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ABSTRACT

The problem of flow in unsaturated soils is not fully understood.
Several models of vertical flow in unsaturated soils exist and have been
compared to laboratory data. This report compares four flow equations
and five conductivity equations against each other and against a set of
field data.

The equations compared were the flow equations of Darcy, Klute,
Morel-Seytoux and Gelhar. The equations of hydraulic conductivity
compared were those of Averjanov, Mualem, Irmay, Corey, and Laliberte,
Brooks and Corey.

The equation combinations were compared by three different views,
using both graphical and the root mean squares methods. First, a plot of
the estimated time versus depth from the field study was compared with
the equations' predictions. Next, nondimensional velocities were
compared in graphs and by root mean squares. Presented last were graphic
and numeric comparisons of the logs of the nondimensional velocities.

Based on the log root mean squares and the appropriateness of the
derivation, Gelhar's equation of flow and Corey's equation of
conductivity were chosen as agreeing most with the field data, though all
equation combinations gave estimates ranging from an order of magnitude
greater to an order of magnitude less than the field data.
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Chapter 1
INTRODUCTION

Flow through porous media is complex. Much more so is flow through
media that are not saturated with the flowing fluid. Among the multitude
of differences between flow through porous media and that in pipes and
channels are the tortuosity of the flow path, pore size variation and
distribution, particle size and shape, and fluid-particle interaction.
In the case of unsaturated flow there is a second fluid involved, namely,
air. Therefore capillary effects, surface tension, pressure gradients in
the two fluids, and the degree of saturation all affect unsaturated flow.
Before examining the flow equations, some background information about
the terms and concepts used in unsaturated flow are useful.

The first step is to examine the porous medium through which the
fluid passes. The medium consists of a collection of solid particles in
contact, if not joined, and a series of spaces, or pores, between them.
In the case of soils, a range of various sizes of soil particles make up
the medium. The particles of soil are randomly distributed, creating a
corresponding random range of pore sizes. The size range of the pores
depends on the size and compaction of the particles. A finer grained or
more tightly compacted soil has smaller pores. The fluid flows through
the connecting necks between pores where the soil particles do not touch.

The properties of the particles affect the flow of the fluid. Some
materials such as clay expand upon absorbing water. Expansion shrinks
the size of the pores and may close off the connection between pores.
Some soil particles such as clays. - have a surface charge that
attracts water particles more strongly. This attraction increases the
thickness of the residual water layer that remains on the particles when
the medium is drained. Increasing the residual saturation decreases the
available storage of the soil and also decreases the flow rate by
decreasing the cross sectional area available for flow.

The properties of the flowing fluid have an effect on the flow. A
more viscous fluid flows slower than a less viscous one. Especially
important for unsaturated flow is the capillary effect. At the interface
between two fluids and a surrounding solid, a meniscus forms. At the
solid-liquid interface, the 1liquid contacts the solid at an angle
particular to the solid-liquid combination. The liquid-air surface
tension pulls the liquid-air interface into a three dimensional bowl, the
meniscus, to connect the angled solid-liquid rim. In order to support
the curve, there must be a pressure difference across the meniscus, known
as capillary pressure. Without a pressure difference the liquid-air
interface would be a flat surface, like a water-air interface on a lake.
But in a porous medium the solid-liquid contact is at an angle so the
liquid surface must be curved to keep a smooth surface. A way to
visualize this is to picture a slender steel rod. Put the ends of the
rod into clips on a horizontal track and allow the rod to hang
horizontally. The clips and the track are arranged to hold the rod up
but give no lateral support. To get the ends of the rod to form an angle
to the track weights must be hung from the rod. The effect of weights on
the steel rod is analogous to that of a pressure differential across the




liquid-air interface. In a soil the angle of solid-water contact is such
that the meniscus forms concave into the water. To support the
concavity, the water pressure must be less than the air pressure. The
air is usually connected to the soil surface through a network of pores
so the air is very close to atmospheric pressure even at great depths.
The water, then, must be at a pressure less than atmospheric. At the
. water table, the water pressure is at atmospheric pressure because the
water table surface is a free water surface, like a lake. Below the
water table the water pressure is greater than atmospheric and increases
with depth. To possess pressures less than atmospheric, the water must
then be above the water table. The degree of curvature, hence the
pressure difference, also depends on the size of the pore. A larger pore
has a flatter meniscus so it has a smaller pressure difference than a
smaller pore at the same elevation. Soils with smaller pores, from
smaller particles or greater packing, can support interfaces with higher
pressure differences. To reach a higher pressure difference, the water
is supported at a higher elevation above the water table. The driving
force exerted by the pressure difference is resisted by the solid-liquid
attraction. The pressure difference does push the water deeper into the
connection between the pores. The connections are narrower than the
pores so the connections have a more curved meniscus and support a
greater pressure difference.

The effects of pore size distribution, capillary pressure, and
soil-water attraction can be observed in the drainage curve, shown in
Figure 1-1. The drainage curve is the curve relating capillary pressure
with water content or -any other measure of the amount of water in the
pores. The curve is made by allowing a saturated sample of soil to drain
and measuring the water content and the capillary pressure as the soil
drains. The result is an 'S' shaped curve. At saturation, the capillary
pressure is zero. The capillary pressure increases without the water
content decreasing, until some of the largest pores begin to drain,
creating a short vertical line for the drainage curve. Drainage happens
‘because the force of gravity creates a pressure difference greater than
can be supported by the meniscus, determined by the pore diameter.
Because of the pore size, the pressure difference is small. This pressure
is the pressure at which drainage begins, or air first enters into the
medium, and is important as a property of the soil. Petroleum engineers
call this pressure the displacement pressure pq; in the ceramics
profession it is called the bubbling pressure pp; and the soil scientists
refer to it as the air-entry pressure p,. As the drainage continues, the
pores that are draining become smaller in size and more numerous. The
smaller size causes a greater capillary pressure to overcome the more
curved, and therefore stronger meniscuses. The line of the capillary
pressure-water content assumes a constant slope of increasing capillary
pressure and decreasing water content (Fig. 1-1). As this process
continues, increasingly smaller (and less frequent) pores remain to be
drained. The smaller pores can support a large pressure difference, and
hence the curve steepens. As the pressure still increases, the last
pores are drained and the connecting necks start to drain. The necks
being smaller in both diameter and volume, the curve approaches a
vertical asymptote. The asymptote is the line of residual saturation,
which is the water content of the soil left at an infinite, or reasomnably
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molecular attraction. The more attractive the soil and the more surface
area to contact the water, the higher the residual saturation. Clays,
having small particles thus large surface areas and being more ionic than
other soils, have the largest residual saturation.

