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ABSTRACT 

Robust estimation aims at developing point estimators that are not highly 
sensitive to errors in the data. However, the population parameters of interest 
are not identified under the assumptions of robust estimation, so the rationale 
for point estimation is not apparent. This paper shows that under the 
assumptions of robust estimation, population parameters can be bounded, even 
though they are not identified. Several features of the bounds are related to 
the breakdown point and gross-error sensitivity of robust estimation. A method 
for estimating the bounds is given and illustrated with an application to data 
on the distribution of household incomes in the U.S. It is argued that in the 
presence of errors in data, it is more natural to estimate the bounds than to 
attempt point estimation of unidentified parameters. 
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IDENTIFICATION AND ROBUSTNESS IN THE PRESENCE OF ERRORS IN DATA 

1. Introduction 

Inference in the presence of errors in the data is problematic because the 

sampling process does not identify the probability distribution of interest. 

As with other identification problems, it is natural to analyze the errors-in­

data problem in two stages: first determine which features of the relevant 

population are identified given the available information, and then develop 

methods for estimating the identified features. 

One of the main approaches to the errors-in-data problem, robust 

estimation, follows a different analytical strategy. Studies of robustness aim 

at characterizing how point estimators of population parameters behave in the 

presence of errors in the data. The main objective is to find point estimators 

that are not greatly affected by errors. There is no attempt to undertake the 

separate though related task of determining what information about the 

parameters is available from a sampling process that produces data errors and 

how that information can be extracted. 

In this paper, we address the identification problem directly. Our aim 

is to find out what can be learned about parameters of interest when the 

sampling process generates erroneous observations. We show that under the 

error-generation models used in robust estimation, it is often possible to 

obtain informative bounds on the values of unidentified population parameters. 

These bounds exhaust the information about the parameters that is available from 

the sampling process. We also show that estimating the bounds consistently is 

often very easy. 
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Our main assumption is that the analyst has a priori knowledge o,f an upper 

bound on the probability of data errors. This assumption is impli,::it in all 

robust estimation. Bounded-influence estimation assumes implicitly that the 

probability of data errors is "small," and high-breakdown estimation assumes 

implicitly that the probability of data errors is less than the breakdown point. 

In bounded-influence estimation it is further assumed that the occurrence 

of data errors is independent of the sample realizations from the population 

of interest (the "contaminated sampling" model). This assumption is usually 

not made in high-breakdown estimation, thereby permitting more general forms 

of data corruption (the "corrupted sampling" model). We analyze identification 

under both the contaminated and corrupted sampling models. 

Section 2 presents these models formally and develops basic identification 

results obtainable when no structure is imposed on the sample space or the 

parameter of interest. We introduce the concept of "identification breakdown" 

and relate it to the robustness concept of breakdown. 

Section 3 gives further results that apply when the sample space is the 

real line. We obtain tight bounds on quantiles (Section 3.1) and 1Jn the more 

general class of parameters that respect stochastic dominance (Section 3.2). 

Section 4 develops an infinitesimal identification analysis that applies 

when the error probability is small and the parameter of interest is a smooth 

functional on the space of probability distributions. 

identification version of the gross-error sensitivity. 

This work yields an 

Section 5 outlines how the bounds obtained in Sections 2 and 3 can be 

estimated consistently. The estimation method is illustratE~d with an 

application to data on the distribution of household incomes in the U.S. 
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The findings reported in Sections 2-5 lead us in Section 6 to question the 

focus on point estimation found in robustness studies. If, given the available 

information, a population parameter can only be bounded, then the rationale for 

point estimation is not apparent. It seems to us more natural to estimate the 

bounds, a task that is often easily accomplished. 

Our work also suggests that the perspective of robust analysis is more 

conservative than necessary. Robust analysis views the inference problem before 

the data are collected. The objective is to guard against the worst outcomes 

that errors in the data could conceivably produce. But some outcomes that are 

possible ex ante can be ruled out ex post, after the data have been collected. 

Identification analysis characterizes the inferences that can be made given 

knowledge of the empirical distribution of the data. 

2. 

The proofs of propositions are in the appendix. 

Basic Identification Analysis 

2.1 STATEMENT OF THE PROBLEM 

To pose the errors-in-data problem that we investigate, let (Y,O) be a 

measurable space, let (y0 ,y1 ,z) e YxYx{O,l} be a random triple distributed P, 

and let a random sample be drawn from P. The objective is to make an inference 

about the marginal distribution of y1 • One does not, however, observe the 

sample realizations of any of the components of (y0 ,y1 ,z). One observes only 

the realizations of y • y0 (1 - z) + y1z. That is, one observes y0 when z - 0 

and y1 when z - 1, and one never observes z. Since interest centers on y1 , 

this sampling process generates data with errors, namely the realizations of 

y that are observed when z - 0. Realizations of y corresponding to z - 1 are 

error free. 
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Let~ denote the space of all probability distributions on (Y,O). Let Q 

• Q(y) denote the distribution of the observable y. Let P1 e P1 (y1 ) denote the 

marginal distribution of y 1 (i - 0, 1). Let P1J • P1J(Y1 lz-j) denote the 

distribution of y1 conditional on the event z - j for i - 0, 1 and j - 0, 1. 

Finally, let p • P(z-0) be the marginal probability of a data error. The object 

of interest is P1 • In particular, one may wish to infer a parameter r(P1 ), 

where r(•) maps~ into X1 • 

The inferential problem is that the sampling process does not identify P1 

but only Q. These two distributions may be decomposed as follows: 

(1) (l - p)Pll + pPlO 

and 

(2) Q 

In robust analysis, the unknown P1 is held fixed and Q is allowed tc, range over 

all distributions consistent with (1) and (2). The objective is to characterize 

the maximum possible difference between r(Q), which can be estimated 

consistently, and r(P1), which cannot be estimated consistently because it is 

not identified. In identification analysis, which is the approach developed 

in this paper, Q is held fixed because it is identified by the data, and P1 is 

allowed to range over all distributions consistent with (1) andl (2). The 

objective is to set bounds on the unknown quantity r(P1). 

