, although the cost and time involved in 

reaching them will. For econometric modeling, the effects of observable exogenous factors 

can be included directly. Unobservable but time-varying exogenous factors can be included 

through testable assumptions on the time dependent error structure.  For predictive modeling, 

these factors are predicted outside the model and entered as scenario assumptions. 

In addition, however, when one land manager makes a decision he alters the choices 

affecting all other land managers; some changes in conditions are endogenous.  At this point 

the system becomes complex and the individual decisions are interactive.  In the same way 

that Krugman’s work on economic geography (e.g. Krugman, 1991) suggests that cities will 

form gradually and that there are multiple equilibria because of path dependence, the pattern 

of agricultural expansion also will be gradual and path dependent.  For example, clearing land 
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may require creating an access path.  This improves access for other plots of land nearby and 

increases the attractiveness of clearing them also.  More extensive development may lead to 

the creation of a road.  Increased economic activity in an area increases input supply and 

output demand for local producers in that area.  Widespread production of a specific crop will 

lead to the provision of services for that crop such as seeds, special fertilizers and equipment, 

local knowledge networks and a marketing network.  As population reaches a critical mass, 

banks will establish credit facilities.  Helpful (if one-dimensional) models of this sort appear 

in Fujita et al. (1999). 

The variable but unobservable state of local and national infrastructure and institutions 

are particularly important in developing countries where capital scarcity, poor access, poor 

information, weak property rights and expanding agricultural frontiers are standard features.  

The costs of rapid development and factors such as restricted capital access and poor 

institutions mean that an area cannot move directly to develop all of the land that would be 

profitable in equilibrium.  As infrastructure and institutions develop, returns will be higher.  

This could lead to more clearing as well as allowing land use to reach equilibrium more 

quickly.  High levels of national development may ultimately lead to government 

development of regulations regarding tenure, forestry development and forest conservation.  

Increased income, urbanization, education and visible loss of the natural environment, 

combined with an increase in foreign tourism, may change cultural norms toward 

conservation.  

In the econometric work we can include observations of endogenous conditions such 

as roads, credit availability, etc.  This is a useful approach for identifying historical causality, 

but for predictive purposes would require direct prediction of all endogenous factors including 

roads. For predictive modeling, these path-dependent effects can be estimated by including 

contemporaneous and lagged spatial terms in the ‘time of clearing’ model.  Contemporaneous 

conditions in neighboring areas reflect activity in past periods; this affects the conditions the 

land manager faces.  Variables representing conditions in neighboring areas, such as level of 

clearing, road access, population density and crop choices, can be generated using GIS 

techniques.  Kerr et al. (2002a) find evidence suggesting that both local and national 

endogenous developments are important determinants of land use decisions. 
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3.3 ICEE integration 

The previous sections have described the construction of the model components.  Here 

we discuss how they are combined into an integrated ecological and economic model and 

used to create simulations for validation and policy purposes.  The model illustrated in Figure 

1 can be summarized in two equations.  The first equation predicts endogenous ecological and 

economic conditions, ωt.  The process-based model predicts ecological conditions based on 

exogenous ecological conditions, such as climate, elevation, and soil type, and on the history 

of land use. Zt is a matrix of observable exogenous characteristics of the plot and the economy 

at time t. yit is the actual land use on plot i at t so (yi0,…yit-1) is the land use history.  The land 

uses on neighboring plots, yjt-1, summarize the endogenous development of the economic 

conditions. The dynamic spatial economic model predicts these endogenous economic 

conditions as a function of individual plot-level decisions. 

ω ωit it it i it t jty y y Z y= −( , ( ,..., ), , )0 1       (5)

The second equation predicts these individual plot-level decisions. γ x yst t
i, ( ) is a 

transition probability from the current land use, yit, to each of n potential land uses xs,t+1, s = 

1,…, n for plot i during time t.  These transition probabilities sum to 1.  The economic model 

predicts the transition probabilities by multiplying the probability of clearing by the 

conditional probability of choosing each particular crop.  Although the model predicts that 

expectations of future ecological and economic conditions affect current decisions, we assume 

that these expectations are based on current information and conditions and are hence 

captured indirectly.  
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The next period's land use, yit+1, is a discrete random draw from the distribution of 

land uses with probabilities defined by the vector γ it .  These two equations are simulated 

simultaneously. 

In order to realize the seamless integration, the output of the economic model on each 

simulation unit (an administrative district or a land parcel) at each time step (i.e., each year) 

can be injected into the ecological model; the output from the ecological model at each time 
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step can then be fed back to the economic model.  Time synchronization between those 

models is very important in the integrated model.  It ensures that the feedbacks between 

ecosystems and economic systems we see in the real world are appropriately represented in 

the integrated model. Several techniques can be used to realize the parallel simulation 

(Tanenbaum, 1987).  The key outputs from the integrated model are land use and C stocks 

(changes) on each plot in each year as well as at the national level. 

