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Abstract 
Tropical forests are estimated to release approximately 1.7 PgC per year 

as a result of deforestation. Avoiding tropical deforestation could potentially play 

a significant role in carbon mitigation over the next 50 years if not longer. Many 

policymakers and negotiators are skeptical of our ability to reduce deforestation 

effectively. They fear that if credits for avoided deforestation are allowed to 

replace fossil fuel emission reductions for compliance with Kyoto, the 

environment will suffer because the credits will not reflect truly additional carbon 

storage. This paper considers the nature of the uncertainties involved in estimating 

carbon stocks and predicting deforestation. We build an empirically based 

stochastic model that combines data from field ecology, geographical information 

system (GIS) data from satellite imagery, economic analysis and ecological 

process modeling to simulate the effects of these uncertainties on the 

environmental integrity of credits for avoided deforestation. We find that land use 

change, and hence additionality of carbon, is extremely hard to predict accurately 

and errors in the numbers of credits given for avoiding deforestation are likely to 

be very large. We also find that errors in estimation of carbon storage could be 

large and could have significant impacts. We find that in Costa Rica, nearly 42% 

of all the loss of environmental integrity that would arise from poor carbon 

estimates arises in one life zone, tropical wet. This suggests that research effort 

might be focused in this life zone. 
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1 Introduction 
Tropical forests are estimated to release approximately 1.7 PgC per year 

as a result of deforestation. In contrast, global fossil fuel emissions are around 6.4 

PgC (Schimel et al, 2001). Tropical forests have a significant impact on 

atmospheric CO2 concentrations and, with appropriate policies that aim to reduce 

deforestation and encourage reforestation, they could be used to retain or 

sequester a significant amount of carbon. Niles and Schwarze (2000) and the 

IPCC (Brown et al, 1996) suggest respectively that 0.16 and 0.28 PgC per year 

could be saved through prevention of tropical deforestation. Each of these 

assessments assumes that tropical deforestation could be reduced by around 15%. 

The IPCC Third Assessment Report (Kauppi and Sedjo, 2001) confirmed the 

Second Assessment Report (Brown et al, 1996) by estimating that biological 

mitigation as a whole (afforestation, reforestation, preventing deforestation, and 

forest management) could offset 12–15% of all business-as-usual fossil fuel 

emissions from 2000–2050. To put this in context, under the Kyoto Protocol, 

Annex I countries face limits on their emissions that are estimated to reduce 

global greenhouse gas emissions in 2010, relative to what they would have been, 

by around 0.29 PgC equivalent per year, or 5.3% of global emissions.1 Thus, 

avoiding tropical deforestation could potentially play a significant role in carbon 

mitigation over the next 50 years if not longer. 

Even if avoiding deforestation is actually able to deliver much smaller 

gains and we progressively tighten climate mitigation targets so that avoiding 

deforestation is a much smaller part of aggregate reductions, these are real 

contributions to climate mitigation. As in most problems, the long-run solution to 

the climate problem is probably many small solutions rather than one grand one. 

In addition, if we prevent some deforestation we will reap many side benefits. We 

will reduce biodiversity loss and soil erosion, and help preserve indigenous 

culture. 

                                                            
1 2010—MIT EPPA model v3 Reference Case compared to Bonn Agreement forever case. Results 
provided by Mustafa Babiker. If the US achieves its Kyoto target as well, reductions would be 
7.6%. 
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The big question is whether the gains from avoiding deforestation really 

can be achieved. Many policymakers and negotiators are skeptical of our ability to 

reduce deforestation effectively. They fear that if credits for avoided deforestation 

are allowed to replace fossil fuel emission reductions for compliance with Kyoto, 

the environment will suffer because the credits will not reflect truly additional 

carbon storage. If the credits given exceed the true additional carbon and the 

credits are sold and used to meet Kyoto commitments instead of emissions 

reductions, a real rise in global emissions will occur relative to the Kyoto target. 

Policymakers’ and negotiators’ fear stems largely from concerns about 

our ability to estimate carbon stocks and assess the additionality of net emission 

reductions from avoided deforestation activities. They fear that many avoided 

deforestation credits would be claimed for forest that would have been protected 

anyway. 

This paper considers the nature of the uncertainties involved in 

estimating carbon stocks and predicting deforestation and simulates the effects of 

these uncertainties on the environmental integrity of credits for avoided 

deforestation. To our knowledge, this analysis has not previously been attempted. 

To create policies with environmental integrity that allow these credits 

to be traded with emission reductions we require two things: a projection of how 

much forest there would have been without a policy (a forest “baseline”; see Pfaff 

(2004) for further discussion), and an estimate of the carbon stocks in the forests 

that are projected to be cleared. Each of these involves uncertainty. 

We do not explicitly consider another form of uncertainty inherent to all 

biological mitigation—lack of permanence. We avoid the problem that forest 

protection can be temporary by calculating credits based on the actual level of 

forest each year. If the level of additional carbon falls (because the actual forest 

area falls or carbon storage per hectare changes) then some credits will have to be 

repaid. 
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We find that additionality is extremely hard to assess accurately and 

errors in the numbers of credits given for avoiding deforestation are likely to be 

very large. The major source of error in a project-based policy such as the Clean 

Development Mechanism is likely to be prediction of the land-use change 

baseline. We also find that errors in estimation of carbon storage could be large 

and could have significant impacts, particularly in a policy that does not rely on 

land-use baselines, such as the Kyoto policy applied to developed countries 

(Article 3.3). The uncertainty in carbon storage estimates is not equally important 

in all life zones. The ecosystems of most importance are those that still have forest 

that is under threat but where deforestation might be averted. We find that in 

Costa Rica, nearly 42% of all the loss of environmental integrity that would arise 

from poor carbon estimates arises in one life zone, tropical wet. This suggests that 

research effort might be focused in this life zone. 

We first present an integrated model of deforestation and carbon stocks 

in mature forest estimated from Costa Rican data and present deterministic results 

from the model. This is a simplified version of a model presented in Kerr et al 

(2003). We then discuss the underlying sources of uncertainty in our model with a 

focus on: predictions of human land-use decisions and the effects of policy 

design; carbon field measurements; process-based modeling of carbon; and 

scaling up of a plot-based model. We explain how we incorporate this uncertainty 

in our model. 

We then use our integrated stochastic model to assess empirically the 

effects of different types of uncertainty. Uncertainty implies errors. By translating 

these errors into effects on environmental integrity we assess the real costs of 

uncertainty on the environment and hence the value of reducing it. We estimate 

the overall cost from uncertainty and the relative roles of different sources, land-

use baselines, and carbon storage estimates in each life zone. 
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2 Integrated model development 
To predict the evolution of carbon stocks as deforestation occurs, we 

use the simple integrated model depicted in Figure 1. Geographical information 

system (GIS) techniques are used to provide spatial modeling capability within 

the integrated model. The economic model incorporates both ecological factors 

(soils and “life zones” (Holdridge, 1967)) and economic factors (international 

prices, agricultural yields and production costs, the history of land use, and 

geographical access to markets) to determine the economic conditions on each 

plot of land and predict changes in land use as economic conditions change. The 

ecological model estimates carbon storage in mature forests. 

Figure 1: The integrated model 
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The economic and ecological models are coupled in two ways. First, 

carbon estimates from the ecological model are combined with predictions of 

forest cover to give us predicted carbon stock in each scenario. Second, the carbon 

estimates combined with carbon prices determine carbon payments per hectare for 

avoided deforestation. These payments affect land-use choices. In this simple 

model, we model the evolution of mature forest cover only; we do not consider 

reforestation. 

For each parcel of land, a land manager chooses a land use that will 

maximize their expected returns from a set of potential feasible land uses, such as 

crops, grazing, and leaving the land in forest. Put simply, the land manager will 

clear the land if the return from a cleared land use is higher than the return from a 

standing forest. Once all land-use choices are simulated in space, we calculate the 

total remaining forest in each life zone type for every point in time. We then 

interact the remaining forest with estimates of carbon storage per hectare, 

calculated by the ecological model and averaged at the life zone level (given by 

Column 1a in Table 1), to give us a prediction of carbon stock. 