It is easily seen that in the absence of prior information, idemtification 

of Q implies no restrictions on P1 • Simply observe that Q = P00 if p = 1, in 

which case Q provides no information about P1 • On the other hand, restrictions 

on P1 may arise if suitable prior information is available. 

4 



2.2 THE CONTAMINATED AND CORRUPTED SAMPLING MODELS 

A piece of prior information that is frequently assumed to be available 

in robust estimation is that the occurrence of data errors is independent of 

the sample realizations from the population of interest. That is, 

(3) 

in which case inferences about P1 are equivalent to inferences about P11 • This 

assumption underlies the influence function and bounded-influence estimation. 

It will be seen below that tighter bounds on P1 can be established when (3) 

holds than when it does not. Accordingly, this paper provides parallel 

treatments of the problems in which (3) does and does not hold. Results when 

(3) holds are formulated in terms of bounds on P11 and functionals r(P11 ) since, 

under (3), P11 and P1 are the same. Results when (3) does not hold are 

formulated in terms of bounds on P1 and functionals r(P1 ). 

Following common terminology, we refer to the case where (3) holds as the 

"contaminated sampling" model (see, e.g., Huber 1981, p. 11). We refer to the 

case in which (3) does not hold as the "corrupted sampling" model. This case, 

which permits arbitrary corruption of an arbitrarily selected fraction of the 

data, underlies much of the literature on high-breakdown estimation. The 

process of data corruption used by Hampel et al. ( 1986) , referred to hereinafter 

as HRRS, in their definition of the finite-sample breakdown point is a finite­

sample version of our corrupted sampling model. The same is true of the process 

of data corruption used by Donoho and Huber (1983), referred to hereinafter as 

DH, in their definition of the breakdown point under 1:-replacement. The 
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corrupted sampling model is also prominent in the far-removed literature on 

switching regressions without sample separation (see, e.g., Maddala. 1983). 

2.3 IMPLICATIONS OF AN UPPER BOUND ON THE ERROR PROBABILITY 

Another useful piece of prior information is an upper bound, A, on the 

probability, p, that a data point is erroneous. The analysis of this paper 

assumes that one knows a A such that p S A < 1. Huber (1964) makes this 

assumption explicitly in his development of minimax estimators of location in 

the presence of gross errors. Some more recent literature on robust estimation 

takes an ambiguous position. HRRS suggest a particular value for .~ when they 

state that "altogether, 1-10% gross errors in routine data seem to be more the 

rule rather than the exception" (p. 28). On the other hand, these authors later 

seem to argue that robust estimation requires at most a vague idea of the error 

probability, or perhaps none at all (p. 399). 

As was discussed in Section 1 of this paper, we would argue that robust 

estimation always implicitly assumes a bound on the error probability. Using 

the influence function and gross error sensitivity to guide empirical practice 

makes sense only if the error probability is "close to zero." Knowing the 

breakdown point of an estimator is of interest only if one knows wheither p lies 

above or below this value. So the basic concepts of robust estimation seem 

irrelevant in the absence of a known upper bound on p. 

Knowledge that p SA combined with the fact that Q is identified implies 

that P11 belongs to a set of distributions w11 (A), defined below, and that P1 

belongs to a larger set w1 (A). [Both Wu (A) and w1 (A) depend on Q a:; well as A, 

but we leave this fact implicit as we shall not be varying Q. ] As ), increases, 

the sets Wu (A) and w1 (A) expand but remain informative in the sem,e that they 
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are proper subsets of 't for all A< 1. Proposition 1 presents the resulting 

restrictions on P11 and P1 : 

Proposition 1: 

A. Let the error probability p be known with p < 1. Then 

(4) pll e 'ill (p) - 't n ((Q - P~oo>/(1 - p): ~oo e w} 

and 

(5) -
In the absence of further information, these restrictions on P11 and P1 are 

tight. 

B. 't11 (p) C 't1 (p). 

C. Let 6 > 0 and p + 6 < 1. 

't1(P + 6). 

D. Let it be known only that p SA< 1. Then P11 E 't11 (A) and P1 E 't1 (A). 

In the absence of further information, these restrictions on P11 and P1 are 

tight. ■ 

Although Proposition 1 is formulated in terms of P11 and P1 , it implicitly 

characterizes the identifiability of P00 and P0 as well. The proposition shows 

that P00 e 't00 (A) • 't11 (1 - A) and P0 e 't0 (.~) • 't1 (1 - >.). We use these facts 

later in Section 4. 

In Section 2.2 it was stated that tighter bounds on P1 can be established 

under the contaminated sampling model than under the corrupted sampling model. 

This fact, which is implied by (3) and part B of Proposition 1, is important 

enough to warrant statement as a corollary to Proposition 1: 
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Corollary 1.1: Let it be known that p s l < 1 and that P1 - P11 • Then P1 

E 11t11 (.X). In the absence of further information, this restriction on P1 is 

tight. ■ 

2.4 IDENTIFICATION BREAKDOWN 

Given any real-valued functional 'T(•) on 'Ill, let T • {'T(~): ~ 1E 'Ill) denote 

the range of ,,. . Let TL and Tu, respectively, denote the lower and upper bounds 

of T. Under the assumptions of Proposition 1D, 

(6a) -
and 

(6b) E 

Let T11L(l) and T11uP-), respectively, denote the lower and upper bounds of 

T11 (l), and let T1L(l) and T1u(l) denote the lower and upper bounds of T1 (l). 

In robust estimation, the breakdown point of a functional 1· ( •) can be 

defined as the largest fraction of erroneous data that T( •) can tolerate without 

being driven to either boundary of its range (HRRS, p. 98). Following this 

convention, define 

(7a) -
and 

(7b) & 

We call .X11 and l 1 the "identification breakdown" points of ,,. (P11 ) and r (P1). 

In general, l 11 and l 1 depend on Q. [DH define the breakdown pc1int as the 

smallest fraction of erroneous data that can drive 'T(•) to a boundary of its 
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range. As noted by HRR.S, their definition and that of DH differ by 1/n in a 

sample of size n. Our analysis could be based on either definition. We adopt 

that of HRRS to avoid ambiguity.] 