4 DATA USED IN COSTA RICAN ILLUSTRATION 

4.1 Ecological data 

Systematic datasets that quantify C and N pools in ecosystems of tropical countries are 

rare.  For example, numerous field studies have examined soil C and N dynamics in Costa 

Rica (e.g., Ewel at al., 1981; Matson et al., 1987; Marrs et al., 1988; Motavalli et al., 1994, 

1995; Reiners et al., 1994; Veldkamp, 1994; Fernandes and Sanford, 1995).  However, no 

studies have yet been conducted to quantify C and N pools at the ecosystem scale in a manner 

that explicitly quantifies soil and aboveground pools along the range of climatic, edaphic, and 

land use characteristics encountered in Costa Rica.  Without detailed, region-specific 

measures of aboveground and soil C and N pools, regional estimates of the dynamics of such 

pools will be superficial at best, and inaccurate and misleading at worst, because the 

distribution of both C and N pools among tropical forest ecosystems varies substantially as a 

function of soil type, climate, and land use and land cover conditions (Detwiler, 1986; 

Schlesinger, 1986; Brown et al., 1993; Hughes et al., 1999; Hughes et al., 2000).  While the 

numerous studies relevant to C and N dynamics conducted to date in Costa Rica aid the 

construction of C and N budgets in ecosystems across the nation, these studies are not 

sufficient to accurately estimate regional C and N stocks in vegetation and soils.  The paucity 

of relevant data regarding terrestrial C and N pools and dynamics poses a challenge for 

accurate national-scale accounting of C sequestration in Costa Rica.  Further, this challenge 

must be addressed by any other country facing the task of determining C stocks within 

ecosystems that span elevational, latitudinal, and precipitation gradients.  Indeed, this 

challenge may be less daunting in Costa Rica than in other countries because of the relatively 

small size of that nation and the relatively large amount of ecological studies that have been 

conducted there. 

16 



 

Our research team is currently conducting a field research program designed to 

quantify, in an extensive and intensive manner, aboveground biomass, C, and N pools in 

forest and agriculture ecosystems across Costa Rica.  The objectives are to carry out 

systematic and comprehensive field measurements of aboveground biomass and C at 120 

study sites within Costa Rican forests ranging from tropical-wet to tropical-dry Life Zones (6 

different zones), and to quantify C dynamics along land use gradients that exist within of each 

of those life zones. Sites include mature forest vegetation, the dominant forms of managed 

sites (e.g., pastures, banana and coffee crops), and secondary forests of various ages.  Mature 

forest values will be used as the hypothesized maxima for aboveground C sequestration.  

Actively managed sites (e.g., pastures and croplands) will be used as the hypothesized minima 

for sequestration, and secondary forests will provide information regarding potential rates of 

accumulation following abandonment.  In this way we will determine the influence of edaphic 

and climatic variables on aboveground biomass and C dynamics as well as the interplay 

between land use change and those environmental variables. 

If our modeling efforts are to be applied to other countries, ecosystem classification 

components of GEMS can be based on climate and topographic data of the given country or 

separately derived.  In the Costa Rican case, we use the World Life-Zone System of 

Ecological Classification (Holdridge, 1967).  Ground observations and climate data have been 

combined to create a GIS map of the 12 Life zones and 11 transition zones in Costa Rica.  

This map, provided by the Tropical Science Center, is used as a layer of spatial framework 

(together with GIS maps of soils and climate) to generate a JFD table defining the 

heterogeneities of ecosystems types and biophysical conditions in Costa Rica.  The life zone 

map also provides common spatial units for field sampling design, biogeochemical and 

economic modeling and analysis. 

4.2 Land use and land-use history 

National scale land use / land cover data for tropical countries is primarily available 

from remote sensing.  In developed countries, census data provides relatively accurate time 

series data.  Developing country census data collection is usually infrequent and also done for 

relatively large political units.  Satellite images are available since the late 1970s.  With 

careful analysis these provide high quality data at a fine level of detail.  They can relatively 
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easily distinguish forest and non-forest, as well as land cover categories such as rocky areas, 

lakes, and mangroves. 

We also gain useful data from aerial photos taken during several different periods.  For 

the whole of Costa Rica, this data is available back to 1963.  For some key areas of the 

country, data is available back to 1945.  It can roughly separate forest and non-forest.  

Together, these images provide the dependent variable for the economic modeling of land use 

and also the raw data on land use history for the ecological modeling. 

Identifying specific land uses, such as coffee relative to sugar plantations is much 

more difficult but the technology is improving rapidly even there.  For example, in Costa Rica 

some data differentiates pasture, and seasonal and permanent crops.  Although it is technically 

possible to discriminate land uses to a very fine level, current data derived from remote 

sensing of Costa Rica does not do so.  Census data also provides some information, as does 

industry association data on production.  We combine these three sources to get the best 

possible estimates for major crops.  