Another aspect of the capillary pressure-water content curve is
hysteresis. Consider the pore shown in Figure 1-2. When the pressure
gradient is great enough to bring the meniscus down into the upper end of
the pore, the widening of the pore diameter causes some changes in the
movement of the meniscus. The outward angle of the pore walls cause the
curvature of the meniscus to increase. The capillary pressure to drive
the meniscus down increases. As the walls widen and approach parallel,
the needed capillary pressure decreases. At some point the needed
capillary pressure drops below the capillary pressure at the point and
the pore suddenly drains completely. Refilling the pore has a different
sequence. The meniscus is at the bottom of the pore. The capillary
pressure is then decreased slightly to move the meniscus up into the pore.
The widening of the pore causes a decrease in the curvature. To move the
meniscus up the pore, the capillary pressure must decrease. At some
point where the walls begin to narrow and approach parallel, the
capillary pressure to support the meniscus rises above the capillary
pressure at the point. Suddenly the pore fills. The pressure at which
the pore suddenly drains and the pressure at which it suddenly fills
occur at different points, neither of which is near the center of the
pore height. The middle portion of the pore forms a difference in pore
water volume of a graph of capillary pressure versus water content. The
arrows in Figure 1-1 indicate the drainage versus wetting cycles of the
curve. : ' :

The factors discussed above cause some of the major differences
between flow in porous media and that of channels or pipes. The
remainder of this report presents some of the unsaturated flow equations
and discusses their performance in relation to a set of existing data on
unsaturated flow in soils.




Chapter 2
EXPLANATION OF UNSATURATED FLOW TERMS

In this part of the report some of the basic concepts and
definitions associated with flow through unsaturated soils are reviewed.
The first terms to understand are those dealing with the amount of water
or air in the soil matrix. Flow in the soil is highly dependent on the
amount of water in the soil, not for the mass in flow, but for the
effects of water content on the flow characteristics.

Water content 8 is a measure of the amount of water in the soil.
The water content is defined as the volume of water per unit volume of
soil. This property is a measure of the absolute amount of water.

Porosity ¢ is the total volume of pores or voids in a unit volume of
soil. The pores include those filled with water and those with both air
and water.

Saturation S is the fraction of the pore volume filled with water.
Saturation is equal to the ratio of water content over the porosity.
Equivalently, it is the volume of water per unit of pore volume.

The residual saturation Sr is the fraction of pore volume. that is
taken up by water adsorbed so tightly to the soil particles that no
pressure gradient can remove it. This moisture can be detached from the
soil by other means such as heating a soil sample in the oven, but field
gradients would not be able to deplete the soil of this residual water
content.

_ .The effective saturation Se is the ratio of the volume of drainable
water over the non-residual pore volume:

Se = (§ = Sr) (2-1)
e =
(1 - Sr)

The energy per unit weight of the moving fluid is called head,
measured in depth of water. Total head H includes the potential energy
due to elevation, pressure of the fluid and the kinetic energy of the
moving fluid. In movement of water through soils, however, velocities
are usually very small and the kinetic energy is often negligible, much
more so in the case of unsaturated flow.

The hydraulic conductivity K is the rate of movement of a fluid
through the soil under a unit gradient of head. The hydraulic
conductivity (units = V) is a function of both the soil matrix and the
properties of the flowing fluid. It is preferable, however, to define a
term for the ease of flow through soils that is only dependent on the
soil itself, and not on the moving fluid. This term is called the
intrinsic permeability, or simply permeability k, and is measured in
units of L¢. Saturated conductivity is directly related to permeability
by the following equation:



K_kgg (2-2)
n

where k is the permeability in units of area, p is the fluid density in
mass per volume, g is the acceleration of gravity in length per time
squared and p is the fluid dynamic viscosity in force-time per area.

The pore size distribution is quantified by an index X, which
increases as the size range of the pores decreases. Higher volumes of X
correspond to coarser, more thoroughly mixed, more densely packed or more
uniformly sized soils. To determine )\, a plot of p. vs S or Se is needed.
If substantial data for plotting of such a relationship is available, X
is found from the following equation:

1/N [ (log pc)] [T (log Se)] - £ (log P. log Se)

T [(log pc)?] - 1/N [X(log pc)]? (2-3)

and

Py = antilog { 1/N [Z(log pc) + 1/) Z(log Se)] } (2-4)

On the other hand, if only a few data points for p. vs S or Se are
available, A is found by curve-fitting to the data using the following
relationship:

S = (1 - Sr) (pb/pc)x + Sr ' ’ (2-5)

Using Eq. 2-1, Eq. 2-5 can be converted to:

Se = (pb/pc)x . (2-6)

In this case pp should be found or estimated. For this report a
computer program was developed to examine all possible values of pp, A
and Sr in order to find the best fit for the available data of S vs p..




Chapter 3
LITERATURE SEARCH

The starting point in the search for equations for the velocity and
the hydraulic conductivity was a computer literature search. The first
database searched was the National Technical Information Service (NTIS).
This database contains a listing of all the research done for or by a
federal government agency. The next database searched was the
Engineering Database (ENGI1). ENGI1 contains the articles printed in a
variety of technical journals in the different engineering fields. The
third database searched was the Agricultural Library (ARGRICOLA).
Articles from agricultural journals are listed in this database.

From the listings given by the computer search, four equations of
fluid flow in unsaturated soils were chosen. These equations were those
of Darcy, Klute, Morel-Seytoux, and Gelhar as given below. The primary
criterion for the selection of these equations was their requirement of
data that are normally collected in a survey. Since this comparison
would be conducted with data collected in the field, all equations had to
be satisfied using the available data. Each equation requires the
knowledge of a relationship between moisture content and the hydraulic
conductivity. Several equations defining this relationship exist, from
which four were chosen for the purposes of this study and will be
reviewed in the next chapter. Thus, a total of eight equations were used.
The selected equations for flow velocity through unsaturated soils are
explained below.

