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Abstract 

We examine an evolutionary model in which the primary source of "noise" 
that moves the model between equilibria is not random, arbitrarily improb­
able mutations but mistakes in learning. We find conditions under which 
the risk-dominant equilibrium in a 2 x 2 game is selected by the model as 
well as conditions under which the payoff-dominant equilibrium is selected. 
We also find that waiting times until the limiting distribution is reached can 
be shorter than in a mutation-driven model. We present comparative static 
results as well as a "two-tiered" evolutionary model in which the rules by 
which agents learn to play the game are themselves subject to evolutionary 
pressure. 

Journal of Economic Literature Classification Number C70. 

Keywords: Equilibrium selection, Evolutionary games, Mutations, Risk dom­
mance. 



MUDDLING THROUGH: 
NOISY EQUILIBRIUM SELECTION 

by Ken Binmore and Lal.Ty Samuelson 

Commonsense is a method of arriving at workable con­
clusions from false premisses by nonsensical reasoning. 

Schum peter 

1 Introduction 

Which equilibrium should be selected in a game with multiple equilibria? 
This paper pursues an evolutionary approach to equilibrium selection in 
which the strategy-adjustment process is explicitly modeled. 

A more orthodox approach to the equilibrium selection problem is to 
invent refinements of the Nash equilibrium concept. In the same spirit, nu­
merous refinements of the notion of an evolutionarily stable strategy have 
been proposed. From this perspective, it may be troubling that the equi­
librium selected by a dynamic model often depends on the fine details of 
the modeling or on the initial conditions prevailing at the time the process 
began. But we consider this dependence to be a virtue rather than a vice. 
The very fact that varying the details in a dynamic model can alter the 
equilibrium selected shows that the institutional environment in which a 
game is learned and played can matter for equilibrium selection. Theories 
of equilibrium selection therefore cannot neglect such details; Instead, we 
must be explicit about which aspects of a game's environment and the pro­
cess by which players learn to play the game are significant and how they 
determine which equilibrium is selected. 

In Binmore, Samuelson and Vaughan [6] we examined the differences 
between the long-run and ultra.long-run behavior of an evolutionary model. 
Our concern in this paper is with equilibrium selection in the ultra.long run. 
The "ultra.long run" refers to a period of time sufficiently long, not only 
for trial-and-el.Tor learning to direct agents to an equilibrium, but also for 
random shocks to bounce the system repeatedly from one equilibrium into 
the basin of attraction of another, so establishing a steady-state frequency 
with which each equilibrium is visited. If all but one of the equilibria are 
visited with negligible frequency, then we say that the remaining equilibrium 
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is "selected" in the ultralong run.1 

The pioneers in terms of extracting ultralong-run equilibrium selection 
results from explicit learning models are Young (33] and Kandori, Mailath 
and Rob (19). In their models, agents choose best responses given their 
information, prompting us to describe them as maximizers. However, after 
agents have decided on an action, there is a small probability A > 0 that 
they will switch their choice to some suboptimal alternative. Such switches 
are said to be mutations. The ultralong-run distribution over population 
states is then studied in the limit as >. --+ 0. The striking prediction of both 
models is that, as this limit is taken, the distribution over population states 
concentrates all of its probability on the risk-dominant equilibrium in 2 x 2 
symmetric games. 

This paper is motivated by a simple belief: that people make mistakes. It 
may be that people are more likely to switch to a best reply than otherwise, 
but people are unlikely to be so flawless that they always switch to a best 
reply when reassessing their strategies. Furthermore, we do not expect these 
mistakes to be negligible, and hence do not think it appropriate to examine 
the limiting case as the mistakes become arbitrarily small. We refer to agents 
who are plagued by such mistakes as muddlers and refer to such learning 
as noisy learning. These mistakes might seem egregious in the stark models 
with which we usually work, but arise quite naturally in the noisy world in 
which games are actually played, where agents may find it difficult even to 
identify the set of available strategies and the payoffs that these strategies 
bring. 

Examining muddlers rather than maximizers has the consequence that 
the expected waiting time before the ultralong-run predictions of the model 
become relevant is greatly reduced. To see why, consider the possibility 
that a population of agents has found its way to an equilibrium that is not 
selected in the ultralong run. In the maximizing models of Young (33) and 
Kandori, Mailath and Rob (19), a large number of simultaneous mutations 
are now necessary for the system to escape from the equilibrium's basin of 
attraction. In contrast, our muddling model requires only one mutation to 
step away from the equilibrium, after which the agents may muddle their 
way out of its basin of attraction. 

1 Kandori, Mailath and Rob (19) call such an equilibrium a "long-run equilibrium". 
We reserve the term "long-run" for a period of time long enough for the system to reach 
the first equilibrium it will visit. Although we consider long-run phenomena at least as 
important as the ultralong-run, we concentrate on the latter in this paper. 
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Incorporating noisy learning into the model also has implications for 
equilibrium selection: muddling models do not always select the same equi­
libria as maximizing models. In the symmetric 2 x 2 games studied in this 
paper, maximizing models always choose between two strict Nash equilib­
ria by selecting the risk-dominant equilibrium. When risk-dominance and 
payoff-dominance conflict, our muddling model sometimes selects the payoff­
dominant equilibrium. There are therefore grounds for directing suspicion 
at risk-dominance as a refinement of Nash equilibrium even in symmetric 
2 x 2 games. 

Section 2 presents the muddling model. Section 3 examines the dynamics 
of the resulting equations of motion and takes up the problem of expected 
waiting times. Section 4 discusses ultralong-run equilibrium selection for the 
muddling model. The results of sections 2-4 depend only on the assumptions 
that there is some tendency for agents to move in the direction of a best 
reply and that they occasionally make mistakes in doing so. 

Section 5 imposes some additional structure on the learning process. We 
then derive conditions under which the payoff-dominant or risk-dominant 
equilibrium will be selected. These conditions yield testable predictions. 

Section 6, with the help of considerably more structure, considers the 
evolutionary stability of the learning rules studied. We ask whether a pop­
ulation using a certain learning rule, and hence receiving the payoffs as­
sociated with the corresponding ultralong-run distribution over population 
states, can be invaded by a mutant learning rule from the same (narrow) 
class of learning rules. If it can, then we have grounds for questioning its 
robustness. We find conditions under which the evolutionarily stable rules 
from a particular class of learning rules in our muddling model select the 
risk-dominant equilibrium for symmetric 2 x 2 games, thus matching the 
results of maximizing models. 

2 A Muddling Model 

The Game. We begin with the symmetric 2x2 game Q of Figure 1. We 
will refer to the entries in this matrix as expected payoffs, where these are 
the familiar von Neumann and Morgenstern utilities of conventional game 
theory, and where the randomness that motivates the label "expected" will 
be introduced shortly. 

We assume that there is a single population containing N agents. Time 
is divided into discrete intervals of length T. In each time period, an agent 
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Figure 1: The game g 

is characterized by the strategy X or Y that she is programmed to use in 
that period. In each period of length r, pairs of agents are randomly drawn 
(independently and with replacement) to play the game. Such draws occur 
sufficiently frequently that the probability of each agent playing at least one 
game in each period can be taken to be unity. Given that agents are drawn 
randomly with replacement to play the game, this implies that each agent 
will have played an infinite number of games with a distribution of opponents 
that accurately reflects the distribution of strategies in the population.2 (We 
also examine a special case below in which the model is formally identical 
to one in which each agent plays only once in each period.) 

An agent playing X receives an expected payoff of A in a population 
in which all agents play X and an "average" expected payoff of 1rx(k) = 
kA + (l -k )C when a proportion k of her opponents play X and a proportion 
(1 - k) play Y. She receives 1ry(k) = kB+ (l - k)D when playing Y 
under similar circumstances. Realized payoffs are random, being given by 
the average expected payoff in the game g plus the outcome R of a random 
variable .R. We view R as capturing a variety of random shocks that perturb 
payoffs.3 We think this randomness is a crucial feature of many real-world 

2 Since we consider the case when r -+ 0, this assumption has the effect of requiring 
that the game be played arbitrarily rapidly. We view this as an approximation of the 
case when play is frequent relative to strategy revision, which we consider the natural 
setting for evolutionary models. Kandori, Mailath and Rob (19) assume that agents play 
an infinite number of times in each period. Noldeke and Samuelson (25) assume a round­
robin tournament in each period. Young's model (33) is less demanding in this respect, 
though all agents still have access to the result of each game as soon as it is played. 
An alternative model, which assumes that agents do not play all other agents and which 
exploits this fact to obtain short waiting times, is examined by Robson and Vega Redondo 
[27). 

3 The random variable R yields a shock common to each payoff received by an agent in 
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games, where players may encounter difficulties even identifying their payoffs 
precisely. This randomness in turn may be an important reason why learning 
often proceeds in a muddling rather than maximizing fashion. 

Muddled learning. We consider a general model of muddled learning 
and a specific example in which much sharper assumptions are made. The 
general model is built around Assumptions 1-3 below. The special case also 
satisfies Assumptions 4-5. 

The model has four parameters: the time t at which the system is ob­
served, the length T of a time period, the population size N, and the muta­
tion rate A. The ultralong-run behavior of the system is studied by taking 
the limit t--+ oo. We then take the limit T-+ 0. This gives a model in which 
agents revise their strategies at uncoordinated, idiosyncratic times. 4 Finally, 
we take the limits N -+ oo and A -+ 0 in order to sharpen the results. We 
comment on the order of these last two limits as we proceed. An extended 
discussion of the implications of taking limits in different orders appears in 
Binmore, Samuelson and Vaughan [6]. 