4.3 Socioeconomic data 

The first use of socioeconomic data is to combine it with ecological data to estimate 

agricultural returns.  We collect export prices for key crops.  In the Costa Rican case this is 

sufficient as a measure of price because large amounts of crops are exported to world markets 

where Costa Rica has no influence. In larger countries, or where much of the production is for 

domestic use, prices depend on the levels of production; the demand for crops must be 

modeled separately.  We also use data on observed yields for key crops.  Later we will 

complement them with biomass productivity estimates from CENTURY.  We have found 

limited data on production costs and costs of establishment for new crops.  For example some 

crops require irrigation and permanent crops such as coffee involve considerable initial 

investment. 

Transport costs are the final data needed to estimate returns.  These are estimated 

directly (Roebeling et al., 1999) or as a function of travel distances and speeds based on a GIS 

road network.  The latter allows transport costs to vary over time as the network develops. 

The different types of data are complementary. 
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If we had georeferenced land-price data, we could estimate returns in an alternative 

way, using ecological conditions and data on the returns to crops that can be grown as 

characteristics in a hedonic regression.  Land price is usually collected by local or central 

governments, as the basis of land or property taxes.  It will tend to be biased because people 

want to minimize their tax, but may show a reasonably consistent pattern across space.  These 

two approaches are complementary in choosing the best agricultural return estimates for the 

final model. 

Finally, in order to control for the process of development, which includes exogenous 

changes in infrastructure, institutions and markets that raise the general level of returns, we 

require data on characteristics of the economy such as Gross Domestic Product per capita as 

an estimate of the level of development, and openness ((exports + imports)/GDP) as an 

estimate of landowners' access to international markets.  These types of data are readily 

available from census data and the World Tables published by the International Monetary 

Fund. 

5 POLICY ANALYSIS AND UNCERTAINTY 

5.1 Model predictions 

The first products from these integrated modeling efforts are estimates of C baselines 

and accompanying uncertainty bounds on those baselines.  These can be used to create 

baselines for CDM projects or as the basis for negotiation on the part of new countries that 

want to enter the Kyoto Protocol on a similar basis to Annex I countries.  For example, Figure 

2 shows a baseline estimate for Costa Rica going forward from 2000 (from Pfaff, 2002).  This 

was generated from our preliminary integrated model. 
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Figure 2 Predicted baseline C stock in mature forest in Costa Rica 

 

This figure shows a forecast of the total carbon stored in mature forests in Costa Rica 

from 2000 forward. It is calculated by interacting C estimates in mature forest in each lifezone 

with predictions of the forest remaining in each lifezone at each point in time. Introducing 

uncertainty into the carbon measurements gives a 95% confidence interval of approximately 

140 million tonnes. ±

The figure suggests that forest levels will continue to fall slowly and at a decreasing 

rate. Second, we can predict how much forest will be protected, and hence C will continue to 

be stored, in response to any given monetary reward for C sequestration.  By varying the 

reward we can develop a supply or, equivalently, cost function for C sequestration (i.e., a 

relationship between the C reward and the C sequestration supplied by land users).  Figure 3 

shows an example of a supply function produced from our preliminary model.  It predicts that 

by 2020, if the annual payment for C storage from 2000 onward is $18.50 per tonne C then 

about 3.4 million tonnes or 1% more carbon will be stored than in the baseline.3  We use 

annual payments to reward ongoing storage to avoid the problems associated with the 

temporary nature of forests. If the annual payment exceeds $50, almost no deforestation 

would occur.  This allows us to assess the value of incorporating C sequestration in the 

climate-change mitigation effort.  

                                                           
3 This is the amount of carbon supply that would accumulate after 20 years of a $20 annual carbon rental-price. 
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The total cost of sequestering C is the integral under the curve.4  The value of 

producing these credits is the difference between the cost of producing them and their value to 

the Annex I countries that will buy them.  This is the area above the curve up to the 

international carbon price (here represented as an annual payment equivalent).  The 

international price reflects the marginal cost of reducing net emissions in other ways or 

places.  

Figure 3 The supply of additional carbon from avoided deforestation between 
2000 and 2020 at different levels of annual payment per tonne of C 

 

This is produced by comparing a baseline simulation (Figure 2) with simulations 

where forest returns per ha are raised by the estimated level of C in that lifezone multiplied by 

the annual C payment.  The shaded area represents a 95% confidence interval on the 

simulation.  The dotted upper curve represents the lower level of supply (higher cost) when C 

is measured with error and thus carbon payments are poorly targeted. The construction of 

these curves is described in detail in Kerr et al. (2003) and Kerr and Hendy (2003). 