DARCY

The first equation of motion is Darcy's law of fluid motion. Darcy
[cited in Corey, 1977] stated that the flow velocity through porous media
is equal to the product of the total head gradient times the hydraulic
conductivity of the soil and fluid:

v, =K VH , | (3-1)

Darcy's law was proven experimentally for saturated soils and found to be
accurate. The equation was extended to unsaturated soils and assumed to
work with the proper K function.

MOREL-SEYTOUX

Morel-Seytoux (1973) - based his equation on Darcy's law.
Morel-Seytoux combined two Darcy equations, one for the water flow and
one for the air flow. He started with the basic vertical flow equation:

v, “kk4dpy N Kk g p.8 (3-2)

ooodzowy




where v; is the macroscopic fluid velocity in length per time, k is the

permeability of the soil in length squared, kyy is the relative

permeability, the actual permeability of the soil at the present

saturation over the saturated permeability, and is unitless, u is the
fluid viscosity in force by time over area, dpj/dz is the pressure

gradient of the fluid in force per area per length, pj is the density of

the fluid in mass per volume and g is the acceleration of gravity in

length per time squared.

The equations for water and air are then:

v o_ k krw dpw k krw P8 (3-3)
w= az T T ¥ ‘
¥ W
v, _ -k kra dpa k kra p.g (3-4)
a= - + a
L dz L

where w is the subscript for water and a is the subscript for air.

Multiplying the water equation by wuy/kky, and the air equation by
-Ma/Kkyy and then adding the resulting equations together:

KV oV dp

W W __'a a_ _‘a__‘w _ " (3-5)
Kk kk_ - dz_ dz T8 (p; " p)

™ ra

" If the total volumetric flow qf both fluids is Q then:
Q=0Qa +Q (3-6)

where Qg is the air flow and Q; is the water flow. If A is the cross
sectional area of the flow, then:

VA= (vg + vyp) A (3-7)
QA=v=vy+vy ' (3-8)
where v is the total velocity of all the fluids.

The water fractional velocity, the water velocity's percentage of
the total velocity is:

v

F=-¥ (3-9)
v
Introducing Eqs. 3-8 and 3-9 into Eq. 3-5 gives:
quF uav(l-F) _ dpa dpw (3-10)

- = -, t8(_~-rp,)
k krw k kra dz dz w a




The capillary pressure p. is the difference between the air and the

water pressures:
Pc  Pa ~ Pw
Using Eq. 3-11 in Eq. 3-10, we get:

uva uav(l—F) dp

_a - C
Kk~ kk_ - aztsbe
w ra

Moving v to the right side of the equation:

uWF - ua(l-F) = l (dﬂ”z + A )
k k k k v idz T 8°p
Iw ra

Multiplying through by kk,5/ug:

Bk k k dp

_Ww _ra
TR F-l1+4Fs= wv ( S+ g 8p)
a rw

Adding 1 to both sides:

Yy kra k kra dp
(— x t ) F= v
Ya Srw Ya

2t & 4p)

A variable fy;, a function of the permeabilities, is defined as:

f =(1+u_w§ -1

)
v Ya 5w

Using Eq. 3-16 in Eq. 3-15 gives:

f—: =1+ ::ia dz: + g 4p)

Fe (—2) = £, (1+ kukf," (dp + g 4p))
1 - v—f; =f (1+ kukf,a (dp° + g Ap))
1-f = X% + fﬂ;—ssé (dp + g Ap)

(3-11)

(3-12)

(3-13)

(3-14)

(3-15)

(3-16)

(3-17)
(3-18)
(3-19)

(3-20)



fw k k dpc

v(1=£)=v, + ™ (55 * 840
-k k__dp k k fkk dp
ra - a ra w__ra c
v(l-£f) = - + p g+ —— (
w ua dz ua a ua
Dividing through by kkya/ug:
uv (1-f) ~-dp dp
a wo_ a c
k kra T dz + Pga8 + fw( dz + 8 bp)

The left side of Eq. 3-23 is simplified by:

(k kra/ua k kra a+ uw/ua kra/krw)
_ " (L +u/wg /Rl - D
k kra 1+ uw/ua kra/krw)
_ Y (u,/uy k /k )
k kra a+ uw/ua kra/krw)
1k 1

k krw 1+ “w/“a kra/krw)

1 1

1
k G /u) (T+u/u k_/k_)

1 1

k (krw/uw + kra/ua)

Substituting the end result into Eq. 3-23:

v 1 -dpa ( dpc
T = +p gt f (—— + glp)
k (krw/uW + kra/ua) dz a w' dz
krW ) kra -dpa dpc
v = (k[—;; + —;;]) (57 *r8t [, +8del)

To find vy:

10

3zt 8 Ap)

(3-21)

(3-22)

(3-23)

(3-24)

(3-25)



k k d
v,=vFE=v {f (1 " ‘ra [P . 8 8D} (3-26)
u dz
a
with
n k
= _w _ra.,-1
£, = (1+ X )
a Iw
Note that
80 _ 2w _pza _azjat _ Y (3-27)
At ~ V_At  LAAt L L

Morel-Seytoux's equation requires only the physical constants u, p
and z and the standard saturation vs pore pressure curves for k, k,j, and

Pc-

The Morel-Seytoux equation takes into account the fact that air must
flow out of the media as the water flows in. The outflow of air is a
major limiting factor in flow into enclosed volumes of porous media. The
air will be trapped in the media and create a pressure gradient strong
enough to counteract gravity and eliminate the capillary pressure
gradient. -

KLUTE

Klute's equation (1969) is based on both Darcy's 1law and
conservation of mass. The conservation of mass is written as a flow
equation:
F=J] +Jy + C1Q1 + CyQy (3-28)

where F is the total mass flow in mass per time, J is the diffusion of
fluid in mass per time, C is the concentration of fluid in mass per
volume, and Q is the volumetric flow rate of fluid in volume per time
with 1 and v being the subscripts for liquid and vapor respectively.