A population state x is the number of agents currently playing strategy 
X. The fraction of such agents is denoted by k = x / N. Learning is taken 
to be an infrequent occurrence compared with the play of the game. At the 
end of each period of length r, a mental bell rings inside each player's head 
with probability (3r. (Without loss of generality, we take (3 = 1.) An agent 
for whom the bell tolls is said to receive the learn-draw. 

Learn-draws are independent across agents and across time. An agent 
who does not receive the learn-draw retains her current strategy while an 
agent receiving the learn-draw potentially changes strategies. 

Because we consider the case T -+ 0, occurrences in which more than one 
agent receives the learn-draw in a single period will be very rare. As a result, 
we will find that the system can be described in terms of the probabilities 
that, when a learn-draw is received, the number of agents currently playing 

the given period. The distribution F of R is independent and identically distributed across 
players choosing the same strategy, but may depend on the current state or strategy. It 
would also be interesting to study cases in which this source of noise is correlated across 
individuals, perhaps as a result of environmental factors that impose a common risk on 
all agents, or in which the distribution of R differs across players. Papers in which the 
former type of uncertainty appears include Fudenberg and Harris (14) and Robson (26). 

4 Other models are also worthy of attention. In markets were information regularly 
becomes publicly available, for example, strategy revisions may be simultaneously under­
taken by many or all agents. 
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strategy X increases or decreases by one. Let r(>,,N)(x) be the probability 
that, given a single player (and only a single player) receives the learn-draw, 
the result is to cause a player currently playing strategy X to switch to 
Y. (Hence rp,,N)(N) = 0.) Similarly, let i\,\,N)(x) be the probability that, 
given a single player receives the learn-draw, the result is to cause a player 
currently playing Y to switch to X. (Hence l(,\,N)(0) = 0.) 

We think of the parameter A~ 0 that appears in r(,\,N)(x) and £(,\,N)(x) 
as the rate of mutation, where "mutation" is a catch-all term for a variety of 
minor disturbances that modelers would normally suppress in the belief that 
they are too small to be relevant. Since our focus will be on what happens 
as A-+ 0, we assume that r(,\,N)(x) and £(,\,N)(x) are continuous on the right 
at A= 0. We refer to rco,N)(x) and l(o,N)(x) as the learning process. 

Assumption 1 

(Al.I) 

(Al.2) 

(Al.3) 

(Al.4) 

(A2.5) 

r(o,N)(0) = lco,N)(N) = O; 

0 ~ x < N =} r(,\,N)(x) > O; 

0 < x ~ N =} £(,\,N)(x) > O; 

0 < h < r(..\,N)(x) < H < oo· 
- l(.\,N)(x) - ' 

1. r(.\ N)(O) 
0 < lm,\--+0 l ' (N) < 00. 

(.\,N) 

Assumption (Al.I) asserts that the learning process alone cannot cause an 
agent to switch to a strategy not already present in the population. This as­
sumption is not strictly necessary but we consider it realistic.5 Assumptions 
(Al.2)-(Al.3) capture the requirement that mutations are always able to 
shift the population from any population state to a neighboring state. We 
shall shortly interpret Assumption (Al.4) as ensuring that our muddling 
agents are not too close to being maximizers. Assumption (Al.5) excludes 
a pathological case. 

Assumption 2 There exist functions r ,\ ( k) and l ,\ ( k) which are continuous 
for O ~ A ~ I and O ~ k ~ I such that 

(A2.I) r(>,,N)(kN) = r,\(k) + 0(1); 

5 It is natural both when learning is driven by imitation and when changes in the 
composition of the population are caused by biological reproduction. 
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(A2.2) l(>.,N)(kN) =l;.(k)+0(1). 

Assumption 2 is the requirement that only the fraction of agents playing X 
is significant when N is large. 

Assumption 3 

(A3.1) 0 < k < l ~ (ro(k) > 0 and lo(k) > 0); 

(A3.2) ?rx(k) > ?ry(k) -¢=?.ro(k) > lo(k); 

{A3.3) ?rx(k) < ?ry(k)-¢=? ro(k) < lo(k). 

Assumption 3 is the essence of the muddling model. Assumption (A3.1) 
requires that some muddling is always present in the learning process ( except 
in the pure population states x = 0 and x = N). Assumptions (A3.2)-(A3.3) 
require that the system is always more likely to move in the direction of a 
best reply than away from it. In light of this, Assumption (Al.4) has the 
effect of preventing the probability of moving in the direction of the best 
reply from becoming arbitrarily large compared with the alternative and 
hence ensures that our muddling agents are not arbitrarily close to being 
maximizers. 6 

Aspirations and Imitation: an Example. This section presents a sim­
ple learning model satisfying Assumptions 1-3. Binmore, Samuelson and 
Vaughan [6] present a biological example. 

In this example, an agent who receives the learn-draw recalls her average 
realized payoff in the last period and assesses it as being either "satisfactory" 
or "not satisfactory". 7 If the average realized payoff exceeds an aspiration 
level, then the strategy is deemed satisfactory and the agent makes no change 
in strategy. If instead the average realized payoff falls short of the aspiration 
level, then the agent loses faith in her current strategy, labelling it unsat­
isfactory, and abandons the strategy. We refer to the probabilities that a 

6 Blume (7] examines a model satisfying Assumption 3, with agents being more likely 
(but not certain) to switch to high-payoff strategies and with switching probabilities being 
smoothly related to payoffs. 

7 Satisficing models have long been the primary alternative to models of fully rational 
behavior, being pioneered in economics by Simon (28, 29, 30] and in psychology by Bush 
and Mosteller (8] (which remains a standard source on theories of learning), and pursued 
in such work as Winter (32] and Nelson and Winter (24]. More recently, satisficing models 
built on aspiration levels have been examined by Bendor, Mookherjee and Ray (2] and 
Gilboa and Schmeidler (15, 17, 16]. 
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player who has received the learn-draw will lose faith in and abandon her 
current strategy as death probabilities in order to stress the mathematical 
parallels between this model and that of Binmore, Samuelson and Vaughan 
[6]. For each expected payoff 1r, the corresponding death probability is given 
by 

g(1r) = prob(1r + R <A)= F(A - 1r), (1) 

where A is the aspiration level, R is the realization of the random payoff 
variable R, and F is the cumulative distribution of R. 

We assume that Fis log-concave.8 The log-concavity of Fis a necessary 
and sufficient condition for it to be more likely that low average realized 
payoffs are produced by low average expected payoffs, and hence for realized 
payoffs to provide a useful basis for evaluating strategies (see Milgrom (23]). 

If agent i has abandoned her strategy as unsatisfactory, she must now 
choose a new strategy. We assume that she randomly selects a member j 
of the population. With probability 1 - .A, i imitates j's strategy.9 With 
probability .A, i is a "mutant" who chooses the strategy that j is not playing. 

We refer to this as the aspiration and imitation model. The fact that 
we are free to specify the aspiration level A and the distribution F allows 
several familiar formulations to appear as special cases.10 For example, 
suppose that the rewards A and D each exceed B and C, so that the game 
has two strict Nash equilibria. If we choose F to put a probability mass of 
one on the value zero and take A to be the payoff of the mixed strategy 
equilibrium of the game, then we have random-best-reply dynamics, with 
agents who are chosen to learn switching strategies only if their current 
strategy is not a best reply.11 

An interesting special case is that in which F is the uniform distribu­
tion on the interval [-w,w], where {A,B,C,D} C [A -w,A + w]. Death 

8This means that ln Fis concave. See Bagnoli and Bergstrom (1) for a discussion oflog­
concavity and its implications. Many common distributions are log-concave, including the 
Chi, Chi-Squared, Exponential, Gamma, Logistic, Log Normal, Normal, Pareto, Poisson, 
Uniform, and Weibull distributions. 

9 She may thereby end up playing the strategy with which she began, having perhaps 
had her faith in it restored by seeing it played by the person she chose to copy. 

10 Even more flexibility could be obtained by allowing the aspiration level to differ across 
agents and across states, perhaps depending upon prevailing payoffs. This is consistent 
with our general model; but we do not pursue it here in order to keep the example simple. 

11 It may appear counterintuitive to speak of best-reply dynamics when agents are choos­
ing strategies by simply imitating others, but a model in which agents abandon only infe­
rior replies but choose strategies by imitation is analogous to a model in which agents are 
randomly chosen to switch to best replies. 
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probabilities are then linear in expected payoffs. In this case, the model is 
equivalent to one in which each agent plays only once in each period. 

Payoffs and Learning. We have been working with a fixed specification 
of payoffs A, B, C and D and have accordingly been able to express transi­
tion probabilities as a function solely of the number of agents playing each 
strategy. Variations in the payoffs A, B, C and D will affect the learning 
process and hence transition probabilities, and we would like to derive the 
comparative static implications of these variations. To do so, we need to 
specify how the learning process depends upon payoffs. The aspiration and 
imitation model suggests the following assumptions:12 

Assumption 4 

(A4.1) (A= D and B = C) => ro(k) = lo(l - k); 

(A4.2) ro(k) is increasing in A and C, decreasing in B and D; 

(A4.3) lo(k) is increasing in B and D, decreasing in A and C. 

