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Abstract
Tropical forests are estimated to rel ease approximately 1.7 PgC per year

as aresult of deforestation. Avoiding tropical deforestation could potentialy play
a significant role in carbon mitigation over the next 50 years if not longer. Many
policymakers and negotiators are skeptical of our ability to reduce deforestation
effectively. They fear that if credits for avoided deforestation are alowed to
replace fossil fuel emission reductions for compliance with Kyoto, the
environment will suffer because the credits will not reflect truly additional carbon
storage. This paper considers the nature of the uncertainties involved in estimating
carbon stocks and predicting deforestation. We build an empirically based
stochastic model that combines data from field ecology, geographical information
system (GIS) data from satellite imagery, economic analysis and ecological
process modeling to simulate the effects of these uncertainties on the
environmental integrity of credits for avoided deforestation. We find that land use
change, and hence additionality of carbon, is extremely hard to predict accurately
and errors in the numbers of credits given for avoiding deforestation are likely to
be very large. We aso find that errors in estimation of carbon storage could be
large and could have significant impacts. We find that in Costa Rica, nearly 42%
of al the loss of environmental integrity that would arise from poor carbon
estimates arises in one life zone, tropical wet. This suggests that research effort

might be focused in thislife zone.
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1 Introduction
Tropical forests are estimated to release approximately 1.7 PgC per year

as aresult of deforestation. In contrast, global fossil fuel emissions are around 6.4
PgC (Schimel et a, 2001). Tropical forests have a significant impact on
atmospheric CO, concentrations and, with appropriate policies that aim to reduce
deforestation and encourage reforestation, they could be used to retain or
sequester a significant amount of carbon. Niles and Schwarze (2000) and the
IPCC (Brown et a, 1996) suggest respectively that 0.16 and 0.28 PgC per year
could be saved through prevention of tropical deforestation. Each of these
assessments assumes that tropical deforestation could be reduced by around 15%.
The IPCC Third Assessment Report (Kauppi and Sedjo, 2001) confirmed the
Second Assessment Report (Brown et a, 1996) by estimating that biological
mitigation as a whole (afforestation, reforestation, preventing deforestation, and
forest management) could offset 12-15% of all business-as-usua fossil fuel
emissions from 2000-2050. To put this in context, under the Kyoto Protocoal,
Annex | countries face limits on their emissions that are estimated to reduce
global greenhouse gas emissions in 2010, relative to what they would have been,
by around 0.29 PgC equivalent per year, or 5.3% of globa emissions.' Thus,
avoiding tropical deforestation could potentially play a significant role in carbon

mitigation over the next 50 yearsif not longer.

Even if avoiding deforestation is actually able to deliver much smaller
gains and we progressively tighten climate mitigation targets so that avoiding
deforestation is a much smaller part of aggregate reductions, these are real
contributions to climate mitigation. As in most problems, the long-run solution to
the climate problem is probably many small solutions rather than one grand one.
In addition, if we prevent some deforestation we will reap many side benefits. We
will reduce biodiversity loss and soil erosion, and help preserve indigenous
culture.

1 2010—MIT EPPA model v3 Reference Case compared to Bonn Agreement forever case. Results
provided by Mustafa Babiker. If the US achieves its Kyoto target as well, reductions would be
7.6%.



The big question is whether the gains from avoiding deforestation really
can be achieved. Many policymakers and negotiators are skeptical of our ability to
reduce deforestation effectively. They fear that if credits for avoided deforestation
are allowed to replace fossil fuel emission reductions for compliance with Kyoto,
the environment will suffer because the credits will not reflect truly additional
carbon storage. If the credits given exceed the true additional carbon and the
credits are sold and used to meet Kyoto commitments instead of emissions

reductions, areal rise in global emissionswill occur relative to the Kyoto target.

Policymakers’ and negotiators' fear stems largely from concerns about
our ability to estimate carbon stocks and assess the additionality of net emission
reductions from avoided deforestation activities. They fear that many avoided
deforestation credits would be claimed for forest that would have been protected

anyway.

This paper considers the nature of the uncertainties involved in
estimating carbon stocks and predicting deforestation and simulates the effects of
these uncertainties on the environmental integrity of credits for avoided

deforestation. To our knowledge, this analysis has not previously been attempted.

To create policies with environmental integrity that allow these credits
to be traded with emission reductions we require two things: a projection of how
much forest there would have been without a policy (aforest “baseline”; see Pfaff
(2004) for further discussion), and an estimate of the carbon stocks in the forests

that are projected to be cleared. Each of these involves uncertainty.

We do not explicitly consider another form of uncertainty inherent to al
biological mitigation—Ilack of permanence. We avoid the problem that forest
protection can be temporary by calculating credits based on the actual level of
forest each year. If the level of additional carbon falls (because the actual forest
areafals or carbon storage per hectare changes) then some credits will have to be
repaid.



We find that additionality is extremely hard to assess accurately and
errors in the numbers of credits given for avoiding deforestation are likely to be
very large. The major source of error in a project-based policy such as the Clean
Development Mechanism is likely to be prediction of the land-use change
baseline. We aso find that errors in estimation of carbon storage could be large
and could have significant impacts, particularly in a policy that does not rely on
land-use baselines, such as the Kyoto policy applied to developed countries
(Article 3.3). The uncertainty in carbon storage estimates is not equally important
in al life zones. The ecosystems of most importance are those that still have forest
that is under threat but where deforestation might be averted. We find that in
Costa Rica, nearly 42% of al the loss of environmental integrity that would arise
from poor carbon estimates arises in one life zone, tropical wet. This suggests that

research effort might be focused in this life zone.

We first present an integrated model of deforestation and carbon stocks
in mature forest estimated from Costa Rican data and present deterministic results
from the model. This is a simplified version of a model presented in Kerr et a
(2003). We then discuss the underlying sources of uncertainty in our model with a
focus on: predictions of human land-use decisions and the effects of policy
design; carbon field measurements;, process-based modeling of carbon; and
scaling up of a plot-based model. We explain how we incorporate this uncertainty

in our model.

We then use our integrated stochastic model to assess empirically the
effects of different types of uncertainty. Uncertainty implies errors. By trandating
these errors into effects on environmental integrity we assess the rea costs of
uncertainty on the environment and hence the value of reducing it. We estimate
the overall cost from uncertainty and the relative roles of different sources, land-

use baselines, and carbon storage estimates in each life zone.



2 Integrated model development

To predict the evolution of carbon stocks as deforestation occurs, we
use the simple integrated model depicted in Figure 1. Geographical information
system (GIS) techniques are used to provide spatiad modeling capability within
the integrated model. The economic model incorporates both ecological factors
(soils and “life zones’ (Holdridge, 1967)) and economic factors (international
prices, agricultural yields and production costs, the history of land use, and
geographical access to markets) to determine the economic conditions on each
plot of land and predict changes in land use as economic conditions change. The

ecological model estimates carbon storage in mature forests.

Figure 1: The integrated model
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The economic and ecological models are coupled in two ways. First,
carbon estimates from the ecological model are combined with predictions of
forest cover to give us predicted carbon stock in each scenario. Second, the carbon
estimates combined with carbon prices determine carbon payments per hectare for
avoided deforestation. These payments affect land-use choices. In this simple
model, we model the evolution of mature forest cover only; we do not consider
reforestation.

For each parcel of land, a land manager chooses a land use that will
maximize their expected returns from a set of potential feasible land uses, such as
crops, grazing, and leaving the land in forest. Put simply, the land manager will
clear the land if the return from a cleared land use is higher than the return from a
standing forest. Once all land-use choices are simulated in space, we calcul ate the
total remaining forest in each life zone type for every point in time. We then
interact the remaining forest with estimates of carbon storage per hectare,
calculated by the ecological model and averaged at the life zone level (given by

Column lain Table 1), to give us a prediction of carbon stock.

We can use our model to simulate the effects of policy scenarios, for
example a carbon payment for forest. The carbon payment is determined by the
international carbon price combined with the ecological model and varies by life
zone (depending on potential carbon storage). As before, the land manager will
make a land-use choice based on returns for the set of potential land uses, but in
this case, the returns from forest protection are increased through our carbon
payment. Fewer landowners will choose to clear because their net return from
clearing is lowered. The landowners who will alter their behavior are those whose
land yields low agricultural returns or those who have very high current carbon
stocks in their forest. More forest will be left standing and more carbon will be
stored relative to the baseline case. The following sections provide more details on

the model components.



2.1 The ecological model

We estimate potential carbon storage in mature forests with the General
Ensemble Biogeochemical Modeling System (GEMS), which incorporates
spatialy and temporally explicit information on climate, soil, and land cover (Liu
et a, 2004a; Liu et a, 2004b). GEMS is a modeling system that was devel oped to
integrate well-established ecosystem biogeochemical models with various spatial
databases for the ssimulations of the biogeochemical cycles over large areas. The
well-established model CENTURY (Parton et al, 1987; Schimel et al, 1996; Liu et
al, 1999; Liu et a, 2000; Reiners et al 2002) was used as the underlying plot-scale
biogeochemical model in this study. GEMS has been used to simulate the impacts
of land use and climate change on carbon sources and sinks over large areas (Liu
et al, 2004b; Liu et al, 20044).

