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Abstract

This paper considers two models for analyzing the dynamics of firﬁ
behavior that allow for idiosyncratic (or firm-specific) sources of uncertainty,
and discrete outcomes (exit and/or entry). Models with these characteristics
are needed for the structural econometric analysis of several economic
phenomena, including the behavior of capital markets when there are signi-
ficant failure probabilities, and the analysis of productivity movements in
industries with large amounts of entry and exit. In addition, these models
provide a means of correcting for the self-selection induced by liquidation
decisions in empirical studies of firms responses to alternative policy and
environmental changes. It is shown that both models have nonparametric
implications - implications that depend only on basic behavioral assumptions
and mild regularity conditions on the functional forms of interest - that can
be taken directly to data. This circumvents the need for the computationally
difficult, and functional-form specific, estimation algorithms that have been
needed for analyzing stochastic control models with discrete outcomes in the
past. One difference between the two models corresponds to the distinction
between heterogeneity and an ergodic form of state-dependence (a form in which
the effect of being in a state in a particular period erodes away as time from
that period lapses). So we develop a test for this difference based on ¢-
mixing conditions. The paper concludes by checking for the implications of the
two models on an eight-year panel of Wisconsin firms. We find one model to be
consistent with the data for manufacturing, and the other to be consistent with

the data for retail trade.




1. Introduction

In this, and in a companion piece (see Ericson and Pakes, 1987), we consider
structural econometric models for analyzing the dynamics of firm behavior that
allow for idiosyncratic, or firm-specific, uncertainty, and discrete events
(exit and/or entry). Our reason for providing an empirical framework with
these features are twofold. First, the nature of uncertainty, and its
relationship to exit and/or entry, is at the heart of several issues we, as
economists, try to analyze. Examples include the analysis of capital markets
when there are diverse possible outcome paths and significant failure probabili-
ties; the evolution of the size distribution of the firms in an industry; and
the analysis of industry supply (or productivity) changes when more efficient
firms thrive and grow, and less efficient contract and, in the extreme case,
exit. The second reason for studying models that allow for uncertainty and exit
is that some allowance has to be made for these phenomena before we can get an
accurate empirical picture of firms' responses to any policy or environmental
change. Table 1 illustrates why this is so.

The table provides information on the fraction of firms operating in
Wisconsin in 1978 that were liquidated by 198é (more details on the data will
be given in Section 5). Firms are classified as liquidated only if they
physically closed down (changes of ownership are treated separately). If we
were to use these data to build a panel of firms to follow the impact of some
(say) policy change, we would, at least traditionally, start from the 1978
cross-section and then construct the panel by eliminating those firms not in
operation over the entire eight-year period. Column 5 shows that this proce-

“dure would lose a third of the firms due to liquidations, and column & shows

__ that this third would account for about a fifth of the jobs in 1978. Ifwe .



é Table 1. Liquidation in the 1978/86 Wisconsin Panel?
1 2 3 4 5 6 7 8
Sector # Firms % of Employ- % of all %Z of Firms % of 1978 %Z of 1978 % of 1978
Active all Firms ment Employ- Active in Employment | Employment| Firms with
in 1978 in 1978 in 1978 ment 1978 in firms in firms > 50 Employees
in 1978 Liquidated Liquidated | with > 50 Liquidated
by 1986 by 1986 Employees by 1986
Wholesald 7,251 17 85,135 8 29.5 16.0 35 10.5
Retail 22,568 51 316,498 30 39.5 26.0 45 17.0
Manu-
facturing 6,987 16 550,200 52 24,0 13.0 87 13.0
Eating
and
Drinking | 7,466 17 103,192 10 44,5 29.5 36 18.5
Total 44,272 100% 1,055,205 1007% 36.5 19.0 65 14.5
Substitute "transJerred out:'J for "liquidated”
in colums 5, 6, and 8. 8.5 11.1 10.5
Substitute "either transferred out or liquidated”
for "liquidated"” in columns 5, 6, and 8 45,0 30.1 25.0

2 1f a firm ever undergoes a change in legal status (a change in ownership) it will not be counted as a
Firms in the construction

liquidation thereafter (even though the resulting firm may have liquidated).
and service sectors in 1978 have been excluding from this sample.

340,000

jobs.

These firms accounted for about



decided to consider only the larger of the 1978 firms, say those with more
than 50 employees (and as column 7 shows, this is a selection which, by itself,
omits over a third of the 1978 jobs), liquidation would be somewhat less preva-
lent, but would still cause an attrition rate of about 15 percent. The last two
rows of the table give an indication of the extent of changes in ownership in
this data (this includes mergers and acquisitions). To the extent that the pre
and post change firms cannot be spliced together, changes in ownership also
generate attrition. It is a relatively more important source of attrition
among larger firms, but even if we confine ourselves to firms with over 50
employees, and assume that all the changes in ownership result in attrition,
changes of ownership would still only account for 40 percent of total attrition
(ligquidation accounts for the rest). Note that, when taken together, liquida-
tions and changes of ownership would cause the attrition of almost half the
firms in the 1978 sample, and of about a quarter of those with more than 50
employees.
If liquidation decisions were independent of the economic phenomena typi-
cally being investigated, then the omission of the liquidated firms from the
.sample might lead to an imprecise, but would not lead to an inconsistent,
description of the phenomena of interest. This is, however, hardly likely.
Firms terminate their activities when they perceive adverse changes in the
distribution of their future profit streams. The phenomena we typically want to
investigate involve the actual profitability (and productivity) changes
resulting from alternative policy and environmental changes. If there is any

relationship at all between perceptions and realizations we will, by eliminating

those firms which liquidate, omit precisely those -firms for whom the events in __ .

question are likely to have had a particularly negative impact. That is, we

will tend to omit one tail of the distribution of résponses we set out to sthdy.Trv



To control for the selection induced by the liquidation process we need a
model that explains why firms operating in similar environments develop dif-
ferently - a model with idiosyncratic outcomes that allows for exit. At least
two such models are currently available, and each will, no doubt, prove more
useful in approximating the characteristics of different industries in dif-
ferent time periods. This paper provides a simple set of procedures which
enable the researcher to determine whether either of them might be relevant for
the problem at hand.