Assumption (A4.1) is a symmetry requirement, indicating that the learning 
process is driven by payoffs and attaches no particular importance to the 
strategy labels X and Y. The remaining assumptions imply that agents 
become more likely to switch to a strategy as its payoff increases and the 
payoff of the other strategy decreases. 

Assumption 5 
(A5.1) Let 1rx(h) > 1rx(k). Then ro(h)ro(k)/lo(h)lo(k) increases when 

A is increased and C is decreased in such a manner that 1r x ( h) is increased 
by the same amount that 1rx(k) is decreased. 

(A5.2) Let 1ry(h) > 1ry(k). Then lo(h)lo(k)/ro(h)ro(k) increases when 
D is increased and B decreased in such a manner that 1ry(h) is increased 
by the same amount that 1ry(k) decreases. 

To interpret (A5.1), begin with the special case of A = B = C = D and 
choose h > ½ and k = 1 - h < ½- Now let A increase and C decrease by a 
like amount. This causes 7r x ( h) to increase and 7r x ( k) to decrease by a like 
amount (given k = 1-h < ½). Then, by (A4.2)-{A4.3), ro(h)/lo(h) increases 

121ncreasing and decreasing are meant in their weak senses here. 
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and ro(k)/lo(k) decreases. Assumption (A5.1) compares the elasticities of 
these two movements, asserting that the elasticity is higher for the increase in 
ro(h)/lo(h), causing ro(h)ro(k)/lo(h)lo(k) to increase. Assumption (A5.2) 
makes an analogous assertion for variations in B and D. 

To verify that (A5) is satisfied by the aspiration and imitation model, 
we first calculate T(A,N)(x). For the number of agents playing X to increase, 
given that an agent has received the learn-draw, three events must occur: 
(1) The agent who receives the learn-draw must be playing strategy Y. If x 
agents are currently playing strategy X, then the probability that an agent 
drawn to learn is playing strategy Y is given by (N -x)/N. (2) The learning 
agent must abandon her current strategy. Because the average payoff of an 
agent playing strategy Y is (xB + (N - x - l)D)/(N - 1), this occurs with 
probability g((xB + (N - x - l)D)/(N - 1)), where g is defined by (1). 
(3) The learning agent must choose X for her new strategy. This occurs 
with probability ((1- .A)x + .A(N - x - 1))/(N - 1), since with probability 
(1- .A)x/(N - 1), the learning agent chooses to imitate an agent playing X 
and does so without mutation, and with probability .A(N - x - 1)/(N - 1) 
the learning agent chooses to imitate an agent playing Y but is a mutant 
and chooses strategy X. Putting these probabilities together, we have 

( ) _ N - x (xB + (N - x - l)D) (1 - .A)x + .A(N - x -1) 
T(A,N) X - N g N - 1 N -1 

(2) 
Similarly, 

l (x) =..::.. ((x- l)A+ (N- x)C) .A(x -1) + (1-.A)(N-x). (3) 
(A,N) Ng N - 1 N -1 

Combining these for the case where .A - 0 and N--+ oo, we have 

ro(k) g(1ry(k)) 
= lo(k) g( 1rx(k) )' 

(4) 

Assumptions (A5.2) and (A5.3) now follow from differentiating (4) and using 
the facts that g(1rx(k)) = F(b..- 1rx(k)), g(1ry(k)) = F(b.. - 1ry(k)), and F 
is log-concave. 

3 Dynamics 

Stationary Distribution. To examine the ultralong-run behavior of our 
learning model, we must study the stationary distribution of the system. In 
this section, we require only Assumptions 1-3. 

10 
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. 

Fix the game g. For a fixed set of values of the parameters T, A, and N, 
we have a homogeneous Markov process r(>.,N,T) on a finite state space. In 
addition, the Markov process is irreducible, because (Al.2)-(Al.3) ensure 
that for any state x E {0, 1, ... N}, there is a positive probability both that 
the Markov process moves to the state x + 1 (if x < N), in which the number 
of agents playing X is increased by one; and that the process moves to the 
state x -1 (if x > 0), in which the number of agents playing Xis decreased 
by one. The following result is then standard: 

Proposition 1 The Markov process r(>.,N,T) has a unique stationary distri­
bution. For any initial condition, the expected proportion of time to date 
T spent in each state converges as T -t CX) to the corresponding stationary 
probability; and the distribution over states at a given time T converges to 
the stationary distribution. 

Proof. Kemeny and Snell [21], Theorems 4.1.4, 4.1.6, and 4.2.1. D 

Let 'Y(>.,N,T) be the probability measure given by the stationary distribu­
tion, hereafter simply called the "stationary distribution". Then 'Y(>.,N,T)(x) 
is the probability attached by the stationary distribution to state x. We 
study the stationary distribution 'Y(>.,N) obtained from 'Y(>.,N,T) by taking the 
limit T -t 0. 

Working in the limit as T -t 0 ensures that the event in which more than 
one agent receives the learn-draw occurs with negligible probability. The 
model then becomes a birth-death process, as studied in Karlin and Taylor 
[20, ch. 4]. The following proposition makes this argument precise, where 
(5) is known as the "detailed balance" equation: 

Proposition 2 Consider states x and x + 1. Then the limiting stationary 

distribution limT---+0 'Y(>.,N,T) = 'Y(>.,N) exists and satisfies: 

'Y(>.,N)(x + 1) 

'Y(>.,N)(x) 
-

r(>.,N) (x) 

l(>.,N)(x + 1). 
(5) 

Proof.13 Let r(>.,N) be the irreducible Markov chain whose transition ma­

trix assigns the probabilities r(>.,N) (x ), 1-r(>.,N) (x )-l(>.,N)(x ), and l(>.,N) (x) 

13The techniques of Freidlin and Wentzell have become common, and can be used to 
give a alternative proof of this result. Freidlin and Wentzell ((12), Lemma 3.1 on page 
177) show that 'Y(>.,N)(x+ l)h(>.,N)(x) is given by the ratio of the sum of the products of 
the probabilities of the transitions in all x + 1-trees to the similar calculation for x-trees 
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to the events that the system moves from state x to states x - 1, x, and 
x + 1 respectively. This is the applicable transition matrix if exactly one 
player receives the learn-draw in each period. r(.,\,N) is a birth-death pro­
cess (which does not depend upon r), and hence its stationary distribution 
must satisfy (5) by the standard theory. 

Next, let ft>,,N,r) be the irreducible transition matrix contingent upon 
at least one (but possibly more than one) learn-draw being received in each 
period. Then because limr--+O rt>-,N,r) = r(>.,N)' the limiting stationary dis­

tribution of rt>-,N,r) as T -+ 0 is the same as the stationary distribution of 

f(>.,N)' 
It thus suffices to show that r(>.,N,r) and rt>-,N,r) have the same limiting 

stationary distributions as T-+ 0. Notice that 

(6) 

where (1-r )N is the probability that no learn-draw is received by any player 
and I is the identity matrix. But (6) ensures that for every r, r(>.,N,r) and 
rt>-,N,r) have the same stationary distribution and hence have the same 
limiting stationary distribution as T-+ 0. □ 

To interpret (5), consider a game with two strict Nash equilibria. Let k* 
be the probability attached to X by the mixed-strategy, Nash equilibrium of 
the game and let x* /N = k*. (Note that x* need not be an integer.) Then 
if .X is sufficiently small and N large, 'Y(>.,N)(x + 1) > 'Y(>.,N)(x) whenever 
x > x* (because strategy X must be a best reply here, and hence (A3.2) 
gives ro(x) > lo(x)). The stationary distribution 'Y(>.,N) must then increase 
on [x*,N]. Similarly, from (A3.3), 'Y(>.,N)(x + 1) < 'Y(>.,N)(x), and 'Y(>.,N)(x) 
must decrease on [O, x*]. The graph of 'Y therefore reaches maxima at the 
endpoints of the state space. These endpoints correspond to the strict Nash 
equilibria of the game at which either all agents play X or all agents play 
Y. Its minimum is achieved at x*, as shown in Figure 2. 

(where an x + 1-tree is a collection of transitions with the properties that every state other 
than x + I is the origin of one and only one transition, there is a path of transitions from 
every state except x + I to x + 1, and there are no cycles). In the limit as T becomes 
small, the only trees that are relevant are those that involve no transitions that occur with 
probability r 2 or less, i.e., involve only transitions from a state to one of its immediate 
neighbors. There is only one such tree for each of states x + I and x, consisting of a 
transition from each state other than x + I (or x) to the immediate neighbor that lies 
closest to x + I (x). These two trees differ only in one probability: The x + I-tree contains 
the probability r(A,N)(x) while the x-tree contains l(A,N)(x + 1), giving (5). 
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Figure 2: Stationary Distribution 

X =N 

Convergence. How long is the ultralong run? We provide a comparison 
of the convergence properties (for fixed N and very small mutation proba­
bilities) of our muddling model and the model of Kandori, Mailath and Rob 
(19]. We consider the case of a game with two strict Nash equilibria. 