When Y is a finite-dimensional real space, the identification breakdown 

point under the corrupted sampling model, 11 , is a limiting form of the HRRS 

version of the finite-sample breakdown point of robust analysis. (The e-

replacement breakdown point of DH also could be used.) To show this, let 11n 

denote the HRR.S finite-sample breakdown point of r ( •) at a random sample of size 

n drawn from Q. Then we have the following: 

Proposition 2: Assume that Y is a finite-dimensional real space and that 

(8) lim jr(F) - r(G >I - 0 n n n ➔ ao 

for any sequences of distribution functions {Fn} and {Gn} such that (Fn - Gn) 

➔ 0 pointwise as n ➔ ao. Then 

(9) 

almost surely. ■ 

Note that 11 is evaluated at the observed distribution Q, whereas the 

breakdown point in standard robust analysis is evaluated at the distribution 

of interest, P1 • This difference between the identification and standard robust 

breakdown points reflects the focus of identification analysis on ex post 

inference, whereas robust estimation is concerned with ex ante analysis of the 

behavior of estimators. 
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2.5 TIGHT BOUNDS ON PROBABILITIES 

We now develop the implications of the general, but abstract, ll>roposition 

1 for identification of P11 and P1 • Corollary 1.2 of Proposition 1 begins this 

process by obtaining tight bounds on Pu (A) and P1 (A) for all measurable sets 

A. 

Corollary 1.2: Let it be known that p :S l < 1. Let A e 0. 1l'hen 

(10) P11 (A) E • 11(A;l) • [O,l]n[(Q{A) - l}/(1 - l), Q(A)/(1 - l)], 

and 

(11) P1(A) E • 1(A;l) • [O,l]n[Q(A) - l, Q(A) + l]. 

In the absence of further information, these bounds on Pu (A) and. P1 (A) are 

tight. ■ 

An equivalent representation of the intervals il'u(A;l) and 1"1 (A;l) can be 

obtained by dividing the range of possible values of Q(A) into four regimes: 

(12a) 

(12b) Q{A) :S min(l - l, l) ~ ifll (A; l) - [O, Q(A)/(1 - l)] 

w1 (A;l) ... [O, Q(A) + l] 

(12c) Q(A) .!:: max(l - l, l) ~ w11 (A; l) - [ {Q(A) - l}/(1 - l), l] 

w1 (A;l) - [Q(A) - l, l] 

(12d) l :S Q(A) :S 1 - l ~ w11(A;l) - [{Q(A) - l}/(1 - l), Q(A)/(1 - l)] 

w1 (A;l) - [Q(A) - l, Q(A) + l]. 
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It can be seen from (12) that the bounds on P11 (A) and P1 (A) are trivial if 

1 - l ~ Q(A) ~ l but are informative otherwise. Moreover, the identification 

breakdown point of both P11 (A) and P1 (A) is min[Q(A), 1 - Q(A)]. 

Corollary 1.2 shows that Q(A) e 't11 (A;l) c 'i"1 (A;l) for all A. Hence, Q 

belongs to both 'i"11 (l) and 'ir1 (l). This means that if the only available 

information is a bound on p, one cannot reject the hypothesis that P1 - P11 -

Q. Moreover, P11 and P1 cannot differ from Q by too much. Equation (10) 

implies that P11 is dominated by Q (i.e., sets of zero Q measure also have zero 

P11 measure), and (11) implies that 

(13) sup IP1(A) - Q(A)I ~ l. 
AEO 

It is important to understand the relation between the tight restriction 

P11 e 'i"11(l) reported in Proposition 1 and the collection of tight restrictions 

P11 (A) e 'i"11 (A;l), A e 0, found in Corollary 1.2. Every distribution ,p11 e \Jl'11 (l) 

satisfies ,p11 (A) E 'i"11 (A; l), A E O. However, not every function ~: 0 ➔ '.81 

satisfying ~(A) e 'i"11(A;l), A e 0, is a probability distribution. The same 

relation applies, of course, to the restrictions on P1 • 

-
3. Identification when Y Is the Real Line 

In Section 2, apart from Proposition 2, (Y,O) was an arbitrary measurable 

space. It does not seem possible to go much further than the results of Section 

2 without imposing additional structure on (Y,O). In this section, we assume 

that Y is the extended real line and that O consists of the Lebesgue measurable 

sets. Note that distributions on the extended real line may place probability 

mass at-~ or~. Section 3.1 obtains tight bounds on quantiles of P11 and P1 • 

Section 3.2 does the same for parameters that respect stochastic dominance. 
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3.1 TIGHT BOUNDS ON QUANTILES 

For a E (0,1], the a-quantile of P11 is 

(14) -
The a-quantile of P1 is 

(15) -
Proposition 3 shows that q11 (a) lies between two quantiles of Q and that q1 (a) 

lies between two more widely spaced quantiles of Q. 

Proposition 3: Let Y be the extended real line and O the Lebesgue 

measurable sets. Let it be known that p s A< 1. For 7 e X1 , let 

Then 

7-quantile of Q if O < 7 s 1 

r(1) - -m if 7 S 0 

m if 7 > 1. 

(16) q11 (a) E [r(a(l - A)}, r(a(l - A)+ A}], 

and 

(17) q1 (a) e [r(a - A), r(a + A)]. 

In the absence of further information, these bounds on q11 (a) and q1 (a) are 

tight. ■ 

If A is fixed, r[a(l - A)] and r[a(l - A)+ A] increase as a increases. 

Hence, the bounds on q11 (a) shift to the right as a increases. If a is fixed 

and>. increases from Oto 1, the set of possible values of q11 (Q) widens from 

the a-quantile of Q to the smallest interval enclosing the support of Q. The 
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bound is informative both above and below for all o e (0,1), all Q, and all A 

< 1. Therefore, the identification breakdown point of q11 (o) is always 1. 

The bounds on q1 (o) also shift to the right as o increases for fixed A. 

If o remains fixed and A increases from Oto 1, the set of possible values of 

q1 (o) widens from the a-quantile of Q to [-a>,a>]. The lower bound is informative 

if A< a, and the upper bound is informative if A< 1 - a. Therefore, the 

identification breakdown point of q1 (o) is min(o, 1 - o). 