We can use our model to simulate the effects of policy scenarios, for 

example a carbon payment for forest. The carbon payment is determined by the 

international carbon price combined with the ecological model and varies by life 

zone (depending on potential carbon storage). As before, the land manager will 

make a land-use choice based on returns for the set of potential land uses, but in 

this case, the returns from forest protection are increased through our carbon 

payment. Fewer landowners will choose to clear because their net return from 

clearing is lowered. The landowners who will alter their behavior are those whose 

land yields low agricultural returns or those who have very high current carbon 

stocks in their forest. More forest will be left standing and more carbon will be 

stored relative to the baseline case. The following sections provide more details on 

the model components. 
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2.1 The ecological model 
We estimate potential carbon storage in mature forests with the General 

Ensemble Biogeochemical Modeling System (GEMS), which incorporates 

spatially and temporally explicit information on climate, soil, and land cover (Liu 

et al, 2004a; Liu et al, 2004b). GEMS is a modeling system that was developed to 

integrate well-established ecosystem biogeochemical models with various spatial 

databases for the simulations of the biogeochemical cycles over large areas. The 

well-established model CENTURY (Parton et al, 1987; Schimel et al, 1996; Liu et 

al, 1999; Liu et al, 2000; Reiners et al 2002) was used as the underlying plot-scale 

biogeochemical model in this study. GEMS has been used to simulate the impacts 

of land use and climate change on carbon sources and sinks over large areas (Liu 

et al, 2004b; Liu et al, 2004a). 

In this study, we used GEMS to simulate carbon dynamics in Costa 

Rica at a spatial resolution of 1140 m length scale. We calibrated GEMS against 

field data collected from 32 mature forest sites in six major life zones in Costa 

Rica (Liu and Schimel, 2004). Detailed description about the field measurements 

can be found in Kauffman et al (2004). The values of eight variables (i.e. carbon 

and nitrogen contents in: aboveground biomass; litter layer; standing and down 

woody debris; and the top 20cm soil layer) were used to calibrate the CENTURY 

model. The calibrated values of model parameters (e.g. maximum monthly 

potential production, maximum decomposition rates of slow and passive soil 

organic carbon pools, and maximum decomposition rates of dead woody debris) 

were averaged by life zones and then incorporated with GEMS to simulate carbon 

stocks under potential vegetation in Costa Rica (Liu and Schimel, 2004). 
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Table 1: Carbon density in aboveground biomass (tC ha-1) by life zone as estimated by the GEMS model and field measurements 

Life zone GEMS   Data From Literature             Overall literature 

 (1a) 

Mean 

(1b) 

Std dev 
as % of 
mean 

(2) 

Brown 
(1997) 

(3) 

Brown 
and 
Lugo 
(1982) 

(4) 

Helmer 
and 
Brown 
(1998) 

(5) 

Brown 
et al 
(1989) 

(6) 

Delaney 
et al 
(1997) 

(7) 

Fehse 
et al 
(2002) 

(8) 

Tosi** 
(1997) 

(9) 

MINAE 
(1997) 

(10) 

DeAngelis 
et al 
(1981) 

(11) 

Mean 

(12) 

Std dev 
as % of 
mean 

(13) 

Premontane moist  135 47    104    122 70 42 95 40 

Lower montane moist  250 38    159  173  85 289   191 42 

Tropical moist 112 21 147 139 259 187 179 166 169 117 97 157 30 

Premontane wet  149 28    153    133 111 66 122 29 

Lower montane wet  222 40    210    86 174 183 175 31 

Montane wet 258 42      157 134 47 154   150 50 

Tropical wet 204 35 82 129 182   264 178 138 100 160 37 

Tropical dry 63 17 39 110 51* 55 70  78 34 57 63 38 

Premontane rain  187 47 87  159    91 94 92 118 37 

Lower montane rain  208 34    162    56  124 138 47 

Montane rain 228 37     154       32 139 88 128 57 

* This is the average of the range provided by Helmer and Brown (1998) of 7–94 tonnes of C/ha. 

** Derived from Tosi (1997) by Shuguang Liu. 
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The life zone level mean values and their corresponding standard 

deviations of aboveground biomass carbon density simulated by GEMS and used 

in our integrated model are listed in Columns 1 and 2 of Table 1. In the integrated 

model, we use carbon stock estimates generated by the GEMS at the life zone 

level to translate forest cover into total carbon stocks and then to determine the 

reward for land users who prevent deforestation on their land. Columns 3–11 

show various other mean estimates taken from the literature, and columns 12 and 

13 provide the mean and standard deviation of the literature and GEMS mean 

estimates combined. 

2.2 The economic model 
We define the probability that a piece of land will be cleared during any 

period as the land-parcel’s hazard rate. To predict changes in forest cover, we 

must explain the variability in hazard rates in terms of observable characteristics 

of the land parcel that are likely to affect the land managers’ land-use choices. 

To create our economic model, we could have tried to calculate the 

optimal land-use choice for every land parcel in Costa Rica, giving us 

economically optimal land-use choice as a function of observable land-parcel 

characteristics. However, people do not necessarily behave in economically 

optimal ways. Non-economic factors such as cultural attitudes also affect 

behavior. Furthermore, an analyst is unable to observe all the factors that would 

drive optimal choices. Consequently, to create our model we observe past land-

use choices and estimate the relationships between land clearance and each land-

parcel’s observable characteristics, giving us a model based on actual behavior. 

We estimate these relationships econometrically for each spatial unit i 

across the whole of Costa Rica over four time periods (t = 1900–1962, 1963–

1978, 1986–1996, 1997–2000) using the annualized average deforestation rate 

during each time period as a measure of the hazard rate of deforestation. We 

exclude the period 1979–1985 because of data anomalies. We define the spatial 

unit of observation, our “land parcel”, as the disaggregation of each of 436 

administrative districts into each of the 12 major life zones. In 1900 there were 

1211 forested land parcels. 
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The magnitude and direction of the observable drivers of land use 

change are estimated using the equation:2 

 ittit
it

it DX εδ
h1

h
++=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

βln  1) 

 

where: 

h is the hazard rate 

X is a matrix of observable explanatory variables 

β are the estimated coefficients of observable explanatory variables 

D are dummy variables for each time period 

δ are their coefficients 

ε is the error. 

The variables we use to explain the land managers’ decisions are given 

in Table 2, together with their means and estimated coefficients. For the 

regressions, we normalize returns, cleared per cent and distance by subtracting 

their global means so that the normalized hazard rate at the global mean of the 

variables in the first period is approximately zero. This means that we can extract 

time dummy coefficients that primarily reflect national development trends and 

tend to zero as the effect of national development on deforestation tends to zero—

this is useful for forecasting (see Appendix A). More details on the data and 

model development are given in Kerr et al (2004). 

                                                            
2 We estimate this equation using a grouped logit regression pooled over time. We include in our 
regression all land parcels that have forest on them at any point in time, including those that have 
been reforested, as they will still be subject to deforestation hazard in the next periods. We do not 
include national parks in our regression, however, as they will not be subject to the same kinds of 
deforestation pressure. 
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Table 2: Observable variables and regression results 

Estimated coefficient  Effect Explanatory variable Non-
norm-
alized 
mean 

All 1986–1997 

excl. 

1997–2000

excl. 

   I II III 

Land parcel productivity 
and international prices 

Agricultural returns per hectare 
(US1997$1000/ha) 0.6 

0.065* 

(0.023) 

–0.15* 

(0.05) 

0.052* 

(0.027) 

Minimum distance to market 
(100km) 0.7 

–2.0*  

(0.1) 

–2.4*  

(0.1) 

–2.2* 

(0.1) 

Minimum distance to market  

Accessibility 

× time 
4.8 

0.029*  

(0.002) 

0.039*  

(0.002) 

0.033* 

(0.002) 

Local development Percentage cleared 
0.2 

1.9*  

(0.1) 

1.9*  

(0.2) 

2.0* 

(0.2) 

Limited quality land Percentage cleared ^2 

0.04 

0.16  

(0.29) 

0.5  

(1.4) 

–0.03* 

(0.3) 

Time dummy (1900–1963) – Omitted 

Time dummy (1963–1979) – –0.44*  

(0.08) 

–0.7* 

(0.1) 

–0.58* 

(0.09) 

Time dummy (1986–1997) – –2.4*  

(0.1) Dropped 
–2.6* 

(0.1) 

National development 

Time dummy (1997–2000) – –3.5*  

(0.1) 

–3.7* 

(0.2) Dropped 

  Constant – –2.7*  

(0.1) 

–2.6* 

(0.08) 

–2.6* 

(0.07) 

  R-squared   37%  36% 37% 

  N   3966 3056 3033 

* Significant with 99% confidence. 
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Briefly, the land manager will be more likely to clear productive land 

that is suitable for crops with high returns. To capture this in our model we use 

expected returns as an explanatory variable. Current actual returns in each period 

for crops grown in each land parcel are calculated from the exogenous variables 

international prices, yields, and production costs. We assume that expected 

potential returns are simply equal to current returns. Returns vary by life zone, 

district, and period. As we see in Table 2, returns positively and significantly 

increase deforestation in most samples. The returns variable has large errors 

because of the difficulties in generating accurate historical data. It performs better 

in recent periods where the data is of better quality and our implicit assumption of 

a market economy is more accurate. 