The first model considered here is a model with passive or Bayesian
learning. Firms are endowed at birth with an unknown value of a time-invariant
profitability parameter which determines the distribution of its profits
thereafter. Past profit realizations contain information on the value of the
parameter which determines the distribution of possible future profit streams,
and this fact is used by management to form a probability distribution over
future net cash flows (see Jovanovic, 1982). The second, or active learning,
model assumes the firm knows the current value of the parameter that determines
the distribution of its profits, but that the value of that profitability
parameter changes over time in response to the stochastic outcomes of the firm's
own investments, and those of other actors in the same market (see Ericson and
Pakes, 1987). In both models firms act so as to maximize the expected
discounted value of future net cash flow, and in both cases optimal behavior
generates a set of stopping states; i.e. outcomes which, if realized, would
induce the firm to exit. Moreover, both models are 'complete' in the sense that
if we were willing to append a set of precise functional form assumptions to

them, they would produce frameworks rich enough to take directly to data.



The strategy of appending precise functional form assumptions and then
using their implications to structure the data, is the strategy taken in all of
the recent econometric literature on analyzing stochastic control models
involving discrete outcomes (see Miller, 1984; Wolpin, 1984; Pakes, 1986; and
Rust, 1987). 1Its success depends upon, among other diverse factors, the extent
of prior information on the relevance of alternative assumptions. We eschew
it here because there is not a great deal of a priori information on either
which of the models (if any) is appropriate for different data sets or on the
relevance of alternative functional form assumptions. Moreover, just as in all
the previous literature on discrete choice optimal stochastic control models,
were we to estimate fully parametric versions of these models we would have to
build a different estimation algorithm for each form estimated. This makes it
difficult, if not impossible, to examine the robustness of the major empirical
results to changes in the specification of the model.

The alternative strategy we choose is to look for empirical implications of
the different models that depend only on the models' basic behavioral assump-
tions, and some mild regularity conditions on the relevant functional forms.
Precisely because these 'nonparametric' implications have to be valid for a
variety of functional forms, they cannot require functional form specific esti-
mation and testing algorithms. Consequently, there are computationally simple
ways of checking whether they are consistent with the data. Therefore, in addi-
tion to not being dependent on particular functional form assumptions, our stra-
tegy is easy to implement. On the other hand, the nonparametric procedures
provided here do not produce precise values for alternative response parameters.
Their goals are only to: 1) provide a low cosf_way of obtaining (we hope
reliable) information on which of the a]ternative'mode1s seems relevant for the

problem at hand, and 2) to provide a reduced form empirical characterization of




the data which is easily interpretable and can be used to indicate which of the
different ad hoc procedures for correcting for the selection problem induced
by the liquidation process is more appropriate.

One of the nonparametric differences between the two models corresponds to
the distinction between heterogeneity and state dependence that has played so
large a role in labor econometrics (see Heckman, 1983; Chamberlain, 1984;
and Heckman and Singer; 1984). In particular the passive learning model implies
that the stochastic process generating the size of a firm is characterized by a
generalized form of heterogeneity, while the active learning model implies that
this stochastic process is generated by a quite general form of state depen-
dence. Theory restricts the state dependence in the active learning model to
have ergodic characteristics; i.e. the effect of being in a state in a par-
ticular period erodes away as time from that period lapses. So we develop a
test for the distinction between heterogeneity and ergodic forms of state depen-
dence based on ¢-mixing conditions. The test is simple, intuitive, and seems to
be able to distinguish between the two models on panel data sets the size of the
ones used here (these follow about 400 observations over eight years).

In particular, we find both the ¢-mixing test, and an:analysis of the
evolution of the size distribution of firms in a cohort, suggest that one model
is consistent with the data for manufacturing, while the other seems consistent
with the data for retail trade. The importance of this result is twofold.

First the different models have distinctly different implications for the manner
and the extent to which firm-specific uncertainties get resolved over time, and
hence for the way in which issues related to these uncertainties ought to be
analyzed. Second, the two models imply different determinants for the

probability of liquidation, and hence differentJéfpcedures for correcting for



liquidation induced attrition in the analysis of firm's responses to alternative

policy and environmental changes.

Section 2 of the paper provides the passive learning model and then derives
its nonparametric implications. Section 3 does the same for the active learning
model. In section 4 we develop appropriate estimation and testing procedures.
Section 5 begins with a description of the Wisconsin panel, and then examines
various subsets of it for the implications of the two models. Brief concluding

remarks close the paper.

Notation

The distribution of any random variable, say x, conditional on any event, say
z, is denoted Px(- ]z), and its density (with respect to the implied dominating
measure) by px(- lz). Superscripts denote the vector of all prior realizations
of a process, and subscripts denote a particular value, so xt = (X1, ooy Xt)'
Weak vector inequalities are interpreted element by element, but a strong vector
inequality means only that at least one of the element by element inequalities
is strong. Z will be used for the generic set, z for a member of that set, and
diag[x] for a diagonal matrix with x on the principal diagonal. Lemmas,
theorems, examples etc. will be numbered in one consecutive ordering within each

section. They are referred to in the following sections with a section

prescript.



Section 2. Passive Learning.