In this study, we used GEMS to simulate carbon dynamics in Costa
Rica at a spatial resolution of 1140 m length scale. We calibrated GEMS against
field data collected from 32 mature forest sites in six major life zones in Costa
Rica (Liu and Schimel, 2004). Detailed description about the field measurements
can be found in Kauffman et a (2004). The values of eight variables (i.e. carbon
and nitrogen contents in: aboveground biomass; litter layer; standing and down
woody debris; and the top 20cm soil layer) were used to calibrate the CENTURY
model. The calibrated values of model parameters (e.g. maximum monthly
potential production, maximum decomposition rates of slow and passive soil
organic carbon pools, and maximum decomposition rates of dead woody debris)
were averaged by life zones and then incorporated with GEMS to simulate carbon
stocks under potential vegetation in Costa Rica (Liu and Schimel, 2004).



Table 1: Carbon density in aboveground biomass (tC ha) by life zone as estimated by the GEMS model and field measurements

Life zone GEMS Data From Literature Overall literature
Brown Helmer
Std dev and and Brown Delaney Fehse DeAngelis Std dev
as % of |Brown Lugo Brown etal et al et al Tosi** MINAE etal as % of
Mean mean |(1997) (1982) (1998) (1989) (1997) (2002) (1997) (1997) (1981) Mean mean
(1a) (1b) 2 3) 4) ©) (6) (7 8) 9) (10) (11) (12) (13)
Premontane moist 135 47 104 122 70 42 95 40
Lower montane moist (250 38 159 173 85 289 191 42
Tropical moist 112 21 147 139 259 187 179 166 169 117 97 157 30
Premontane wet 149 28 153 133 111 66 122 29
Lower montane wet 222 40 210 86 174 183 175 31
Montane wet 258 42 157 134 47 154 150 50
Tropical wet 204 35 82 129 182 264 178 138 100 160 37
Tropical dry 63 17 39 110 51* 55 70 78 34 57 63 38
Premontane rain 187 47 87 159 91 94 92 118 37
Lower montane rain {208 34 162 56 124 138 47
Montane rain 228 37 154 32 139 88 128 57

* Thisisthe average of the range provided by Helmer and Brown (1998) of 7-94 tonnes of C/ha.

** Derived from Tosi (1997) by Shuguang Liu.



The life zone level mean values and their corresponding standard
deviations of aboveground biomass carbon density simulated by GEMS and used
in our integrated model are listed in Columns 1 and 2 of Table 1. In the integrated
model, we use carbon stock estimates generated by the GEMS at the life zone
level to translate forest cover into total carbon stocks and then to determine the
reward for land users who prevent deforestation on their land. Columns 3-11
show various other mean estimates taken from the literature, and columns 12 and
13 provide the mean and standard deviation of the literature and GEMS mean
estimates combined.

2.2 The economic model

We define the probability that a piece of land will be cleared during any
period as the land-parcel’s hazard rate. To predict changes in forest cover, we
must explain the variability in hazard rates in terms of observable characteristics

of the land parcel that are likely to affect the land managers’ land-use choices.

To create our economic model, we could have tried to calculate the
optimal land-use choice for every land parcel in Costa Rica, giving us
economically optimal land-use choice as a function of observable land-parcel
characteristics. However, people do not necessarily behave in economically
optimal ways. Non-economic factors such as cultural attitudes aso affect
behavior. Furthermore, an analyst is unable to observe al the factors that would
drive optimal choices. Consequently, to create our model we observe past land-
use choices and estimate the relationships between land clearance and each land-
parcel’ s observable characteristics, giving us a model based on actual behavior.

We estimate these relationships econometrically for each spatia unit i
across the whole of Costa Rica over four time periods (t = 1900-1962, 1963—
1978, 1986-1996, 1997-2000) using the annualized average deforestation rate
during each time period as a measure of the hazard rate of deforestation. We
exclude the period 1979-1985 because of data anomalies. We define the spatial
unit of observation, our “land parcel”, as the disaggregation of each of 436
administrative districts into each of the 12 major life zones. In 1900 there were
1211 forested land parcels.



The magnitude and direction of the observable drivers of land use

change are estimated using the equation:?

In(1 h, J=X,-;ﬂ+Dt5 +g, 1)

where:

h isthe hazard rate

X isamatrix of observable explanatory variables

B arethe estimated coefficients of observable explanatory variables
D aredummy variables for each time period

o0 aretheir coefficients

¢ istheeror.

The variables we use to explain the land managers decisions are given
in Table 2, together with their means and estimated coefficients. For the
regressions, we normalize returns, cleared per cent and distance by subtracting
their global means so that the normalized hazard rate at the global mean of the
variables in the first period is approximately zero. This means that we can extract
time dummy coefficients that primarily reflect national development trends and
tend to zero as the effect of national development on deforestation tends to zero—
this is useful for forecasting (see Appendix A). More details on the data and
model development are given in Kerr et a (2004).

2 We estimate this equation using a grouped logit regression pooled over time. We include in our
regression all land parcels that have forest on them at any point in time, including those that have
been reforested, as they will still be subject to deforestation hazard in the next periods. We do not
include national parksin our regression, however, as they will not be subject to the same kinds of
deforestation pressure.



Table 2: Observable variables and regression results

Effect Explanatory variable Non- Estimated coefficient
Sred All 1986-1997/1997-2000
mean excl. excl.
1 I 11
Land parcel productivity Agricultural returns per hectare 0.065* —0.15* 0.052*
and international prices (US1997$1000/ha) 0.6 0.023) 0.05) ©0.027)
Accessibility Minimum distance to market —2.0* —2.4* —2.2*
(100km) 07 (01) 0.1) ©0.1)
Minimum distance to market 0.029* 0.039* 0.033*
x time 48 (0.002)  (0.002)  (0.002)
Local development Percentage cleared 0.2 1.9* 1.9* 2.0*
0.3) 0.2 0.2
Limited quality land Percentage cleared "2 0.16 05 -0.03*
0.04 (0.29) (14 0.3
National development  Time dummy (1900-1963) - Omitted
Time dummy (1963-1979) - —0.44* -0.7* —0.58*
(0.08) (0.1) (0.09)
Time dummy (1986-1997) - 2 —2.6¢
(0.1) Dropped  (0.1)
Time dummy (1997—-2000) — -3.5¢ -3.7*
(0.2) (0.2) Dropped
Constant — —2.7* —2.6* —2.6*
(0.1) (0.08) (0.07)
R-squared 37% 36% 37%
N 3966 3056 3033

* Significant with 99% confidence.
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Briefly, the land manager will be more likely to clear productive land
that is suitable for crops with high returns. To capture this in our model we use
expected returns as an explanatory variable. Current actual returns in each period
for crops grown in each land parcel are calculated from the exogenous variables
international prices, yields, and production costs. We assume that expected
potential returns are simply equal to current returns. Returns vary by life zone,
district, and period. As we see in Table 2, returns positively and significantly
increase deforestation in most samples. The returns variable has large errors
because of the difficulties in generating accurate historical data. It performs better
in recent periods where the data is of better quality and our implicit assumption of

amarket economy is more accurate.

Access to national and international markets affects the farm-gate
returns that land managers receive for different crops. This will vary temporaly
and spatially, with land-parcels further from cities and international ports being
less accessible and hence receiving lower returns than those closer. As road
networks are developed and improved, the difference in distance is likely to have

less effect. Formally we model:

farm-gate returns;, = international returns; + (B; + pa(time)) X distance;  2)

where distance is the straight-line distance from land parcel i to the
closest of the three major markets in Costa Rica (Limon, San José and
Puntarenas). As we would expect, in Table 2 g, < 0 and £, > 0. Both are

significant.

Road networks will not necessarily develop uniformly across the
country. The interaction of distance and time will capture only spatially uniform
road development effects. Other infrastructure also will develop in a non-uniform
way, for example electricity networks and agricultural distribution services. To
control for this non-uniform development, we include the percentage of the forest

that has been previously cleared, percentage cleared, or cumulative deforestation.
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In general, as people clear land, infrastructure will develop around
them. This decreases the costs of production, raising returns and hence increasing
the likelihood that people will clear the remaining forest. We find empirically that
this has a positive and significant effect.

However, the forest on the best land (not too steep, well drained) within
each observably homogeneous land parcel is likely to be cleared first. Thus, we
might expect that productivity and hence potential returns on the remaining
forested land will be lower and pressure to deforest will fall. Thisislikely to have
the greatest effect as the percentage cleared becomes high, so we alow for a
quadratic effect of previous clearing, percentage cleared’. This turns out to be
insignificant.