Klute assumes that the mass flow due to diffusion is negligible. If
the soil is relatively isothermal, as in deeper soils, there is no
temperature gradient to drive the diffusion. If the soil is relatively
moist then the gas is discontinuous and there is no path for the vapor to
flow through. :

Klute assumes that the gas flow can be ignored because the air has
1/50th the viscosity and 1/1000th the density of water. The air flow
does not impede the water flow.

Taking the assumptions into account, Eq. 3-28 becomes:

F=0C1Q (3-29)
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The mass flow of water can also be written as:
dpy/dt = F (3-30)

with py as the mass of water in a unit volume of the soil, F is the mass
flow and refers to the flow along all three axes. Then:

dpy/dt = C1Qq (3-31)
From Darcy's law (Eq. 3-1):

dpy/dt = C1V-(K(8)VH) (3-32)
with K being the conductivity of the soil in 1length per time at
volumetric water content 8 in volume of water per volume of soil, VH is
the total head gradient along all three axes and the symbol V in front
refers to the flow in all three directions.

The mass flow into a unit volume of soil can be referred to as:

dp,,/dt = C; d8/dt (3-33)

the change in mass per unit volume of soil equals the change in the
volume of water in the soil times the unit mass of water.

Equations 3-32 and 3-33 are equal:
C, d8/dt = C1V-(K(8)VH) (3-34)
de/dt = V- (K(8)VH) . (3-35)
The total head is the sum of capillary head h., the velocity head and the
position head z. The velocities in unsaturated flow are so small as to
be negligible.
dé/dt = V- (K(8)V(he + z)) ) . (3-36)

To find the water velocity, the Ileft ‘side of Eq. 3-36 must be
manipulated in a manner similar to Eq. 3-27:

@ _Tw_Adz _1 dz_Tu (3-37)
dt Vit ~ ALdt L dt L

where V and v denote volume and velocity, respectively, and V;, is the
change in the volume of water per volume of soil, V¢ is the total volume
of soil, dt is the change in time, dz is the change in hydraulic head in
units of length, A is the cross-section area of the volume of soil, L is
the height of the soil volume in units of length.

Now vy is given by:

vy = LV( K(8)V(h, + 2)) (3-38)
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The flow is assumed to be downward only. This assumption is based on the
idea that the changes in the water content brought on by the flow are
constant across the horizontal cross section of soil.

vy = LV( K(8) (dhc/dz + dz/dz)) (3-39)
vy = LV( K(8) (dh./dz + 1)) (3-40)
vy = LV[dK(8)/dz (dh./dz + 1) + K(8) (d2h./dz2)] (3-41)
GELHAR

The volumetric flow Q of water is the effective velocity v through
the cross sectional area A¢:

Q=v A (3-43)

or

v=9 =4 | (3-44)
At

where q is the volumetric flow through a unit area.

In an unsaturated porous media, the total cross sectional area is
divided into three subareas; the solid area Ag, the water area Ay, and
the air area A,. Since the flow of water takes place only through the
water area Ay and q is the flow through the total area Ay, v is actually:

oo 0% _ % (3-45)
A_ A A
tw W
Assuming the porous media is isotropic:
bV ‘ (3-46)
At Vt

where V; is the volume of water in the total volume of soil V¢ and 8 is
the soil water content.

Substituting Eq. 3-46 into Eq. 3-45 gives:

_a (3-47)
V=%

Gelhar (1974) experimentally determined that for a soil drained by
gravity (where hydraulic gradient is unity and dh./dz = 0):

q=K (3-48)
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where K is the soil hydraulic conductivity at the given saturation.
Therefore, for gravity drained soils:

K (3-49)
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Chapter 4
CONDUCTIVITY EQUATIONS

BASE EQUATION

This section deals with the equations that calculate the
permeability or the hydraulic conductivity of the unsaturated soil for
use in the flow equations that were given in Chapter 3. The equatioms
used in this report are those derived by different authors, but are all
based on the same basic equation. In this report, the simpler derivation
of Brooks and Corey will be briefly presented, but equations of
Averjanov, Corey, Irmay, Mualem, and Laliberte, Brooks and Corey will be
used. Those equations are presented in the remainder of this chapter.
For details of the derivations, the reader is referred to the original
articles.

For a meniscus to be stable, there must be a balance of forces. The
pressure difference p. across the meniscus applied over the projected
area of the meniscus dA is countered by the surface tension ¢ pulling on
the soil at angle o around the wetted perimeter dwp:

pcdA = 0 cos o dwp (4-1)
The hydraulic radius R of the meniscus is:
R=dA / dwp = 0 cos a /(pc) (4-2)

pPc is a function of the saturation S. The average of the square of
the hydraulic radius is:

o2cos?a [° ds (4-3)
S ,
0 pc?

The Navier-Stokes equation for flow is:

R2 =

R2 : (4-4)

with u the average macroscopic velocity in length per time, R is the

hydraulic radius in length, kg is the shape factor, a constant accounting

for the shape of the flow cross section effecting the velocity, p is the
fluid viscosity in force-time per area and Vp is the pressure gradient.

In porous media the flow does not follow a straight path. The fluid
particle actually travels a tortuous distance Le in order to travel the
macroscopic straight distance L so the actual velocity of the particle
is:

v = u (Le/L) (4-5)

with v the microscopic velocity.
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The flow is powered by the driving gradient Vp, which is simplified
for flow in one direction, as:

Vp = Ap (L/Le) (4-6)

Using Eqs. 4-5 and 4-6 in Eq. 4-4 gives:

R? L ) (4-7)

¥ = K u(Te/L) b 7o
2 -
v = —R (4-8)

ku(Te/Dy? °P

The dimensionless term (Le/L)2 accounts for the actual distance the
flow has to travel. The term is generally called the tortuosity T. The
fluid flows through the pores and around the soil particles at full
saturation. As the saturation decreases and the pores begin to drain,
the fluid must flow through fewer and fewer pores. The flow path begins
to wind as the flow seeks the still connected pores. The microscopic
flow travels at greater and greater angles to the macroscopic flow. The
lower the saturation the more convoluted the path and the higher the
tortuosity. The tortuosity has been experimentally determined .to be
related to the saturation by:

To/T = [(S-Sr)/(1-Sr)]2 = Se2 (4-9)

where T, is the tortuosity at full saturation, T is the tortuosity at the
given saturation S, Sr is the residual saturation, Se is the effective
saturation and 1 is the value of S at full saturation.