This section considers models in which each firm is endowed with a time-
invariant characteristic which determines the distribution of its profits, but
whose value is not known to management at the time the firm begins operation.
Models of industries composed of firms which learn about an unknown profitabi-
1ity parameter have been provided by Jovanovic (1982) and Lippman and Rumelt
(1982). Following Jovanovic (1982), we consider a Bayesian learning process.
At entry the firm believes the value of its characteristic, say 6, is a random
draw from some known distribution. Each period the firm is in operation it
obtains a realization from the distribution of profits conditional on the true
value of its 6. These realizations are used to compute a sequence of posterior
distributions. The posterior available in each period is used as a basis for
decision-making in that period. The decisions of interest are whether to pro-
duce at all and, if so, at what scale. If the firm does decide not to produce
it sells off its assets and exits, never to reappear again. Note that in this
model learning is passive in the sense that information is obtained as a
costless byproduct of operating. Perhaps the clearest analogy is to the opera-
tion of a retail outlet. The outlet learns whether its neighborhood will sup-
port its product, and, if so, at which scale of operation.

Jovanovic (1982) focuses on establishing the existence of a perfect fore-
sight equilibrium for a homogeneous product industry composed of firms which
operate in this manner. We focus on the implications of the learning process on
the evolution of cohorts of firms, where cohorts are defined by entry dates. 1In
particular we shall look for empirical implications that rely on the nature of
the learning process, and only some mild regularity conditions on the form of

the profit function and the underlying distributions of interest.



Later we compare these implications to data in an attempt to identify those

sectors in which this form of learning process seems relevant.

2.1 The Model

It will be assumed that each entrant is endowed with a value of 6 which, in
turn, determines the distribution of a payoff relevant random variable n, say
Pn(- ]9). To motivate our assumptions, consider the example of a homogeneous
product industry of price-takers whose production efficiencies are subject to
random perturbations so that profits in period t are me= oL Ny F(!t) -
wt'ft where; lt is a vector of input quantities, W, provides their prices, F(*)
is a concave production function, (nj) is a sequence of independent and iden-
tically distributed (i.i.d.) random variables, and a, is the product price.
Assume n, is known at the time !t is chosen. Then

My = n(nt; Wer pt) = max(gt) (atntF(It) - wt'lt),

and n(n; Wy, pt) is an increasing function of n. In a perfect foresight
equilibrium future prices will be known, so that if 0 were also known the
distribution of future profits could be calculated directly from Pn(- | ).
Since management does not know 8 it is assumed to summarize its beliefs about
that parameter in terms of a probability distribution over the possible values
of 6. At entry, management only knows that 6 is a random draw from Go(e). The
first period produces an n which management uses, together with Bayes law, to
update its prior [Go(e)] and form a posterior which is then used to make second
period decisions. If the firm stays in operation, this updating process con-
tinues and decisions are made on the basis of the sequence of updated posteriors.

As the example illustrates, the model will require at least four primitives;

a sequence of random variables, a class of distributions for those random

“variables indexed by 6, a prior distribution for 8, and a payoff function.
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Before introducing these primitives we need a way of comparing distribution
functions; i.e. we need an interpretation for the statement that one value of 6
is 'better than' another. We shall assume that the family of distributions
formed from different values of 6 can be ordered in the likelihood ratio

sense defined below. This ensures that higher realizations of the payoff
relevant n lead to Bayesian posteriors for 6 that assign larger probability to

higher values of 6 (see below, and Milgrom 1981).

)

1. Definition (1likelihood ratio ordering, or 2,.
Let P1(.) and P2(-) be two distributions possessing densities p1(-) and
pz(-) (with respect to some dominating measure), and with support, Zk, a com-

pact subset of JRk, k-dimensional Euclidean space. We will say that

P, likelihood ratio dominates P2' in the strong sense, and write P1 > P2, if

1 ar
and only if,

P1(z9)Po(25) - pylzy)py(2zy) > 0,

k . .
whenever z, > z,, and p,(z;) or p,(z,) >0, 24,2, € Z"- If weak inequalities
replace the strong inequalities in this definition, we will say that

P1 1ikelihood ratio dominates P2 in the weak sense, and write P1 P

o L1

>0
~irw

If Pl 2er Po then, for any two possible values of z, the ratio of the

ir
probabilities of a larger to the smaller z value is always higher for P1;
i.e., Py is more likely to have generated the higher z value. The following

Temma points out that Zor is a stronger criteria for ordering distribution

functions than the more familiar first order stochastic dominance criteria.

2. Lemma (likelihood ratios and stochastic dominance). - R R

Pos if and only if

Say P1 stochastically dominates Pz, and wr%te;P1 2
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for every nondecreasing nonconstant function, h(¢), such that Ih(()P1(d() < o,

Ih(IP,(dE) > Sh(CIP, ().
Then,

Py 24 Pps implies, P, 25 P,.

If weak inequalities replace the strong inequalities in this definition we say
that P, stochastically dominates P, in the weak sense, and write P, gy P,.
P P2 implies P1 > . P

1 20rw 2sw T2

Proof See Ross (1982), Appendix 1, 3.1, and 4.1. [ ]

Assumption 3 provides the primitives of the passive learning model and
endows them with some regularity conditions. It generalizes the assumptions
used in our example. In particular the example assumed that conditional on a
0e8, the sequence of payoff relevant random variables, (nt), are independently
and identically distributed (i.i.d.) over time. Then the joint distribution of
the sequence (nt) conditional on a 6e€B is entirely described by the single
distribution, Pn(-le). Though the i.i.d. case is easy to deal with, it produces
a host of very strong empirical implications which are a result of the i.i.d.
assumption and not of the logic of the passive learning model per se. We,
therefore, allow for dependence in the stochastic process generating (nt)
conditional on 6. In (3.1i) we assume only that the marginal distribution of
Ny conditional on 6 js stationary (does not depend on time), and that the con-
ditional distribution of N, (conditional on past n-realizations) satisfies the
condition that higher past values of n are at least as likely to lead to higher
future values of n. (3.1i1) insures that higher yajues of 6 are better in

the fr-sense; i.e. it insures that for any t, h%éher values of the vector
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nt = (n1,...,nt) are more likely to be generated by larger 6 values. (3.iv)

provides the profit and size functions. It is important that both be increasing

in n.2

3. Assumption (primitives of the model)

(i) (nt) is a sequence of payoff relevant random variables (a stochastic
process) whose joint distribution, say P(6), is indexed by a 6€8, where 6 is a
compact subset of JR;. The marginal distribution of N is stationary and is

while its conditional distribution satisfies a weak
t-1 t-1

denoted by Pn(-

fr-ordering in realizations of. n , say n : i.e.
t-1 t-1
Pnt( |n1 » 0) 2 frw Pnt(.lnz : 0)

whenever n:-l by n;

(ii) The family of distributions

JP = (P(6):06€8),

have marginal distributions with support N (a compact subset of jR+) and den-
sities with respect to some dominating measure. Further, these distributions

satisfy an fr-ordering in 6; i.e., provided 6 > 6' we have, for every t

Poe(+18) 24, Pae(-le").