We expect that a significant amount of national development will affect
the country more uniformly as private and public institutions develop (e.g.
educational facilities, enforcement of laws, and capital markets). Increased returns
associated with development initially result in extensification of agriculture,
increasing pressure on forests. Eventually, development results in higher capital
intensity and wages, and intensification of agriculture. The economy moves away
from reliance on agriculture as the industrial and service sectors grow. This eases
deforestation pressure. Conservation regulations are generally strengthened as
countries develop. These increase forest protection. To control for national
development in our regression model we introduce time dummies for each period.
We find that underlying deforestation pressure falls consistently over the period
but falls most rapidly after the mid-1980s.

With this model design and these explanatory variables, we explain
between 22% and 40% of each period’s cross-sectiona in-sample variation and
37% of the overal variation. This amount of explanatory power is reasonably
consistent with other economic deforestation modeling. Comparable studies that
have looked at tropical land-use change include Pfaff (1999), who examines
deforestation in Brazil and explains 37% of the variation, and Chomitz and Gray

(1996), who study Belize and explain 39% of land-use change cross-sectionally.

12



3 Deterministic model results

In this section, we demonstrate one simple use of the integrated model:
estimation of the responsiveness of deforestation to carbon payments—the carbon
supply curve. The period we consider here is the period when deforestation slows
in Costa Rica, 1986-1997. Costa Rican real economic growth rates were on
average substantially better than the rest of Central America during the period
1960-2000 (Rennhack et a, 2002). As a result, Costa Rica is one of the more
developed Central American countries; other countries and regions may still bein
the rapid deforestation phase, for example Guatemala, Southern Mexico, and
Colombia. Studying this period could give us insight into carbon supply that we
could apply elsewhere. In contrast, after 1997, Costa Rica experienced very little
deforestation, so it would also supply very few carbon credits through avoided
deforestation. Because the model is simple and based only on Costa Rican data,
the simulations given below should be thought of as illustrations with an empirical

basis.

When we separate the returns variable from other X variables, apply the
coefficients from column | in Table 2 and include an annual carbon payment that

reduces the net return from converting forest to agriculture, Equation 1 becomes:

h
|n[&J = 0.065
1- h(t+1)

x(returns (1+1) — annual carbon payment x C per ha) 3)

+X;+’Z|.ﬂ + Dl +:|.6

where X

t+1

are the explanatory variables other than returns.

To simulate supply we first forecast forest area in a non-policy case;
this projection is based on Equation 3 with no annual carbon payment. It is done
iteratively. In this section we use an in-sample projection using actual data. When
trandated into carbon, this provides a potential baseline against which carbon
storage could be credited.

13



With a positive annual carbon payment, annual returns to mature forest
will be equa to the annualized-equivalent carbon price times the amount of
carbon that the primary forest stores. This annual payment can be thought of as
interest on a payment for permanent protection, or as a simple rental payment if
carbon prices are not expected to change. Actual rental payments are complex to
predict as they depend on expectations about future carbon prices (Kerr, 2003).
We can now predict forward to give us a new prediction of forest and carbon
stock. The difference between the predicted carbon stock under the simulated
policy case and the predicted carbon stock with no policy will give us a measure
of the effectiveness of the policy. This difference is defined as the carbon supply,
the additional carbon induced by the annual carbon payment.

Figure 2: Forecast carbon stocks with and without a carbon price
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Thisis an in-sample prediction that assumes no change in returns and sets the time
dummy for the forecast period at its actual level.
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In Figure 2 we show the carbon forecast in the baseline and one policy
case with a US$14.15 annual carbon payment. The upper curve in the figure
shows how carbon stocks evolve over time if the carbon payment price is
continued. The vertical projection of the difference between these two stocks
shows the cumulative supply of carbon available at any point in time. The same
reward elicits different amounts of additional carbon over time depending on the
amount of deforestation that would have occurred. The amount of additional
carbon stored in forests cumulates over the years because every year some
deforestation that would have occurred is prevented. In the later years when we
predict that deforestation will cease, no additional carbon is stored.

A payment of US$14.15 is chosen because in our model it reduces the
deforestation rate by 15%, which is around the level both Brown et a (1996) and
Niles and Schwarze (2000) assume when estimating the potential contribution of
avoided deforestation to climate change mitigation. This payment is very high
relative to current estimates of likely international carbon prices. With a 10%
discount rate, this could transate to around US$145 per tonne of permanent

reduction.

If we vary the policy across a range of prices, we can map out a supply
or cost curve. (See Appendix B for details on the derivation). In Figure 3, we
show a cumulative supply curve 11 years after the introduction of a carbon rental
price (1986-1997). At low payments, the curve is reasonably straight, but as the
payment increases, it begins to curve upward. A US$1 annua payment per tonne
of carbon seems more likely than US$14.15. Our model is aso probably more
accurate when dealing with simulations that involve small policy perturbations. A
US$1l annual payment leads to a reduction in deforestation of 1.2%. The
cumulative stock after 11 years for a US$1 rental price is 261 million tonnes and
the baseline stock is 260.5 million tonnes, suggesting a cumulative supply of 0.5
million tonnes in Costa Rica. Thus at what might be considered reasonable prices,
our results suggest that the potential for avoided deforestation to contribute to

climate change mitigation may not be as great as some anticipate.

15



The supply or cost curve can aso be used to estimate the cost of storing
a given level of additional carbon. The horizontal distance is the cumulative
amount of storage offered at each price up to that year. The integral under the
curve up to the chosen level is the cost of continuing to protect that level in the
given year. Thefirst units are cheap to store but they get increasingly expensive as
forest on more valuable agricultural land is protected.

Figure 3: The supply curve for additional carbon for period 1986-1997
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4 Uncertainty: stochastic model
development

4.1 Sources of uncertainty in a carbon credit system

In a policy situation, the land-use baseline will be an out-of-sample
forecast and the carbon numbers will be estimates. We can quantify some of the
uncertainty in these and extend the deterministic simulations above to produce
predictive distributions of deforestation and carbon supply.

credits created = (actual forest area — predicted baseline forest area)
x estimated C per ha 4)

Aswe discussed earlier, carbon sequestration will be rewarded based on
the amount of actual forest retained, net of predicted baseline, times the estimated
carbon storage per hectare (Equation 4). Uncertainty in each of these terms will

result in uncertainty in environmental outcomes from the policy.

Here we focus on the second two terms: land-use baseline and carbon
per hectare. Environmental losses occur when the number of credits created
exceeds the actual amount of additional carbon that is stored as a result of the
policy. Environmental loss occurs if the baseline forest is underestimated, or the
amount of carbon that is actually stored per hectare is overestimated; each results

inareativerisein emissions.

environmental loss = credits created — true additional carbon 5)

41.1 Predicting deforestation out of sample

We apply the economic model with statistically estimated coefficients
to predict out-of-sample deforestation rates and thus forest stock using an iterative
process (see Equation 6). To predict deforestation, we need to predict values for
the independent variables (listed in Table 2) at 1+ for every land parcel in Costa
Rica. We predict a development path by fitting a curve to the time dummies
coefficients. It does not seem reasonable to suppose that the development process

simply stops. The prediction process is described in Appendix A. We can then
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move forward along this curve to get development predictions over time, i.e. a:(tﬂ) .

Percentage cleared,; is evaluated at the beginning of the prediction period.
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It is known for the first period of prediction, based on current forest, but
after that is updated based on the prediction of deforestation in the previous
period. “Returns’ is afunction of price, yield, and cost of production of acrop. An
accepted forecast for price is a product’s current price. We cannot predict crop-
specific technology change, thus cannot predict changes in production costs or
yields. Consequently, we assume in our deterministic modeling that returns stay

constant.

We can now evaluate the equation, for each land parcel, based on the

predicted values of the explanatory variables:

In[ﬁj = 0.065 x returns + (- 0.020 + 0.029 x (¢ +1))x dist

A

6)

+ 1.9 x percentage cleared ,, + 0.16 x percentage cleared le + 5”1

We solve for the hazard rate, /4,+; giving us the predicted deforestation
rate for the time period ¢+ /. We then repeat this process for period 7+2.

4.1.2 Errors in land-use baselines

Errors associated with the prediction of a land-use baseline are
unobservable; we are predicting an event that will never occur if thereis apolicy.
Uncertainty in baseline projections will arise from uncertainties in the estimation
of the model parameters, prediction of the driving variables of the model, and
model specification errors. The underlying sources of error in land-use baselines
are the complexity of human behavior and the large range of unobservable and
unpredictable factors that affect that behavior.

Deforestation pressure depends heavily on national-level economic,
political and even natural conditions. War, recession, hurricanes or pests in key
crops can have major impacts on the profitability of land clearing. On a more
mundane level, the rate of economic development depends on a wide range of
domestic policies and development in key economic and legal institutions.
Corruption and political instability can reduce the returns to investment

significantly.
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Foreign aid, such as for road building, can provide impetus for
development. These conditions can change dramatically over time and are almost
impossible to predict. They affect the common component of deforestation that

affects all parcels and do not average out across the country.