                                                           
4 This is the cost in 2020 of continuing to store that much carbon. 
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Uncertainties in predictions of future scenarios arise from several factors, including 

the predictions of exogenous variables (e.g., population, economic growth, C reward), 

historical input data, estimated model coefficients and assumed parameters, as well as 

potential model misspecification.  To model uncertainty, values for certain critical variables 

including precipitation, temperature, soil texture, and initial soil C content can be drawn from 

spatially-explicit GIS databases according to the empirical distributions as defined by the 

databases. Economic values such as population, GNP, and international prices can be varied 

across ranges based on long-term external forecasts.  Coefficients can be varied based on their 

estimated variance-covariance matrix. 

In addition, the economic model is inherently uncertain because land-use choices 

contain a probabilistic element.  Each land-use choice has effects on future choices in the 

neighborhood and possibly region.  Depending on the strengths of positive and negative 

feedbacks, these changes could disappear so that land use in many simulations converges to a 

common deterministic pattern, or could be amplified in the surrounding area.  Small 

difference in land managers’ choices early in the land use path could lead to significantly 

different paths of land use and C sequestration.  Successive predictive runs with identical 

inputs will lead to different paths of development depending on the probabilistic path taken in 

each run.  We provide confidence limits or uncertainty bounds for the predicted baselines and 

C supply functions based on Monte Carlo simulations.  We test the sensitivity of 

environmental and economic outcomes to different policies and can thus contribute to more 

effective design of the rules that allow C sequestration to replace emissions reductions in 

developed countries. 

5.2 Evaluation of alternative models -- economic and environmental costs 

When used predictively, the model generates point forecasts of land-use baselines and 

C stocks at each point in time, on each plot, under different scenarios.  These could be used to 

define rules for rewarding C sequestration (i.e., baselines and C stock measurements).  Rather 

than measure C directly on each plot where C sequestration is being rewarded, a very costly 

process, the model would allow C numbers to be based on the climatic and ecological 

conditions on the plot and the land use history known from GIS databases.  When climatic 

and ecological GIS databases are available, baseline forecasts and C estimates could be made 
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from anywhere in the world and crosschecked by other analysts without the need to actually 

visit the regions in question. 

If C predictions from models such as ours are compared to careful on-site 

measurements, we will observe forecast / measurement errors.  The land-use baseline 

predictions also will be incorrect relative to true counterfactuals, although those cannot be 

observed.  By definition we cannot observe what would have happened without the reward if 

the land managers did in fact receive the reward.  Thus, when land managers are rewarded for 

C sequestration, their rewards will be incorrect by an unobservable amount.  These errors in 

baseline predictions and C measurement have real social costs even when we cannot observe 

them.  

When regulatory rewards are based on incorrect measures and forecasts, there are 

three costs.  First, the inaccurate rewards will lead to aggregate environmental outcomes that 

differ from those desired.  Overstated measurements of sequestration would lead to real 

increases in global net emissions when the sequestration credits are sold to a developed 

country and they use them to increase their own net greenhouse gas emissions.  What matters 

here are errors in aggregate additional sequestration relative to baseline for the whole country 

(or the globe).  The cost will depend on how far, under the inaccurate rewards, the aggregate 

actual additional sequestration differs from the aggregate credits generated for sale.  The 

global cost of each excess credit could be measured as marginal environmental damage minus 

avoided marginal abatement cost.  Producing too many credits is likely to be perceived as a 

greater cost than producing too few, although if global targets were chosen efficiently both 

would be concerns.  

Second, land managers would have faced inappropriate and hence inefficient 

incentives to sequester C.  The cost of the sequestration that did in fact occur would be higher 

than necessary. Some will sequester too much and others too little.  Our model can estimate 

these costs in dollar terms.  With accurate C rewards, the average cost per tonne in the year 

2020 of continuing to store 1% of baseline carbon, given by the area under the solid curve in 

Figure 3, is $7.90.5  The marginal cost of additional carbon storage over the period 2000 to 

2020 is $18.50 per tonne per year.  The dotted line in Figure 3 shows the cost curve for 

                                                           
5 The modeling of the impacts of carbon errors into our simulations is described in detail in Kerr and Hendy 
(2003).   
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sequestering when there is error in our carbon measurements.6  Introducing variance in carbon 

measurement increases the cost of storing this carbon by approximately 3%. 

Third, land managers who sequester equal amounts of C will be rewarded differently, 

thereby creating equity concerns.  This could affect the acceptability of the system. 

Unacceptability is immeasurable but the marginal costs will increase with the size of errors, 

whether those errors are positive or negative. 

Both of these costs, efficiency and equity, depend on errors in plot-level rewards. 

Efficiency costs simply depend on errors relative to reality. Equity costs depend on how 

forecasts vary across plots that are perceived to be identical.  Even if the forecasts provide the 

correct number of credits for aggregate sequestration, inefficiency and inequity could be 

problems. 