3.2 TIGHT BOUNDS ON PARAMETERS THAT RESPECT STOCHASTIC DOMINANCE 

If F and Gare distributions on the extended real line Y, Fis said to 

stochastically dominate G if F[-a>,t] ~ G[-a>,t] for all t e Y. Ye say that a 

parameter f' ( •) respects stochastic dominance if r(F) ~ 1" (G) whenever F 

stochastically dominates G. Familiar examples include quantiles and the means 

of monotone functions of the random variable of interest. Proposition 4 

provides tight bounds on parameters that respect stochastic dominance. Ye give 

applications following the statement of the proposition. 

Proposition 4: Let Y be the extended real line and O the Lebesgue 

measurable sets. Let it be known that p ~ A < 1. Let .,. : iir ➔ '.R1 respect 

stochastic dominance. Define the following distributions on (Y,O): 

Q[-a>,t]/(1 - A) if t < r(l - A) 
E 

1 if t ~ r(l - A) 

0 if t < r(A) - (Q[-a>,t] - A)/(1 - A) if t ~ r(A). 

Then 
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Let S_e and Se be the probability measures on Y that place all their mass at -m 

and m, respectively. Then 

In the absence of further information, these bounds on .,. (P11 ) and .,. (P1 ) are 

tight. ■ 

Proposition 4 can be applied to obtain an alternative proof of Proposition 

3. More importantly, Proposition 4 can be used to obtain tight bo,1nds on the 

means of bounded, increasing functions on Y. Corollary 4.1 gives the result. 

Corollary 4 .1: Let g: Y ➔ '11 be a bounded, increasing function with Ko • 

lim t .. -e g(t) and K1 • lim t .. e g(t) being the finite lower and upper bounds. 

For~ e •• let r(~) • Jg(y)d~ be the mean of g(y) when y is distributed~- Then 

tight bounds on r(P11 ) and r(P1 ) are 

and 

Observe that if Jg(y)d4 and Jg(y)dU~ are held fixed, the range [Ko,K1 ] of 

g( •) does rtot affect the bounds on .,. (P11 ). Therefore, (20) prov·ides tight 

bounds on r(P11 ) even if g( •) is unbounded. In particular, lettin~; g(y) = y, 

we find that for the contamination model 
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This interval is informative whenever the mean of Q exists because JydQ > -~ 

implies Jyd4 > -~, and JydQ <~implies JydUA < ~. Thus, we obtain finite 

bounds on the mean under contaminated sampling. 

This finding does not contradict the well-known result in the literature 

on robust estimation that the mean is not robust under contaminated sampling. 

Identification analysis and the theory of robust estimation analyze different 

quantities and make different assumptions about the information that is 

available to the analyst. Identification analysis gives the range of possible 

values of the mean of P11 subject to the information on Q that is revealed by 

the sampling process. As is shown by (22), the resulting range of values is 

finite if the mean of Q is finite. In contrast, robust estimation supposes that 

Q is not yet known and, holding P11 fixed, obtains the feasible values of the 

mean of Q for Q e { (1 - p)P11 + plf,: 1f, e 1', p ::S A}. The range of possible values 

of the mean is unbounded under this setup. 

4. Infinitesimal Identification Analysis for Smooth Functionals 

The identification findings obtained thus far hold for all A < 1. 

Simplifications that facilitate further analysis occur when A is close to 0 and 

T(•) is a suitably smooth functional. These simplifications are central to 

the literature on bounded-influence estimation. Here we exploit them to develop 

an infinitesimal identification analysis. 

Let (Y,O) be an arbitrary measurable space, as in Section 2. Observe that 

the sets 1'11 (A) and 1'1 (A) of possible values of P11 and P1 , originally defined 

in Proposition 1, can alternatively be expressed as follows: 

(23) 
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and 

where w00 (A) is the set of possible distributions P00 • 

Let~ e w00 (A), we w, and Os p s A/(1 - A). When it exists, define 

(25) ,,. , (Q, ~.w) • lim ,,.ro - BCp - wl) - ,,.co) 
pio P 

to be the derivative of 'f'(•) at Qin the direction-(~ - w). Recall that T11 (A) 

and T1 (A), defined in (6a) and (6b), denote the sets of possible values for 

'f'(P11 ) and 'f'(P1 ), respectively. Then we have the following: 

Proposition 5: Let it be known that p s .X < 1. Assume that ,,. '(Q, lj,,Q) 

exists and is bounded uniformly over 1/, e '1100 (A) and that 

(26) lim sup l'f''(Q,1/,,Q) - (T[Q - /J(l/, - Q)] - 'f'(Q)]l/PI = 0. 
pio ~ e v00 (A) 

Then 

where o(A;Q) denotes a term that, for fixed Q, is o(A) uniformly over 1/, e 

(28) 'f'(Q) + A inf 'f''(Q,~,Q) + o(>.;Q) s T(P11) 
~ e woo<>-> 

s T(Q) + >. sup T'(Q,~ 1 Q) + o(.X;Q). 
~ e woo<>-> 

Assume that 'f''(Q.~,w) exists and is bounded uniformly over (~,w) e '1100x'1t 

and that 
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(29) lim sup lr'(Q,j,w) - (r[Q - p(j - w)] - r(Q)l/PI 0. 
P"'O j e ,i,ooP·> 

wellt 

Then 

(30) Tl(l) - (r(Q) + lr'(Q,j,w) + o(l;Q): j E llt00 (l), lit E lit), 

where o(l;Q) here denotes a term that, for fixed Q, is o(l) uniformly over j 

e 11t00 (l) and we lit. Tight bounds on r(P1 ) are 

(31) r(Q) + l inf r'(Q,,J,,w) + o(l;Q) S r(P1) "e •oo<l) 
W E lit 

S r(Q) + l sup r'(Q,,J,,w) + o(l;Q). ■ 

" e ,i,oo (l) 

w E 1lt 

Proposition 5 is an abstract result whose implications can be investigated 

most easily by imposing additional structure on r'. Corollary 5 .1 assumes that 

r' is a bounded (equivalently, continuous) linear functional and obtains results 

that may be compared with ones appearing in the literature on bounded-influence 

estimation. 

Corollacy 5,1: Let the assumptions of Proposition 5 hold. Let r'(Q,,J,,w) 

be a bounded linear functional of (,J, - w) with the integral representation 

(32) r'(Q,,J,,w) - J fQ(y)d(,J, - w). 