Changes in key international commodity prices, such as coffee or beef,
can be critical. These tend to be unpredictable—otherwise people would profit
from them in financial markets. They will affect some areas more than others and
create uncertainty in our “returns’ variable. Pfaff (2004) illustrates the effect on
our baseline predictions of one such “shock”, showing the impact on the predicted
baseline if the banana market collapsed. Even if average returns were known,
actual plot-level returns and responses to them would be highly variable. Our
empirical model primarily captures land user responses to measures of average
returns to different land uses in large aggregated areas, and to birds-eye distances
to markets. Actua agricultura returns on newly cleared land will vary
enormously depending on the specific characteristics of the plot, the technology
available at different points in time, and the farmer's access to capital to invest in
the plot. The transport costs of getting different products to market will vary
depending on road access and the crop type. Birds-eye distance is a weak proxy
for this. Even with the same transport costs, different farmers may have
differential access to the more valuable export markets because of marketing
systems. Even if we could estimate the actual farm-gate returns accurately,
different farmers will respond differently because of their age, their past
experience, their education, the security of their land tenure, their attitudes to
conservation and many other factors. Some of these sources of heterogeneity will

wash out over large areas but others will not.

4.1.3 Errors in estimates of carbon storage

The carbon density in forest in a system that offers rewards for carbon
storage will need to be estimated by field measurements or by model simulations
parameterized and validated with local field measurements. Thus uncertainty will
arise in estimating carbon density through sampling design, measurement, and

model simulations.
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Uncertainty is inherent in field measurements and laboratory analysis.
Random and/or systematic errors can be introduced in the measurements of tree
diameter at breast height (DBH), tree height, carbon content in plant tissue, and
wood density (Brown, 1997; Phillips et a, 2000). Errors in the application of
allometric equations, which are frequently used to estimate carbon density from
tree measurements (e.g. Diameter at breast height, height and wood density), can
contribute to the overall uncertainty as well (Keller et al, 2001; Brown, 1997;
Phillips et al, 2000). Another source of error in regional carbon estimates comes
from the selection of field sites (Smith 2002; Macdicken 1997; Phillips et a,
2000). Nevertheless, this error can be minimized with an adequate deployment of
sampling plots (Macdicken 1997).

Carbon stock estimates generated by models inevitably contain errors.
Major sources of error include an imperfect representation of the reality by the
model or the weakness of model structure, as well as errors contained in model
parameters and input data. Calibration and validation of ecosystem models have
suggested that certain model parameters vary in space and time. It is often
difficult to predict the spatial and temporal variations of parameters. Poor
predictions are likely to introduce errors in carbon estimates. Input data, such as
land cover, soil, and climate variables, aso contains various degrees of error,
which can potentially propagate to the carbon estimates through the modeling
system. To minimize the error in model simulations, it is crucia to have the model
calibrated and verified first.

4.1.4 Errors introduced by policy design

The most accurate carbon measurement would require fieldwork on
every plot by qualified, objective ecologists. This may work well when projects
are few and small but will probably be inordinately expensive relative to the value
of the credits when projects are large. Even with this level of effort, errors and
bias will still arise. Accurate measurement also risks non-transparency and
potential corruption because results cannot be easily replicated. Allowing project
organizers to do measurement invites bias. All these factors suggest that a wide-

scale, effective program needs to simplify carbon measurement and reward.

21



For example, we model a system where only one level of carbon
storage per hectare of mature forest is assumed for each life zone. The tradeoff is
that this introduces errors in carbon measurement. We do not assert that one level
per life zone is optimal. Further research needs to compare the costs of the

environmental losses we identify and the costs of more accurate measurement.

In addition, with the reward formulated as in Equation 3, we reward
only carbon stored in a forest. We are making an implicit assumption that all land
uses, soil types, and vegetation other than those in forests store zero carbon. This
introduces a bias in the integrity of environmental outcomes, we may be
rewarding more carbon storage than actually occurs. In fact, however, it appears
that very little carbon is stored in pasture—the main use of recently deforested
land in Costa Rica. The carbon that does remain tends to be in remnant trees that
are gradually harvested (personal communication with Judith Jobse and Boone
Kauffman). Allocating baseline carbon to al the potential land uses on a plot
could reduce the error in carbon credited. However, it would require more

understanding of the carbon processes in different land uses.

4.2 Quantification of uncertainty

We quantify the effects of uncertainty on environmental losses using
two approaches: first we introduce variation into the model by varying the
estimated and predicted variables and parameter values within confidence limits
in Monte Carlo simulations; and second we compare our predictions with out-of-

sample measurements.

We use both approaches within our economic model. We must always
use a Monte Carlo to assess uncertainty in supply and hence need to model
uncertainty in economic returns. For each sample, we vary the returns for each
crop each year using arandom walk that varies by crop to create returns paths that
vary by land parcel. We assume that the returns error distribution is normal with
standard deviation equal to the standard deviation of the changes in crop price
over time. We do not vary yield or production costs because we have no good way

to predict either the trend change or the uncertainty in that change.
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The use of a random walk means that shocks will propagate through
time in each sample. Uncertainty is also inherent in the estimated return
coefficient in our economic model. When the model was estimated using
regression analysis, the error distribution for each coefficient was also generated.
We repeatedly randomly draw the return coefficient based on its regression-
estimated mean and variance-covariance matrix, assuming normally distributed

errors.

When we use a Monte Carlo to study uncertainty in land-use baseline
forecasts we vary the returns variable and coefficient as above and also vary all
other coefficients. For the time dummy coefficients, we stochastically vary the
two estimated parameters in our national development function, using their
variance-covariance matrix, and solve for the third parameter so that the required

constraint is met.

Each perturbation of the model parameters will ater the land managers
clearance decisions, and thus lead to a different deforestation rate. In this way, we
generate predictive distributions of forest levels. This modeling generates the
confidence intervals around our supply simulations and land-use baseline

forecasts.

We aso quantify uncertainty in the baseline predictions using the
second approach, by comparing predictions with out-of-sample measurements.
These are the numbers presented in the results. We can do this because while in a
real policy a baseline projection will be unobservable, there was no policy in our
omitted period. Forecast errors were assessed during different periods, by omitting
the appropriate period, and in certain land parcels, by omitting those parcels
during model estimation. Our forecast forest error is the difference between actual
and predicted forest. This comparison leads to errors that fall within one standard
deviation of the errors that were predicted when we used only the Monte Carlo
approach, which suggests that our specification of economic model uncertainty is
not too bad.
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To quantify carbon uncertainty we use only the Monte Carlo approach.
True carbon is unobservable. We consider two sources of error in carbon density

estimations: errors in mean estimates of life zone carbon density, ¢,,, and errors
because of heterogeneity in carbon density within life zones, ¢,,. We define actual

carbon stored in a hectare of mature forest as:
c=c+e, +e&, 7
where ¢'is estimated carbon storage. By taking the mean of the above
equation, we define carbon bias:

£ =c-¢ 8)

where z,, isthe mean error, ¢ is the mean of the carbon estimates and

¢ isthe mean of actual carbon.

We use the carbon estimates generated by GEMS (see Table 1) as the
levels of carbon for the reward system, ¢, and assume that actual carbon varies
relative to this. To simulate carbon uncertainty we must estimate each of the
components in Equation 7. The variability within life zones was simulated by
randomly drawing &, from distributions empirically estimated from the GEMS
results (the variance of these data is shown in Column 2 in Table 1, see Liu and
Schimel 2004 for more detail). To include variability from the distribution of

mean estimates, we also need to know how ¢, is distributed. Because c is
unobservable, we cannot quantify the bias, &, (Equation 8). In this study, we

arbitrarily set the bias to be negative so actual carbon is systematically lower than

our estimates. We randomly draw &,, from alognormal distribution with &,, set

to be =10% of ¢ and standard deviation derived from variation in literature

estimations of carbon values (see Column 13 in Table 1).
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The combined standard deviations from both sources are listed in
Column 1 in. They range from 35% to 54% and on average are much larger than
the Houghton et al (1996) illustrative estimate of a 16.5% one-standard-deviation

range for uncertainty in emissions factors for land use activities.®

5 Environmental costs of uncertainty

In this section, we use our stochastic model to look at the effects of
uncertainty on the environmental implications of policies that aim to prevent
carbon loss through deforestation. In other words, we quantify the environmental

costs of uncertainty. Following Equation 6 we define environmental loss (EL) as.

EL =|F(r3)- F(0)|x &= [F(:T) - F(0)] xc 9)

carbon credits created total addifional carbon
where;
r  isthe carbon payment (US$ per tonne of carbon per year)
F(0) isactua basdline forest in hectares
F (0) is predicted basdline forest

F(rc) is the forest stock generated with annua carbon payments
based on the estimated carbon.