Access to national and international markets affects the farm-gate 

returns that land managers receive for different crops. This will vary temporally 

and spatially, with land-parcels further from cities and international ports being 

less accessible and hence receiving lower returns than those closer. As road 

networks are developed and improved, the difference in distance is likely to have 

less effect. Formally we model: 

 farm-gate returnsit = international returnsit + (β1 + β2(time)) x distancei 2) 
 

where distance is the straight-line distance from land parcel i to the 

closest of the three major markets in Costa Rica (Limón, San José, and 

Puntarenas). As we would expect, in Table 2 β1 < 0 and β2 > 0. Both are 

significant. 

Road networks will not necessarily develop uniformly across the 

country. The interaction of distance and time will capture only spatially uniform 

road development effects. Other infrastructure also will develop in a non-uniform 

way, for example electricity networks and agricultural distribution services. To 

control for this non-uniform development, we include the percentage of the forest 

that has been previously cleared, percentage cleared, or cumulative deforestation. 
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In general, as people clear land, infrastructure will develop around 

them. This decreases the costs of production, raising returns and hence increasing 

the likelihood that people will clear the remaining forest. We find empirically that 

this has a positive and significant effect. 

However, the forest on the best land (not too steep, well drained) within 

each observably homogeneous land parcel is likely to be cleared first. Thus, we 

might expect that productivity and hence potential returns on the remaining 

forested land will be lower and pressure to deforest will fall. This is likely to have 

the greatest effect as the percentage cleared becomes high, so we allow for a 

quadratic effect of previous clearing, percentage cleared2. This turns out to be 

insignificant. 

We expect that a significant amount of national development will affect 

the country more uniformly as private and public institutions develop (e.g. 

educational facilities, enforcement of laws, and capital markets). Increased returns 

associated with development initially result in extensification of agriculture, 

increasing pressure on forests. Eventually, development results in higher capital 

intensity and wages, and intensification of agriculture. The economy moves away 

from reliance on agriculture as the industrial and service sectors grow. This eases 

deforestation pressure. Conservation regulations are generally strengthened as 

countries develop. These increase forest protection. To control for national 

development in our regression model we introduce time dummies for each period. 

We find that underlying deforestation pressure falls consistently over the period 

but falls most rapidly after the mid-1980s. 

With this model design and these explanatory variables, we explain 

between 22% and 40% of each period’s cross-sectional in-sample variation and 

37% of the overall variation. This amount of explanatory power is reasonably 

consistent with other economic deforestation modeling. Comparable studies that 

have looked at tropical land-use change include Pfaff (1999), who examines 

deforestation in Brazil and explains 37% of the variation, and Chomitz and Gray 

(1996), who study Belize and explain 39% of land-use change cross-sectionally. 
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3 Deterministic model results 
In this section, we demonstrate one simple use of the integrated model: 

estimation of the responsiveness of deforestation to carbon payments—the carbon 

supply curve. The period we consider here is the period when deforestation slows 

in Costa Rica, 1986–1997. Costa Rican real economic growth rates were on 

average substantially better than the rest of Central America during the period 

1960–2000 (Rennhack et al, 2002). As a result, Costa Rica is one of the more 

developed Central American countries; other countries and regions may still be in 

the rapid deforestation phase, for example Guatemala, Southern Mexico, and 

Colombia. Studying this period could give us insight into carbon supply that we 

could apply elsewhere. In contrast, after 1997, Costa Rica experienced very little 

deforestation, so it would also supply very few carbon credits through avoided 

deforestation. Because the model is simple and based only on Costa Rican data, 

the simulations given below should be thought of as illustrations with an empirical 

basis. 

When we separate the returns variable from other X variables, apply the 

coefficients from column I in Table 2 and include an annual carbon payment that 

reduces the net return from converting forest to agriculture, Equation 1 becomes: 

 ( )
δ11

)1(
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where r
tX −
+1  are the explanatory variables other than returns. 

To simulate supply we first forecast forest area in a non-policy case; 

this projection is based on Equation 3 with no annual carbon payment. It is done 

iteratively. In this section we use an in-sample projection using actual data. When 

translated into carbon, this provides a potential baseline against which carbon 

storage could be credited. 
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With a positive annual carbon payment, annual returns to mature forest 

will be equal to the annualized-equivalent carbon price times the amount of 

carbon that the primary forest stores. This annual payment can be thought of as 

interest on a payment for permanent protection, or as a simple rental payment if 

carbon prices are not expected to change. Actual rental payments are complex to 

predict as they depend on expectations about future carbon prices (Kerr, 2003). 

We can now predict forward to give us a new prediction of forest and carbon 

stock. The difference between the predicted carbon stock under the simulated 

policy case and the predicted carbon stock with no policy will give us a measure 

of the effectiveness of the policy. This difference is defined as the carbon supply, 

the additional carbon induced by the annual carbon payment. 

Figure 2: Forecast carbon stocks with and without a carbon price 

This is an in-sample prediction that assumes no change in returns and sets the time 
dummy for the forecast period at its actual level. 
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In Figure 2 we show the carbon forecast in the baseline and one policy 

case with a US$14.15 annual carbon payment. The upper curve in the figure 

shows how carbon stocks evolve over time if the carbon payment price is 

continued. The vertical projection of the difference between these two stocks 

shows the cumulative supply of carbon available at any point in time. The same 

reward elicits different amounts of additional carbon over time depending on the 

amount of deforestation that would have occurred. The amount of additional 

carbon stored in forests cumulates over the years because every year some 

deforestation that would have occurred is prevented. In the later years when we 

predict that deforestation will cease, no additional carbon is stored. 

A payment of US$14.15 is chosen because in our model it reduces the 

deforestation rate by 15%, which is around the level both Brown et al (1996) and 

Niles and Schwarze (2000) assume when estimating the potential contribution of 

avoided deforestation to climate change mitigation. This payment is very high 

relative to current estimates of likely international carbon prices. With a 10% 

discount rate, this could translate to around US$145 per tonne of permanent 

reduction. 

If we vary the policy across a range of prices, we can map out a supply 

or cost curve. (See Appendix B for details on the derivation). In Figure 3, we 

show a cumulative supply curve 11 years after the introduction of a carbon rental 

price (1986–1997). At low payments, the curve is reasonably straight, but as the 

payment increases, it begins to curve upward. A US$1 annual payment per tonne 

of carbon seems more likely than US$14.15. Our model is also probably more 

accurate when dealing with simulations that involve small policy perturbations. A 

US$1 annual payment leads to a reduction in deforestation of 1.2%. The 

cumulative stock after 11 years for a US$1 rental price is 261 million tonnes and 

the baseline stock is 260.5 million tonnes, suggesting a cumulative supply of 0.5 

million tonnes in Costa Rica. Thus at what might be considered reasonable prices, 

our results suggest that the potential for avoided deforestation to contribute to 

climate change mitigation may not be as great as some anticipate. 
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The supply or cost curve can also be used to estimate the cost of storing 

a given level of additional carbon. The horizontal distance is the cumulative 

amount of storage offered at each price up to that year. The integral under the 

curve up to the chosen level is the cost of continuing to protect that level in the 

given year. The first units are cheap to store but they get increasingly expensive as 

forest on more valuable agricultural land is protected. 