At full saturation, the instantaneous flow is assumed to be
averaging a 45° angle to the macroscopic flow. If L is said to be 1 then
Le is v2/2 and Ty is 2. Substituting Eq. 4-9 into Eq. 4-8 gives:

R? R?Se? (4-10)
v=T——7VP=7""»J4p
kfuT 2kfu
Using Eq. 4-3:
2 2 Se
_ Se 0% cos’a dSe (4-11)
V= 2k _u Ap J 2 7
f 0 (Pc)
In 1863 Dupuit found that:
Q = vée Se (4-12)

with ¢, as the effective porosity after accounting for the residual
saturation and Q is the volumetric flow rate. From Darcy's law:
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Q=K 4p _ (4-13)
Setting Egs. 4-12 and 4-13 equal:
K Ap = v Se T (4-14)

Substituting Eq. 4-11 into Eq. 4-14:

¢ Se? 02 cos?a Se
K bp = =—5— w [ ?Se)z (4-15)
f 0 pc
¢ Se? o2 cos?a _.Se
K = -2 T J %§933 (4-16)
f 0 pc

In a fully saturated media, Se is 1, thus:

2 2
= ¢eo cos‘a J_1 dSe (4-17)
= 2
o 2 ke w o (@)
where K, is the conductivity of the fully saturated media and K is the
total conductivity of the soil at effective saturation Se, given by:

K Se dSe
o J, (p)*
K =
fl dSe
2
o (P

for K, experimentally determined from soil samples.

In order to make Eq. 4-18 easier to use, simplifications have been

devised to replace the integral terms in the equations. Corey (1954)
experimentally determined that:
K = K Se# (4-19)

Aver janov (1950) theoretically found that:

KoSe3-3 o (4-20)

=
]

Irmay (1954) used a theoretical perfectly uniform pore size
distribution to find:

K = KSe3 (4-21)
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LALIBERTE, BROOKS and COREY

Brooks and Corey (1966) used the following equation:

2 2 2
K _ ¢e Se® 0° cos‘a J,Se dSe (4-16)
- 2 k

£ ¥ 0 (pc)?

Laliberte, Brooks, and Corey (1968) said that cos? o is assumed to be 1
for any o close to 0°. k¢ is equal to 2 for a circular cross section and
3 for a thin film. For a porous media a value of 2.5 is assumed to
account for the variety of shapes within pores and between pores.
Equation 4-16 becomes:

2 2
K _ %5 ¢ Ise dse (4-22)
e 0 (Pc)2

Brooks and Corey found that the effective saturation Se and the capillary
pressure p. are related by:

Se = (pb/pc)A (4-23)

where pp is the bubbling pressure and the minimum p. at which the "air is
continuous, and X is the pore size distribution index. X\ was defined by
Brooks and Corey as the slope of the straight plot of logSe vs log(pp/pc)-
X decreases as the number of different pore sizes increases.
Substituting Eq. 4-23 into Eq. 4-22 gives:

¢ Se? Se (2/))
_ _e
K= 5o Io 86 4se

Setting the limits of integration as 0 and 1 for fully saturated soils:

(4-24). -

¢ o2
_ e 1 (2)+1) (4-25)
K = -~ Se
[¢] 2 22+1
SHPy
2
g =2 | (4-26)
[¢] 2 2+2
Supy
and
K=K (p/p )(2 + 3)\) (4-27)
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where n is related to one or more properties of the specific soil.
Mualem based n on the capillary pressure p. vs water content 6 curve
because that curve is generally found in the normal course of a soil
investigation. From this curve Mualem defined the term work w as the
energy required to drain a soil from full saturation to complete
drainage:

h o
W= j ©  ndo (4-29)
h =0

where ¥, is the specific weight of water in force per volume. Because
the p. vs 8 curve is believed to show the effects of several soil
characteristics, pp, A, etc., the exponent n should be related to w by
some function. Mualem sought a function that met actual data, produced
small errors between calculated n and data back-calculated n, and was
simple. Mualem used the basic equation:

n=aw +b (4-30)

with a, o and b empirical constants experimentally determined. By using
the data from 50 different soil samples, Mualem found that o« = 1 and:

n =0.015w + 3.0 . (4-31)
fit the data well and met Averjanov's value for perfectly uniform pore

size distributions.
1919
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Chapter 5
THE FIELD DATA
COLLECTION OF DATA

To find the best equation for velocity and conductivity, field data
had to be utilized on which to base the comparison. It was fortunate
that certain field data were available, reported by Ligon and Wilson
(1972) and Ligon et al (1980) of Clemson University's Department of
Agricultural Engineering. The data consisted of a tritium tracer study
on a plot in the Clemson research watershed. It would have been ideal to
have more thorough field data, but given the total one-year duration of
the study, acquisition of additional field data was not possible.

In the field study a slug of tritium was inserted in the surface
layers of the soil column. At certain time intervals a series of soil
samples were taken at specific depths. From the samples, radiation
counts were taken to determine the radioactivity of the water at the
sample depth at the sampling time. These counts were compared with
background counts taken at such places as Lake Hartwell and a stream near
the sample site. The data used in the present study were those of the
deeper layers of soil where the moisture changes were smaller and the
times between samples were larger. These conditions tend to cut down on
variations in the flow.

The leading edge of the tritium trace was found by calculating the
point where the sample counts dropped down to the background counts, a
straight line interpolation was used to find the depth of the leading
edge. The primary reasons why the leading edge of the tritium movement
front was used instead of the point of peak concentration are the
following: 1) The molecular structure and hence the potential of tritium
for diffusion in a partially saturated soil is so close to water that the
velocity of the moving front cannot be appreciably different than the
velocity of point of peak tritium content; 2) the precision.of the field
data is not high enough to distinguish between these two velocities; and
3) since the application of the results of the study is in movement of
contaminants through unsaturated soil, it is important to determine the
location of the leading edge of a contaminant at any one time, rather
than the point of highest concentration. .