Environmental losses can be decomposed further into three terms that
represent the sources of that uncertainty: “wrong supply times carbon error”,
“baseline error” and “error interaction”. By rearranging Equation 9 we can see:

EL = [F(8)- FO)x[c —¢] + [F(0) - F(O)]xc + [F(0) - F(O)]x[F - ]10)

"wrong" supply timescarbon error baselineerror error interaction

® This number is based on an interpretation of the uncertainty information presented in Table A1-1
in Annex | of Houghton et al (1996).
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The first term in Equation 10, “wrong” supply times carbon error, is
environmental loss arising from incorrect carbon estimates that lead to
overpayment or underpayment of credits for additional forest. The more additional
forest is created, and the larger the carbon error is, the larger is the environmental
loss. Carbon error also influences the land-use decision in the economic model
when a carbon rental payment is introduced: higher carbon estimates lead to
higher carbon payments and more protection. A positive initial error in carbon
estimates is compounded by a positive land use response that means the error
affects more land. Even if carbon estimates are unbiased, environmental losses
occur on average. A positive bias in carbon estimates will exacerbate the

inappropriate land use response.

For example, suppose two ten-hectare plots are identical in al ways. In
particular, the farmer on each plans to clear two hectares (or equivalently have the
same probability of deforestation in the baseline). Their land contains 100 tonnes
carbon per hectare. When the policy is introduced, because of errors in carbon
estimation, the farmer on one plot is offered a carbon payment for more carbon
that his land really contains, 110 tonnes per hectare, while the farmer on the other
plot is offered less, 90 tonnes per hectare. If they both responded identically to the
carbon payment and reduced their clearing to one hectare, each would receive an
incorrect carbon payment but the carbon credits given would be correct on
average; additional carbon protected would be equal to the carbon credits created.
Suppose, however, that the first farmer, with the high payment, decides not to
clear any land while the other, with the lower payment, decides to ignore the
potential payment and continue to clear two hectares. The additional forest will
still be two hectares but the carbon payment will be higher than it should. Even an

unbiased carbon payment can lead to environmental |osses.

The second term in Equation 10, baseline error, is the environmental
loss that arises solely from land-use baseline errors. Thisis the combined effect of
uncertainty in al the economic and ecologica variables that influence a land
manager’s clearing decision when no carbon payment isin place. Thistermis not
affected by carbon measurement errors as no carbon price is paid in the baseline

case.
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The third term, error interaction, is the interaction of the two errors. If
both land use and carbon errors were unbiased, the second term should be small
when aggregated to the national level, as we would not expect the baseline error
and the carbon error to be correlated. However, our errors will very likely have a
significant bias, so this term will not be zero. With the introduction of the uniform
carbon bias into our model, the contribution of the error interaction term to EL
will simply be 10% of the baseline error.

51 Simulating environmental losses

In this section, we consider three scenarios and use out-of-sample
observed forest cover and our integrated stochastic model in Costa Rica to
estimate environmental losses. First, we consider the potentia environmental
losses in the year 2000, and their decomposition, assuming a policy had been
implemented in Costa Rica in 1997. This scenario will approximately represent
behavior during the developed phase of Costa Rica and give us some insight into

the impacts of implementing a policy now.

Second, we investigate our cross-sectional predictive power. If we have
accurate measures of the land-use paths on some land parcels over a period, how
well can we estimate the behavior of other parcels? With this experiment, we can
gain some understanding of the usefulness of using control plots as predictors for
the baseline deforestation that would have occurred in other plots where the credit
system has been adopted. If control plots work well, a system that uses them
might involve much smaller environmental losses. We simulate this by first
estimating the model using a 90% random sample of &l the land parcels, stratified
across life zones, for al periods. We then predict out-of-sample on the other 10%
of land parcels from 1997 to 2000.*

4 This choice of predicting land use for 10% of the land parcelsis completely arbitrary.
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Third, we estimate the EL for the period 1986-1997, creating a
hypothetical “other country” using out-of-sample data from Costa Rica, and
compare it to the predictions from our model. For both the first and third
scenarios, we produce our baseline simulations from an economic model
estimated excluding the time period in which we simulate (columns Il and 111 in

Table 2) so they are true predictions.

5.2 Results
Following Equation 9, EL is broken down into carbon credits created

and total additional carbon. We present our estimates of environmenta loss in
Table 3 as a percentage of the “baseline carbon loss’. Baseline carbon loss
between periods 0 and T is defined as (Fy(0) — Fr(0))c. Between 1986 and 1997,
19% of forest was lost, and between 1997 and 2000 around 0.5% of forest was
lost. We choose to use this for scaling because it is unaffected by the simulations.
Another obvious comparison would be with the level of true additional carbon.
However, this changes with the carbon rental price and with the carbon error. All
the results presented here are based on a carbon rental price of (1997)US$1 and
are averaged over 10,000 samples.
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Table 3: Environmental losses, carbon credits created, and total additional
carbon as % of baseline carbon loss

Scenarios A B C

1997-2000° Cross-section 1986-1997’

1997-2000, one
10% sample®

Environmental losses (EL) 39.9 5.01 -31.68

Broken down using Equation 9

Carbon credits created 41.1 6.23 -30.48

Total additional carbon 1.20 1.22 1.20

In each scenario, a US$1 carbon payment would save about 1.2% of the
carbon that would have been lost without a policy. In Costa Rica, this equates to
about 360,000 tonnes/year for the period 1986-1997 and only about 9,500
tonnes/year of carbon for the period 1997—2000.

® This is the simulated EL in year 2000 after three years of a $1 carbon reward. To estimate the
supply that would have occurred with areward during the 1999 period, we simulate deforestation
in-sample based on a regression model estimated using data from all periods (1932, 1971, 1992,
and 1999; we omit 1982 because of spurious returns data from that period). Our development
curve is constrained to equal the 1999 dummy—an approximation of development in that period.
Our basdline predictions for this period are based on out-of-sample simulations, with our
regression equation estimated off the 1933, 1972 and 1993 periods and with our development
curve constrained to equal the 1992 time dummy coefficient—a prediction of development in that
period. We produce predictive distributions by randomly varying the regression coefficient for
farm-gate returns and coefficients of the development curve. We compare our baseline predictions
with “actual” baselines (in-sample baseline estimations, which approximately equal actua
measurements).

We estimated our regression model using a dataset that at each point in time includes any parcel of
land that was forested. However, we only include land parcels that were in forest in the beginning
of the simulation period for comparing our simulations out-of-sample, as our model only predicts
deforestation, not reforestation.

® Thisis the EL for 2000 for a 10% sample of district-life zones. We calculate it as described in
note 5, except we predict out-of-sample for only 10% of the life zones (the regression equation is
estimated using the other 90%).

"Thisisthe EL in 1997 after 11 years of a$1 carbon reward. We calculate it as described in note 5
except we predict out-of-sample for the 1992 period, the in-sample development curve constrained
to equal the 1992 time dummy coefficient, and the out-of-sample development curve constrained
to equa the 1972 time dummy coefficient.
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However, in each scenario the number of credits is much larger than the
additional carbon. In the first experiment, 1997—2000, the number of credits
created is nearly 40 times larger than the true additional carbon. This results in
large environmental losses: 39.9% of the baseline carbon loss. For the 10%
sample for the 1997—2000 period, the overall environmental loss was much
smaller, though it was still four times as large as the total additional carbon
gained. For the development period, 1986-1997, the number of credits created is

negative. The error is till large, 32%, but is an environmental gain. The negative

credits arise because the baseline prediction, F (0), is significantly higher than the
actual forest baseline.

What is driving these large errors? Understanding this may help us
develop research strategies to reduce them and design policies to minimize their
effects.

5.2.1 Decomposition of total error

Table 4 shows the decomposition of environmental losses by source for
our three different experiments. This allows us to explore the importance of
different sources of uncertainty. In all three cases, the baseline error swamps the
other two errors. In the national simulations, the baseline error aone is about 30—
40 times larger in absolute value than the additiona carbon supplied with a US$1
rental price. In the first two scenarios, the baseline error contributes to
environmental loss. In the third scenario, the baseline error contributes to

environmental gains.
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Table 4: EL decomposition (using Equation 10)

Scenarios A B C
1997-2000° 1997-2000, one 10%  1986-1997%°
sample’
Mean % of Mean % of Mean % of
Mean % of EL Mean % of EL Mean % of EL
baseline loss baseline loss baseline loss
“Wrong” supply 0.8 0.3 5.7 0.3 0.9 0.30
x carbon error
91.9 36.7 87.8 4.4 —93.1 -29.5
Baseline error
. ] 7.3 2.9 6.4 0.3 —7.8 2.5
Error interaction
100 36.7 100 5.01 —100 -31.68

The baseline error and magnitude of environmental 1oss is much smaller
in the case of the 10% sample. By identifying the national development trend
from other areas, the baseline errors are confined to spatial extrapolation. In the
case of the 10% sample, if we repeatedly drew samples, on average there would
be no baseline error. There would still be supply errors, and because of the carbon
bias the error interaction would still be positive on average. This suggests that the
use of control plots in this case might have been a relatively good indicator for
baseline behavior.