Assume without loss of generality that 

(33) J fQ(y)dQ - 0. 

(If JfQdQ - µQ .,.i 0, replace fQ with fQ - µQ.) Define 
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(34) BU - sup fQ(y) 
yeY 

and 

(35) BL - inf fQ(y). 
yeY 

Bounds on ,-(P11 ) are 

(36) ,-(Q) + lBL + o(l;Q) s ,-(P11) s ,-(Q) + lBU + o(l;Q). 

Define 

(37) ¾* - sup fQ(y) - inf fQ(y) 
yeY yeY 

and 

(38) B * - - B * L u· 

Bounds on f'(P1 ) are 

(39) • 
In robust estimation under contaminated sampling, the unknown distribution 

P11 is held fixed. Suppose that the derivative of ,. ( •) at P11 in th1a direction 

(y, - P11 ) has the representation Jfp11dv,. Then the quantity 

(40) max[ I inf fp (y) I, sup fp (y)] 
y E Y 11 y E Y 11 

is called the gross-error sensitivity of the functional ,-(•) at P11 • By 

comparing (34) and (35) with (40), it can be seen that max(IBi.l, Bu) is also a 

form of gross error sensitivity of,-(•), except the derivative is e·valuated at 

Q in the direction of - (y, - Q) instead of at P11 in the direction of (y, - P11). 
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Thus, in identification analysis as in robust estimation, the gross-error 

sensitivity governs the maximum possible value of Ir (Q) - r (Pu) I under the 

contamination model with infinitesimal contamination probability. However, in 

identification analysis, the gross error sensitivity is evaluated at the 

observed distribution Q, not the unknown "correct" distribution P11 • Like the 

difference between the identification and robust-estimation breakdown points, 

this reflects the focus of identification analysis on ex post inference. 

5. Estimation of Identified Features with an Application to the Income 

Distribution in the U.S. 

We stated at the outset that it is natural to analyze the errors-in-data 

problem in two stages: first determine what is identified, and then consider 

estimation of the identified quantities. This paper has focussed on 

identification. We now provide a brief discussion of estimation and give an 

illustrative application. 

All of the restrictions on Pu and P1 reported in Sections 2-4 are 

functionals of the distribution Q. So an obvious estimation approach is to 

estimate Q by its empirical distribution Qn and compute the restrictions on P11 

and P1 under Qn. For example, the bounds ii'u(A;A) and ti'(A;A) on P11 (A) and P1 (A) 

found in Corollary 1.2 may be estimated consistently by 

(41) = [O,l]n[(~(A) - A}/(1 - A), ~(A)/(1 - A)] 

and 

(42) ... [O,l]n[~(A) - A, ~(A)+ A] . 

Similarly, the bounds [r(a(l - A)}, r(a(l - A)+ A}] and [r(a - A), r(a + A)] 

on q11 (a) and q1 (a), found in Proposition 3, may be estimated consistently by 
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[rn(a(l - A)), rn(a(l - A) + A)] and [rn(a - A), rn(a + A)], respecti"\rely, where 

rn(7) is the ~-quantile of Qn for~ E (0,1], rn(~) - -~ for 7 ~ 0, and rn(~) -

~ for 7 > 1. These estimates are the best possible in the absenc:e of prior 

information on Q. [The problem of developing confidence intervals for the 

bounds is not treated here since our main focus is on identification.] 

To illustrate estimation of the bounds, we consider data on the income 

distribution in the U.S. The data are based on household interviews obtained 

in the Current Population Survey (CPS) and are published by the U.S. Bureau of 

the Census in series P-60 of Current Population Reports. Two sampling problems 

identified by the Bureau of the Census are "interview nonresponse, " wherein some 

households in the CPS sampling frame are not interviewed, and "item 

nonresponse," wherein some of those interviewed do not provide complete income 

responses. U.S. Bureau of the Census (1991, pp. 387-388) states t:hat in the 

March 1990 CPS, which provides data on incomes during 1989, approximately 4.5% 

of the 60,000 households in the sampling frame were not interview•~d and that 

incomplete income data were obtained from approximately 8% of the persons in 

interviewed households. Faced with these nonresponse problems, the Bureau of 

the Census uses available information to impute missing income data. The Bureau 

of the Census mixes actual and imputed data to produce the household income 

statistics reported in its Series P-60 publications. 

From the perspective of this paper, y1 is the income a CPS household would 

report if it were to complete the survey, y0 is the income the Bureau of the 

Census would impute to the household if the household were not to complete the 

survey, and z = 1 if a household completes the survey. The distribution of 

income reported by those CPS households who do complete the survey is P11 • The 

distribution of household income found in the Series P-60 publications is Q -
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(1-p)P11 + pP00 , where p is the probability that a CPS household does not 

complete the survey and P00 is the distribution of incomes imputed by the Bureau 

of the Census to those households who do not complete the survey. The 

distribution of interest is Pi - (l-p)P11 + pPio, where Pio is the (latent) 

distribution of incomes that would have been reported by CPS households who did 

not complete the survey, had they done so. That is, Pi is the distribution of 

reported incomes if all households in the CPS sampling frame were to report 

their incomes. [Our reference to Pi as the "distribution of interest" does not 

imply that Pi is necessarily the distribution an applied researcher would wish 

to learn. Applied researchers are typically interested in the distribution of 

actual income, not the distribution of reported income. The distribution of 

actual income is Pi if households report their incomes accurately but not if 

some households misreport their incomes. Misreporting, although an important 

sampling problem, will not be addressed here.] 

The Bureau of the Census imputation practice is valid if Pio - P00 , implying 

that Pi - Q. Our concern, however, is with the worst-case situation in which 

one has no prior information about the relation between P00 and Pio· We can 

compute the bound estimates given at the beginning of this section if we have 

a consistent estimate of Q and can place an upper bound on p. Bureau of the 

Census publications provide both quantities. We focus on the distribution of 

household income in 1989. 

As has been noted, U.S. Bureau of the Census (1991) reports that 4.5% of 

the CPS households were not interviewed and 8% of the persons in interviewed 

households did not provide complete income responses. The Bureau of the Census 

publication does not report how the latter group are spread across households 
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but we can be sure that no more than 7. 6% (i.e., 8% x . 955) of the households 

have item nonresponse. Sop~ 12.1%. 