Figure 3: The supply curve for additional carbon for period 1986–1997 
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4 Uncertainty: stochastic model 
development 

4.1 Sources of uncertainty in a carbon credit system 
In a policy situation, the land-use baseline will be an out-of-sample 

forecast and the carbon numbers will be estimates. We can quantify some of the 

uncertainty in these and extend the deterministic simulations above to produce 

predictive distributions of deforestation and carbon supply. 

 credits created = (actual forest area – predicted baseline forest area) 
  × estimated C per ha 4) 
 

As we discussed earlier, carbon sequestration will be rewarded based on 

the amount of actual forest retained, net of predicted baseline, times the estimated 

carbon storage per hectare (Equation 4). Uncertainty in each of these terms will 

result in uncertainty in environmental outcomes from the policy. 

Here we focus on the second two terms: land-use baseline and carbon 

per hectare. Environmental losses occur when the number of credits created 

exceeds the actual amount of additional carbon that is stored as a result of the 

policy. Environmental loss occurs if the baseline forest is underestimated, or the 

amount of carbon that is actually stored per hectare is overestimated; each results 

in a relative rise in emissions. 

 environmental loss = credits created – true additional carbon 5) 
 

4.1.1 Predicting deforestation out of sample 

We apply the economic model with statistically estimated coefficients 

to predict out-of-sample deforestation rates and thus forest stock using an iterative 

process (see Equation 6). To predict deforestation, we need to predict values for 

the independent variables (listed in Table 2) at t+1 for every land parcel in Costa 

Rica. We predict a development path by fitting a curve to the time dummies’ 

coefficients. It does not seem reasonable to suppose that the development process 

simply stops. The prediction process is described in Appendix A. We can then 
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move forward along this curve to get development predictions over time, i.e. )1(
ˆ

+tδ . 

Percentage clearedt+1 is evaluated at the beginning of the prediction period. 
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It is known for the first period of prediction, based on current forest, but 

after that is updated based on the prediction of deforestation in the previous 

period. “Returns” is a function of price, yield, and cost of production of a crop. An 

accepted forecast for price is a product’s current price. We cannot predict crop-

specific technology change, thus cannot predict changes in production costs or 

yields. Consequently, we assume in our deterministic modeling that returns stay 

constant. 

We can now evaluate the equation, for each land parcel, based on the 

predicted values of the explanatory variables: 
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We solve for the hazard rate, ht+1, giving us the predicted deforestation 

rate for the time period t+1. We then repeat this process for period t+2. 

4.1.2 Errors in land-use baselines 

Errors associated with the prediction of a land-use baseline are 

unobservable; we are predicting an event that will never occur if there is a policy. 

Uncertainty in baseline projections will arise from uncertainties in the estimation 

of the model parameters, prediction of the driving variables of the model, and 

model specification errors. The underlying sources of error in land-use baselines 

are the complexity of human behavior and the large range of unobservable and 

unpredictable factors that affect that behavior. 

Deforestation pressure depends heavily on national-level economic, 

political and even natural conditions. War, recession, hurricanes or pests in key 

crops can have major impacts on the profitability of land clearing. On a more 

mundane level, the rate of economic development depends on a wide range of 

domestic policies and development in key economic and legal institutions. 

Corruption and political instability can reduce the returns to investment 

significantly. 
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Foreign aid, such as for road building, can provide impetus for 

development. These conditions can change dramatically over time and are almost 

impossible to predict. They affect the common component of deforestation that 

affects all parcels and do not average out across the country. 

Changes in key international commodity prices, such as coffee or beef, 

can be critical. These tend to be unpredictable—otherwise people would profit 

from them in financial markets. They will affect some areas more than others and 

create uncertainty in our “returns” variable. Pfaff (2004) illustrates the effect on 

our baseline predictions of one such “shock”, showing the impact on the predicted 

baseline if the banana market collapsed. Even if average returns were known, 

actual plot-level returns and responses to them would be highly variable. Our 

empirical model primarily captures land user responses to measures of average 

returns to different land uses in large aggregated areas, and to birds-eye distances 

to markets. Actual agricultural returns on newly cleared land will vary 

enormously depending on the specific characteristics of the plot, the technology 

available at different points in time, and the farmer's access to capital to invest in 

the plot. The transport costs of getting different products to market will vary 

depending on road access and the crop type. Birds-eye distance is a weak proxy 

for this. Even with the same transport costs, different farmers may have 

differential access to the more valuable export markets because of marketing 

systems. Even if we could estimate the actual farm-gate returns accurately, 

different farmers will respond differently because of their age, their past 

experience, their education, the security of their land tenure, their attitudes to 

conservation and many other factors. Some of these sources of heterogeneity will 

wash out over large areas but others will not. 

4.1.3 Errors in estimates of carbon storage 

The carbon density in forest in a system that offers rewards for carbon 

storage will need to be estimated by field measurements or by model simulations 

parameterized and validated with local field measurements. Thus uncertainty will 

arise in estimating carbon density through sampling design, measurement, and 

model simulations. 
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Uncertainty is inherent in field measurements and laboratory analysis. 

Random and/or systematic errors can be introduced in the measurements of tree 

diameter at breast height (DBH), tree height, carbon content in plant tissue, and 

wood density (Brown, 1997; Phillips et al, 2000). Errors in the application of 

allometric equations, which are frequently used to estimate carbon density from 

tree measurements (e.g. Diameter at breast height, height and wood density), can 

contribute to the overall uncertainty as well (Keller et al, 2001; Brown, 1997; 

Phillips et al, 2000). Another source of error in regional carbon estimates comes 

from the selection of field sites (Smith 2002; Macdicken 1997; Phillips et al, 

2000). Nevertheless, this error can be minimized with an adequate deployment of 

sampling plots (Macdicken 1997). 

Carbon stock estimates generated by models inevitably contain errors. 

Major sources of error include an imperfect representation of the reality by the 

model or the weakness of model structure, as well as errors contained in model 

parameters and input data. Calibration and validation of ecosystem models have 

suggested that certain model parameters vary in space and time. It is often 

difficult to predict the spatial and temporal variations of parameters. Poor 

predictions are likely to introduce errors in carbon estimates. Input data, such as 

land cover, soil, and climate variables, also contains various degrees of error, 

which can potentially propagate to the carbon estimates through the modeling 

system. To minimize the error in model simulations, it is crucial to have the model 

calibrated and verified first. 

4.1.4 Errors introduced by policy design 

The most accurate carbon measurement would require fieldwork on 

every plot by qualified, objective ecologists. This may work well when projects 

are few and small but will probably be inordinately expensive relative to the value 

of the credits when projects are large. Even with this level of effort, errors and 

bias will still arise. Accurate measurement also risks non-transparency and 

potential corruption because results cannot be easily replicated. Allowing project 

organizers to do measurement invites bias. All these factors suggest that a wide-

scale, effective program needs to simplify carbon measurement and reward. 
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For example, we model a system where only one level of carbon 

storage per hectare of mature forest is assumed for each life zone. The tradeoff is 

that this introduces errors in carbon measurement. We do not assert that one level 

per life zone is optimal. Further research needs to compare the costs of the 

environmental losses we identify and the costs of more accurate measurement. 

In addition, with the reward formulated as in Equation 3, we reward 

only carbon stored in a forest. We are making an implicit assumption that all land 

uses, soil types, and vegetation other than those in forests store zero carbon. This 

introduces a bias in the integrity of environmental outcomes; we may be 

rewarding more carbon storage than actually occurs. In fact, however, it appears 

that very little carbon is stored in pasture—the main use of recently deforested 

land in Costa Rica. The carbon that does remain tends to be in remnant trees that 

are gradually harvested (personal communication with Judith Jobse and Boone 

Kauffman). Allocating baseline carbon to all the potential land uses on a plot 

could reduce the error in carbon credited. However, it would require more 

understanding of the carbon processes in different land uses. 

4.2 Quantification of uncertainty 
We quantify the effects of uncertainty on environmental losses using 

two approaches: first we introduce variation into the model by varying the 

estimated and predicted variables and parameter values within confidence limits 

in Monte Carlo simulations; and second we compare our predictions with out-of-

sample measurements. 