This inference probably depends on two factors. First, a small
percentage of the country (10% of forest parcels) was exposed to the carbon
reward. The policy-induced changes in these areas probably would not have large
effects on development that would spill over to other areas. Thus other areas
might be reasonably assumed to be at their true baseline—i.e. the control plots are
a true control. If a large part of the country were involved in projects, the

remaining areawould no longer be avalid control.

8 Thisisthe EL for 2000, based on a simulation run forward from 1997. See note 5 for details.
® Thisisthe EL for 2000 for a 10% sample of district-life zones. See note 6 for details.
0 Thisisthe EL for 1997, based on asimulation run forward from 1986. See note 7 for details.

31



Second, the sample chosen was random, so was comparable to the non-
sampled area. Rea projects that cover part of the country are unlikely to be
randomly located. Controls might need to be strategically chosen to closely match

projects.

In contrast the effects of errors in carbon measurement seem relatively
minor. Through the “wrong” supply times carbon error term, the carbon error
accounts for only about 1% of the environmental loss in the national scenarios (A
and C). It accounts for alarger percentage in the 10% sample because the baseline
error is smaller in that case, but error is a similar magnitude as a percentage of
baseline carbon loss in all three cases. Because we set the carbon bias to be
consistently +10% of mean carbon, the error interaction term is always 10% of the

baseline error. Carbon bias exacerbates the land-use baseline errors.

5.2.2 Sensitivity of environmental losses to specification of errors and
scenarios

In the previous section, we found that the errors in estimating the
baseline land use dominated any errors in carbon measurement. Here we explore
whether this is a robust result or a result of specific model assumptions. We also
consider what this means for the importance of reducing the errors in carbon

storage estimates, which is where ecologists have areal potential contribution.

Are land-use baseline errors likely to be this large? In the two national
scenarios we overestimate or underestimate baseline forest loss by between 30 and
40%. Predicting forward from 1997 for three years we predicted 0.68%
cumulative deforestation where it was only 0.5%. Using our modeled uncertainty,
these draws fall within one standard deviation of our predicted land-use baseline.
This suggests that our specification of land-use uncertainty may be a reasonable
representation. It also suggests that land-use baseline errors could be much larger
still even when predicted on a broad spatial scale with relatively good data. The
uncertainty in our model is likely to be close to a lower bound on uncertainty in

real projects.
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It is possible that the errors in baselines are much larger in particular
years than over along period. Over 50 years it might be reasonable to predict that
a country will reach an agricultural equilibrium where all good land is developed
but poor quality land is untouched, regenerating or replanted. This long-run
equilibrium might be easier to predict than the timing of change. Thus overly
generous baselines in some years might be offset by less generous ones in others,

leading to lower cumulative errorsin along-term policy.

Carbon errors might be much greater than our model suggests. The
land-use baselines are compared with true out-of-sample data. In contrast, the
specification of uncertainty in carbon measurement is largely based on educated
guesses. Comparing literature estimates, the range is very large in some cases. For
example, in tropical wet forest Helmer and Brown (1998) predict 259 tonnes per
ha while Brown and Lugo (1982) predict 139 tonnes. Bias could be as large as
250%.

The land-use baseline errors interact with the carbon errors. If the bias
in carbon measurement was +100%, the interaction would magnify the baseline
error and double the overall error: i.e. from 37% of potential carbon loss in the
first scenario (baseline error only) to 72%. Thus, carbon measurement is

particularly important where there are land-use baseline errors.

Carbon errors also have effects that are independent of baseline errors.
Suppose the policy was defined in such a way that the baseline was not important.
For example, in developed countries, the Kyoto “baseline” for land use change is
set fairly arbitrarily. The rules in Articles 3.3 and 3.4 implicitly define a
“baseling” relative to which gains can be identified and rewarded. The errors in
baselines for developing countries might be no larger than the errors in these
Kyoto “baselines’. If developing countries moved toward negotiated baselines at a
regional or national level, there would be a one-off impact on environmental
integrity. This could be offset by setting stricter targets elsewhere, either in the
same country or in other countries. After that, the baseline is no longer an issue.

Carbon measurement is always an issue.
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In Table 4 we showed that with a carbon payment of US$1 and carbon
bias of 10%, carbon measurement error led to losses of 0.3% of baseline carbon
loss. This trandlates to a roughly 25% environmental loss on each credit created.
This is roughly split between the direct effect of the bias on every unit of carbon
protected and the effect of variance in carbon estimates combined with the land
use response to the varying carbon payments. If, in contrast, the carbon payment
was US$10 and the bias was 100%, the carbon measurement error would be much
more significant. A percentage increase in carbon error will have the same effect
on supply as the same percentage increase in international price because they
operate through the same process—i.e. by increasing carbon rewards. The 100%
bias would raise the effective payment to US$20. Additional carbon at US$20
would be roughly 24% of baseline carbon (assuming linearity in supply) and the
direct environmental loss resulting from the bias would also be around 24%, with

at least a100% environmenta loss on each credit.

In contrast, land-use baseline errors are “lump sum”: they occur
independent of the magnitude of carbon rental price and the estimates of carbon.
Overdl, baseline errors are likely to dominate if carbon prices are low. At low
carbon prices, carbon errors would matter only because of their interaction with
land-use baseline errors. If prices are high and carbon bias and variance are large,

however, carbon errors could lead to significant environmental losses.

Aswell as the effects on the environmental integrity of the program, the
behavioral effect of carbon errors means that they have implications for the
efficiency of the policy. In areas where we overestimate carbon per hectare, more
forest will be protected than is efficient. In other areas, underestimation will lead
to carbon-rich forest being inefficiently deforested. Even if the same area of forest
is protected overal, if the carbon rewards are wrong, the “wrong” forest will be
protected. This poor targeting of rewards raises the overal cost of achieving the

environmental goal. Incorrect baselines have no effect on efficiency.



In summary, carbon errors may be larger than they appear. They are
most significant for environmental loss when they interact with large land-use
baseline errors and when carbon prices are high. Carbon errors cause inefficiency
and raise the cost of mitigation. They will continue to be important even if
developing countries move toward having national targets as developed countries

do. Ecologists can reduce the level of carbon error.

5.2.3 Contribution of uncertainty in different life zones

Here we consider how and why the effects of carbon errors vary across
ecosystems (life zones). This could help target future ecological research to
reduce this source of uncertainty, and therefore environmental losses, more
effectively. It can also suggest how accurately carbon rewards should be defined

in each life zone.

The first column in Table 5 shows the modeled coefficient of variation
in carbon in each life zone. This combines heterogeneity within life zones with
variance in the estimates provided by field studies from the literature. This
uncertainty can be reduced either by better estimates of the mean for the life zone,
or through more carefully targeted carbon rewards that take heterogeneity within

the life zone into account.

The life zones with the greatest overall uncertainty in carbon
measurement are premontane moist forest and montane rain forest. Looking back
to Table 1 we can see that the variance in the montane rain life zone is heavily
driven by uncertainty in field studies. Montane wet aso has high uncertainty in
field studies. The high level of uncertainty might make this seem important to
study. In contrast, premontane moist forest is in areas with highly heterogeneous

conditions, so it might require a more differentiated policy.

Not al errors in estimates of carbon storage are equally important,
however. If thereis no forest in alife zone, no forest can be protected—so it does
not matter if we do not know how much carbon could have been protected.

Studying the prevalent forest types makes sense.
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In Costa Rica, this suggests emphasis on tropical wet forest,
premontane wet forest and tropical moist forest (Table 5, Column 3). Although
montane rain forest is alife zone with considerable ecological uncertainty, thereis
little forest left, so for rewarding avoided deforestation in order to reduce carbon

releaseit isrelatively unimportant.

In addition, however, some life zones may have forests that cover large
areas but are not at risk. Some life zones are unprofitable for agriculture. Aslong
as the forest is not clear cut for forestry or inefficiently cleared by desperate
peasants it may never be cleared. Measuring carbon accurately in these areas may

also be less important.

Column 4 of Table 5 indicates the environmental losses per hectare of
forest in each life zone relative to the average loss.™ This measure combines the
risk that land will be cleared, the level of carbon storage and the uncertainty in

carbon measurement. These results are derived from our model. For this analysis,
we set baseline errors equal to zero. That is, we set F(0) = F(O) in Equation 10.

As before, the bias is assumed to be constant at 10% of the mean, the annua

carbon payment is US$1 and results are averaged over 10,000 samples.

Tropical moist forest has high carbon uncertainty and constitutes a
reasonable fraction of remaining forest. However, it faces a low risk of clearing
and therefore low environmental losses when there are carbon errors. In contrast,
although tropical wet forest has quite low carbon uncertainty, this forest is at high
risk because it is in areas that are suitable for agriculture, so these errors lead to

high environmental losses.