The velocity through a layer of soil was assumed to be the distance
traveled by the tracer between sample times divided by the corresponding
time interval. The velocity was assumed to be constant over the depth
interval. Also taken during the field study were a number of
measurements of the soil conditions. This information was needed for the
comparison. The capillary pressure of the soil vs water content was
taken for the values of 0 psi (full saturation), 1.5 psi, 4.9 psi, 9.9
psi, and 14.7 psi at each of the main data soil layers. The saturated
hydraulic conductivity was taken for a different but corresponding series
of soil layers. During another study in the same site, a number of soil
moisture profiles were taken over a period of time from April 1970 to
April 1971.
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USE OF DATA AND EQUATIONS

The first step in the use of the data collected by Ligon et al was
the generation of the type of data needed by the equations of
conductivity and flow. The explanation of data manipulation described
below is for one of the soil layers. The method is repeated for each of
the other layers.

The first type of data generated were curves of capillary pressure
Pc Vs saturation S. The collected data were in the form of capillary
pressure p. Vs water content 8 at four different points. With the water
content known, saturation can be found from the basic relation:

86 =¢85 (5-1)

The saturation S at O psi is the full saturation of S = 1 at which point
the value of water content 8 is the same as the soil porosity ¢. The
water contents at each of the three remaining pressures were then divided
by the porosity ¢ to give the saturation S at each pressure. These S vs
pc data were fed into a computer program to find the values of Sr, A, and
pp found in Eq. 5-2. The computer program was developed specifically for
this purpose and can be obtained from the authors.

S = (1 - Sr) (pb/pc)x + Sr - - (5-2)

Starting with a set of values of pp, Sr, and )\, the program calculated a
series of trial S's for the set of p.'s. If the series of S's was quite
close to the S's from the data set, the program would print out the trial
S's, and the trial values of pp, Sr, and A\. Using a nested set of loops
the program would test all possible combinations of pj, Sr, and X. The
printout of the trial S's would then be compared to the data S's to find
the series that came the closest to the data. Frequently, the trial S's
of a given set of values of pp, Sr, and X\ would match exactly for some of
the data S's but not all. As a way to decide, the S's of the lower p.'s
were given more weight than the higher pc's. The primary reason for this
method was that frequently some of the values of Sr were above the values
of S given for higher p.'s and there would be no other comparison between
the different sets of values of pp, Sr, and . Also, small changes in
the values of pp, Sr and )\ caused small changes in the trial S's at lower
pc's but large changes in the S's for higher p.'s.

After using the program to find the best values of pp, Sr and X, the
S vs p. curve was plotted with a vertical line at S = 1 up to pp and an
asymptote at Sr. The work w used in Mualem's equation of conductivity
was found by determining the area under the curve.

The saturated conductivity K, was found from the data given by
Ligon et al. The data were taken in layers that were smaller and offset
from the main data layers used for the § vs p. curve and other
information. Therefore the saturated conductivities for the main data
layers were found by determining weighted average conductivities of the
offset layers. The amount of each offset layer within the main layer
determined the extent to which the offset layer affected the main layer.
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In addition to the saturated hydraulic conductivity, the saturated
permeability k was required. The permeability is found from the
conductivity by:

_ Ku (5-3)
(414

which is derived from Eq. 2-2. After the generation of the layer
information, two pieces of data had to be found on a multilayer level.
These are the capillary pressure gradient dp./dz and the secondary
capillary pressure gradient dzpc/dzz. The capillary pressure gradient
was found from the § vs p, curve with the given pressure assumed to be at
the center of each layer. A curve was then drawn through the points to
form the depth z vs p. curve. Tangents were then drawn along the z vs p.
curve to find the dp./dz values at different depths. From this data a
curve of the dp./dz vs z curve was drawn. The values of dp./dz were read
straight from the curve. The dzpc/dz2 values were found by drawing
tangents to the dp./dz curve at the depths of the layer centers.

After all the needed data were collected for each of the layers, it
was a matter of putting the numbers into the equations reported in
Chapter 3. The velocities generated from the equations were then
compared to the velocities from the field data. The field velocities
were determined by dividing the length of travel for the tritium .tracer
by the time between samples.

22



Chapter 6
RESULTS AND COMPARISONS*

To review the contents of the previous chapters, four equations
suggested for movement of water through unsaturated soils are compared in
this chapter.  These are equations of Darcy, Gelhar, Klute, and
Morel-Seytoux. Each of these equations requires the use of a
relationship between conductivity and water content. There are five such
relationships selected for comparison also, namely, those of Averjanov,
Corey, Irmay, Laliberte (and Brooks and Corey, referred to as LBC in this
report), and Mualem. The former group of equations will be referred to
as the velocity equations and the latter group as the conductivity
equations. Results obtained from the suggested equations will be
compared to a set of unsaturated flow data collected independently at
Clemson University by Ligon and Wilson (1972) and Ligon, et al (1980),
referred to as the data. Also, in the figures presented in this chapter,
reference to other authors is made in the following abbreviated form: mu
= Mualem; co = Corey; aver = Averjanov; ir = Irmay; lbc = Laliberte,
Brooks and Corey; morel = Morel-Seytoux.

The data are in the form of time of travel of a front of radioactive
water through layers of soil from a depth of 110 inches to a depth of 310
inches. The velocity equations were used to generate the same type of
information, and plotted as shown in Figs. 6-1 to 6-3. Figure 6-1 shows
the prediction of Gelhar's equation of time of travel of water to the
given depth. The five conductivity equations are compared as a secondary
parameter. The data are also plotted as a reference for the comparisons.
Figures 6-2 and 6-3 show similar plots for Morel-Seytoux and Darcy
equations. The equation of Klute gives negative values of velocity at
some of the layers, and this makes it impossible to compare that equation
to the data because the time of travel of water through some 1layers
becomes infinite. It is obvious from the figures that all the velocity
equations predict a faster flow velocity for the upper layers of soil
(drier, less compacted) and a slower velocity for the deeper layers
(wetter, more compacted). Specifically notable is the extremely slow
velocities resulting from the use of LBC conductivity equation. It would
be a hasty decision at this point to judge that this equation is
inadequate for producing good results. However, because the entire time
scale of Figs. 6-1 to 6-3 is distorted due to the use of LBC equation, a
second set of figures was produced, eliminating the results of LBC beyond
the depth of 220 inches. The results are shown in Figs. 6-4 to 6-6. On
the expanded time scale of Figs. 6-4 to 6-6 it becomes clear that LBC
equation actually produces better results than the other conductivity
equations up to a depth of 220 inches for all of the velocity equationms.
Furthermore, quick eye-judgment would indicate Gelhar equation to work
better than the others.for predicting flow velocity. This again may be a
hasty judgment. To compare the velocity equations side by side, a
different set of figures were prepared with the conductivity equations as
the main parameter and the velocity equations as the secondary parameter.