Let W(>.,N) be the transition matrix of the Kandori, Mailath and Rob 
model given mutation rate >. and population size N, and let 1P(>-.,N) be its 
stationary distribution. Consider the following measure, which is examined 
by Ellison [10]: 

where 1/Jo is the initial distribution. This is a measure of the distance be­
tween the distribution at time t (given by 1/J0[w(,\,N)Ji) and the stationary 
distribution (given by 1P(>-.,N))-

Kandori, Mailath and Rob [19] concentrate their attention on the limit­
ing case of arbitrarily small mutation rates, perhaps reflecting a belief that 
changes in strategies are almost certainly driven by best-response consider­
ations. Ellison shows that there exists a function htt,: JR --+ JR such that 
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where z is the minimum number of an agent's opponents that must play the 
risk-dominant equilibrium strategy in order for the latter to be a best reply 
for the agent in question.14 

We now seek an analogous measure of the rate at which our muddling 
model converges. Doing so requires that we address two issues. First, how is 
our continuous-time model to be compared to the discrete model of Kandori, 
Mailath and Rob? 

Fix the unit in which time is to be measured. This unit of measurement 
will remain constant throughout the analysis, even as we allow the length of 
the time periods between learn-draws in our muddling model to shrink. Our 
question then concerns how much time, measured in terms of the fixed unit, 
must pass before the probability measure describing the expected state of 
the relevant dynamic process is sufficiently close to its stationary distribu­
tion. To make the models comparable, we choose the units in which time is 
measured so that the episodes in which every agent learns in the Kandori, 
Mailath and Rob model occur at each of the discrete times 1, 2, .... We then 
let {3 = 1, where {3 is the probability of a birth per unit time in our model. 
In the limit as T - 0, the expected number of times in an interval of time 
of length one ( which will contain many of our very short time periods) that 
an agent in our model learns is then one, matching the Kandori, Mailath 
and Rob model. 

The second problem concerns very small mutation rates. Mutation is 
the only source of noise in Kandori, Mailath and Rob, while our model 
retains noise in the learning process as ). - 0. One might argue that a 
fair comparison of waiting times should require the noise in our learning 
process also become negligible, which would cause the waiting times for 
our process to increase tremendously. But this misses the point we want to 
make with the comparison. Given that unexplained, exogenously determined 
perturbations (mutations) are to be treated as negligible, expected waiting 
times can still be short if one is realistic in building noise into the learning 
process itself. 

Recall that r(..\,N,T) is the transition matrix for the Markov process of our 
muddling model given mutation rate). and period length T. r(..\,N,T) depends 
on T because the probability of an agent receiving the learn-draw in a given 
period depends on the period length. Notice also that as T decreases, the 
number t/r of periods up to time t increases. 

14We say that the functions /(>,.) and g(>,.) are comparable and write f ~ g, if there 
exist constants c and C such that for all sufficiently small .,\, clg()t.)I $ l/()..)1 $ Clg(>,.)1-
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Proposition 3 There exists a function h,(>.) such that 

where , 0 is the initial distribution. 

The proof is contained in the Appendix. Together, (7) and (8) imply 
that for very small values of >., the muddling model converges much faster 
than does the Kandori, Mailath and Rob model. In particular, let T1{J('TJ) be 
the length of time required for the Kandori, Mailath and Rob model to be 
within 'f/ of its stationary distribution. Let T,(rJ) be similarly defined for our 
muddling model. Then from (7) and (8), we have 'f/ = (1- h1{;(>.z))T,t,(TJ) and 
'f/ 2 (1- h,(>.)f-r(TJ)-l, giving, for small values of>., 

T1{J('fJ) > ln(l - h1{;(>.z)) ~ h,(>.) ~ _1 __ 
T,(rJ) - 1 - ln(l - h,(>.)) h1/J(>.z) >,z-1 

(9) 

If, for example, N = 100 and z = 33, so that 1/3 of one's opponents 
must play the risk-dominant strategy in order for it to be a best reply, 
then it will take l/>.32 times as long for the Kandori, Mailath and Rob 
model to be within 'f/ of its stationary distribution as it takes the muddling 
model. Ellison [10] obtains a similar comparison for the Kandori, Mailath 
and Rob model and his "two-neighbor" matching model. Ellison notes that 
if N = 100 and z = 33, then halving the mutation rate causes his two­
neighbor matching model (and hence our muddling model) to take about 
twice as long to converge, while the Kandori, Mailath and Rob model will 
take 233 (> 8 billion) times as long to converge. 

What drives this difference in rates of convergence? The Kandori, Mai­
lath and Rob model relies upon mutations to accomplish its transitions 
between equilibria. For example, the stationary distribution may put all of 
its probability on state 0, but the initial condition may lie in the basin of at­
traction of state N. Best-reply learning then takes the system immediately 
to state N, and convergence requires waiting until the burst of z simultane­
ous mutations required to jump over the basin of attraction of N and reach 
the basin of attraction of O becomes a reasonably likely event. Since the 
probability of such an event is of the order of >.z, this requires waiting a 
very long time when the mutation rate is small. In contrast, the muddling 
model requires mutations only to escape boundary states. Once a single 
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mutation has allowed this escape, then the noisy learning dynamics can al­
low the system to "swim upstream" out of its basin of attraction.15 The 
probability of from state N to state O is given by IT;=Nl(A,N)(x). When 
mutation rates are small, the learning dynamics proceed at a very much 
faster rate than mutations occur, so that only one term in this expression 
(l(A,N)(N)) is of order>.. Convergence then requires waiting only for a single 
mutation, rather than z simultaneous mutations, and hence relative waiting 
times differ by a factor of >. z- l. 

The difference in rates of convergence for these two models will be most 
striking when the mutation rate is very small. In (6], we present an example 
in which N = 100, z = 33, and >. = .001. The expected waiting time in the 
Kandori, Mailath and Rob model is approximately 1.7 x 1072 , while that of 
the muddling model is approximately 5000. But what about larger mutation 
rates? We expect the waiting times to be closer for larger mutation rates 
because increasing >. makes the Kandori, Mailath and Rob model noisier, 
reducing its waiting time. 

We have examined waiting times for a fixed population size N. The next 
section shows that our model yields sharp equilibrium selection results as 
N -+ oo, but the model need not do so for small values of N. Does it then 
make sense to examine waiting times for fixed values of N? In many cases, 
a population that is not arbitrarily large and a stationary distribution that 
allocates probability to more than one state may be the most appropriate 
model.16 On the other hand, if one is interested in large values of N, then 
an analogous argument to that behind Proposition 3 gives: 

Proposition 4 For sufficiently small>., 

lim T,p(17)/T .. Jr7) = oo. 
N--+oo 

Finally, it is important to note that faster convergence rates still need 
not be fast enough. Convergence in our model is not fast in the second 
sense which Ellison (10] discusses. In particular, our waiting times do not 
remain bounded as N gets large. Hence, there remains plenty of room 

15 A similar distinction, including the "swimming upstream" analogy, appears in Fuden­
berg and Harris (14]. 

16 N often need not be very large before most of the mass of the stationary distribution 
is attached to a single state. For example in the example in (6), in which N = 100, z = 33, 
and ,\ = .001, the stationary distribution places more than .97 probability on states in 
which at most .05 of the population plays strategy X. 
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for skepticism as to the applicability of ultralong-run analyses based on 
examining stationary distributions. 

4 Equilibrium Selection 

We now consider equilibrium selection. To do this, we continue to examine 
the limiting stationary distribution of the Markov process as r -+ 0, but 
now we also consider the limit as the population size gets large and the 
mutation rate gets small. In particular, we begin with the limiting stationary 
distribution and then study the limits N -+ oo and ,X -+ 0. The order in 
which these two limits are taken is one of the issues to be examined. We 
again assume throughout this section that Assumptions 1-3 hold (but do 
not invoke Assumptions 4-5). 

Two Strict Nash Equilibria. We first assume A > B and D > C, so 
that the game g has two strict Nash equilibria. As in the previous section, we 
let 'Yc>,,N) denote the limiting stationary distribution of the Markov process 
on {0, 1, ... , N} as r -+ 0. Abusing notation, we also use 'Y(>..,N) to denote the 
corresponding Borel measure on (0, 1]. Thus, for an open interval AC (0, 1], 
'Y(>..,N)(A) is the probability of finding the system at a state x with x/N EA. 
To avoid a tedious special case, we assume: 

fo1 (lnro(k)-lnlo(k))dk ::/ 0, (10) 

where (Al.4) and (A2.1)-(A2.2) ensure that the integral exists. 

Proposition 5 Let (10} hold. Then there exists a unique Borel probability 
measure 1* on [0, 1] with limN-->oo lim>,._.Q 'Y(>..,N) = lim>,._.Q limN---+oo 'Y(>..,N) = ,*, where the limits refer to the weak convergence of probability measures. 
In addition, 1*(0) + ,*(1) = 1. 

Proof. We first calculate limN-->oo lim>,._.Q 'Y(>..,N)· This becomes our can­
didate for ,*. 

Fix N. From (Al.1)-(Al.3), we have 

lim r(>..,N)(O) = lim l(>..,N)(N) = 0 
>..---+0 l(>..,N)(N) >..---+0 r(>..,N)(N - 1) . 

Using (5) and the fact that Iim>,._.o(r(>..,N)(x)/l(>..,N)(x + 1)) is nonzero and 
finite for every value x E {1, 2, ... , N -1} (by (Al.4), this result ensures that 
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lim..\-oh(..\,N)(O)+'Y(..\,N)(l)] = 1. As the mutation rate approaches zero, the 
system thus spends an increasing amount of time "stuck" at its endpoints, 
so that in the limit all probability must accumulate on these endpoints. 