(ii4) GO(-) is a prior probability distribution with density go(-) on 6.

(iv) n(+) and S(+) are continuous 1ncreas1ng functions from N into JR .

: n( ) provides the payoff to, and S(+) the size of, ‘the firm. [ ]
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Our behavioral assumption is that management acts so as to maximize the
expected discounted value of future net cash flow conditional on current
information, where the conditional distribution of future net cash flows are
formed, in a Bayesian fashion, from; the family of n processes (JP), the prior
for 0 [GO(-)], and past realizations of n, say nt = (n1""'"t)' The next

assumption provides these conditional distributions.

4. Assumption [posterior distributions]

Let Jt contain all information available in period t. Then
Preosz|J,) = p ¢(n*|0$2)6,(2)/fp_+(n%1$)G, (d¢) = P, (2]n")
t nt 0 nt 0 0 !

for zeB. Moreover Pe(-]nt) has a density, pe(-lnt), with respect to the G
t

0

t

measure (for n- € N°, and all t). []

Lemma 5 states that, under the fr-ordering assumptions, higher past n
realizations lead to more favorable posteriors for 6. It follows directly

from Bayes law and assumption (3.ii).3

5. Lemma (monotonicity of posteriors)

For any t, and nt, nt € Nt with nt > nt .
1 2 1 2
t t
Po(-1n) > Pole]ny). []

Now consider the decision problem facing the owners of a firm which has
been in existence t periods and has had n realizations of nt. The owners
must choose whether to continue in operation over the coming period, or close
down and sell the firm at the value, &. If the owners decide to operate the

‘firm they will obtain the profits over the coming period, plus the option of
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keeping the firm in operation over subsequent periods should they desire to

do so.4
t+1
)

’

Assume, temporarily, the existence of a bounded function, say Vt+1(n

from Nt+1 into |R, which provides the value of continuing in operation from

t+1 t+1

period t+1 given a realization of n equal to n-"'. Then, letting Be(0,1)

be the discount factor, we have

(6) Vo (n®) = Elm(n,, ) |n1 + BE[max(e,v, . (""" ))|n%],

t+1

where for any h(+), the expectation E[h(n )]nt] = Ih({,nt)Pn (d(lnt).

t
Given (6) the optimal strategy of the owner is straightforward. Operate the
firm if and only if Vt(nt) 2 ¢. Theorem 7 insures that the value function in

(6) exists and then provides some of its properties.

7. Theorem (existence and montonicity of the value function)
At each t there exists a unique Vt(-):Nt - JR+ which provides the value

of continuing in operation assuming optimal behavior in each future period.

Vt(-) is bounded, satisfies (6), and is nondecreasing in nt; i.e., if n: 2 ng,

then V(n}) > V (ny) [for n'eN’, and al1 t]
Proof See Appendix I. [ ]

Note that Theorem 7 depends only on Assumption 3. It does not depend on:
the precise functional form (or even the curvature) of the profit function (so
the production function could display regions of increasing returns); on the

form of GO(-); or on the family ]P provided that it satisfy the monotone
Tikelihood ratio properties in (3) (in particular the posteriors for 6 need

~ not possess simple sufficient statistics, nor'ﬁeed they be weakly continuous
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in their arguments). We now move on to consider the empirical implications of
the passive learning model and we shall focus on implications which require

only the assumptions reviewed above.

2.2 Empirical Implications of Passive Learning.

Throughout we shall focus on the empirical implications of the passive
learning model that are true at each age (that model also has limit properties
as age grows large, but it is hard to use these as a basis for empirical analy-
sis without further, a priori, information). We begin by deriving the implica-
tions of the passive learning model on the evolution of the size distribution of
firms.

The theorem that underlies our results on the evolution of the size dis-
tribution is the economist's (far more palatable) version of the Darwinian
dictum of "survival of the fittest." It states that as age passes the 0-dis-
tribution of the surviving firms improves (in the stochastic dominance sense).
This is a result of self-selection. As time passes firms with lower 0's are

more likely to draw lower n's and self-liquidate.

8. Theorem (the evolution of the 6-distribution)

t

Let AY = (nt = (n Lng)s Vq(ng) 3 qs,...,vt(nt) > @), and

1
1 if nt € At j

t
X, (n) =
t L 0o if nt g At J

Then a firm is still operating in period t if and only if Xy = 1. Further,

for every z € 6 and all t let

Pe(zlt) =
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Then

Polslt+1) 2 Po(-]t).

Proof Take an arbitrary (z,t). Then, by Bayes law,

Polz]t) Prix,=1]0<2)6,(2) /Prix,=1}

[eszipr{xt=1|e)Go(de)l/EefPr(xt=1Ie)GO(de)].
We must show that Pe(z]t-1) > Pe(zlt). For this it suffices that

IPrix,=116)G,(do) o<z Prix,=116)6,(do) _
o/Prix,_,=1l6)64(do) 2> o<z Prix,_1=11016,(d6)

(8.1)

Using the fact that
Pr(xt=1|9) a Pr(xt=1lxt_1=1,6)Pr(xt_1=1|6),

and letting

Q,(d8) = Prix,_ ;= |9)Go(deb/;fPr(xt_1=1 | 6)6,(de), and

(8.2)

0 for 0 > 2z
Q,(do)
Prix,_,=1 |6}Go(d9) esszr(xt_1=1 |9)G0(d9), otherwise

(8.1) can be rewritten as
(8.3) o/Prixg=11x,_4=1,0)Q,(d6) > o Prixg=1| x,_1=1,01Q,(de).