Now consider Q. U.S. Bureau of the Census (1991, Table 5, p. 17) provides 

estimates for each of twenty-one income intervals (in thousands of dollars): 

Qn[0,5) .053 Qn[35,40) 0.066 Qn[70, 75) .0UI 

Qn[5,10) .103 Qn[40,45) 0.060 Qn[75,80) .015 

Qn[l0,15) .097 ~[45,50) 0.048 Qn[80,85) .013 

Qn[l5,20)-= .092 Qn[50,55) -= 0.043 Qn[85,90) .009 

Qn[20, 25) .087 Qn[55,60) 0.032 Qn[90, 95) .oou 
Qn[25,30) .083 Qn[60,65) 0.028 Qn[95,100) .006 

Qn[30,35) .076 Qn[65,70) 0.023 Qn[l00,+) .039 

Let us "fill out" this estimate of Q by imposing the auxiliary assumption that 

income is distributed uniformly within each interval except the last. We may 

now estimate bounds on features of P11 and P1 • 

For example, consider the probability that household inco1111.e is below 

$30,000. We have Qn[0,30) - 0.515 and>. - 0.121. Hence, the estiE1ated bounds 

on P11 [0, 30) are [0 .448, 0. 586] and the estimated bounds on Pi(0, 30) are 

[0.394,0.636). Now consider median household income. The median of P11 must 

lie between the .440 and .561 quantiles of Q, while the median of P1 must lie 

between the .379 and .621 quantiles of Q. Replacing Q by Qn and invoking the 

auxiliary assumption that Q is uniform within $5000 intervals, the estimated 

bounds on q11 (.5) are [25.482,33.026), and the estimated bounds on q1 (.5) are 

[ 21. 9 54 , 3 7 . 2 7 3 ] . 

6. Discussion 

The literature on robust estimation aims at characterizing the behavior 

of point estimators of population parameters in the presence of e:crors in the 

data and at developing point estimators that are not highly sensitive to such 
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errors. However, the parameters of interest in robust estimation are not 

identified under the assumptions that are made, so the rationale for 

concentrating on point estimation is not apparent. This paper has shown that 

the parameters can be bounded under the assumptions of robust estimation, and 

it has shown how the bounds can be estimated. It seems to us more natural to 

estimate the bounds, which are identified, than to attempt point estimation of 

parameters that are not identified. 

Point estimation is especially pernicious if the probability limit of the 

point estimator need not be in the space of feasible values of r(P1 ). The 

estimators most commonly considered in the robustness literature do not have 

this failing. In robust estimation, the functional r(•) is weakly continuous 

on V, and the estimator of r (P1 ) typically is r (Qn). In this situation, 

plim n .. .., r (Qn) - r (Q). We observed in Section 2 that Q is in the space v1 (>.) 

of feasible values for P1 . Therefore, r(Q) is in the space of feasible values 

for r (P1 ). 

It might be argued that use of r(Qn) as a point estimator of r(P1 ) is 

preferable to estimation of the identification bounds given in our propositions. 

A researcher reporting r(Qn) need not take an explicit stand on the size of the 

error probability. A researcher estimating identification bounds must specify 

at least an upper bound on p. We do not find this argument compelling. In the 

absence of an upper bound on p, one cannot assess the size of the asymptotic 

bias lr(Q) - r(P1 )1 of the estimate r(Qn) or even be sure it is finite. The 

usefulness of a point estimator with unknown and, possibly, unbounded asymptotic 

bias is not obvious. Moreover, given an upper bound on p, estimation of r(Q) 

yields no information on r(P1 ) beyond that contained in our tight bounds. 
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Appendix 

PROOF OF PROPOSITION 1: 

A. By (2), the feasible values for P11 and P00 are 

Hence the feasible values for P11 are given by (4) and the ones for P00 are the 

VJoo such that (Q - pl/J00 )/(l-p) E w. Knowledge of p and identifkation of Q 

convey no information about P10 • Hence, by (1), the feasible value.s for P1 are 

given by (5). 

B. If l/J11 E W11 (p), then (l/J11 ,l/J10 ) E W11 (p)X1'. So l/J11 E 1lf1 (p), by (5). 

C. Let l/Ju e Wu (p). Now let the error probability increas,e to p + S. 

Define 1Poo6 • (l/J00p + V'uS>/(p + S). Then V'oo6 is a probability measure and 

(l/J11 ,v,0o6) E wX1' solves the equation Q - l/J11 (1 - p - S) + "Poo6(P + S). Hence l/J11 

e Wu (p + S). That w1 (p) c w1 (p + S) follows directly from the abc1ve and from 

(5) . 

D. It follows from Part A that the feasible values for Pu and P1 are Pu 

E UP s >. Wu(P) and P1 E UP s >. 1lf1 (p). Part C showed that UP s >. Wu(P) - Wu(.X) and 

UP s >. ii, 1 ( P) - ii, 1 (.X) · Q • E · D · 

PROOF OF COROLLARY 1.2: Consider first the situation in which pis known. 

Part A of Proposition 1 implies that 

P11 (A) E [0,l)n{[Q(A) - pa]/(1 - p): a e [0,1)} 

[O,l]n[{Q(A) - p}/(1 - p), Q(A)/(1 - p)] e w11 (A;p). 

This shows that P11 (A) is a member of ilr11 (A;p) but does not show that the bound 

is tight. To show tightness, we need to prove that, for each a 11 E iir11 (A;p), 
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... 

there exist distributions (v,ll,V'oo) such that v,ll(A) - all and Q - (1 - p)v,ll + 

PV'oo · 

To prove that such distributions exist, fix a 11 e 'ii'11 (A;p) and let a 00 solve 

the equation Q(A) - (1 - p)all + pa00 • Because all e 'ii'11 (A;p), it follows that 

a 00 e [0,1]. Now choose (v,11 ,v,00 ) as follows: 

For Q(A) > 0 and measurable B c A, 

V'll(B;p) - [Q(B)/Q(A) ]all; t/>00 (B;p) - [Q(B)/Q(A) ]a00 • 

For Q(A) - 0 and measurable B c A, 

t/>11 (B;p) - 1Poo(B;p) - 0. 