Hence, we set 'Y*(O) + 'Y*(l) = 1, and the only remaining question con­
cerns the ratio of these two values. To fix this ratio, we note that for fixed 
N and .X, we have: 

'Y(..\,N)(N) 

'Y(..\,N) (0) 

We then take logarithms to obtain: 

N-1 ( ) T(..\,N) X l! l(..\,N)((x + 1))' 

'Y(..\,N)(N) ~l { } 
In (O) = L...,; lnr(..\,N)(x) - lnl(..\,N)(x) 

'Y(..\,N) x=O 

and hence ((Al.5) ensuring that the limit exists) 

(N) N-1 _p~In 'Y(..\,N) (O) = L {lnr(o,N)(x)-lnl(o,N)(x)}. 
'Y(..\,N) x=O 

Assumption 2 and (Al.4) ensure that the Riemann integral JJ(lnro(k) -
lnlo(k))dk exists, and hence we have: 

1 'Y(..\ N)(N) 11 
lim lim N ln ' (O) = (lnro(k)- lnlo(k))dk. 

N-+oo ..\-+0 'Y(..\,N) 0 
(11) 

Letting our candidate for 'Y* satisfy 'Y*(O) = 1 if the right side of (11) is 
negative and 'Y*(l) = 1 if the right side of (11) is positive,17 we then have 
li 1. * 18 mN-+oo lm.,\-+0 r(..\,N) = ')' · 

It remains to show that lim..\-+O liIP-N-+oo 'Y(..\,N) = ')'*. First, we show that 
lim..\-+O limN-+oo 'Y(..\,N) ( {O, 1} = 1. Consider the sets [O, ki] and [k2, ka], for 
0 < k1 < k2 < k3 < k*, where k* is the probability attached to strategy X 
by the mixed strategy equilibrium. Then 

17If the right side of (11) equals zero, then both ,*(0) and ·y*(l) may be positive. The 
limiting arguments are much more tedious in this case, prompting us to invoke (10). 

18This is a weak convergence claim. By Theorem 2.2 of Billingsley (3), it suffices for 
weak convergence to show limN-oo lim.x-o i(.\,N)(A) = ,*(A) for any relatively open 
subinterval A of (0, 1), which immediately follows from ,*(0) + ,*(1) = 1 and (11). 
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For sufficiently small A, (A3.2)-(A3.3) ensure that every term in the product 
on the right side of this inequality is less than one. Then for sufficiently 
small A, limN.-oo 'Y(.\,N)([k2, k3]) = 0. A similar argument applies to closed 
subintervals of [k*, 1] and yields the result. 

Next, fix k arbitrarily small and consider the sets [O, k) and (1 - k, 1].19 

We have 

([O k)) (l-k)N-1 

'Y(.\,N) ((~ l]) = IT {lnr(.\,N)(x) - lnf(.\,N)(x)}. 
1(-\,N) ' x=kN 

Then taking the limits N-+ oo and A-+ 0 gives: 

lim lim ,(.\,N) ' = (lnro(k) - lnfo(k))dk. 
rv ([O k)) 11-k 

.\.-0 N->oo 'Y(.\,N)((k, l]) k 
(12) 

But for sufficiently small k, (12) takes the same sign as (11). Hence, for 
sufficiently small k, lim.\.-0 limN .-00 'Y(.\,N) assigns probability to [O, k) ( or 
(1-k, 1]) if and only if,* assigns probability to [O, k) {or (1-k, 1]), ensuring 
that lim.\-->O limN-->oo 'Y(.\,N) = 1* in the sense of weak convergence. D 

We thus have that, in the limit as mutation probabilities get small and 
the population gets large (in any order), the stationary distribution of the 
Markov process attaches probability only to the two pure strategy equilibria. 
In "generic" cases (those for which (10) holds), probability will be attached 
to only one of these equilibria, which we refer to as the selected equilibrium. 

Which Equilibrium? A number of papers have recently addressed the 
problem of equilibrium selection in symmetric 2x2 games. Young [33] and 
Kandori, Mailath and Rob [19] are typical in finding that the risk-dominant 
equilibrium is always selected. Robson and Vega Redondo [27] offer a model 
in which the payoff-dominant equilibrium is always selected. However, (11) 
provides a criterion which shows that our model sometimes selects the payoff­
dominant equilibrium and sometimes selects the risk-dominant equilibrium. 

Proposition 6 (P6.1) The selected equilibrium will be (X, X) [(Y, Y)] if 

fo1in ro(k)dk > [<] fo\nfo(k))dk. (13) 

19We must consider (0, k) and (1-k,] rather than {O} and {1} because we do not know 
that limN-oo 1 ( {O, 1}) = 1 
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(P6.2) The payoff-dominant equilibrium in game g can be selected even 
if it fails to be risk dominant. 

Proof. Item (P6.1) follows immediately from (11). To establish (P6.2), 
consider the aspiration and imitation model. Let 

b.. = 0, A = 2, B = 1, D = 0, C = -1. 

Then neither of the two pure strategy Nash equilibria, given by (X, X) 
and (Y, Y), risk-dominates the other, but (X, X) is the payoff-dominant 
equilibrium. Let F be a uniform distribution on the interval [-2, 2]. Then 
death probabilities are linear in expected rewards, with 

g(2) = 0 g(l) = ¼ g(0) = ½ g(-1) = f. 

Inserting these probabilities in (2)-(3), taking the limits>.-+ 0 and N-+ oo 
and inserting in (11) gives: 

,*(1) 
,*(0) = 

= 

lim N f1 (lng(·ny(k)) - lng(1rx(k))dk 
N-+oo lo 

lim N f 1 (ln(¼k + ½(1 - k)) - ln(0k + ¾{1 - k)))dk 
N-+oo lo 

lim (i) N (14) 
N-+oo 3 

ensuring that (X, X) is selected. The game can be perturbed slightly to 
make (Y, Y) risk-dominant while still keeping (X, X) payoff-dominant with­
out altering the fact that (X, X) is selected. □ 

We can provide some intuition as to why this result differs from that of 
Kandori, Mailath and Rob [19], whose model selects the equilibrium with 
the larger basin of attraction under best-reply dynamics, namely the risk­
dominant equilibrium. In the perturbed version of the game that we consid­
ered in the previous proof, the equilibrium (X, X) has a basin of attraction 
smaller than (Y, Y) 's but in (X, X) 's basin the death probability of X rela­
tive to Y is very small, being nearly zero for states in which nearly all agents 
play X. This makes it very difficult to leave (X,X)'s basin, and yields a 
selection in which all agents play X. Only the size of the basin of attraction 
matters in Kandori, Mailath and Rob, while in our model the strength of 
the learning flows matters as well. 

20 
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Best-Response Dynamics. The previous paragraph suggests that our 
muddling model should be more likely to select the risk-dominant equilib­
rium the closer is the learning process to best-reply learning. We can confirm 
this. 

Let A> Band D > C, and let k* /N > 1/2 (where k* is the probability 
attached to X by the mixed-strategy equilibrium); so that there are two 
strict Nash equilibria, with (Y, Y) being the risk-dominant equilibrium. Fix 
ro(k) and lo(k) satisfying Assumptions 1-3. Then let io(k) = </>Bx(k) + 
(1- </>)ro(k) and let lo(k) = <f>By(k) + (1 - </>)lo(k), where Bx(k) equals 1 
if X is a best response (k > k*) and zero otherwise, and By(k) equals one 
if Y is a best response (k < k*)and zero otherwise. As </> increases to unity, 
the learning dynamics associated with i and l then approach best-reply 
dynamics. 

Proposition 7 For values of </> sufficiently close to one, the selected equi­
librium is the risk-dominant equilibrium in game g. 

Proof. Let k* = x* / N > 1/2, so that (Y, Y) is the risk-dominant equilib­
rium. From (13), the selected equilibrium will be (Y, Y) if: 

k' lo {ln((l - </>)ro(k)) - ln(</> + (1 - </>)lo(k)) }dk 

k* 
+ { {ln((l - ef>)ro(k))-ln(</>+ (1-</>)lo(k))}dk A, 

+ / 1 {ln(</> + (1- </>)ro(k)) - ln((l - </>)lo(k))}dk < 0, 
jk* 

where k' > 0 satisfies 1 - k* = k* - k'. Because 1 - k* = k* - k', the sum 
of the second and third terms on the left approaches a finite number as </> 
approaches unity. The first term approaches negative infinity, and hence the 
result. D 

Background Fitness. Another criterion for the risk dominant equilib­
rium to be selected emerges from considering the implications of background 
fitness. The concept of background fitness is borrowed from biology, where 
it refers to a process in which agents die and give birth randomly, regardless 
of payoffs. In particular, suppose that in each period, a randomly chosen 
agent dies and another randomly chosen agent gives birth to a daughter 
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identical to herself. In the limiting case as N - oo and >. -+ 0, the proba­
bility of increasing or decreasing the number of agents playing X by one is 
then k(l - k).20 

Now suppose that the background fitness process governs strategy ad­
justments with probability (}, while with probability 1 - (} adjustments are 
given by r(.X,N)(x) and l(.X,N)(x), which satisfy Assumptions 1-3. Then we 

have the probabilities i\.x,N) and i(.X,N) given by: 

ro(k) = (}k(l - k) + (1 - (})ro(k) 

io(k) = (}k(l - k) + (1- (})lo(k). 