1 All the life zones have a positive EL, due to our uniform positive 10% bias.
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Table 5: Effects of errors on environmental losses by life zone (1997-2000)

Life zone Carbon standard % 1997 CR ELperhaof EL from life
3 - 0, 0,
deviation as % of forest forest inlifezone ZON€ as Yo of
mean carbon¥® total EL
average EL perha
1 2 3) ) &)
Premontane moist
forest 51% 5.8% 1.3 7.5%
Lower montane
moist forest 42% 0.2% 2.7 0.6%
Tropical moist 46% 17.1% 0.5 8.4%
Premontane wet
forest 35% 19.1% 0.8 14.9%
Lower montane wet
forest 37% 2.8% 1.0 2.9%
Montane wet forest 46% 0.04% 18 0.1%
Tropica wet 36% 31.0% 1.3 41.8%
Tropical dry 46% 2.6% 0.2 0.5%
Premontanerain
forest 33% 10.4% 0.7 7.6%
Lower montanerain
forest 47% 8.3% 1.3 10.4%
Montane rain forest 54% 2.6% 2.0 5.3%
100.0% 100.0%

*This was estimated with both within-GEM S and between-literature-mean-
estimates standard deviations being perturbed.

Combining all these effects in the final column, we find that tropical
wet forest, which has both the largest amount of forest and the greatest
environmental loss per hectare, contributes most to the total environmental losses.

It contributes nearly half of al lossesin our model.
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5] Conclusion

We tentatively conclude that, if other countries are like Costa Rica, it
might be costly for avoided deforestation to contribute as much to climate
mitigation as some |PCC estimates suggest. We more confidently assert that |and-
use baselines are extremely difficult to estimate and that the errors they create
could have significant environmental impacts if the scale of avoided deforestation
projects is large. We do not necessarily believe that this means we should not
include avoided deforestation in Kyoto or a similar agreement, just that relying on
project mechanisms that require baseline estimates might not be a good idea
Estimating baselines for any economic activity is extremely hard and possibly
baselines should be set once and for al for large geographic areas, regions or
countries, as they are for developed countries, through negotiation. Analyses such
as ours, which attempts to predict deforestation, can be useful inputs to these

negotiations.

Although ecological uncertainty appears to be on a smaller scale than
land use uncertainty, we find that it could be very significant if carbon prices are
high or if the true carbon bias is higher than we assume. Also, while baseline
uncertainty disappears in an agreement with fixed targets, ecological uncertainty

cannot be completely avoided through policy design.

Appropriate targeting of future ecological research aimed at reducing
uncertainty should take into account the relative areas of different types of forest,
the level of threat those forests face (or the potential for reforestation if thisis the
interest), and the existing level of ecological uncertainty. We find that in the case
of Costa Rica, this suggests further effort in the tropical wet life zone. Of course,
the likely progress in the research should also be taken into account in setting
priorities. It may be easier to reduce uncertainty in relatively understudied

ecosystems.
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We believe that three areas provide the most potential for reducing the
error in carbon stock estimation over large areas. The first area is the allometric
equations used to calculate carbon stock from tree characteristics. These should be
verified for a specific area, improved if necessary, and applied to only similar
environmental and stand conditions. Correct application of these equations
requires a reasonable stratification of the area of interest using one or multiple
environmental features (Macdicken, 1997; Kauffman et al, 2002). To ensure that a
general allometric equation is not biased for a specific stratum, verification of the
equation might be needed in a given area by sampling and weighing some trees,
especially large ones (Brown et a, 2000), growing in the full range of conditions
within the stratum.

The second area that might reduce the error in carbon stock estimates
significantly is the installation of field plots. Various options exist for sampling
design (Macdicken, 1997; Smith, 2002; Brown et al, 2000). To avoid subjectivity,
the locations of field plots should be predetermined before going to the field
according to land cover maps. Deploying plots along features such as roads

should be avoided to minimize the introduction of potential errors.

Finally, models, after calibration and validation, should be used to
simulate carbon dynamics in space and time, especialy when the study area is
highly heterogeneous and the cost of establishing many permanent plots for
measuring and monitoring carbon changes is prohibitive. Validated models are
very useful for exploring carbon sequestration potentials under various physical,
social, economic, and policy scenarios. Well-established plot-scale models have
been extensively used for scaling up carbon dynamics from sites to regions by
incorporating detailed spatially-explicit information on climate, soil and land
cover and land use change (Liu and Schimel, 2004). However, the applicability of
ecosystem models to supporting the establishment of carbon sequestration
projects has not been rigorously evaluated so far. Given that many carbon
sequestration projects have been set up amost solely relying on field
measurements of carbon change on permanent plots, an add-on evaluation of

some models on characterizing carbon dynamics would be useful.
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If successful, the overhead cost for setting up carbon sequestration
projects could be reduced and more management options could be explored using

modeling approaches before implementation (Kerr et al, 2003).

Research cannot reduce within-life-zone variability but it does help us
understand the spatial variability of carbon stocks. If the variability is very large
in life zones that create a lot of environmental losses, it might be worth targeting
carbon rewards more accurately by having different rewards within life zones. For
example, if life zones can be further stratified by topography, and this
stratification reduces within-stratum uncertainty, carbon rewards could vary by

life zone and topography.

Our anaysis has looked at one small country, only a avoided
deforestation and only at the environmental losses from one potentia policy. We
have aso considered only aboveground biomass and one characterization of the
landscape. We believe future research could productively extend this research
using either our model or similar ones to explore: the robustness of the results; the
effects of uncertainty on reforestation; and the impacts of changing policy
design—for example, increasing the accuracy of rewards but also increasing the
costs of measuring carbon—and incorporating belowground biomass and different
characterizations of landscape. This potential research stream would help the
global community take optimal advantage of the biological mitigation
opportunities in tropica forests without creating unacceptable global

environmental risks.



References

Brown, S. 1997. “Estimating biomass and biomass change of tropical forests: A primer,” United
Nations Food and Agriculture Agency (FAO) Forestry Paper 134, FAO, Rome, Italy.

Brown, S., M. Burnham, M. Delaney, R. Vaca, M. Powell and A. Moreno. 2000. “Issues and
challenges for forest-based carbon-offset projects: A case study of the Noel Kempff
Climate Action Project in Bolivia,” Mitigation and Adaptation Strategies for Global
Change, 5, pp. 99-121.

Brown, S, A. J. R. Gillespieand A. E. Lugo. 1989. “Biomass estimation methods for tropica
forests with applications to forest inventory data,” Forest Science, 35, pp. 881-902.

Brown, S, and A. E. Lugo. 1982. “The storage and production of organic matter in tropical forests
and their rolein the global carbon cycle,” Biotropica, 14, pp. 161-187.

Brown, S., J. Sathaye, M. Cannell, and P. E. Kauppi. 1996. “Management of forests for mitigation
of greenhouse gas emissions,” in Climate change 1995—impacts, adaptations and
mitigation of climate change: Scientific-technical analyses: Contribution of Working
Group 11 to the Second Assessment Report of the Intergovernmental Panel on Climate
Change. R.T. Watson, M.C. Zinyowera, R.H. Moss, and D.J. Dokken (Eds).
Cambridge, UK: Cambridge University Press, pp. 773-797.

Chomitz, K. M. and D. A. Gray. 1996. "Roads, land use and deforestation: A spatial model applied
to Belize," World Bank Economic Review, 10:3, pp. 487-512.

DeAngdlis, D. L., R. H. Gardner and H. H. Shugart. 1981. “Productivity of forest ecosystems
studied during the IBP: The woodlands data set,” in Dynamic properties of forest
ecosystems. D.E. Reichle (Ed.). Cambridge, UK: Cambridge University Press,
pp. 567-672.

Delaney, M., S. Brown, A. E. Lugo, A. Torres-Lezama and N. B. Quintero. 1997. “The
distribution of organic carbon in major components of forestslocated in five life zones
of Venezuela,” Journal of Tropical Ecology, 13, pp. 697—707.

Fehse, J.; C. Paladines, A. Kooijman, J. Sevink, R. Hofstede and N. Aguirre. 2002. “High altitude
tropical secondary forests: A competitive carbon sink?’ Forest Ecology and
Management, 163, pp. 9-25.

Helmer, E. H. and S. Brown. 1998. “Gradient analysis of biomassin Costa Ricaand afirst
estimate of country-wide emissions of greenhouse gases from biomass burning,” in
Ecology of tropical development: The myth of sustainable development in Costa Rica.
C. A .S Hall (Ed.). New York: Academic Press.

Holdridge, L. R. 1967. “Life Zone Ecology,” San Jose, Costa Rica: Tropical Science Center.