We use both approaches within our economic model. We must always 

use a Monte Carlo to assess uncertainty in supply and hence need to model 

uncertainty in economic returns. For each sample, we vary the returns for each 

crop each year using a random walk that varies by crop to create returns paths that 

vary by land parcel. We assume that the returns error distribution is normal with 

standard deviation equal to the standard deviation of the changes in crop price 

over time. We do not vary yield or production costs because we have no good way 

to predict either the trend change or the uncertainty in that change. 
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The use of a random walk means that shocks will propagate through 

time in each sample. Uncertainty is also inherent in the estimated return 

coefficient in our economic model. When the model was estimated using 

regression analysis, the error distribution for each coefficient was also generated. 

We repeatedly randomly draw the return coefficient based on its regression-

estimated mean and variance-covariance matrix, assuming normally distributed 

errors. 

When we use a Monte Carlo to study uncertainty in land-use baseline 

forecasts we vary the returns variable and coefficient as above and also vary all 

other coefficients. For the time dummy coefficients, we stochastically vary the 

two estimated parameters in our national development function, using their 

variance-covariance matrix, and solve for the third parameter so that the required 

constraint is met. 

Each perturbation of the model parameters will alter the land managers’ 

clearance decisions, and thus lead to a different deforestation rate. In this way, we 

generate predictive distributions of forest levels. This modeling generates the 

confidence intervals around our supply simulations and land-use baseline 

forecasts. 

We also quantify uncertainty in the baseline predictions using the 

second approach, by comparing predictions with out-of-sample measurements. 

These are the numbers presented in the results. We can do this because while in a 

real policy a baseline projection will be unobservable, there was no policy in our 

omitted period. Forecast errors were assessed during different periods, by omitting 

the appropriate period, and in certain land parcels, by omitting those parcels 

during model estimation. Our forecast forest error is the difference between actual 

and predicted forest. This comparison leads to errors that fall within one standard 

deviation of the errors that were predicted when we used only the Monte Carlo 

approach, which suggests that our specification of economic model uncertainty is 

not too bad. 
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To quantify carbon uncertainty we use only the Monte Carlo approach. 

True carbon is unobservable. We consider two sources of error in carbon density 

estimations: errors in mean estimates of life zone carbon density, mε , and errors 

because of heterogeneity in carbon density within life zones, vε . We define actual 

carbon stored in a hectare of mature forest as: 

 vmcc εε ++= ~  7) 
 

where c~ is estimated carbon storage. By taking the mean of the above 

equation, we define carbon bias: 

 ccm −= ~ε  8) 
 

where mε  is the mean error, c~ is the mean of the carbon estimates and 

c  is the mean of actual carbon. 

We use the carbon estimates generated by GEMS (see Table 1) as the 

levels of carbon for the reward system, c~, and assume that actual carbon varies 

relative to this. To simulate carbon uncertainty we must estimate each of the 

components in Equation 7. The variability within life zones was simulated by 

randomly drawing vε  from distributions empirically estimated from the GEMS 

results (the variance of these data is shown in Column 2 in Table 1, see Liu and 

Schimel 2004 for more detail). To include variability from the distribution of 

mean estimates, we also need to know how mε  is distributed. Because c is 

unobservable, we cannot quantify the bias, mε  (Equation 8). In this study, we 

arbitrarily set the bias to be negative so actual carbon is systematically lower than 

our estimates. We randomly draw mε  from a lognormal distribution with mε  set 

to be –10% of c~ and standard deviation derived from variation in literature 

estimations of carbon values (see Column 13 in Table 1). 
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The combined standard deviations from both sources are listed in 

Column 1 in. They range from 35% to 54% and on average are much larger than 

the Houghton et al (1996) illustrative estimate of a 16.5% one-standard-deviation 

range for uncertainty in emissions factors for land use activities.3 

5 Environmental costs of uncertainty 
In this section, we use our stochastic model to look at the effects of 

uncertainty on the environmental implications of policies that aim to prevent 

carbon loss through deforestation. In other words, we quantify the environmental 

costs of uncertainty. Following Equation 6 we define environmental loss (EL) as: 

 [ ] [ ] cFcrFcFcrFEL ×−−×−=
44 344 2144 344 21

carbon additional totalcreated creditscarbon 

)0()~(~)0(~)~(  9) 

 

where: 

r  is the carbon payment (US$ per tonne of carbon per year) 

F(0)  is actual baseline forest in hectares 

F~ (0) is predicted baseline forest 

F(r c~ )  is the forest stock generated with annual carbon payments 

based on the estimated carbon. 

Environmental losses can be decomposed further into three terms that 

represent the sources of that uncertainty: “wrong supply times carbon error”, 

“baseline error” and “error interaction”. By rearranging Equation 9 we can see: 

 [ ] [ ] [ ] [ ] [ ]
444 3444 2144 344 214444 34444 21

ninteractioerrorerrorbaselineerrorcarbontimessupplywrong""

~)0(~)0()0(~)0(~)0()~( ccFFcFFccFcrFEL −×−+×−+−×−= 10) 

 

                                                            
3 This number is based on an interpretation of the uncertainty information presented in Table A1-1 
in Annex I of Houghton et al (1996). 
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The first term in Equation 10, “wrong” supply times carbon error, is 

environmental loss arising from incorrect carbon estimates that lead to 

overpayment or underpayment of credits for additional forest. The more additional 

forest is created, and the larger the carbon error is, the larger is the environmental 

loss. Carbon error also influences the land-use decision in the economic model 

when a carbon rental payment is introduced: higher carbon estimates lead to 

higher carbon payments and more protection. A positive initial error in carbon 

estimates is compounded by a positive land use response that means the error 

affects more land. Even if carbon estimates are unbiased, environmental losses 

occur on average. A positive bias in carbon estimates will exacerbate the 

inappropriate land use response. 

For example, suppose two ten-hectare plots are identical in all ways. In 

particular, the farmer on each plans to clear two hectares (or equivalently have the 

same probability of deforestation in the baseline). Their land contains 100 tonnes 

carbon per hectare. When the policy is introduced, because of errors in carbon 

estimation, the farmer on one plot is offered a carbon payment for more carbon 

that his land really contains, 110 tonnes per hectare, while the farmer on the other 

plot is offered less, 90 tonnes per hectare. If they both responded identically to the 

carbon payment and reduced their clearing to one hectare, each would receive an 

incorrect carbon payment but the carbon credits given would be correct on 

average; additional carbon protected would be equal to the carbon credits created. 

Suppose, however, that the first farmer, with the high payment, decides not to 

clear any land while the other, with the lower payment, decides to ignore the 

potential payment and continue to clear two hectares. The additional forest will 

still be two hectares but the carbon payment will be higher than it should. Even an 

unbiased carbon payment can lead to environmental losses. 

The second term in Equation 10, baseline error, is the environmental 

loss that arises solely from land-use baseline errors. This is the combined effect of 

uncertainty in all the economic and ecological variables that influence a land 

manager’s clearing decision when no carbon payment is in place. This term is not 

affected by carbon measurement errors as no carbon price is paid in the baseline 

case. 
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The third term, error interaction, is the interaction of the two errors. If 

both land use and carbon errors were unbiased, the second term should be small 

when aggregated to the national level, as we would not expect the baseline error 

and the carbon error to be correlated. However, our errors will very likely have a 

significant bias, so this term will not be zero. With the introduction of the uniform 

carbon bias into our model, the contribution of the error interaction term to EL 

will simply be 10% of the baseline error. 

5.1 Simulating environmental losses 
In this section, we consider three scenarios and use out-of-sample 

observed forest cover and our integrated stochastic model in Costa Rica to 

estimate environmental losses. First, we consider the potential environmental 

losses in the year 2000, and their decomposition, assuming a policy had been 

implemented in Costa Rica in 1997. This scenario will approximately represent 

behavior during the developed phase of Costa Rica and give us some insight into 

the impacts of implementing a policy now. 