(15) 

(16) 

We might say that ro ( k) and io ( k) have background fitness level (} in this case. 
If(} = 1, then the process is driven entirely by background considerations, 
in that the evolution of the system has nothing to do with the payoffs in 
the game Q. If (} = 0, then there are no background considerations and only 
payoffs in the game affect its evolution. 

In our model, a background fitness level of O will arise if, in each period 
of length T, each agent receives a draw with probability (}7 that causes that 
agent to pick another agent at random and imitate the strategy of the latter, 
If such a draw does not occur, then the agent's behavior is governed by the 
learning process. There are several alternative interpretations of the level 
of background fitness. For example, agents may be occasionally withdrawn 
from the game-playing population to be replaced by inexperienced novices. 
Alternatively, bounded rationality might be at work, there being some prob­
ability that an agent's thought processes are currently congested with other 
considerations. In our example, it may be that the agent is actually partici­
pating in a large number of similar games using the same strategy for each, 
as in the model of Carlsson and Van Damme [9]. Strategy revisions will 
then often be determined by what happens in games other than the game 
actually under study. 

Proposition 8 For sufficiently large levels of the background fitness level 
(}, the equilibrium (X, X) is selected if 

fl 1 
Jo k(l - k) (lo(k) - ro(k))dk < 0, (17) 

20 The probability of increasing the number of agents playing X by one is the probability 
that the agent who dies is playing strategy Y (given by ( N - x) / N = 1 - k in the limit as 
N gets large) and the probability that the agent giving birth plays strategy X (given by 
x/N = k for the limiting case of large N and small A), giving k(l - k). 
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and (Y, Y) is selected if {17) is positive. 

Proof. Let (X,X) and (Y, Y) be Nash equilibria, with (Y, Y) being risk­
dominant. From {13}, the selected equilibrium will be (Y, Y) if 

fo1 {ln{k(l- k)0+ {1-0)ro(k))-ln(k{l-k)0+ (1-0)lo(k))}dk < 0, (18) 

As 0 -+ 1, the left side of {18) approaches zero. We accordingly examine 
the first derivative of the left side of {18). A positive derivative ensures 
that {18) approaches zero from below, so that {18) is negative and hence 
the risk-dominant equilibrium is selected for 0 near 1. Evaluated at 0 = 1, 
this derivative is given by the left side of {17). The selected equilibrium, for 
large background fitness, is thus (X, X) if (17) is negative and (Y, Y) if (17) 
is positive. D 

What can we make of condition {17)? Because ro(k*) = lo(k*) {from 
{A3.2)-{A3.3)), a straightforward evaluation of (17) gives: 

Corollary 1 Suppose ro(k)/k(l - k) and lo(k)/k(l - k) are linear in k. 
Then for sufficiently large 0, the risk-dominant equilibrium of game g is 
selected. 

We note that ro(k)/k(l-k) and lo(k)/k(l-k) are linear ink in the aspiration 
and imitation model when F is the uniform distribution. 

We thus have another condition for the risk-dominant equilibrium to 
be selected. The condition comes in two parts. First, the learning process 
must be related to the proportions of agents playing the two strategies in 
a linear way, as in the aspiration and imitation model. Second, changes in 
strategy must be driven primarily by background fitness considerations and 
not payoffs in the game. Hence, we select the risk-dominant equilibrium in 
relatively unimportant games-those whose payoffs have little to do with 
agents' behavior.21 

No Pure Strategy Equilibria. Our equilibrium selection results address 
the case of two strict Nash equilibria. We can contrast these results with 
the case of games in which B > A and C > D, so that there is a unique, 

21 Many variations on Proposition 8, involving various rules under which transitions are 
given by the learning process with probability 1-6 and with probability 6 are determined 
by a random process exogenous to the game, and yielding the result that the risk-dominant 
equilibrium is selected if 6 is sufficiently large and (17) holds, can be similarly established. 
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mixed-strategy Nash equilibrium. Then an argument analogous to that of 
Proposition 5 yields 

Proposition 9 Let k* be the probability attached to X in the mixed-strategy 
equilibrium. Then lim.\-+O limN-+oo 'Y(.\,N)(A) = 0 if k* ¢ A. However, 
lim.\-+O'Y(.\,N)(0) +lim.\-+O'Y(.\,N)(l) = 1. 

The order of limits makes a difference in this case. If mutation rates are 
first allowed to approach zero, then the ultralong-run dynamics are driven 
by the possibility of accidental extinction coupled with the impossibility 
of recovery, attaching probability only to the two nonequilibrium states in 
which either all agents play X or all agents play Y. If the population size 
is first allowed to get large, then accidental extinctions are not a factor and 
the long run outcome is the mixed strategy equilibrium. Our inclination 
here is to regard the latter as the more useful model. Binmore, Samuelson 
and Vaughan [6] discuss this issue at greater length. 

5 Risk-Dominance 

The comparative statics results of the previous section involve changes in 
the learning rule. We now fix a learning rule and examine changes in the 
payoffs of the game. 

It is immediately apparent that some additional assumptions are required 
to establish comparative static results. Assumptions 1-3 are silent on the 
question of how changes in payoffs affect the learning dynamics as long as 
the inequalities in Assumption 3 are satisfied. We accordingly now invoke 
Assumptions 4-5 as well as Assumptions 1-3. We investigate games with two 
strict Nash equilibria (A> Band D > C) and ask when the risk-dominant 
equilibrium will be selected. 

We begin with the case in which there is no conflict between payoff and 
risk-dominance: 

Proposition 10 If the payoff-dominant equilibrium in game g is also risk 
dominant, then the payoff-dominant equilibrium is selected. 

Proof: Let (X,X) and (Y, Y) be risk-equivalent in game Q, so that 
A+ C = B + D, and let A= D. Then (A4.1) ensures that (13) holds with 
equality. Now make (X, X) the payoff-dominant equilibrium by increasing 
A and decreasing C so as to preserve A+ C = B + D ( and hence to preserve 
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Figure 3: Payoff Variations 

the risk-equivalence of the two strategies). Assumption (5) then ensures that 
fci In ro(k) - lo(k))dk increases. The payoff-dominant equilibrium (X, X) is 
then selected. Next, note that adding a constant to A and G or subtracting 
a constant from D and B so as to also make (X, X) risk-dominant at least 
weakly increases the function ln7ry(k} - ln7rx(k) on [O, 1], which can only 
strengthen the inequality in (13} (by (A4.2}-(A4.3)}, and hence preserves 
the result t.hat the payoff-dominant equilibrium is selected. □ 

We now consider cases where the payoff- and risk-dominance criteria con­
flict. We ask how the likelihood of choosing the risk-dominant equilibrium 
in the game g varies with the payoffs in the game. To pose this question 
precisely, let k* be the probability attached to X in the mixed strategy equi­
librium. Let (Y, Y) be the risk-dominant equilibrium, so k* > 1/2, but let 
(X, X) be payoff-dominant. Let 7r* be the payoff in game g from the mixed­
strategy equilibrium. We will consider variations in the payoffs A, B, C, D 
that leave k* and 1r* unchanged. For example, we will consider an increase 
in A accompanied by a decrease in C calculated so as to preserve k* and 1r*, 
as illustrated in Figure 3. 

We thus restrict attention to variations in the payoffs A, B, C, and 
D for which C = C(A) and B = B(D), where (1 - k*)G(A) + k* A = 
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(1-k*)B(D)+k*D = 1r*. Let Q(k*,1r*) = {(A,D): DE (C(A),A)}; this is 
the set of possible values of A and D that are consistent with (X, X) being 
the payoff-dominant equilibrium given the fixed values of k* and 1r*. Let 
Q*(k*, 1r*) C Q(k*, 1r*) be the subset of values for which the payoff-dominant 
equilibrium in the game Q is selected. Then we have: 

Proposition 11 (Pll.1) If Q*(k*, 1r*) contains (A, D) with D > B(D), 
then Q*(k*,1r*) contains every convex combination of (A,D) and (A,1r*). 

(Pll.2) Fix 1r*. Then there exist values of k* for which Q*(k*,1r*) is 
nonempty, and if Q*(k**, 1r*) is nonempty then Q*(k*, 1r*) is nonempty for 
all k* E (½,k**). 

Proposition (Pll.1) tells us that if D > B and the payoff-dominant equi­
librium is selected, then the payoff-dominant equilibrium continues to be 
selected as D is decreased ( and B increased), at least until D = 1r*. Hence, 
movements in the payoffs to strategy Y that increase B and decrease D 
make the payoff-dominant equilibrium more likely to be selected. The best 
case for the payoff-dominant equilibrium occurs when D = B or D < B. 
The payoff-dominant equilibrium is thus favored by reducing the variation 
in payoffs to strategy Y or even "inverting" them, so that while (Y, Y) is 
an equilibrium, the highest reward to strategy Y is obtained if the oppo­
nent plays X. Proposition (Pll.2) indicates that the larger is the basin of 
attraction of the risk-dominant equilibrium, the harder it is for the payoff­
dominant equilibrium to be selected. 

Proof of Proposition 11: (Pll.1) Fix k* > 1/2. Fix A and hence C(A). 
If we set D = A, then Proposition 10 ensures that (Y, Y) will be selected, 
since it is risk dominant and payoff undominated. Now let D decline. From 
(A5.l)-(A5.1), JJ(lnro(k) - lo(k))dk declines until D reaches 1r*. Hence, 
from (13), if the payoff-dominant equilibrium is selected for any value of D, 
then it is also selected for any smaller value D ~ 1r*. 