Since (8.2) implies Q1(-) 25w Qz(-), (8.3) will be true provided Pr(xt=1

IXt_1=1,6) is nondecreasing in 6. To see that this is indeed the case write

_ _ _ _ t-1 t-1 t-1_,t-1
Prix, =1 | x¢_q=1.0} = [Prix=11n ,{?lfnt-1‘d” In""lea™ 1, 0).

- Then, takkag 6 >80
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Jerixg=t 1nt71,00P ¢ q(an®T | n®TTen® T 00 >

t-1 l nt-1

Jrrixg=11n""1,61P ¢y (an eat"1,0) >

Jerixg=11n""1,00P ¢ qtan®T | n*lea® T 0,

where the first inequality follows from the monotonicity of V(¢) and the fact
that Pnt(.lnt'1,9) is stochastically increasing in 6, and the second from (3.1)
and the fact that if Pnt(-le) >or Pnt(-le'), then, for any AeNt,

t t ' :
Pnt(.ln €A,0) > o pn(.ln €A,0') (see Ross, 1982, appendix I). [1]

Our first empirical implication of the passive learning model is a direct
corollary of Theorem 8. Since size is an increasing function of n, and n
is stochastically increasing in 6, the fact that the 6 distribution of the
surviving firms is stochastically increasing over time implies that the size

distribution of surviving firms ought to be stochastically increasing in time.

9. Corollary (The evolution of the size distribution.)
Let Xy be defined as in theorem 8, recall that St = S(nt), and for all z and

t define
P(z ]| t) = Pris.<z | x,=1).
Then, provided t 2 t'

Po(e ] t) 2, Pole ] t"). []

There are many ways of employing Corollary 9 to identify industries that

might abide by the passive learning model. The simplest is to plot the size

~distribution for different ages and compare them; the proportion of the sample
_greater than any given size should increase in age. More generally the

corollary implies that if h(¢) is any increasing function, then whenever t < t'
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h(t) = [h(SIP(dC | €) < [h(C)P(dC | £') = h(t').

So we could take the sample analogue of H(t) [the sample mean of h(S)], and
investigate whether it increases in age. We come back to these points below.
Note also that Theorem (8) and Corollary (9) imply that each sequence of distri-
bution functions, (Pe(-lt)), and (PS('It)), converges (pointwise), to a well-
defined limiting distribution, say Pe(oloo) and P_(|w).

Implications of the passive learning model that specify a monotonic rela-
tionship between two or more observables are particularly useful since they can
be checked against data without imposing undue functional form restrictions.
Though the literature on the passive learning model seems to have missed
Corollary 9, it has associated at least three other monotonic relationships with
passive learning. These are that:

i) the hazard rate is nonincreasing in current size; i.e., that

Prix,=0 | x,_;=1, S,_y=S,_;} is nonincreasing in s _, for all t;

t-1
ii) the hazard rate is nondecreasing in age (usually, but not always, con-
ditional on size);
iii) and that the variance in growth rates (again usually conditional on size)
is nonincreasing in age
(these implications are discussed in Jovanovic, 1982; Evans, 1987a and
1987b; and Dunne, Roberts and Samuelson, 1987).
The next example shows that of these three only the first survives our

search for nonparametric implications of the passive learning model (the

example assumes, as did Jovanovic, 1982, that the distribution of (nt} con-

ditional on 6 is i.i.d.). It is true, however, that the first implication, that

is that hazard rates are nonincreasing in size at-a given age, is consistent
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with the data from every empirical study we are aware of [Churchill, 1955;
Wedervang, 1965; Evans 1987a and 1987b; Dunne, Roberts, and Samuelson, 1987].
However, most other models that allow for mortality, including the active
learning model of Ericson and Pakes (1987), also imply mortality rates that
decrease in size for a given age. Therefore, this property fails to distinguish
among the alternative models, and we do not pay further attention to it in this
paper.

As to the other implications, the fact that the passive learning model
does not imply that either hazard rates, or the variance in growth rates,
decline in age (at least not without further ad hoc assumptions) is somewhat
disconcerting. Decreasing hazards and decreasing variances in growth rates
have both been associated with the passive learning model in the past, and, in
addition, have been shown to be fairly robust features of the data. On the
other hand, the intuition underlying our counterexample is clear enough. For
many functional forms it will take take time to accumulate the information
necessary to ensure that exit is optimal, and this fact generates an initial
increasing portion to the hazard function (actually the example generalizes this
intuition and generates a hazard function which oscillates over age). As to
differences in the variance in growth rates over age, these will depend upon,
among other factors, the relative variances of n conditional on 6 for different
values of 6. If 6-values which are more likely to induce exit are associated
with low variances, the observed variance in growth rates may well increase over

age.