Second, we investigate our cross-sectional predictive power. If we have 

accurate measures of the land-use paths on some land parcels over a period, how 

well can we estimate the behavior of other parcels? With this experiment, we can 

gain some understanding of the usefulness of using control plots as predictors for 

the baseline deforestation that would have occurred in other plots where the credit 

system has been adopted. If control plots work well, a system that uses them 

might involve much smaller environmental losses. We simulate this by first 

estimating the model using a 90% random sample of all the land parcels, stratified 

across life zones, for all periods. We then predict out-of-sample on the other 10% 

of land parcels from 1997 to 2000.4 

                                                            
4 This choice of predicting land use for 10% of the land parcels is completely arbitrary. 
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Third, we estimate the EL for the period 1986–1997, creating a 

hypothetical “other country” using out-of-sample data from Costa Rica, and 

compare it to the predictions from our model. For both the first and third 

scenarios, we produce our baseline simulations from an economic model 

estimated excluding the time period in which we simulate (columns II and III in 

Table 2) so they are true predictions. 

5.2 Results 
Following Equation 9, EL is broken down into carbon credits created 

and total additional carbon. We present our estimates of environmental loss in 

Table 3 as a percentage of the “baseline carbon loss”. Baseline carbon loss 

between periods 0 and T is defined as (F0(0) – FT(0))c. Between 1986 and 1997, 

19% of forest was lost, and between 1997 and 2000 around 0.5% of forest was 

lost. We choose to use this for scaling because it is unaffected by the simulations. 

Another obvious comparison would be with the level of true additional carbon. 

However, this changes with the carbon rental price and with the carbon error. All 

the results presented here are based on a carbon rental price of (1997)US$1 and 

are averaged over 10,000 samples. 
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Table 3: Environmental losses, carbon credits created, and total additional 
carbon as % of baseline carbon loss 

A B C Scenarios 

1997–20005 Cross-section 

1997–2000, one 
10% sample6  

1986–19977  

Environmental losses (EL) 39.9 5.01 –31.68 

Broken down using Equation 9 

 Carbon credits created  41.1 6.23 –30.48 

 Total additional carbon  1.20 1.22 1.20 

 

In each scenario, a US$1 carbon payment would save about 1.2% of the 

carbon that would have been lost without a policy. In Costa Rica, this equates to 

about 360,000 tonnes/year for the period 1986–1997 and only about 9,500 

tonnes/year of carbon for the period 1997–2000. 

                                                            
5 This is the simulated EL in year 2000 after three years of a $1 carbon reward. To estimate the 
supply that would have occurred with a reward during the 1999 period, we simulate deforestation 
in-sample based on a regression model estimated using data from all periods (1932, 1971, 1992, 
and 1999; we omit 1982 because of spurious returns data from that period). Our development 
curve is constrained to equal the 1999 dummy—an approximation of development in that period.  
Our baseline predictions for this period are based on out-of-sample simulations, with our 
regression equation estimated off the 1933, 1972 and 1993 periods and with our development 
curve constrained to equal the 1992 time dummy coefficient—a prediction of development in that 
period. We produce predictive distributions by randomly varying the regression coefficient for 
farm-gate returns and coefficients of the development curve. We compare our baseline predictions 
with “actual” baselines (in-sample baseline estimations, which approximately equal actual 
measurements). 
We estimated our regression model using a dataset that at each point in time includes any parcel of 
land that was forested. However, we only include land parcels that were in forest in the beginning 
of the simulation period for comparing our simulations out-of-sample, as our model only predicts 
deforestation, not reforestation. 
6 This is the EL for 2000 for a 10% sample of district-life zones. We calculate it as described in 
note 5, except we predict out-of-sample for only 10% of the life zones (the regression equation is 
estimated using the other 90%). 
7 This is the EL in 1997 after 11 years of a $1 carbon reward. We calculate it as described in note 5  
except we predict out-of-sample for the 1992 period, the in-sample development curve constrained 
to equal the 1992 time dummy coefficient, and the out-of-sample development curve constrained 
to equal the 1972 time dummy coefficient. 
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However, in each scenario the number of credits is much larger than the 

additional carbon. In the first experiment, 1997–2000, the number of credits 

created is nearly 40 times larger than the true additional carbon. This results in 

large environmental losses: 39.9% of the baseline carbon loss. For the 10% 

sample for the 1997–2000 period, the overall environmental loss was much 

smaller, though it was still four times as large as the total additional carbon 

gained. For the development period, 1986–1997, the number of credits created is 

negative. The error is still large, 32%, but is an environmental gain. The negative 

credits arise because the baseline prediction, F~ (0), is significantly higher than the 

actual forest baseline. 

What is driving these large errors? Understanding this may help us 

develop research strategies to reduce them and design policies to minimize their 

effects. 

5.2.1 Decomposition of total error 

Table 4 shows the decomposition of environmental losses by source for 

our three different experiments. This allows us to explore the importance of 

different sources of uncertainty. In all three cases, the baseline error swamps the 

other two errors. In the national simulations, the baseline error alone is about 30–

40 times larger in absolute value than the additional carbon supplied with a US$1 

rental price. In the first two scenarios, the baseline error contributes to 

environmental loss. In the third scenario, the baseline error contributes to 

environmental gains. 
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Table 4: EL decomposition (using Equation 10) 

Scenarios A B C 

  1997–20008 1997–2000, one 10% 
sample9 

1986–199710 

 
Mean % of EL 

Mean % of 

baseline loss 
Mean % of EL 

Mean % of 

baseline loss 
Mean % of EL 

Mean % of 

baseline loss 

“Wrong” supply 

    carbon error  
0.8 0.3 5.7 0.3 0.9 0.30 

Baseline error  
91.9 36.7 87.8 4.4 –93.1 –29.5 

Error interaction 
7.3 2.9 6.4 0.3 –7.8 –2.5 

 100 36.7 100 5.01 –100 –31.68 

 

The baseline error and magnitude of environmental loss is much smaller 

in the case of the 10% sample. By identifying the national development trend 

from other areas, the baseline errors are confined to spatial extrapolation. In the 

case of the 10% sample, if we repeatedly drew samples, on average there would 

be no baseline error. There would still be supply errors, and because of the carbon 

bias the error interaction would still be positive on average. This suggests that the 

use of control plots in this case might have been a relatively good indicator for 

baseline behavior. 

This inference probably depends on two factors. First, a small 

percentage of the country (10% of forest parcels) was exposed to the carbon 

reward. The policy-induced changes in these areas probably would not have large 

effects on development that would spill over to other areas. Thus other areas 

might be reasonably assumed to be at their true baseline—i.e. the control plots are 

a true control. If a large part of the country were involved in projects, the 

remaining area would no longer be a valid control. 

                                                            
8 This is the EL for 2000, based on a simulation run forward from 1997. See note 5 for details. 
9 This is the EL for 2000 for a 10% sample of district-life zones. See note 6 for details. 
10 This is the EL for 1997, based on a simulation run forward from 1986. See note 7 for details.  

×
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Second, the sample chosen was random, so was comparable to the non-

sampled area. Real projects that cover part of the country are unlikely to be 

randomly located. Controls might need to be strategically chosen to closely match 

projects. 

In contrast the effects of errors in carbon measurement seem relatively 

minor. Through the “wrong” supply times carbon error term, the carbon error 

accounts for only about 1% of the environmental loss in the national scenarios (A 

and C). It accounts for a larger percentage in the 10% sample because the baseline 

error is smaller in that case, but error is a similar magnitude as a percentage of 

baseline carbon loss in all three cases. Because we set the carbon bias to be 

consistently +10% of mean carbon, the error interaction term is always 10% of the 

baseline error. Carbon bias exacerbates the land-use baseline errors. 

5.2.2 Sensitivity of environmental losses to specification of errors and 
scenarios 

In the previous section, we found that the errors in estimating the 

baseline land use dominated any errors in carbon measurement. Here we explore 

whether this is a robust result or a result of specific model assumptions. We also 

consider what this means for the importance of reducing the errors in carbon 

storage estimates, which is where ecologists have a real potential contribution. 

Are land-use baseline errors likely to be this large? In the two national 

scenarios we overestimate or underestimate baseline forest loss by between 30 and 

40%. Predicting forward from 1997 for three years we predicted 0.68% 

cumulative deforestation where it was only 0.5%. Using our modeled uncertainty, 

these draws fall within one standard deviation of our predicted land-use baseline. 