(Pll.2) Let values A, B, C, and D exist such that the payoff-dominant 
equilibrium is selected and the mixed-strategy equilibrium is given by k**, 
with payoff 1r*. Let 1/2 < k* < k**. Then we can find values A'> A, C' > 
C, B' < B, and D' < D that (1) give the mixed-strategy equilibrium k*; (2) 
increase all payoffs to X and decrease all payoffs to Y; and (3) preserve 1r*. 
From (A4.2)-(A4.3), these payoffs must then preserve the property that the 
payoff-dominant equilibrium is selected, so Q* ( k*, 1r*) is nonempty. □ 
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Some Experimental Evidence. Given Proposition 11, it is interesting 
to note that Straub [31] has conducted experiments to investigate the condi­
tions under which risk-dominant and payoff-dominant equilibria are selected 
in 2 x 2 symmetric games with two strict Nash equilibria. He finds that the 
risk-dominant equilibrium is the most common equilibrium played in seven 
out of eight of the experiments. The exception, in which the payoff dom­
inant equilibrium appeared, is the only game in which D < B. Friedman 
[13] also reports experiments with 2 x 2 symmetric games with two strict 
Nash equilibria. Friedman finds that altering a game in which D < B to 
achieve D = B, while preserving the basins of attraction of the Nash equi­
libria, causes the risk-dominant equilibrium to be selected much more often 
and the payoff-dominant equilibrium to be selected much less often. Both 
experiments are consistent with our results. 

6 Endogenous Learning 

The heart of our model is a learning rule. If we want to sharpen our results by 
working with a specific learning rule, which rules are worthy of our attention? 
A useful way to approach this question is perhaps to recognize that learning 
rules themselves are likely to have been acquired through an evolutionary 
process. 

We capture the evolution of learning rules in a "two-tiered" model. We 
view the evolution of strategy choices, guided by a particular learning rule, as 
proceeding at a pace that is rapid compared to the evolution of the learning 
rule itself. We take our existing model to represent the evolution of strategy 
choices given a learning rule. The payoffs received from the strategy choices 
that emerge from this process then drive the evolution of learning rules. 

An attempt to model the evolution of learning rules raises the specter of 
an infinite regress. A model in which agents learn how to play games now 
becomes a model in which agents learn how to learn to play games. But 
then why not a model in which agents learn how to learn how to learn, and 
so on? Two considerations arise. First, the higher processes may well be 
biological and hence hard-wired into our cognitive apparatus. The second is 
that agents will learn only when there is something to learn about. We can 
therefore hope to escape the infinite regress by showing that outcomes are 
not particularly sensitive to the nature of the learning rules that agents use 
in learning how to learn. In particular, we look for cases in which learning 
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rules satisfy conditions analogous to evolutionary stability.22 Such rules will 
fare well in any process that rewards rules which generate above-average 
payoffs. If this robustness had appeared at the first level, when examining 
how agents learn to play games, we would not have been prompted to seek 
a level higher. 

We restrict attention to the aspiration and imitation model, and allow 
only the value of the aspiration level A to be subject to change.23 We 
therefore label a learning rule by the aspiration level A which it incorporates 
and we refer to the evolution of A as the evolution of a learning rule. Only 
games with two strict Nash equilibria are considered. 

The evolution of the aspiration level A depends upon the distribution of 
R, and especially on its dispersion. 

Proposition 12 Fix z > 0. Suppose that prob(R < A-z)/prob(R < A) is 
increasing in A. Then for large enough N and small enough >. and for any 
b..' with b..' < A, the payoff to a player characterized by b..' in any population 
consisting of these two rules exceeds that of A. 

To interpret Proposition 12, suppose that prob(R < A - z)/prob(R < 
A) is increasing in A. This will hold for distributions that are not too 
dispersed, in the sense that the probability in the tails of the distribution 
falls off sufficiently rapidly as one moves out along the tail. For example, 
this condition holds for the Normal distribution. To see this, we note that, 
for the standard Normal, the condition is equivalent to the statement that 
prob(R > s + z)/prob(R > s) is decreasing ins. Since 

.!!_(prob(R > s+z)) = -e-(s+z)2/2prob(R > s) +e-s2
/ 2prob(R > s+z), 

ds prob(R > s) (prob(R > s))2 

it suffices to show that 

prob(R > s + z) < e-sze-z2 /2_ 
prob(R > s) 

22See Harley (18), Maynard Smith (22], and Ellison and Fudenberg (11) for work in this 
vein. 

23 We view the information available to agents and the distribution of R as being part 
of the technology of the game. It would be interesting to consider models in which players 
might take steps, perhaps at a cost, to influence this latter distribution. Bendor, Mookerjee 
and Ray (2] suggest that aspiration levels should adjust to equal the average equilibrium 
payoff. In Binmore and Samuelson (5], we show that this is not always possible in a 
muddling model. 
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To establish this inequality, we note that prob(R > s + z) = 

l oo e-x2 /2dx = loo e-(z+x)2 f2dx = e-z212100 e-zxe-x2 f2dx 
s+z s s 

2 100 
2 2 ~ e-z f2e-sz s e-x /2dx = e-z f2e-szprob(R > s). (19) 

Proof of Proposition 12. Let the agents in the population be distributed 
between the aspiration levels t::,,. and b.' with t::,,.' < !:::,,.. For sufficiently large 
population size and small mutation rates, there exist numbers px(N, >.), 
py(N, >.), xy(N, >.) and xx(N, >.), with the sum of the first two numbers 
arbitrarily close to one and the latter two numbers arbitrarily close to O and 
1, such that the stationary distribution induced by the prevailing collection 
of learning rules spends a proportion of at least py ( N, >.) of the time in states 
in which x/N < xy(N, >.) (in which case Y is a best reply) and px(N, >.) 
of the time in states in which x/N > xx(N, >.) (in which case X is a best 
reply). Call these sets of states Py and Px, and call the remaining states 
PD. 

The difference between the payoffs to aspiration levels b.' and t::,,. is 

py(N, >.)II(Py) + px(N, >.)II(Px) + (1- p1,(N, >.) - Px(N, >.))II(PD), 

where II(Py) is the expected payoff difference between aspiration levels t::,,.' 
and b. conditional on the system being in the set Py, and II(Px) and II(PD) 
are defined analogously. Because the time spent in the set PD can be made 
arbitrarily small by increasing N and decreasing >., it suffices to show that 
py(N, >.)II(Py) or px(N, >.)II(Px) are positive, and at least one is bounded 
away from zero as N increases and >. decreases. 

At least one of py(N, >.) and px(N, >.) must be bounded away from zero. 
Suppose it is py(N, >.). Then 

II(Py) = f: ( ;p}(~, >.) ) Ilk (Py), (20) 
k=O Lh=O hpy(N, >.) 

where p}(N, >.) is the probability that a given episode during which the 
system is in the set Py lasts k periods, and Jik(Py) is the expected per­
period payoff difference between learning rules t::,,.' and t::,,. during a collection 
of periods in which the system stays in the set Py for exactly k periods. 
Then for sufficiently small >. we have 

00 

lim L hp}(N, >.) = oo, 
N--+oo h=O 

{21) 
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because, as N gets large, the system spends an arbitrarily small proportion 
of its time in Pn and every stay in Py must end with an entry into Pn. 

Next, let IT'° (Py) be the difference in the payoffs to learning rules with 
aspiration levels bi.' and bi., conditional on the system staying in the set Py 
an infinite number of periods. As the length of a stay in the set Py increases, 
the difference in payoffs between aspiration levels bi.' and bi., contingent on 
such a stay, must approach Il00 (Py). Assume temporarily that Il00 (Py) > 0. 
Then for any t > 0, there is a 8' > 0 such that for all 8 > 8', 

Il'\Py) > Il00 (Py) - t. (22) 

Then {22) and {21) (along with Il00 (Py) > 0) imply the desired result that 
(20) is positive for sufficiently large N and small enough >., and does not 
approach zero as N grows and >. shrinks. 

It then remains only to show that Il00 (Py) is positive when bi.' < bi.. For 
this, however, it suffices that prob(R < bi. - z)/prob(R < bi.) is increasing 
in bi.. In particular, for every state in the set Py, Y is a best reply and X 
is an inferior reply; and Py can be made sufficiently small that the lowest 
payoff to a best reply over states in this set exceeds the highest payoff to 
an inferior reply. We can then think of the payoffs to each agent as being 
determined by the stationary distribution of a two-state Markov process, 
with the two states being "best reply" and "inferior reply", and with the 
latter giving a higher payoff than the former. Call this Markov process f*. 
If prob(R < b,,. - z)/prob(R < bi.) is increasing in b,,. then the ratio of the 
probability of abandoning a best for an inferior reply to the probability of 
abandoning an inferior for a best reply is lower for aspiration level bi.' than 
for bi.. This in turn implies that the stationary distribution off* must spend 
more time in the best-reply state for learning rule bi.' than for bi.. The former 
must then receive a higher payoff, yielding the result. □ 

The mechanism behind this result is straightforward. In any stationary 
distribution, players spend long periods of time facing a mix of strategies 
that is concentrated on a particular strategy (say Y) but also includes other 
strategies. The highest expected payoffs will be garnered by those agents 
whose learning rules cause them to spend the greatest proportion of the 
time playing the best reply Y. These will be agents with learning rules that 
make them relatively unlikely to switch away from high payoff realizations 
and relatively likely to switch away from low payoff realizations. In the case 
of distributions like the Normal, for which prob(R < bi. - z)/prob(R < bi.) 
is increasing in bi., these learning rules involve smaller aspiration levels. 
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If prob(R < ~ - z)/prob(R <~)is increasing in~, then the dynamics 
concerning aspiration levels are straightforward. Let the aspiration level ini­
tially be given by ~- Let the population be sufficiently large and mutation 
rate sufficiently small. Then if an aspiration level ~, < ~ appears, it will 
displace ~- This can in turn be displaced by a lower aspiration level ~". 
Continuing in this fashion, the process will push the aspiration level ever 
lower.24 Whereas we have presented this result in terms of only two coexist­
ing aspiration levels. If there are more than two aspiration levels, then the 
highest such levels will always earn lower payoffs than at least some lower 
levels, creating a downward pressure on aspiration levels. 