We can evaluate predictions using assumptions about each of these types of cost and a 

combination of costs.  The use of social costs to evaluate errors takes us beyond standard 

validation approaches where errors vary only by size, not by direction or relationship to other 

variables.  Once we have specified our cost function for errors, standard validation approaches 

could be used to analyze the distribution of the cost of errors rather than the distribution of the 

errors themselves.  

5.3 How much accuracy is sufficient? 

Our general modeling approach allows us to produce forecasts based on remotely 

sensed and exogenous data, reducing the costs of creating baselines and measuring C.  

Simplifying that model still further would save on the need to collect so much data and / or 

the need for so much modeling complexity.  For most developing countries, ecological data is 

not as readily available as in the Costa Rican example.  The more site-specific data a 

modeling approach needs the more expensive it will be to calibrate and validate, because the 

costs of collecting ecological field data, new socio-economic data and land-cover data is high.  

Historical socio-economic data may not exist.  Can we generate simplified versions of the 

integrated model that reach a reasonable degree of accuracy in prediction?  

                                                           
6 Details of the derivation of this line are given in Kerr and Hendy (2003). 
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We can simulate a variety of models that are based directly on our basic model but 

simplified in terms of both data input and model complexity.  We can then compare their 

forecast errors to our full model.  Simpler, partially linearized versions of our models could be 

created using statistical analysis such as step-wise regression analysis or non-linear regression 

analysis (Johnson and Wichern, 1988).  Meta-modeling techniques have been used to evaluate 

the impact of agricultural policy on soil degradation (Lakshminarayan et al., 1997).  In the 

same way, meta-models could be developed to define forecasting models, with different 

degrees of complexity, based on the simulated results of the integrated model.  

After developing the simpler meta-models from a subset of data, we can test their 

accuracy on the out-of-sample locations and time periods against both the existing GIS 

databases and simulated results based on the integrated model.  The importance of variables 

and the accuracy of different models can be determined by considering the economic 

implications of models using different levels of complexity and variables and the errors they 

create, as discussed above.  Based on this analysis, we can pinpoint the variables, types of 

locations and time periods where field data and remote sensing data should be collected to 

estimate baselines and C stocks most effectively. Preliminary analysis of this type is reported 

in Kerr et al (2003).  The results could facilitate more effective monitoring of C sequestration 

projects; these sensitive variables and locations should be monitored with highest priority 

(Post et al., 1999).  

Such comparisons also will suggest whether the simplified meta-models maintain 

sufficient accuracy.  Accuracy can be measured in terms of the estimated models’ abilities to 

ensure the sequestration outcomes envisioned and their implications for economic efficiency 

and equity.  These gains can be contrasted with the qualitative value of greater model 

simplicity. Simplicity translates to lower costs of participation in trading and, potentially, 

lower corruption through greater transparency and verifiability in the application of crediting 

rules.  If sufficient accuracy is possible at reasonable cost, the sequestration outcomes 

envisioned could be approximately achieved and reasonable efficiency and equity would be 

attained.  Greater simplicity would stimulate further participation in climate-change 

mitigation thereby lowering costs and raising the global efficiency of implementation of the 

Kyoto emissions limitations. 
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6 CONCLUSION 

To predict the evolution of an ecosystem as accurately as possible, the interactions 

between ecosystem dynamics and human land-use need to be modeled.  The methodology 

developed in this paper involves a three-component approach that models the development of 

the ecological system, the human land-use system and the dynamic interactions between the 

two. The ecological component uses methods that combine ecological process-modeling and 

GIS to scale plot-level results up to landscapes and regions.  This maintains the benefits of 

detailed process modeling while allowing for heterogeneity in the landscape.  The economic 

component advances empirical modeling of land-use change in circumstances where markets 

and institutions are in the process of rapid development so that more standard models of 

equilibrium land use cannot be applied readily.  We are able to analyze the economic and 

environmental costs of uncertainty. 

When predicting baselines and C dynamics for quantifying C rewards, the cost 

associated with collection of a comprehensive dataset should be weighed against the benefits 

gained from the high-quality data.  Simpler models with coarser datasets will result in less 

costly baseline and C predictions.  In this paper we have proposed assessing the relative 

benefits of models with varying degrees of complexity by comparing the environmental, 

economic efficiency, and equity costs associated with errors in baselines and C measures.  

The distributions of the costs of the errors can be used to compare models. 

These methods all will be applicable to future models of coupled natural and human 

land-use systems.  The primary motivation for our research is to develop models and generate 

insights that will allow researchers and policy analysts to model land-use and C interactions in 

other countries and regions.  It is our ultimate goal to generalize and apply the integrated 

modeling system to other regions, including non-tropical regions.  The selection of Costa Rica 

to perform the model development was deliberate.  Costa Rica offers rich databases, and a 

range of economic conditions and tropical life zones that cover most of the economic and 

ecological conditions represented in Latin America today.  If models are to be widely used to 

implement climate-change mitigation policies such as the CDM, however, they need to be 

simpler, with reduced input variables and less complex modeling structures.  Testing 

simplified versions of our model to find a simpler model that maintains accuracy will help us 
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to suggest a modeling system or methodology that is more easily applied to regions where 

data are not as rich as in Costa Rica.  