This suggests that our specification of land-use uncertainty may be a reasonable 

representation. It also suggests that land-use baseline errors could be much larger 

still even when predicted on a broad spatial scale with relatively good data. The 

uncertainty in our model is likely to be close to a lower bound on uncertainty in 

real projects. 
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It is possible that the errors in baselines are much larger in particular 

years than over a long period. Over 50 years it might be reasonable to predict that 

a country will reach an agricultural equilibrium where all good land is developed 

but poor quality land is untouched, regenerating or replanted. This long-run 

equilibrium might be easier to predict than the timing of change. Thus overly 

generous baselines in some years might be offset by less generous ones in others, 

leading to lower cumulative errors in a long-term policy. 

Carbon errors might be much greater than our model suggests. The 

land-use baselines are compared with true out-of-sample data. In contrast, the 

specification of uncertainty in carbon measurement is largely based on educated 

guesses. Comparing literature estimates, the range is very large in some cases. For 

example, in tropical wet forest Helmer and Brown (1998) predict 259 tonnes per 

ha while Brown and Lugo (1982) predict 139 tonnes. Bias could be as large as 

250%. 

The land-use baseline errors interact with the carbon errors. If the bias 

in carbon measurement was +100%, the interaction would magnify the baseline 

error and double the overall error: i.e. from 37% of potential carbon loss in the 

first scenario (baseline error only) to 72%. Thus, carbon measurement is 

particularly important where there are land-use baseline errors. 

Carbon errors also have effects that are independent of baseline errors. 

Suppose the policy was defined in such a way that the baseline was not important. 

For example, in developed countries, the Kyoto “baseline” for land use change is 

set fairly arbitrarily. The rules in Articles 3.3 and 3.4 implicitly define a 

“baseline” relative to which gains can be identified and rewarded. The errors in 

baselines for developing countries might be no larger than the errors in these 

Kyoto “baselines”. If developing countries moved toward negotiated baselines at a 

regional or national level, there would be a one-off impact on environmental 

integrity. This could be offset by setting stricter targets elsewhere, either in the 

same country or in other countries. After that, the baseline is no longer an issue. 

Carbon measurement is always an issue. 
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In Table 4 we showed that with a carbon payment of US$1 and carbon 

bias of 10%, carbon measurement error led to losses of 0.3% of baseline carbon 

loss. This translates to a roughly 25% environmental loss on each credit created. 

This is roughly split between the direct effect of the bias on every unit of carbon 

protected and the effect of variance in carbon estimates combined with the land 

use response to the varying carbon payments. If, in contrast, the carbon payment 

was US$10 and the bias was 100%, the carbon measurement error would be much 

more significant. A percentage increase in carbon error will have the same effect 

on supply as the same percentage increase in international price because they 

operate through the same process—i.e. by increasing carbon rewards. The 100% 

bias would raise the effective payment to US$20. Additional carbon at US$20 

would be roughly 24% of baseline carbon (assuming linearity in supply) and the 

direct environmental loss resulting from the bias would also be around 24%, with 

at least a 100% environmental loss on each credit. 

In contrast, land-use baseline errors are “lump sum”: they occur 

independent of the magnitude of carbon rental price and the estimates of carbon. 

Overall, baseline errors are likely to dominate if carbon prices are low. At low 

carbon prices, carbon errors would matter only because of their interaction with 

land-use baseline errors. If prices are high and carbon bias and variance are large, 

however, carbon errors could lead to significant environmental losses. 

As well as the effects on the environmental integrity of the program, the 

behavioral effect of carbon errors means that they have implications for the 

efficiency of the policy. In areas where we overestimate carbon per hectare, more 

forest will be protected than is efficient. In other areas, underestimation will lead 

to carbon-rich forest being inefficiently deforested. Even if the same area of forest 

is protected overall, if the carbon rewards are wrong, the “wrong” forest will be 

protected. This poor targeting of rewards raises the overall cost of achieving the 

environmental goal. Incorrect baselines have no effect on efficiency. 



35 

In summary, carbon errors may be larger than they appear. They are 

most significant for environmental loss when they interact with large land-use 

baseline errors and when carbon prices are high. Carbon errors cause inefficiency 

and raise the cost of mitigation. They will continue to be important even if 

developing countries move toward having national targets as developed countries 

do. Ecologists can reduce the level of carbon error. 

5.2.3 Contribution of uncertainty in different life zones 

Here we consider how and why the effects of carbon errors vary across 

ecosystems (life zones). This could help target future ecological research to 

reduce this source of uncertainty, and therefore environmental losses, more 

effectively. It can also suggest how accurately carbon rewards should be defined 

in each life zone. 

The first column in Table 5 shows the modeled coefficient of variation 

in carbon in each life zone. This combines heterogeneity within life zones with 

variance in the estimates provided by field studies from the literature. This 

uncertainty can be reduced either by better estimates of the mean for the life zone, 

or through more carefully targeted carbon rewards that take heterogeneity within 

the life zone into account. 

The life zones with the greatest overall uncertainty in carbon 

measurement are premontane moist forest and montane rain forest. Looking back 

to Table 1 we can see that the variance in the montane rain life zone is heavily 

driven by uncertainty in field studies. Montane wet also has high uncertainty in 

field studies. The high level of uncertainty might make this seem important to 

study. In contrast, premontane moist forest is in areas with highly heterogeneous 

conditions, so it might require a more differentiated policy. 

Not all errors in estimates of carbon storage are equally important, 

however. If there is no forest in a life zone, no forest can be protected—so it does 

not matter if we do not know how much carbon could have been protected. 

Studying the prevalent forest types makes sense. 
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In Costa Rica, this suggests emphasis on tropical wet forest, 

premontane wet forest and tropical moist forest (Table 5, Column 3). Although 

montane rain forest is a life zone with considerable ecological uncertainty, there is 

little forest left, so for rewarding avoided deforestation in order to reduce carbon 

release it is relatively unimportant.  

In addition, however, some life zones may have forests that cover large 

areas but are not at risk. Some life zones are unprofitable for agriculture. As long 

as the forest is not clear cut for forestry or inefficiently cleared by desperate 

peasants it may never be cleared. Measuring carbon accurately in these areas may 

also be less important.  

Column 4 of Table 5 indicates the environmental losses per hectare of 

forest in each life zone relative to the average loss.11 This measure combines the 

risk that land will be cleared, the level of carbon storage and the uncertainty in 

carbon measurement. These results are derived from our model. For this analysis, 

we set baseline errors equal to zero. That is, we set )0(~)0( FF =  in Equation 10. 

As before, the bias is assumed to be constant at 10% of the mean, the annual 

carbon payment is US$1 and results are averaged over 10,000 samples. 

Tropical moist forest has high carbon uncertainty and constitutes a 

reasonable fraction of remaining forest. However, it faces a low risk of clearing 

and therefore low environmental losses when there are carbon errors. In contrast, 

although tropical wet forest has quite low carbon uncertainty, this forest is at high 

risk because it is in areas that are suitable for agriculture, so these errors lead to 

high environmental losses. 

                                                            
11 All the life zones have a positive EL, due to our uniform positive 10% bias. 
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Table 5: Effects of errors on environmental losses by life zone (1997–2000) 

Life zone Carbon standard 
deviation as % of 
mean carbon* 

% 1997 CR 
forest 

 haper  EL average
 lifezone inforest 

 of haper  EL

 

EL from life 
zone as % of 
total EL 

(1) (2) (3) (4) (5) 

Premontane moist 
forest 51% 5.8% 1.3 7.5% 

Lower montane 
moist forest 42% 0.2% 2.7 0.6% 

Tropical moist 46% 17.1% 0.5 8.4% 

Premontane wet 
forest 35% 19.1% 0.8 14.9% 

Lower montane wet 
forest 37% 2.8% 1.0 2.9% 

Montane wet forest 46% 0.04% 1.8 0.1% 

Tropical wet 36% 31.0% 1.3 41.8% 

Tropical dry 46% 2.6% 0.2 0.5% 

Premontane rain 
forest 33% 10.4% 0.7 7.6% 

Lower montane rain 
forest 47% 8.3% 1.3 10.4% 

Montane rain forest 54% 2.6% 2.0 5.3% 

   100.0%   100.0% 

*This was estimated with both within-GEMS and between-literature-mean-
estimates standard deviations being perturbed. 

 

Combining all these effects in the final column, we find that tropical 

wet forest, which has both the largest amount of forest and the greatest 

environmental loss per hectare, contributes most to the total environmental losses. 

