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for Understunding

Aavricultursl Production Funciions
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Undergraduate ond graduate stwents often have ciffizelry in dev-
eloping aﬁ aderstanding of the nature of surfaces of multi-inpat
agrisultural production functions. Wooden or plastic moedcls sometinss nae
to iliustrate production surfaces are difficuit to build or capensive to
purchase. These wmodels usually are supposed to represent 2 twe-input

production function called the "textbook" case. liowever, the matbematical

specification of the production functien underlving the plastic or weoden

mod~! iy eiten ambiguous. But the wast sericus disadvantage of these models

is thet even i{ s mathewatical specification of the production function
underlying the model is known, it is impossible with a single model to
change the paramcters of the underlying function asud obsorve the resul -

tant impacis on the surface eof the function.

In this article we propose the use of computer graphics as e tool
for teaching students about the nature of agricultural prodaction function
surfaces. A plotter linked to a computer is used to generate three dimen-
sional iltluvstrations of two-input agricultural production functions.
Production economics problems often vrequire the maximization or mini-

mization of s function, Computer graphics is also used as a toel for
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developing in students an understanding of the methemwatic.l cenditions
necessary and sufficient for a maximum oy wminimum., Conputer graphics
is wseful as a tool for developing in students an understanding of
production econonics becunse:

(1) With cowputer graphics it is possible to gencrate three
dimensional illustrations of surfaces fer a host of pro-
duction functions, not just the usual textbeok case.
Parameters of the preduction function can be varied and
the resultant impact on the suiwface be observed. Students
can compare surfaces among production functions widely
uvsed in sgricultural cconomics rescarch such as the Cobb-
Dougias, Transcendental, Spillman, €S, polynomial forms
and others. Shapes of agricultural produvction function
surfaces cun be discerned at least as ecsily fyom o com-
puter generated illustration as Zrom a woecden or piastic
model, and yet copies of the iilustrstions cam be carried
by students irn 2 notehook!

(2) Computer graphics, when used as a tool to supplenent
instruction dealing with optimization problems, provides
vivid illustrations of the meaning of mathematiczl con-
ditions necessary and sufficient for a maximuwm or winimum.
Students can easily grasp the importance of sufficient
conditions when a mathematical vresentation is supplemented

with computer-genexated illustrations,
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(3} Cowputer graphics is quite inexpensive and simple to use.
The only eqguipwent required is a uomputer linkaed 1o 2
CALCOMP  (ox other) plotter, which is availeble at neorly
all wniversity comnuting centers. The computer program
developed at Rentvoky for using the CALCOMP plotter is
sirple ersugh Yo operate so that beginning gradunte students

) 1
@uy rin thelr swn coupuier granhics programs.” The cost
of each illustration is approximstely $1 5¢ un the

University of Kentucky IBM 370-165 sysiem.

Alternative Asviceltural

et ion Functions

“he most widely used function in prodiciion

economics litorature is the Cobb-Douglas (1928}, A general ToBib-Douglas

i3 represer

The surface generated by {1) 2 illustrated in Figure 1 when o = .4, 8 = .6,

A =1, Duainishing rarzinzl returrs fo Xy and x. and constant returns to

..

scale are eviaent.

ifalter e¥ ai. popularized the "transcendental™

preduction functicn. ippropriate seloction of parameters yields a

function which wiil represent all three stages of prosiaction.
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The general form of the transcendental is

. )
() vy = Ax le E e R
RS T

Figure 2 illustrates the surface of the function when T 4,

2
Yy =Yy = -2, A= 1. Hoooutpur (y) is preduced if either X; OF X,

assume a value of zovo, snd the isoguants gemerated by the function are
asymptotic to the axes, Ridge lines enclosing Stage II for both inputs
are parallel to the axe53 and intersect at the maximum of the function.