7 REFERENCES 

Anselin, L. (1988) “Spatial Econometrics: Methods and Models”. Studies in Operational 
Regional Science, Kluwer Academic Publishers, Dordrecht, 284p.0 

Antle, J.M., Capalbo, S.M. Mooney, S. Elliott, E.T. and Paustian, K.H. (2001) “Economic 
Analysis of Agricultural Soil Carbon Sequestration: An Integrated Assessment 
Approach”. Journal of Agricultural and Resource Economics 26 (2) 344–367. 

Brown, S. Iverson, L.R.A. Prasad, and Liu D. (1993) “Geographical Distributions of Carbon 
in Biomass and Soils of Tropical Asian Forests”. Geocarto International 4, 45-59. 

Clark, D.A., Brown, S. Kicklighter, D.W. Chambers, J.Q. Thomlinson, J.R. Ni J. and Holland, 
E.A. (2001) “Net Primary Production in Tropical Forests: an Evaluation and Synthesis 
of Existing Field Data”. Ecological Applications 11, 371-384. 

Detwiler, R.P. (1986) “Land Use Change and the Global Carbon Cycle: The Role of Tropical 
Soils”. Biogeochemistry 2, 67-93.   

Ewel, J., Berish, C. Brown, B. Price N. and Raich, J. (1981) “Slash and Burn Impacts on a 
Costa Rican Wet Forest Site”. Ecology 62, 816-829. 

Fernandes, D.N. and Sanford, R.L. Jr. (1995) “Effects of Recent Land Use Practices on Soil 
Nutrients and Succession Under Tropical Wet Forest in Costa Rica”. Conservation 
Biology 9, 915-922. 

Foley J.A. Pollard, D. Sitch, S. Haxeltine, A. Prentice, I.C. Ramankutty, N. and Levis S. 
(1996) “An Integrated Biosphere Model of Land Surface Processes, Terrestrial Carbon 
Balance, and Vegetation Dynamics”. Global Biogeochemical Cycles 10, 603-628. 

Fujita, M. Krugman, P. and Venables A. (1999) “The Spatial Economy: Cities, Regions and 
International Trade”. Cambridge, MA: MIT Press.  

Holdridge, L.R., (1967) “Life Zone Ecology” Tropical Science Center, San Jose, Costa Rica. 

Houghton R.A. Hackler, J.L and Lawrence K.T. (1999) “The U.S. Carbon Budget: 
Contributions from Land-Use Change”. Science 285, 574-578. 

Hughes, R.F. Kauffman, J.B. and Cummings D.L. (2000) “Dynamics of Above Ground and 
Soil Carbon and Nitrogen Along a Land Use Gradient in Rondônia, Brazil.” Journal of 
Ecology, in review. 

Hughes, R.F. Kauffman, J.B. and Jaramillo-Luque V.J. (1999) “Accumulation of Biomass, 
Carbon, and Nutrients in Secondary Forests of a Humid Tropical Region of Mexico”. 
Ecology 80, 1892-1907. 

27 



 

Johnson, R.A. and Wichern, D.W. (1988) “Applied Multivariate Statistical Analysis”, Second 
Edition. Englewood Cliffs, New Jersey: Prentice Hall. 

Kerr, S. Pfaff, A.S.P. and Sanchez-Azofeifa, G. A. (2002) “The Dynamics of Deforestation: 
Evidence from Costa Rica’. Paper submitted to the Journal of Environmental 
Economics and Management Available at www.motu.org.nz 

Kerr, S. and Hendy, J. (2003) “Uncertainty and Economic Inefficiency in Tropical Forest 
Carbon Sequestration Policies.  Motu Working Paper www.motu.org.nz  

Kerr, S. Hendy, J. Liu, S. Brown S. and Pfaff. A.S.P. (2003) “Tropical Forest Protection, 
Uncertainty, and the Environmental Integrity of Carbon Mitigation Policies”. Draft 
prepared for Ecological Applications Invited Feature.  Motu Working Paper 03/08 
www.motu.org.nz. 

Kerr, S. and Newell, R. G. (2003)” Policy-Induced Technology Adoption: Evidence from the 
U.S Lead Phasedown”. Forthcoming Journal of Industrial Economics.  

Krugman, P. (1991) “Increasing returns and economic geography”. Journal of Political 
Economy 99, 183-199. 