For Q(Y - A)> 0 and measurable B c Y - A, 

1/J11 (B;p) • [Q(B)/Q(Y - A) ](l - a 11); 1/J00 (B;p) • [Q(B)/Q(Y - A) ](1 - a 00). 

For Q(Y - A) - 0 and measurable B c Y - A, 

t/>ll(B;p) - t/>oo(B;p) - 0. 

Then 1/J11 (A;p) - a 11 and Q(B;p) - (1 - p)l/J11 (B) + pl/J00 (B) for all measurable B. 

The above concerns P11 (A). The sampling process implies no restrictions on 

P10 (A). Hence the tight bound on P1 (A) is 

P1(A) e {(l - p)a11 + pa10 : a11 e 'ii'11 (A;p), a 10 e [0,1]} 

- {[0, 1 - p]n[Q(A) - p, Q(A)] + p[0,l]} 

- [0,l]n[Q(A) - p, Q(A) + p] • 'ii'1 (A;p). 

Now suppose only that p ~A.Then the feasible values for P11 (A) and P1 (A) 

are P11 (A) E up s >. 1)11 (A;p) and P1 (A) E up s >. 'ii'1 (A;p). But up s >. 'ii'11 (A;p) -

1)ll(A;A) and UP s >. 1)1 (A;p) - 1)1 (A;A). Q.E.D . 
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PROOF OF PROPOSITION 2 

Let Q and Qn (n - 1, 2. , ... ) be given. In the proof of Propositi.on 2, Q and 

Qn are cumulative distribution functions (CDFs). Define equations (1.') and (2') 

to be (1) and (2) with probability measures replaced by the corresponding CDFs. 

Let p e [0,1]. Let w* denote the space of CDFs, and define 

Also define 

(Al) - inf r(P1), 
pll E Wll*(p) 

plO E W* 

where P1 is given by (1'). Define -y0 (p) by replacing "inf" with "i;up" (Al). 

Let m be the smallest integer such that p :s m/n. Define Pn • m/n. For any 

positive integer j, let WJ* denote the set of CDFs corresponding to discrete 

distributions that have at most j mass points. Let w11 ,n _ m*(p) denote the set 

of CDFs P11 ,n _ m E wn _ m* such that 

(A2) (1 - p )P + p P 
n 11 n-m n 00 m 

' ' 

for some P00 ,m E Wm*. Define 

(A3) inf r(P1 ) 
p E w m*(p) n 
11,n - m 11,n -

plO E w * ,m m 

where 

(A4) p -ln (l - p )Pll + p plO . n ,n - m n ,m 

Define "YunCP) by replacing "inf" with "sup" in (A3). 
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The proof of Proposition 2 requires two preliminary lemmas. 

Lemma 1: Suppose that (A2) holds for all n and that as n ➔ ~. (a) Q0 ➔ Q 

and (b) P00 ,m ➔ P00* for some P00*. Then there is a P11* such that P11 ,n _ m ➔ P11*, 

and (P11 *, P00*) E 11t11 *Xllt*. 

Proof: It follows from (2') and (A2) that P11* - (1 - p)-1 (Q - pP00*) and 

Q - (1 - p)P11* + pP00*. P11* and P00* are nondecreasing because they are limits 

of sequences of nondecreasing functions. It remains to prove that P11* and P00* 

are continuous from below. Given any y, let P11*(y-) - lim vi o P11*(y - v). Let 

P00*(y-) be defined analogously. Q is continuous from below because it is a 

distribution function, so 

(AS) Q(y) 

Moreover, since P11* and P00* are non-decreasing, 

for i 0 or 1. Therefore, by (AS) and (A6) 

(A7) Q(y) 

Q(y). 

(A6) and (A7) imply that P11*(y-) = P11*(y) and P00*(y-) = P00*(y). Q.E.D. 

Lemma 2: Let (8) hold and Q0 ➔ Q as n ➔ ~. Then ~Ln(P) ➔ 7L(p) and 7u0 (p) 

➔ 7u(P) · 

Proof: Let E > 0 be given. Let (P11 ,n _ m• P1o,m• P00 ,m} E 11f11 ,n - m*Xlltm*Xlltm* 

be a sequence satisfying (A2) and such that r(P10) < 7Ln(P) + E for each n, where 

P10 is given by (A4). By Helly's selection principle there is a subsequence 
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(n{i): i - 1,2, ... } such that Poo,mCi) converges, where m(i) is the value of m 

corresponding to n(i). Call the limit function P00*. By Lemma 1, the 

corresponding subsequence of (P11 ,n _ ml converges to some P11*, P11* and P00* are 

distribution functions, and (P11*,P00*) e w11*><if*. Recall that mi!; a function 

of n, and define • 

p * -ln 

7L(p) ~ r(Pin*) for every n by definition of 7L{p), so (8) implies that 

< < 7Ln(i)(p) + E 

for all sufficiently large i. Therefore, since Eis arbitrary 

(A8) lim inf~ (p) 
'Ln(i) 

Since (AS) holds for any convergent subsequence of {P11 ,n _ m•Poo,a,l and every 

infinite subsequence has a convergent subsequence, there can be at most finitely 

many values of n for which r(Pin) ~ 7L(p) - E. It follows that 

(A9) lim inf 7Ln{p) ~ 7L(p). 
n ➔ co 

Now let Pi be a CDF such that (l') and (2') hold and r(Pi) < 7L(p) + E. Let 

(Pin> be a sequence of CDFs satisfying (A4) such that Pin ➔ Pi as n ➔ co. By (8) 

for all sufficiently large n. Therefore, 

(AlO) lim sup 7Ln{p) s 7L{p). 
n ➔ co 
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-YLn(p) ➔ -YL(p) follows by combining (A9) and (AlO). Similar arguments apply to 

-Yun(P) and -Yu(P). Q.E.D. 

Proof of Proposition 2: Assume that breakdown occurs due to r(P1) - Ta. 