What are the implications of this process for the selected equilibrium? 
Here we specialize to the standard Normal distribution to minimize notation. 

Proposition 13 Let F be the standard Normal distribution. Then for suf­
ficiently small ~, the selected equilibrium is the equilibrium that is risk­
dominant. 

Proof: Let A > C and D > B with A + C < B + D, so that (Y, Y) is 
risk-dominant. It follows from (13)) that the risk-dominant equilibrium will 
be selected if lnF(~ - B) +lnF(~ -D)-lnF(~ -A) - lnF(~ - C) < 0. 
Let NA= 1-F(-(~-A)), and let Nn, Ne, and Nn be defined analogously. 
Then it suffices to show that, for small values of~, 

For the standard Normal distribution, l'Hopital's rule can be used to show 
that lims-+oo Ns+z/ N 8 = e-z2 l2e-sz. Hence, we need to show that, for small 
values of~ (and hence large values of -fr), 

e-(D-C)2 /2e-(D-C)(-LHC) 

e-(A-B)2 /2e-(A-B)(-LHB) < o. 
This in turn is equivalent to showing that (A- B)[(A- B) + 2(-~ + B))­
(D-C)[(D-C)+2(-~+C)] < 0. As-~ gets large, we need only examine 
the terms involving -~, which gives 2(-~)(A + C - B - D) < 0. This will 

24 Fortunately, we do not have to worry about the possibility that lower values of .6. 
will vitiate the assumption N is sufficiently large and A sufficiently small. Decreasing .6. 
increases the pressure towards the ends of the state space, ensuring that N will still be 
large enough and A small enough to yield a stationary distribution sufficiently concentrated 
near the ends of the state space. 
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hold for large -~ because (Y, Y) is risk-dominant, so that A+ C - B - D < 0 
and hence the coefficient on -~ is negative. D 

We therefore have conditions under which evolution leads to learning rules 
that will select the risk-dominant equilibrium.25 However, we have examined 
the evolution of a very narrow class of learning rules, allowing only the 
aspiration level in the aspiration and imitation model to adjust. What 
happens in more general cases remains open. 

7 Conclusion 

Evolutionary game theory offers the promise of progress on the problem of 
equilibrium selection. At the same time, it is capable of reproducing the 
worst features of the equilibrium refinements literature, creating an ever­
growing menagerie of conflicting and uninterpreted results. To achieve the 
former rather than the latter outcome, we think that evolutionary models 
need to be provided with microfoundations which identify the links between 
the dynamics of the model and the underlying choice behavior. 

In this paper, we focus on an aspect of choice behavior that we consider 
particularly important: we allow people to make mistakes in choosing their 
strategies. Ours is thus a muddling rather than a maximizing model, with 
the primary source of noise in our model being nonnegligible mistakes within 
the learning process itself. Introducing muddling behavior has implications 
both for equilibrium selection ( where we find that the payoff-dominant equi­
librium is sometimes selected) and also for questions of timing. In particular, 
we find that the length of time needed to reach the ultralong run may be 
shorter in a muddling than in a maximizing model, making it more likely 
that the ultralong run will be of interest in potential applications. 

The paper closes with a model in which the rules by which agents learn to 
play games are themselves subject to evolutionary pressures. Our work here 
is both preliminary and incomplete, in that we have examined only a very 
narrow class of learning rules. But we believe this to be an important area 
for further work. Another important area for further work is the extension 
of the analysis to larger games. The convenience of the detailed balance 
equation (5) will then be lost but we are hopeful that other techniques can 
be applied. 

25 Note that there are widely dispersed distributions, such as the Cauchy distribution, 
for which prob(R + ~ - z )/prob(R < ~) does not increase in ~, and hence which do not 
push~ ever lower, possibly allowing the payoff-dominant equilibrium may survive. 
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8 Appendix: Proof of Proposition 3 

Since we will be working in the limit as the length of a time period, r, 
becomes arbitrarily short, we can assume that in each time period of length 
r, either no agent receives the learn-draw (with probability 1 - rN) or a 
single agent receives the learn-draw (with probability rN). Let I'(>,,N,r) be 
the resulting Markov process. 

Fix a time t and a period length r, so that t / r periods will have occurred 
by time t. Let 1,(k, z) be the probability that out of z periods, there are 
exactly k periods in which some individual receives the learn-draw. Then 
we have: 

0[' ]L t t [ * ]k , r(..x,N,r) .,. = ~ 1,(k, :;:) r<.x,N) , 
k=O 

where r(.\,N) is the transition matrix contingent upon one learn-draw having 

been received and we take [r(.\,N)]0 to be the identity matrix. Hence, it 

suffices for (8) to show that for any , 0 , 

{23) 

Let Tn = l/n. Then t/rn = nt, an equality we shall use repeatedly. For each 
n, let {Znk, k E {1, ... ,nt}} be a collection random variables, one for each of 
the periods that occur by time t, with each random variable taking the value 
one if a learn-draw is received ( with probability r nN) and zero if a learn-draw 
is not received (with probability 1 - TnN). Then 1,(k, nt) is the probability 
that exactly k of the random variables { Znh, h E {1, ... , nt}} take the value 
one. Notice that, for any n, we have Ei:~ 1 r nN = ntr nN = tN, so that for 
any n, the sum over the collection { Znk, k E {1, ... , nt}} of the probabilities 
of receiving the outcome one is finite and given by tN. Coupled with the 
fact that Tn and hence TnN approach zero as n gets large, this allows us to 
apply Theorem 23.2 of Billingsley [4] to conclude that 

. t (Ntl 
lim 1,(k, -) = Niki. n-+oo Tn e- . 

Hence, as Tn gets small, 1,(k, ..!.. ) = 1,(k, nt) is given by a Poisson distribution 
Tn 

with mean and variance Nt. It accordingly suffices for {23) to show, for any 
, 0 , that 
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II O ~ (Nt)k [ * ]k II ( ( ))t-1 ( ) 'Y ~ e-Ntk! r (>.,N) - 'Y(>.,N) ~ 1- h-, A . 24 

We first observe that 'Y(>.,N,r>'f (>.,N,r) = 'Y(>.,N,r){l - T N)I + T Nr(>.,N)) = 
'Y(>.,N,r), which we can solve for 'Y(>.,N)fc>.,N) = 'Y(>.,N)l = 'Y(>.,N)· Then 'Y(>.,N) 
is the (unique) stationary distribution of the matrix [r(>.,N)], and so 

1. o[r* ]k 1m 'Y (>. N) = 'Y(>. N) · 
k-+oo ' ' 

The matrix [r(>.,N)] has many zero elements, but the matrix [r(>.,N)]N is 
strictly positive. Corollary 4.1.5 of Kemeny and Snell {[21], page 71) can 
therefore be applied to show that 

{25) 

where S(A) is the smallest transition probability in [r(>.,N)]N. We must then 
examine the probability S(A). It is not immediately obvious what the least 
likely transition in the matrix [r(>.,N)]N is. One possibility is that it is the 
transition from the state in which all agents play Y (x = 0) to the state in 
which all agents play X (x = N). If so, then SM(A) is given by 

N-1 

IT r(>.,N)(x, N) = A[c' + h(A)], {26) 
:i:=0 

where d does not depend on A and lim.x--o h{A) = 0, and where the equality 
follows because for all x E {1,2, ... ,N- l}, lim.x--or(>.,N) = T(O,N) > 0). 
Hence, for sufficiently small A, we have lh(A)I < f for some f > 0. We then 
let c = d - € and C = d + € to obtain S(A) ~ A. A similar argument 
establishes that any transition within [r(>.,N)]N can be made with at most 
one step that requires a mutation, ensuring that S(A) ~ A. 

An argument analogous to that leading to {25) gives, for any a> 0, 

This would allow us to conclude that there exists a function h-,{A) ~ A such 
that 
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holds for large t and a E {O, 1) if we could conclude that 

Ii (Nt)k [ * ]k 
m -Ntkl r(>. N) = 0 

t-+oo e . ' 
{28) 

for any k < aNt. This in turn follows from noting that as t grows, the 
Poisson distribution with mean and variance Nt approaches a Normal dis­
tribution with mean and variance Nt (cf. Billingsley [4], problem 27.3 
on page 379). Equation {28) is then limt-+oo prob[N(Nt, Nt) < aNt] = 
limt-+oo prob[N(O, 1) < {a - l){Nt)½] = 0, which follows from the fact that 

1 
{a - l)(NT)2--+ oo as t--+ oo. 

Finally, we note that because (27) holds for any a E {O, 1), we must have 
{24), which is the desired result. □ 
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