It contributes nearly half of all losses in our model. 



38 

6 Conclusion 
We tentatively conclude that, if other countries are like Costa Rica, it 

might be costly for avoided deforestation to contribute as much to climate 

mitigation as some IPCC estimates suggest. We more confidently assert that land-

use baselines are extremely difficult to estimate and that the errors they create 

could have significant environmental impacts if the scale of avoided deforestation 

projects is large. We do not necessarily believe that this means we should not 

include avoided deforestation in Kyoto or a similar agreement, just that relying on 

project mechanisms that require baseline estimates might not be a good idea. 

Estimating baselines for any economic activity is extremely hard and possibly 

baselines should be set once and for all for large geographic areas, regions or 

countries, as they are for developed countries, through negotiation. Analyses such 

as ours, which attempts to predict deforestation, can be useful inputs to these 

negotiations. 

Although ecological uncertainty appears to be on a smaller scale than 

land use uncertainty, we find that it could be very significant if carbon prices are 

high or if the true carbon bias is higher than we assume. Also, while baseline 

uncertainty disappears in an agreement with fixed targets, ecological uncertainty 

cannot be completely avoided through policy design. 

Appropriate targeting of future ecological research aimed at reducing 

uncertainty should take into account the relative areas of different types of forest, 

the level of threat those forests face (or the potential for reforestation if this is the 

interest), and the existing level of ecological uncertainty. We find that in the case 

of Costa Rica, this suggests further effort in the tropical wet life zone. Of course, 

the likely progress in the research should also be taken into account in setting 

priorities. It may be easier to reduce uncertainty in relatively understudied 

ecosystems. 
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We believe that three areas provide the most potential for reducing the 

error in carbon stock estimation over large areas. The first area is the allometric 

equations used to calculate carbon stock from tree characteristics. These should be 

verified for a specific area, improved if necessary, and applied to only similar 

environmental and stand conditions. Correct application of these equations 

requires a reasonable stratification of the area of interest using one or multiple 

environmental features (Macdicken, 1997; Kauffman et al, 2002). To ensure that a 

general allometric equation is not biased for a specific stratum, verification of the 

equation might be needed in a given area by sampling and weighing some trees, 

especially large ones (Brown et al, 2000), growing in the full range of conditions 

within the stratum. 

The second area that might reduce the error in carbon stock estimates 

significantly is the installation of field plots. Various options exist for sampling 

design (Macdicken, 1997; Smith, 2002; Brown et al, 2000). To avoid subjectivity, 

the locations of field plots should be predetermined before going to the field 

according to land cover maps. Deploying plots along features such as roads 

should be avoided to minimize the introduction of potential errors. 

Finally, models, after calibration and validation, should be used to 

simulate carbon dynamics in space and time, especially when the study area is 

highly heterogeneous and the cost of establishing many permanent plots for 

measuring and monitoring carbon changes is prohibitive. Validated models are 

very useful for exploring carbon sequestration potentials under various physical, 

social, economic, and policy scenarios. Well-established plot-scale models have 

been extensively used for scaling up carbon dynamics from sites to regions by 

incorporating detailed spatially-explicit information on climate, soil and land 

cover and land use change (Liu and Schimel, 2004). However, the applicability of 

ecosystem models to supporting the establishment of carbon sequestration 

projects has not been rigorously evaluated so far. Given that many carbon 

sequestration projects have been set up almost solely relying on field 

measurements of carbon change on permanent plots, an add-on evaluation of 

some models on characterizing carbon dynamics would be useful. 
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If successful, the overhead cost for setting up carbon sequestration 

projects could be reduced and more management options could be explored using 

modeling approaches before implementation (Kerr et al, 2003). 

Research cannot reduce within-life-zone variability but it does help us 

understand the spatial variability of carbon stocks. If the variability is very large 

in life zones that create a lot of environmental losses, it might be worth targeting 

carbon rewards more accurately by having different rewards within life zones. For 

example, if life zones can be further stratified by topography, and this 

stratification reduces within-stratum uncertainty, carbon rewards could vary by 

life zone and topography. 

Our analysis has looked at one small country, only at avoided 

deforestation and only at the environmental losses from one potential policy. We 

have also considered only aboveground biomass and one characterization of the 

landscape. We believe future research could productively extend this research 

using either our model or similar ones to explore: the robustness of the results; the 

effects of uncertainty on reforestation; and the impacts of changing policy 

design—for example, increasing the accuracy of rewards but also increasing the 

costs of measuring carbon—and incorporating belowground biomass and different 

characterizations of landscape. This potential research stream would help the 

global community take optimal advantage of the biological mitigation 

opportunities in tropical forests without creating unacceptable global 

environmental risks. 
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Appendix A: Fitting the development curve 
We first take the mean coefficients of our four time dummies, tδ , and 

transform them into their hazard form: 
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These are the hazard of deforestation for each time-period on a land 

parcel when all spatial variation has been controlled for; we show these and the 

actual deforestation rate in Figure A.1 below.12 To fit a curve to these points, we 

must first decide on an appropriate functional form. The four data points in the 

figure are consistent with the shape of a stretched reverse-S, with two periods of 

relatively stable deforestation rates connected by a short sharp change period. This 

shift could be thought of as the country moving from an undeveloped phase into a 

developed phase. Because of this shape, and the need to have degrees of freedom 

greater than zero, we choose a double exponential function to fit the points.13 

                                                            
12 The deforestation rates are annualized rates, plotted at the midpoints of the periods 1899–1963, 
1964–1979, 1986–1997, and 1998–2000 (1932, 1971, 1992, 1999). We omit 1979–1984 because 
of spurious returns data from that period. 
13 The function fitted is a double-exponential survival function. The double exponential hazard is 
given by: 
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where t is time, and p1, p2, and p3 are the function parameters (p1 is the displacement of the 
development period, p2 the spread of the development period, and p3 the scale). We fit p1 and p2 

using a quasi constraining p3 so that tĥ  is equal to the transformed mean coefficient, th , at the 
initial forecast period. That is: 
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We fit the function to the vector, ht, (shown by the black line in Figure 

A.1) and then transform tĥ  back to tδ̂ .14 

Figure A.1: Deforestation rate and development curve 

The fitted curve has a coefficient of determination, or R2, of 0.999. 

However, how well the curve fits national development is highly uncertain. There 

is no explicit theoretical basis for choosing this curve; we are only applying our 

theoretical expectations about the first and second derivatives of deforestation 

over time in Costa Rica to choose a functional form for extrapolation. 

                                                            

14 The function to transform hazards into their log form is: 
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Appendix B: Estimating supply 
To give us the best estimate of supply during the relevant period, we 

simulate forest supply, F(r c~ ), relative to actual baseline forest, F(0). We predict 

supply using an in-sample regression, constraining the development function to 

equal the time dummy that covers the period in which we are evaluating the EL. 

We then calculate our policy supply as usual. This method eliminates error in our 

supply due to incorrect baseline estimates, leaving only the error in estimating 

land-use choice with a reward. 
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reasoned debate on public policy issues relevant to New Zealand decision making. Motu is 
independent and does not advocate an expressed ideology or political position. 

 Motu aims to enhance the economic research and policy environment in New Zealand by 
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and policy analysts. 

 Motu purposes 
1. Carrying out and facilitating empirical and theoretical research on public policy issues 

relevant to New Zealand; the quality of the research will meet international academic 
standards, suitable for acceptance in reputable academic journals. 

2. Making existing knowledge more accessible for policy debates in New Zealand; this may 
be done by summarising and critically reviewing existing work on public policy issues, or 
by contributing to and facilitating policy discussions through seminars, workshops, and 
dialogue groups. 

3. Disseminating the results of our work and knowledge through publication (particularly in 
refereed publications), the internet, conferences, seminars, workshops, dialogue groups, 
and teaching. 

4. Building New Zealand capacity to carry out empirical and theoretical research on 
New Zealand public policy.  This will be done through means such as training, 
collaboration, sponsorship of students or researchers and development of New Zealand 
databases. 

5. Maintaining close links with international experts working on topics related to our 
purpose through communication and collaboration. 

6. Advancing our work and purpose within New Zealand by facilitating the visits of relevant 
international visitors. 
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