An alternate view of equation 2 which more clearly reveals the three

stages of production is obtained by rotating the figure in the Xyy Xg

[y

plane (Figure 3}.
Polynomials. A number of polynomial forms have been used in

agricultural economics research. A general polynomial form is

_ 2 3
3y y-= Xy a,X, T+ agX, "+ 81x2

2 2
T By By Y X%
Fipure 4 illustrates equation (3) when

leg =R =8 =I’

Yy T .40,

The resultant illustration is a close approximation of what has been
referred to as the textbook case. In contrast with the transcendental

(Figure 2) isoquants intersect the axes, and ridge lines are no longer

parallel to the axes.
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e Suillmam. One of the earliest mathematical fay

s wmed te

represant production relationships was Jdue vo Spitlwman (1023, 1vZ4). A

generzl forw of the Spiilewun is
X, X,
() 'y = All-#, 7y Ci-R, T

where

< R, o1 = 4 constany

The Spillman wher A = 1, R . A, Ry, o= 06 is illuntrared
Although the function only exhibits diminishine margival
shape of the surface
Douglas (Figure i},

The CBS. Repordless of the values assumed for o a
Cobb-Douglias tyve production fuamctions have elasticities

equal to one. The CES [Arrow et al.) allows far constant

of substitution other than one. The general foim of th=

+(l-a)x

“p, P
2 )

where the elasticity of substitution ()

.

by the idemtity

is yelared te th

,..
o
G

i

Henderson end ¢ Yasndt line five casces with altermuative
sheut the value of 0. Two of these cases ar> illustrabe:d

and 7. As 0+ 0, 0+ = the isoquants become right angles

is somewhat different from that of «

in gure 5.
returns, the

wo Cobb-

nd 8, all
of substitution

clasticities

OES s

2 parameter o

assumptions
in Vigures &

and the
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production surface approaches a pyramid in shape. This is shown in

s

Figure 6 by setting o = 10. 1f ¢ > 1 and -1 < p < 0, the isoquants
intersect hoth axes. The producticn surface shown in figure 7 was

generated with ¢ = -.5. Compave this fipure with Figure 1.

Sufficient Conditicns

Computer graphics can also be used to supplement the presentation

of second order, or sufficient conditions.® vor exwaple, the function

reaches a maximum at xl = xz = () since

($) 1-z2f <o

(%) [-2 9o
S

The =bove determinental conditions are sufficient for a maximum since
priuzcipal minors of the relevant hessian aiternate inm sign  starting
with a winus, Figure 8 illustrates eguation 7.

A saddle poimt is generated by the equation

(M vy = xl“ - X,

Al
The function veuches a minimum at Xy = 0 along the xlaxis and a maximum

at Xy = 0 along the x, axis since
s

(1ty 210 >9

2y leop! .
lo 2] 0
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the abhove

for

a maxinum since the first principal minor

5 illustretod in Pigure ® 0 Finally, companey

local
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{13y ¥ = 40x, ~ 12x,7 + 1.2x - L035%
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Tabie 1. Gecond Order Conditions for Figure 11,

Local A sadile global
PO T point L AT
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Footnotes
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*Dehertin is Associate Professor of Apricuitural Economics;
Pagouvlatos iu Assistant Professor of Agricultural kconomics; Eradford

is Professor of Agricultural Economics, all at the University of Kentucky.
This paper is an overview of work veported in twe forthceming University
of Kentucly Resczrch Henorts by the authors {1876z and 1976¢b). Herman
C. Collins wrete the PL-1 plotter program,

hi

“A copy of the P'u-1 plotter wrogram is aveilzble in the
CORLDZ YESEArch rﬁporfﬂ. Prograsm wsers select the fungfiu
plotted, function mavameters, and vaiues over which the £
be plotied

éThroughout “his articie, y is used to desimnate an output, X,,
%, are two inputs or fu«uo*’ of production, e refers to the base of the
natural Jegarithe, the er A and the Graek letters «, %, v, and ¢
desiygnete yroducition fuubnzon PATAMETCTS, ’

PR (Y X + vYoik, + voryF,)
G A LS B P S I T

y = Axl Xy &

will generate ridge limes which are not praraliel te the axes,

4. \ . . . . e .
Sew the discussion on sufficient conditions in Chainsg and
Intriiligater,



Figure 1.

"The Cobb—Doug\as“
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Alternate View of the Transcendental
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Figure 4. Y = X1 + Xf
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Figure 6. vy = (,/4)(110 s .6x210) S

‘The CES" (Case 1)
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Figure 7. vy - ( 4Xi5

(Case 2)

"The CE s
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"A Maximum"
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Figure 9. Y = Xl - X2
"' A Saddle Point'
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