10. Example

Let My = MeNy, with (nt) i.i.d. conditional on 8,



20

1 with probability 0 6 with probability £
n = ; and 0 =
0 otherwise 0 otherwise .
The posterior for 6 in this problem depends only on the couple (xt,t), where

Xy = max[n1,...,nt]. Consequently the value function in (6) has the simple

form,
v, (n%) = Vix_,¢t)
t g

Xy is either 0 or 1. If xt=1 management knows that 6=6 and a direct calculation
shows

V(1,t) = n6/(1-8)>9,

where the inequality is by assumption. This inequality ensures that if xt=1
management will never drop out. If xt=0 the firm continues in operation if and
only if V(0,t)2¢. It is easy to show that Pr(xt+1=1 ]xt=0,t) = Pr(nt+1=1
Ixt=0,t) decreases in t, and converges to zero. This ensures that V(0,t)
decreases in t and converges to zero. Clearly then, there exists a unique t*
such that V(0,t)2® if and only if t<t*. Let S$(n,=1)=S, $(n,=0)=0, H(t,S,)

be the hazard rate for firms of size St in period t, and H(t) be the uncon-

ditional hazard. Straightforward calculations show that for

H(t,S¢=0) » H(t,S,=S), H(t)
t<t® 0 . o 0
* t* t*
t=t* [(1-6)" 2+(1-2)1/[(1-6)8+(1-2)], 0 » (1-8) " 2+(1-2)
t>t* 0 , 0 , 0

So neither the conditional, nor the unconditiong},;hazard declines in age. This

'simply reflects the fact that for many possib]etggggmptions on the relevant
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functional forms it will take time to gather the information required to decide
whether exit is optimal.

Next we consider the variance in growth rates. Provided t > t*, any firm

that is active has 8 = 6, and V(S st ]st)=v(s | 6=5) = 526(1-6), regardless

t+1° t+1

of St' If t < t* and St = S, then 6 still is 6 with probability one, and

V(s St |St) is still given by the above formulae. So the variance in growth

t+1

rates conditioned on St = S is constant over age. However, if t < t*, and

S, = 0, then 6 can equal either 6 or 0 with positive probability, and the

t
variance in the growth rate is [652(1—!)(1-6)2]/[(1—2) + (1-6)!]2. Thus

2
= *x, _ [(1-2)+(1-6)2]
Sy | 54=0, t<t™) = (=015

S, = 0,t>t*)/V(S

v(s ¢ |5

S

t+1 t+1°

which can be made as large as we like by choosing & or £ small enough. The
variance in growth rates need not decline in age. Whether or not they do will
depend upon whether growth rates associated with high 8's are more variant than
growth rates associated with low 6's, an issue which the basic passive learning
model is silent on.

To see how this example generalizes, consider the case where 8 has a beta
prior distribution with parameters (r,s), i.e., GO(-) = B(r,s), so that 6 can
take any value between zero and one. The posterior in this case is another beta

t t t

with parameters r + Zni and s + t - Zni, so that the sum, Xy = Zni, and t, can

be used as sufficient statistics. (Note that x,_ is a nonnegative integer.)

t
Using an argument analogous to that given above we find that for any fixed x,
V(x,t) declines to zero with t. Thus for each x there exists a t*(x) such that
V(x,t) i ¢ according as t : t*(x) [see Figure 1]. Both the mortality, and the
hazard rate will be zero for a value of t such that t*(x) < t < t*(x+1) (for x =

1,2,...). Moreover it can be shown that t*(x+1);6énnot equal t*(x)+1 for con-

secutive values of x. That is, the hazard function will usually have a zero
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between any two positive portions, making it oscillate over age. For t = t*(x)
the hazard and mortality rates will be determined by the precise form of the
prior. One such sequence of hazard rates is given in the bottom part of Figure

1. Similar pictures could be drawn for the variance in growth rates. [ ]

This example illustrates that if we are interested in other nonparametric
implications of the passive learning model we should look beyond the implica-
tions of passive learning on the pattern of either the hazard or the variance in
growth rates. It is, therefore, fortunate that the passive learning model has
some very distinctive implications on the underlying structure of the con-
ditional probabilities generating growth and mortality.

These implications stem primarily from the fact that 6 is time-invariant.

As a result, early realizations of n contain information about the parameter
that determines the distribution of its future values; and this will be true no
matter the time that elapses in the interim. Put differently, the dependence in
the joint distribution of Ny and n, does not erode away as t grows large. This
is seen most clearly in the special case where, conditional on 6, the (nt) are

an i.1.d. process. In this case, as can easily be verified, for any n'

P . = ! =P . ' ,
"t( I =n"y =P (- n")
which is independent of t and k. This strong invariance property is destroyed
when we allow 6 to index the more general family of stochastic processes per-

mitted in (3). In the general case we have, for any zeN,

P"t (z|ng=n") = ant (z|ng =n',0)Py(do | n=n"),

and since Pn (z ]nk=n',9) can depend upon t and k, so can Pn (z Ink=n').
 However, the passive learning model does imply that the dependence in this
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latter distribution has two sources, one of which will not erode away as t
grows large. Though the dependence ih fhe process generating UM conditional on
® (in the integrand) may erode away with t (it will if the process generating
N is ergodic), the dependence that results from the effect of the realization
of n on the posterior for 6 will not.

This argument can be formalized and then used to produce a test for the
passive learning model based on differences between the marginal distribution of
St = S(nt), and the distribution of St conditional on S1. Actually we can do
better than this and produce tests based on a comparison of the distribution of
S conditional on St-1""'st-k to the distribution of St conditional on

S "'St-k' and 51, for any k20. With a positive k this test is likely to be

t-1'°
more powerful against alternatives in which the value of the parameter deter-

mining the firm's distribution of profits evolves in a Markovian fashion over

time (and one such alternative is.the active learning model considered in the

next section).

Our test is a direct implication of the following theorem. The theorem
states that if we choose any group of years for which there is information on
past realizations of n, and derive the family of posterior distributions for 6
conditional on possible n-realizations in those years, then members of the

family with higher past n-realizations will stochastically dominate those with

lower n-realizations.