Lakshminarayan, P.G. Gassman, P. Bouzaher, A. and Izaurralde R.C. (1997) “A 
Metamodeling Approach to Evaluate Agricultural Policy Impact on Soil Degradation 
in Western Canada”. Canadian Journal of Agricultural Economics  44, 277-294. 

Lancaster, T. (1990) “The Econometric Analysis of Transition Data”. Econometric Society 
Monograph No. 17, Cambridge University Press. 

LeSage, J. (1999) “Theory and Practice of Spatial Econometrics”. Department of Economics, 
University of Toledo. 

Liu, S. Loveland, T.R. and Kurtz, R.M. (2003) “Contemporary Carbon Dynamics in 
Terrestrial Ecosystems in the Southeastern Plains of the United States”.  
Environmental Management (submitted). 

Liu, S. Reiners, W.A. Keller M. and Schimel D.S. (1999) “Model Simulation of Changes in 
N2O and NO Emissions with Conversion of Tropical rain forests to pastures in the 
Costa Rican Atlantic Zone. Global Biogeochemical Cycles 13, 663-677. 

Liu, S. Reiners, W.A. Keller, M. and Schimel D.S. (2000) “Simulation of Nitrous Oxide and 
Nitric Oxide Emissions from Tropical Primary Forests in the Costa Rican Atlantic 
Zone”. Environmental Modelling & Software 15, 727-743.  

Marrs, R.H. Proctor, J. Heaney A. and Mountford M.D. (1988) “Changes in Soil Nitrogen- 
Mineralization and Nitrification Along an Altitudinal Transect in Tropical Rain Forest 
in Costa Rica”. Journal of Ecology 76, 466-482. 

Matson, P.A.Robertson, G.P. Vitousek, P.M. Ewel, J.J.and Mazzarino M.J. (1987) “Nitrogen 
Transformations Following Tropical Forest Felling and Burning on a Volcanic Soil”. 
Ecology 68, 491-502. 

28 



 

McFadden, D. (1974) “Conditional Logit Analysis of Qualitative Choice Behavior”. in 
Frontiers in Econometrics (P. Zarembka, ed.). New York, NY: Academic Press. 

Motavalli, P.P. Palm, C.A. Parton, W.J. Elliot E.T. and Frey S.D. (1994) “Comparison of 
Laboratory and Modeling Simulation Methods for Estimating Carbon Pools in 
Tropical Forest Soils”. Soil Biol. Biochem. 26, 935-944. 

Motavalli, P.P. Palm, C.A. Parton, W.J. Elliot E.T. and Frey S.D. (1995) “Soil pH and 
Organic C Dynamics in Tropical Forest Soils: Evidence From Laboratory and 
Simulation Studies”. Soil Bio. Biochem. 27, 1589-1599. 

Parton, W.J. Schimel, D.S. Cole C.V. and Ojima D.S. (1987) “Analysis of Factors Controlling 
Soil Organic Matter Levels in Great Plains Grasslands”. Soil Science Society of 
America Journal 51, 1173-1179. 

Parton, W.J. Scurlock, J.M.O. Ojima, D.S. Gilmanov, T.G. Scholes, R.J. Schimel, D.S. 
Kirchner, T. Menaut, J.C. Seastedt, T. Moya, E.G. Kamnalrut A. and Kinyamario J.I. 
(1993) “Observations and Modeling of Biomass and Soil Organic Matter Dynamics 
For the Grassland Biome Worldwide”. Global Biogeochem. Cycles 7, 785-809. 

Pfaff, A.S.P. (1999) “What Drives Deforestation in the Brazilian Amazon?” Journal of 
Environmental Economics and Management 37(1), 26-43. 

Pfaff, A.S.P. (2002) “What Would Have Happened? Reviewing and Improving 
Counterfactual Baselines for Tropical Forest Area and Sequestered Carbon”. Revision 
requested, Ecological Applications Invited Feature.  Available at 
www.columbia.edu/~ap196. 

Pfaff, A.S.P. Kerr, S. Hughes, R.F. Liu, S. Sanchez-Azofeifa, G.A. Schimel, D.S. Tosi, J. and 
Watson, V. (2000) “The Kyoto Protocol & Payments for Tropical Forest: an 
Interdisciplinary Method for Estimating Carbon-Offset Supply and Increasing the 
Feasibility of a Carbon Market Under the CDM”. Ecological Economics 35(2), 203-
221. 

Pinkse, J. (1999) “Asymptotic Properties of Moran and Related Tests and Testing for Spatial 
Correlation in Probit Models”. London:University College. 

Plantinga, A.J. Mauldin, T. and Miller, D.J. (1998) “An Econometric Analysis of the Costs of 
Sequestering Carbon in Forests”. Paper presented at AERE World Congress. 