A similar proof applies if breakdown occurs due to r(P1 ) - TL. Suppose that Qn 

➔ Q. Let p < l 1 • Define 6 • Ta - -ru(p). Note that 6 > 0. Let Ebe such that 

0 < E < 6. By (8) and Lemma 2 

for all sufficiently large n. It follows that for Pn defined as in (A2), p S 

Pn < lin• Therefore, p < l 1 implies p < l 1n for all sufficiently large n, and 

(All) ll s lim inf lln 
n ➔ CID 

Now let linct> (i - 1,2, ... ) be a convergent subsequence of {l1n}. Denote 

the limit point by l 1*, and let p < l 1*. There is a 6 > 0 such that for all 

sufficiently large i, -Yunct>(p) S Ta - 6. Let E be such that O < E < 6. By (8) 

and Lemma 2 

for all sufficiently large i. Therefore, -Yu(P) < Ta, and p < l 1* implies that 

p < l 1 • It follows that l 1* s l 1 • Since this is true for every limit point of 

(A12) lim sup lln s l 1 . 
Il ➔ CID 

The theorem follows from (All), (A12) and the fact that Qn ➔ Q almost surely. 

Q.E.D. 

PROOF OF PROPOSITION 3: Corollary 1.2 shows that, for each t e X1 , 
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(Al3) P11 [-m,t] e [O,l]n[{Q[-m,t] - A}/(1 - A), Q[-m,t]/(1 - A)]. 

Hence, 

Q[-m,t] < (1 - A)a ~ P11 [-m,t] < a 

and 

Q[-m,t] ~ (1 - A)a + A ~ P11 [-m,t] ~ a. 

It follows that q11 (a) E [r{a(l - l)} ,r(a(l - l)+l}]. This bound ,on q11 (a) is 

tight because the bound (A13) on P11 [-m,t] is tight. For t ~ r[a(l - l)], 

Q[ -m, t] ~ a(l - l); hence, the upper bound in (Al3) is no less thim a. For t 

< r[a(l - A)+ l], Q[-m,t] < a(l - l) + A; hence, the lower bound in (A13) is 

below a. It follows that all t e [r{a(l - l)}, r{a(l - l) + l}] are feasible 

values for q11 (a) . 

Now consider q1 (a). Corollary 1. 2 shows that, for each t e '1,1 , 

P1 [-m,t] e [O,l]n(Q(-m,t] - l, Q(-m,t] + l}. 

Hence, 

Q(-m,t] < a - A ~ P1 (-m,t] < a 

and 

It follows that q1 (a) e [r(a - l), r(a + A)] and, by the same :reasoning as 

above, that this bound is tight in the absence of further information. Q.E.D. 

PROOF OF PROPOSITION 4: To show that r (4) is the tight lower bound on 

r (P11 ), let 
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.. 

1'>ooC-ao,t] • 
0 if t < r(l - >.) 

{Q[-ao,t] - (1 - >.)}/>. if r ~ r(l - >.) 

and observe that 

Q[-ao,t] - (1 - >.)L>.[-ao,t] + >.tJ,00 [-ao,t], Vt e x1 . 

This proves that 4 e 't11 (>.); hence, f' (4) is a feasible value for f' (P11). 

f' (4) is the smallest feasible value for f' (P11 ) because 4 is stochastically 

dominated by every member of w11 (>.). We need to show that 4[-ao,t] ~ 1/,11 [-ao,t] 

for all 1/,11 e w11 (>.) and t e X1 . If t ~ r(l - >.), then 

L,.[-ao,t] - tJ,11 [-ao,t] - 1 - tJ,11 [-ao,t] ~ 0. 

If t < r(l - >.), then 

(1 - >.)1/>n[-ao,t] > Q[ -ao, t]. 

Hence (1 - >.)tJ,11 [-m,t] + >.tJ,00 [-m,t] > Q[-ao,t] for all v,00 E it. This contradicts 

the assumption that v,11 e it11 (>.). 

The proof that f'(U~) is the tight upper bound on f'(P11) is similar. Let 

Q[-ao,t]/>. if t < r(>.) - 1 if t ~ r(>.) 

and observe that 

Hence U~ E it11 (>.) . Moreover, u~ stochastically dominates every v,11 e iJ11 (>.) . 

If t < r(>.), then 

u,.[-ao,t] - 1'>11[-ao,t] - 0 - "11[-ao,t) s 0. 
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If t ~ r(A), then 

Hence (1 - l)~11 [-~,t] + A~00 [-~,t] < Q[-~,t] for all ~00 E w. This contradicts 

the assumption that ~11 e W11 (A). 

Now consider the bounds on r(P1 ). By Proposition 1, P11 lies in the set 

W1 (A) • { (1 - A)~11 + l~10 : (~11 .~10 ) E W11 (A)X(r}. We found above that 4. E W11 (A) 

and that 4. is stochastically dominated by all the members of -.~11 (A). The 

distribution 6-., belongs to w and is stochastically dominated by all the members 

of w. Hence, (1 - A)4 + A6-., e w1 (l) and (1 - A)4 + AS_., is sti:>chastically 

dominated by all the members of w1 (A). It follows that r((l - A)4.+ A&_.,} is 

the smallest feasible value for r (P1 ). The proof for the upper bound is 

analogous. Q.E.D. 

PROOF OF PROPOSITION 5: Conditions (26) and (29) imply the following 

uniform Taylor's expansions of r {Q - [A/(1 - A)](~ - Q)] and r[Q - A(~- w)] 

around r(Q): 

(A14) r{Q - [A/(1 - A)](~ - Q)} - r(Q) + Ar'(Q,~,Q) + o(A;Q) 

and 

(AlS) r{Q - A(~ - w)] - r(Q) + Ar'(Q,~,w) + o(A;Q). 

Applying (A14) to (23) yields (27) and applying (AlS) to (24) yields (30). The 

bounds (28) and (31) follow immediately. Q.E.D. 
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PROOF OF COROLLARY 5.1: v00 (A) is a subset of v. Hence the bounds in (28) 

and (31) lie within the bounds that result when v replaces v00 (A). By (32) and 

(33), 

Q.E.D. 

inf r'(Q,~,Q) -
~EV 

sup r'(Q,~,Q) -
~EV 

inf r'(Q,~,w) -
~EV 
w EV 

sup r'(Q,~,w) -
~ E tr 
w E tr 
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