Houghton, J.T., L. G. MeiraFilho, B. Lim, K. Treanton, |. Mamaty, Y. Bonduki,
D. J. Griggsand B. A. Callender (Eds). 1996. Revised 1996 IPCC Guidelines for

National Greenhouse Gas Inventories: Reporting Instructions. Paris.
IPCC/OECD/IEA.

Kauffman, Boone, R. Flint Hughes and Chris Heider. 2004. “Dynamics of C and nutrient pools
associated with land conversion and abandonment in neotropical landscapes.”
(Inreview for Ecological Applications Invited Feature.)

Kauppi, P. and R. Sedjo. 2001. “Technical and economic potential of options to enhance, maintain

and manage biological carbon reservoirs and geo-engineering,” in IPCC Third
Assessment Report. Cambridge, UK: Cambridge University Press.

41



Keller, M., M. Palace and G. Hurtt. 2001. “Biomass estimation in the Tapajos National Forest,
Brazil: Examination of sampling and allometric uncertainties,” Forest Ecology and
Management, 154, pp. 371-382.

Kerr, Suzi. 2003. "Efficient contracts for carbon credits from reforestation projects,” Motu
Working Paper 03-12, Motu Economic and Public Policy Research, Wellington.

Kerr, Suzi, Shuguang Liu, Alex Pfaff and R. Flint Hughes. 2003. "' Carbon dynamics and land-use
choices: building a regional-scale multidisciplinary model," Journal of Environmental
Management, 69:1, pp. 25-37.

Kerr, Suzi, Alex Pfaff and Arturo Sanchez. 2004. “ Deforestation and development: Evidence from
CostaRica.” Manuscript, Motu Economic and Public Policy Research.

Liu, Shuguang, M. Kaire, E. Wood, O. Diallo and L. Tieszen. 2004a. “Impacts of land use and
climate change on carbon dynamicsin south-central Senegal,” Journal of Arid
Environments (in press).

Liu, Shuguang, Thomas R. Loveland and Rachel M. Kurtz. 2004b. “ Contemporary carbon
dynamicsin terrestrial ecosystemsin the Southeastern Plains of the United States,”
Environmental Management, Springer-Verlag, New Y ork,

LLC. DOI: 10.1007/s00267-003-9152-z.

Liu, Shuguang, William A. Reiners, Michael Keller and David S. Schimel. 1999. “Model
simulation of changesin N,O and NO emissions with conversion of tropical
rainforests to pastures in the Costa Rican Atlantic Zone,” Global Biogeochemical
Cycles, 13, pp. 663-677.

Liu, Shuguang, William A. Reiners, Michael Keller and David S. Schimel. 2000. “ Simulation of
nitrous oxide and nitric oxide emissions from tropical moist primary forestsin the
CostaRican Atlantic Zone,” Environmental Modeling and Sofiware, 15, pp. 727—743.

Liu, Shuguang. and David S. Schimel. 2004. “Upscaling carbon stocks and fluxes from sitesto
regions. Current state of the art and challengesin the future.” (In review for
Ecological Applications Invited Feature.)

Macdicken, Kenneth. G. 1997. “Project specific monitoring and verification: State of the art and
challenges,” Mitigation and Adaptation Strategies for Global Change, 2, pp. 191-202.

Ministerio del Ambientey Energia (MINAE). (1997). “National proposal for the territorial and
financia consolidation of Costa Rican national parks and biological reserves,” United
States Institute for Joint Implementation (USIJI) Project Proposal. Costa Rica:
MINAE.

Niles, J. and R. Schwarze. 2000. “Long-term forest sector emission reductions under the Kyoto
Protocol’s Article 12,” in International Energy Agency (IEA) Bioenergy Task 25,
Proceedings of the Workshop on Bioenergy for Mitigation of CO, Emissions: The
power, transportation, and industrial sectors, 27-30 September 1999. B.
Schlamadinger and K. Raobertson (Eds). Graz, Austria: Medienfabrik Graz,
pp. 145-153.

Parton, W. J., David S. Schimel, C. V. Coleand D. S. Ojima. 1987. “Analysis of factors
controlling soil organic matter levelsin Great Plains grasslands,” Soil Science Society
of America Journal, 51 pp. 1173-1179.

Pfaff, Alexander S.P. 1999. “What drives deforestation in the Brazilian Amazon?’ Journal of
Environmental Economics and Management, 37, pp. 26-43.

42



Pfaff, Alexander S.P. 2004. “What would have happened? Reviewing and improving estimated
baselines for tropical forests and sequestered carbon.” (In review for Ecological
Applications Invited Feature.)

Phillips, D. L., S. L. Brown, P. E. Shroeder and R. A. Birdsey. 2000. “ Toward error analysis of
large-scale forest carbon budgets,” Global Ecology and Biogeography, 9,
pp. 305-313.

Reiners, William A., Shuguang Liu, K. G. Gerow, Michael Keller and David S. Schimel. 2002.
“Historical and future land use effects on N,O and NO emissions using an ensemble
modeling approach: Costa Rica' s Caribbean lowlands as an example.” Global
Biogeochemical Cycles, 16, 1068, DOI: 10.1029/2001GB001437.

Rennhack, Robert, José Bailén, Sergio Martin and Alessandro Giustiniani. 2002. “Costa Rica:
Selected issues,” International Monetary Fund (IMF) Country Report No 02/89,
Washington, DC: IMF.

Schimel, D. S, P. Ciasis, P. Peylin, B. H. Braswell, M. J. Apps, D. Baker, A. Bondeau, J.
Canadell, G. Churkina, W. Cramer, A. S. Denning, C. B. Field, P. Friedlingstein, C.
Goodae, M. Heimann, R. A. Houghton, J. M. Mélillo, B. Moore l1l, D. Murdiyarso, I.
Noble, S. W. Pacala, |. C. Prentice, M. R. Raupach, P. J. Rayner, R. J. Scholes, W. L.
Steffen, C. Wirth, J. |. House, K. A. Hibbard, and P. Bousquet. 2001. “Recent patterns
and mechanisms of carbon exchange by terrestrial ecosystems,” Nature, 414,
pp. 169-172.

Schimel, David S., William J. Parton, W. Pulliam, B. H. Braswell, R. McKeown and D. S. Ojima.
1996. “Climate and nitrogen controls on the geography and timescales of terrestria
biogeochemical cycling,” Global Biogeochemical Cycles, 10, pp. 677-692.

Smith, W.B. 2002. “Forest inventory and analysis: A national inventory and monitoring program,”
Environmental Pollution, 116, pp. S233-S242.

Tos, Joseph. A., Jr. 1997. “An ecological model for the prediction of carbon offsets by terrestrial

biota,” Occasional Paper Series of the Tropical Science Center, No.17, Centro
Cientifico Tropical, San Jose, Costa Rica.

43



Appendix A: Fitting the development curve
We first take the mean coefficients of our four time dummies, ¢,, and

transform them into their hazard form:

o
e 1
h, = 11)
! % +1

These are the hazard of deforestation for each time-period on a land
parcel when all spatia variation has been controlled for; we show these and the
actual deforestation rate in Figure A.1 below.' To fit a curve to these points, we
must first decide on an appropriate functiona form. The four data points in the
figure are consistent with the shape of a stretched reverse-S, with two periods of
relatively stable deforestation rates connected by a short sharp change period. This
shift could be thought of as the country moving from an undeveloped phase into a
developed phase. Because of this shape, and the need to have degrees of freedom

greater than zero, we choose a double exponential function to fit the points.*®

12 The deforestation rates are annualized rates, plotted at the midpoints of the periods 1899-1963,
19641979, 1986-1997, and 1998-2000 (1932, 1971, 1992, 1999). We omit 1979-1984 because
of spurious returns data from that period.

3 The function fitted is a double-exponential survival function. The double exponential hazard is
given by:
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where ¢ is time and p;, p,, and p; are the function parameters (p; is the displacement of the
development period, p, the spread of the development period, and p; the scale). We fit p; and p,

S
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using a quasi constraining p; so that 4, is equal to the transformed mean coefficient, #,, at the
initial forecast period. That is:
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We fit the function to the vector, #,, (shown by the black line in Figure

A.1) and then transform 4, back to &5, .14

Figure A.1l: Deforestation rate and development curve
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The fitted curve has a coefficient of determination, or R? of 0.999.
However, how well the curve fits national development is highly uncertain. There
is no explicit theoretical basis for choosing this curve; we are only applying our
theoretical expectations about the first and second derivatives of deforestation

over timein Costa Ricato choose a functional form for extrapolation.

a 1
* The function to transform hazards into their log formis: &, = IOQ{—A} :
h

t
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Appendix B: Estimating supply

To give us the best estimate of supply during the relevant period, we
simulate forest supply, F(rc ), relative to actual baseline forest, F(0). We predict
supply using an in-sample regression, constraining the development function to
equal the time dummy that covers the period in which we are evaluating the EL.
We then calculate our policy supply as usual. This method eliminates error in our
supply due to incorrect baseline estimates, leaving only the error in estimating

|and-use choice with areward.
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