11. Theorem (conditional distributions for nt)
Let t and k be positive integers with t>k, and (ii,...,ik) be any selection

of k distinct elements from (1,...,t-1}. Then if n; = (n} ,...,n} ) and né =
- ] K ~

(n% ,...,n? ) are arbitrary (i.,...i, ) histories of n satisfying n, > n,, and
i T 1 k e i)
X4 is defined as in (8),
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Pnt(' ‘21:Xt=1) :S Pnt(. IQZI Xt=1)-

Proof. For any zeN and n = n, or n,,

(11.1) Pnt(z In, x,=1) = IPnt(z | n, x,=1, 8) Pg(de | n,x.=1),

where

_ _ t-1 t-1 _
Pn (z lg,xt-1,e) = an (z|n .e)Pn (dn IQ.xt-1,e)

t t t-1

t-1

Now use Bayes law to show that for nt—1>n* ,

t-1 t-1 t-1 t-1
p(n" " |ny,0)p(ng I ny, 8) - p(n " | ny0)p(ng | ny,0)

~

) t-1 t-1 t-1 t-1
=x [p(n; In"77,6) p(n, I ng48) - p(n In, ,0)p(n, [n"",0)] 2 0,

where the inequality is a trivial consequence of n being determined by nt-1.

t

Since conditioning on nteAt = {n : xt(nt) = 1) does not affect the

2r-ordering, we have

(11.2) P_ (+]n
nt ~

=1,0) > P (+]n

2rw nt ~2’Xt=1'9)'

17 X¢

Given (11.1),(11.2) and lemma 2, the theorem requires oh]y that

pe(. !n1) > or pe(. |n2). But by lemma 4, this condition is satisfied provided

P(+10y) 2 o0 P (- 10,),

~ ~

whenever 91 > 92. Take any n, >n,, then

p(n, 1 6;) p(n, | 8,) - p(ny | 6,) pin, | 6;)
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where the integral runs over those N whose indices are in {1,...,t-1} but are

not 1in (i1,...,i }, and the inequality results from (3.i1). []
K

The empirical implication of theorem (11) that we will be using is that it

implies that for any k > 0, and any (N _q,-..,Ng ) eN 7,

1
(12) Pnt ( - lnt-T""nt—k’n1'xt=1) 2s Pnt(- lnt_1,...,nt_k,n1, xt-1),

whenever n, > n;. Corollary (13) 1is an immediate implication of (12).

13. Corollary

Let t and k be nonnegative integers with t>k, and let X4 be defined as in

Theorem 8. Then
ELSy | Sgo1=Sg-1/ -+ +Spk™Sppr $17590 X¢=1]

is strictly increasing in s, for almost every (st—1""'st-k)’ [ 1]

That is, expected future size conditional on k past sizes and survival
will be strictly increasing in the initial size. This is because the para-
meter which determines the conditional distribution of the payoff relevant n is
time-invariant. In models in which these conditional distributions depend on a
parameter which evolves over time in response to, say, the outcomes of a firm's
exploratory investment, corollary (13) will not necessarily be true. We turn to

these types of models now.
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Section 3. Active Learning

This section considers the empirica1‘imp1ications of a model (originally
developed by Ericson and Pakes, 1987), in which firms can invest to improve the
value of a parameter, say w, which determines the distribution of its prdfits.
In the active (in contrast to the passive) learning model, management is assumed
to know its current value of w (and hence the actual profit distribution it
faces), and makes current production decision based on it. On the other hand
w itself evolves over time in response to the outcomes of the firm's own invest-
ment process, and the investments of other firms operating in related markets.
These outcomes are stochastic; in the active learning model the firm is
investing to explore and develop alternative market niches which may, or may
not, prove profitable.

In this model the distribution of futures states is determined entirely by
the current state and the optimal investment policy. It is, therefore, indepen-
dent of the age of the firm per se. Startup is treated as the appearance of an
idea which, given current market conditions, appears worth exploring. Formally
it is an initial location on the w-axis. If the idea requires substantial suc-
cessful development before it can generate noticeable profits, the initial w is
associated with a distribution of profits which is degenerate (or nearly so) at
zero. Successful investment will enable the idea to be embodied in a more pro-
fitable marketable good or service. Unsuccessful exploration may well convince
the entrepreneur that the whole idea is not worth pursuing and lead to liquida-
tion.

Ericson and Pakes begin with a three-dimensional state vector and then show

how, under certain conditions, the three dimensions can be collapsed into two;

.._one providing the outcomes of the firm's own investments relative to those of
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its competitors, and one providing the strength of the market per se (a factor
which can be affected by exogenous shifts in demand and supply conditions). The
latter has a role similar to that of output price in the passive learning model
(its value is the same for all firms at a given point in time), and we shall,
for expositional simplicity, ignore it here also. We provide a brief descrip-
‘tion of the active learning model focussing on those results needed to compare
its empirical implications to those from the passive learning model. Again we
consider only those empirical implications that are nonparametric in the sense
that they require only mild regularity conditions on the relevant functional

forms.5

The Active Learning Model

We will assume that the state space is countable and index it by the inte-
gers so that weZ. Each firm operating in period t is endowed with an W
Higher values of w are better in the sense that the distribution of the payoff
relevant n is stochastically increasing in w. Management has three choices to
make in each period, and they are made to maximize the expected discounted value
of future net cash flows. First the firm must decide whether to operate at all.
If it decideé against it receives a liquidation value of ¢ and exits never to
reappear again. If the firm does operate management must decide on both a level
of current input demand, and an amount of exploratory investment, say Xy Given

a realization of n, current input choices will determine current operating pro-

fits, say n(nt). Current cash flows are
R(Tlt,wtrxt) = "(nt)-c(wt)xt

"where c(+)>0, and can be decreasing in w to reflect the possibility that more

profitable firms may find it easier to raise finance capital. Increases in
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current investment decrease current cash flow but make higher values of Wy yqs
and hence higher future profits, more likely. In particular, let T4 Wes1 Wer
and Jt be the information available to management at t. Then we assume that

for zeZ,
PT(Tt+1$z|Jt) = Pr(ztlxt)’

where PT(o Ixt) is stochastically increasing in x. Hence, to formalize the

firms decision problem we will require the following primitives.6
1. Assumption (primitives of the active learning model)

i) ]Pn = (Pn(- |w):weZ), is a family of distribution functions indexed by
w. The family has support, N, a compact subset of Z containing zero, and

exhibits a weak first order stochastic dominance ordering in w, i.e.
L] ° '
P Tw) 2g, Po(e | @)

whenever w>w'. It is assumed that f£im Pn(o |w)=1. (This, together with the
W=
assumption that n(0)=0, insures that for small enough w payoffs are zero with

probability one.)

ii) JPT = (PT(~ | x):xeJRy) is a family of distributions with support T,
a compact subset of Z, exhibiting a weak first order stochastic dominance

ordering in x, i.e.