*The original figures of this report are in color, but legended such that
they can be easily understood in black and white. For the interested
reader, color copies can be provided at the cost of $1.00 per page.
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The field data are also plotted for comparison. Figure 6-7 shows the
flow time to the given depth predicted by all the velocity equations
using Mualem conductivity equation. Figures 6-8 to 6-11 are similar
plots using Irmay, Averjanov, Corey and LBC equations respectively. The
figures are ordered according to largest value on the time scale. Since
the total travel time for the field data is a constant for all the
figures, the highest value on the time scale of each figure may be
thought of as a crude indicator of how well each conductivity equation is
performing. Comparison of Figs. 6-7 to 6-10 with Fig. 6-11 indicates one
more time that although the LBC equations falls last on the basis of
overall travel time, it actually produces better results by any of the
velocity equations up to a depth of 220 inches. Comparison of the
velocity equations reveals that the equations of Morel-Seytoux and Darcy
give very close results, and they are better predictors of velocity to a
depth of 220 inches (drier, less compacted soils), while the equation of
Gelhar performs better and its results become more parallel to the plot
of the field data at the lower depths (wetter, more compacted soils).
One point to note is that in the lower depths, where equations of
Morel-Seytoux and Darcy predict a travel time of 2000 days for the actual
data time of 600 days, the error of prediction is a factor of about 3.5.
On the other hand, at the depth of 200 inches where the equation of
Gelhar predicts a travel time of 40 days for an actual field time of 300
days, the error of prediction is a factor of 7.5. Therefore, further
analysis is necessary before a valid conclusion is reached about which of
the suggested equations would be a better predictor of actual flow
velocity through unsaturated soils.

To further analyze the equations under study, it was decided to
non-dimensionalize the results of the different equations and compare
them on a non-dimensional basis. Depth was non-dimensionalized by
dividing the depth of each layer by the total profile depth of 310 inches.
Velocity was non-dimensionalized by dividing the predicted velocities by
the velocities measured for each layer in the field data. The results
thus obtained are again compared in two different categories. In the
first category, the velocity equations are used as the primary parameter
and the conductivity equations as the secondary parameter. Figure 6-12
shows the non-dimensional plot of the results of Darcy equation using the
different conductivity equations. The field data show as a line through
the non-dimensional velocity of unity. Figures 6-13 to 6-15 show similar
results by the equations of Gelhar, Morel-Seytoux and Klute, respectively.
There is a single value of velocity for each layer of soil, resulting in
a step-wise plot as shown.

The figures are ordered according to the highest wvalue on the
non-dimensional velocity scale. This time the equation of Klute can be
included in the comparison, despite the fact that it sometimes predicts
negative velocities, meaning that there would be no downward flow at some
layers of soil. This result is contrary to the data. It is interesting
to note that where the equation of Klute produces positive velocities,
its results are good. It is also noteworthy that the combination of the
velocity equation of Morel-Seytoux with the conductivity equation of
Corey is a poor one and without it the equation of Morel-Seytoux would
give very good results.
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A second category of dimensionless plots are prepared by plotting
the velocity equations side by side as shown in Figs. 6-16 to 6-20. The
conductivity equations are the primary parameters between the figures.
Again, the line representing the field data is a straight line through
the dimensionless velocity of unity. The closer the predicted velocity
of an equation to this line, the better is its prediction. The figures
are one more time ordered according to the highest value on the
dimensionless velocity scale. It is interesting to note that the
conductivity equation of LBC seems to be clearly a more suitable equation
for any of the velocity equations, including the negative values of Klute
equation. Visual inspection of Figs. 6-16 to 6-20 indicates that the
equations of Morel-Seytoux and Darcy produce results that are similar and
close to field data, the combination of Morel-Seytoux and Darcy once
again being the exception.

Visual comparison can be misleading in certain situations. For a
better comparison of such similar plots as Figs. 6-16 to 6-20 it is
preferable to obtain a numerical indicator of the closeness of the
predictions to the filed data. To determine such a numerical indicator,
calculations of root mean square of the data of Figs. 6-16 to 6-20 were’
made, as shown in Table 6-1. This will give a relatively simple yet an
indicative parameter for comparison of the different equations.
Comparison of the columns shows a clear advantage for the LBC equation.
Comparison of the rows reveals the extremely similar results of the
equations of Darcy and Morel-Seytoux, excepting the poor combination of
Morel-Seytoux equation with that of Corey, which had been noticed before.
Either equation seems adequate for predicting flow velocities. However,
in view of the more comprehensive coverage of the factors involved in
motion of liquids through porous media, the equation of Morel-Seytoux in
combination with LBC is recommended. Contaminants may not always be
transported in the form of small quantities of dissolved materials in
water, they may be fluids such as jet fuel, which require a more detailed
consideration of factors involved than Darcy equation utilizes.