Post, W.M. Izaurralde, R.C. Mann, L.K. and Bliss, N. (2001) “Monitoring and Verifying 
Changes of Organic Carbon in Soil”. Climatic Change 51(1), 73-99  

Reiners, W.A. Bouwman, A.F. Parsons, W.F. and Keller, M. (1994) “Tropical Rain Forest 
Conversion to Pasture: Changes in Vegetation and Soil Properties”. Ecol. Appl. 4, 
363-377. 

Reiners, W.A. Liu, S. Gerow, K. Keller, M. and Schimel, D.S. (2002) “Historical and Future 
Land Use Effects on Trace Gas Emissions Using an Ensemble Modeling Approach: 
Costa Rica's Caribbean Lowlands as an example”. Global Biogeochemical Cycles 16, 
223-240,doi: 10.1029/2001GB001437. 

29 



 

Richards, K.R. Moulton, R.J. Birdsey, R.A. (1993) “Costs of Creating Carbon Sinks in the 
U.S”. Energy Conversion and Management 34(9-11), 905-912. 

Roebeling, P.C. (1999) “Spatial Equilibrium Modeling for Inter-Regional Trade Flow 
Estimation and Agricultural Policy Analysis in Costa Rica. Wageningen Agricultural 
University Research Program on Sustainability in Agriculture (REPOSA, 
CATIE/UAW/MAG). 

Saloner, G. and Shepard, A. (1995) “Adoption of Technologies With Network Effects: an 
Empirical Examination of the Adoption of Automated Teller Machines”. RAND 
Journal of Economics 26(3), 479-501. 

Schimel, D.S. Braswell, B.H. Holland, E.A. Mckeown, R. Ojima, D.S. Painter, T.H. Parton, 
W.J. and Townsend, A.R. (1994) “Climatic, Edaphic, and Biotic Controls Over 
Storage and Turnover of Carbon on Soils”. Global Biogeochem. Cycles 8, 279-293. 

Schimel, D.S. Braswell, B.H. and Parton, W.J. (1997) “Equilibrium of the Terrestrial Water, 
Nitrogen, and Carbon Cycles”. Proc. Natl. Acad. Sci. USA 94, 8280-8283. 

Schlesinger, W.H. (1986) “Changes in Soil Carbon Storage and Associated Properties with 
Disturbance and Recovery”. in The Changing Carbon Cycle: A Global Analysis (J.R. 
Trabalka, and D.E. Reichle, eds.), pp. 194-220. New York: Springer-Verlag,. 

Smith P. McGill, W.B. Arah, J.R.M. Chertov, O.G.Coleman, K. Franko, U. Frolking, S. 
Jenkinson, D.S. Jensen, L.S. Kelly, R.H. Klein-Gunnewiek, H. Komarov, A.S. Li, C. 
Molina, J.A.E. Mueller, T. Parton, W.J. Thornley, J.H.M. Whitmore, A.P. Smith, J.U. 
Powlson, D.S. (1997) “A Comparison of the Performance of Nine Soil Organic Matter 
Models Using Datasets From Seven Long-Term Experiments”. Geoderma 81(1-2), 
153-225. 

Sohngen, B., R. Mendelsohn and Sedjo, R. (1999) “Forest Management, Conservation, and 
Global Timber Markets”. American Journal of Agricultural Economics 81, 1-13. 

Stavins, R.N. and Jaffe, A. (1990) “Unintended Impacts of Public Investments on Private 
Decisions: the Depletion of Forested Wetlands”. American Economic Review 80(3), 
337-352. 

Stavins R. (1999) “The Costs of Carbon Sequestration: a Revealed Preference Approach”. 
American Economic Review 89(4), 994-1009. 

Tanenbaum, A.S. (1987) “Operating System: Design and Implementation”. Englewood Cliffs, 
New Jersey: Prentice Hall. 

Veldkamp, E. (1994) “Organic Carbon Turnover in Three Tropical Soils Under Pasture After 
Deforestation. Soil Sci. Soc. Am. J. 58, 175-180. 

VEMAP members (1995) “Vegetation/ecosystem Modeling and Analysis Project. Comparing 
Biogeography and Biogeochemical Models in a Continental-Scale Study of Terrestrial 
Ecosystem Responses to Climate Change and CO2 Doubling. Global Biogeochem. 
Cycles 9, 407-437. 

30 


	ABSTRACT
	INTRODUCTION
	CONCEPTUAL DESIGN OF ICEE (INTEGRATED C ECOLOGY & ECONOMICS)
	Concepts
	Design

	DISCIPLINARY MODELING
	Ecological modeling
	Economic modeling
	Individual land-use behavior
	Evolution of economic conditions & path-dependent spatial de

	ICEE integration

	DATA USED IN COSTA RICAN ILLUSTRATION
	Ecological data
	Land use and land-use history
	Socioeconomic data

	POLICY ANALYSIS AND UNCERTAINTY
	Model predictions
	Evaluation of alternative models -- economic and environment
	How much accuracy is sufficient?

	CONCLUSION
	REFERENCES