Table 6-1. Root Mean Squares of the Predicted Dimensionless Velocities®

Equation Aver janov Corey Irmay LBC Mualem
Darcy ' 16.98 11.37 25.85 5.54 25.30
Gelhar 134.81 90.30 202.59 19.39 199.42
Klute 25.19 26.43 27.44 17.95 27.14
Morel-Sevtoux 16.99 532.35 25.85 5.69 25.47

*Root Mean Square = 3 (predicted v - Data v)2 over different layers

Consideration of Table 6-1 shows small values of the root mean
square for Klute equation. This equation is considered accurate by the
authors and the reason it gives negative values of velocity is that it
uses the differences in hydraulic conductivity between layers. When a
less permeable layer overlies a more permeable layer, as flow becomes
unsaturated the capillary pressure in the top layer becomes higher than
the lower layer and flow stops. Whereas this analysis is true of heavy
soils overlying light soils, in a continuous and gradually changing
column of solid such as the one used for collection of the field data it
may not apply. Failure of Klute equation in this case is because of
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discretizing the properties of a continuous medium. The negative
velocities are not acceptable in this case, and therefore the equation of
Klute was eliminated from Figs. 6-16 to 6-20 and the figures were
replotted in Figs. 6-21 to 6=25. The values of Table 6-1 can be visually
verified by comparing these figures.

Careful observation of all the figures shows that there is a
consistent deviation of the equations from the field data at lower depths.
The field data were collected by sampling water at different intervals of
time until the radioactive water front passed the sampling site. Because
of such a consistent deviation of all the suggested velocity
equations from the field data, it was suspected that actually the field
data may have somehow been in error in the lower depths. To test this
hypothesis a set of figures was prepared where velocities were
non-dimensionalized using the velocity equation of Morel-Seytoux and the
conductivity equation of LBC. TFigure 6-26 shows a non-dimensionalized
plot of velocity vs depth based on the Morel-Seytoux - LBC combination
for the Morel-Seytoux equation itself. Naturally, the line for LBC would
be a straight 1line through non-dimensional velocity of unity. The
largest difference observed is 18-fold of the base equation. If the
field data are included in the plot, as shown in Fig. 6-27, the
difference between the base equation and the field data becomes 100-fold.
Figures 6-28 to 6-30 show similar plots using other velocity equations
side by side. Figures 6-31 to 6-35 have been prepared which are
self-explanatory. The equation of Klute has been eliminated from this
set to avoid negative velocities. The root mean squares for the last set
of plots were calculated for comparison, as shown in Table 6-2. Values
in this table are higher than the values in Table 6-1, indicating that
with this combination, the variability within the velocity equations is
more than the variability between the equations and the field data. It
is worth noting that in this method of calculations the differences are
squared and hence differences are exaggerated. The very high value of
the root mean square for the data is indicative of the disagreement of
the data as shown in Figs. 6-25 to 6-35. This analysis does not
decisively eliminate the possibility of errors in the field data for the
lower layers of the soil profile. But it does indicate that overall, the
equations under study agree with the field data better than they agree
amongst themselves for the tested combinationms.

Table 6-2. Root Mean Squares of the Non-Dimensionalized Velocity
Equations on the Basis of the Morel-Seytoux-LBC Combination.

Equation -__Averijanov Corey Irmay LBC Mualem
Darcy 335 215 501 9 497
Gelhar 2000 1319 2927 54 2897
Klute 119 ‘ 343 204 328 182
Morel-Seytoux 336 447 501 0 499

In further attempts to analyze the performance of the equations
under study, it was decided to quantify the order of magnitude of the

errors of velocity prediction by the different equations. The graphs
presented thus far contain an important factor that is not readily
obvious to the viewer. It has been discussed before, that on the

non-dimensional plots the field data represent a straight line at the
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non-dimensional velocity of unity. Above this 1line, the velocity
equations may predict velocities of up to four fold. Below the line (and
above the axis where velocity is zero) the velocity equations may predict
velocities of 1/10 to 1/50 of the field data, which is off by more than
an order of magnitude. These two errors should not be given equal weight.
In order to quantify how the velocity equations perform with respect to
errors of one or two orders of magnitude, root mean square calculationms
were performed on the logarithms of the non-dimensionalized velocities.
The results are summarized in Table 6-3. The equation of Klute was not
included in the analysis because the logarithm of a negative number is
undefined. Table 6-3 indicates that the equation of LBC gives the worst
and that of Corey gives the best results of this analysis. Examination
of the rows shows that the equation of Gelhar is producing better results
by this analysis. This result does not contradict the earlier finding
that the equation of Morel-Seytoux with LBC gives better results. The
fact is that these two equations are suited to two different conditiomns.
To the extent of being able to verify against the existing set of field
data, for less compacted soils, on the dry side of the moisture content
curve, the equation of Morel-Seytoux with that of LBC is a better
predictor of flow velocity through the soil. On the other hand, for more
compacted soils with higher moisture contents, the equation of Gelhar
combined with the conductivity equation of Corey can be expected to give
better results.

Table 6-3. Root Mean Square of Logarithms of Non-Dimensional Velocity
Predictions Based on the Field Data

Equation Aver janov Corey Irmay LBC Mualem
Darcy 4.48 5.21 4.21 8.98 4.19
Gelhar 3.68 3.58 3.96 5.32 3.94
Morel-Seytoux 4.48 7.20 4.21 10.44 4.20
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Chapter 7
CONCLUSIONS AND RECOMMENDATIONS

The equations wunder study have each been derived for certain
conditions for which they may be expected to produce satisfactory results.
In this study an effort was made to compare four equations of flow
velocity in unsaturated media using an independent set of data that was
not tailored to the needs of any of the equations. For this reason, five
equations of hydraulic conductivity as a function of moisture content
were also used and compared. The analyses presented in Chapter 6 point
to two combinations that can be expected to produce results verifiable by
the field data of this study. For flow under low moisture content and
less compacted soils the equation of Morel-Seytoux combined with the
equation of Laliberte, Brooks and Corey produced the best results. For
more compacted soils under higher moisture content, the equation of
Gelhar combined with the equation of Corey produced better results than
other combinations. The knowledge of the capabilities of these equations
is extremely important and at times critical for predicting the fate of a
front of contaminant moving under unsaturated conditions in the
underground water resources.

The information gained in this study is only a starting point in
shedding light on the available methods of predicting the movement of
water and other contaminants through soils under unsaturated conditions.
Much more extensive work needs to be done in collecting or identifying
actual data of movement of water in unsaturated soils in order to
delineate and define the range of applicability of the existing equatioms
of flow. Modification to the presently existing equations and
methodologies may be recommended in order to arrive at a more generally
applicable flow equation in unsaturated soils.
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