P_(- | x) >

>sw Pl | x")

whenever x>x', and satisfying the condition that

P.(0]o) =1,

so that the firm's product cannot be improvedﬁﬁ§%EBUt some investment. The
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family of densities (pT(- ]x):erR+), is (pointwise) differentiable in x with
derijvatives which are decreasing in x for >0, and increasing in x for T<0
(this insures that the investment problem is concave and therefore has a unique
solution), and both pT(O Ix) and pT(-1 |x) are strictly positive for all x less
than any finite upper bound (these are technical conditions whose roles are

explained in more detail below).

iii) n(¢) and S(-) are increasing functions of n, and c(¢) is a non-
increasing function of w, into JR,. m(+) provides the profits, and S(¢) provi-
des the size, of the firm; while c(¢) provides the cost of a unit of x. n(0)=0,

and c(+) is bounded away from zero. [ ]

We now consider management's choice of policies. Letting W be the initial
state and X; be the indicator function which takes the value one if the firm is
active in period T and zero elsewhere, a policy, say d, is a sequence of func-
tions mapping available information into operating and investment decisions,

that is
d = {XO(JO)' xo(Jo)l X1(J1)r X1(J1),.,,},

with xT=xt(JT), xT=0 implying Xt+r=0 for teZ+, Xp = X (JT), and JT =

T

(wT,xT_1,xT_1,wT_1,...,wo). Recall that R(nT,wT,xT,xT) = n(nT)-c(wT)xT if
xT=1 and zero otherwise, so the expected discounted value of net cash flows

given the policy d is
T
Vylwg) = Ey (B R(N_,0 %, x )+ (X _1=x)]1 | wp)

where Be(0,1) is a discount factor, and the expectation is taken assuming that

the d-policy is followed. Note that (1) implies that R(+) is bounded, and let
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V(w) = sup Vd(w)
; d

for each w. A policy d* will pe optimal if Vd*(w) =V(w) for all w. If an opti-
mal policy exists management chooses it, in which case the expected discounted
value of future net cash flow is V(w). Management will operate the firm if and
only if V(w)>®, the liquidation value. The following theorem combines the
results from Ericson and Pakes (1987) that are used in our derivation of the
empirical implications of their model. The theorem is followed by diagrammatic

and verbal expositions of its contents.

2. Theorem (properties of the active learning model).
A unique optimal policy and associated value function exist and they have
the following characteristics:
i) V(w) is bounded and nondecreasing in .
ii) The optimal policy, x:(JT) is bounded, depends only on current w, and

is stationary, i.e. for all 7
x¥(J_) = x¥(w.) = x (@) € X < .
T T T T
iii) There exists a éoup]e, (g,a) With, -o < g €O < o, such that
x*(w)=0 if w ¢ (w': © < w' € @).

iv) There exists a second couple (Q,G), With -0 < w € @ ¢ << o, such that
V(w)>¢ if and only if w>w,

and

inf| inf Priw < @ |wy)|= 1. [1]

— t
t Wy Sw
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Parts (i) and (ii) of this theorem ensure that both the value function and
investment policy are stationary functions of w, the value function being
increasing in w. Figure 2 illustrates this with one special case developed in
Ericson and Pakes. In the figure A(w) = In(n)Pn(dn Iw), provides expected pro-
fits conditional on w. The value of w below which a firm exits, i.e. the w in
(2.iv), 1is determined by the point at which V(w) equals &. In this example
W=, that value of w below which a firm stops investment. So positive
investment occurs at w+1, even though profits at that point are zero with
probability one. The incentive for the investment is that it makes higher
values of Wy pqr and hence higher future profits, more likely. The monetary
value of an increase in w is V(wt*1) - V(wt). Since V(w) is bounded, after some
point increases in w cannot bring with it much of a change in V(¢). It follows
that, after some w, it will not be in the firm's interest to invest at all. The
w at which this occurs is the @ of (2.i14). If w>a, no investment takes place
and this insures (see 1.ii) that the firm's w does not increase (in fact it will
stochastically deteriorate as other firms gradually develop goods and services
that obsolete the product of this firm). Let T* be the largest value of T that
has -positive probability when X=X (recall that x=max xx(w), and that ™ is
finite by virtue of 1.1ii). Then firms with w, < @ have W1 < o+T* = w, and

t

since firms with @ < w,_ € w have w € w soO must be w This

¢ 41 < wt, if w

t t+1°
explains the second statement in 2.1iv; that is, if Wy < E, then, with

probability one, so will be the entire sequence (wt):=0.
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V(w)

| A(w)

:
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Figure 2: Policies in the Active Learning Model

Since all values of w<w induce permanent exit, there is no need to
distinguish among them. It is, therefore, convenient to transform the state
space by the map f(+), where

0 for w<w
f(w) =
W-w elsewhere.
Let K=5—Q, so that if f(wi)SK, S0 is f(wt+1). We shall work only with values of
f(w) in what follows. At the risk of some notational confusion, then, we also
label its values by w.

With this understanding, theorem 2.2, implies that the sequence (wt)
together with any wosK is a finite state Markov chain on @ = {(0,1,...,K}. Its
‘zero' or ‘'death' state is absorbing, so the transition matrix for the chain is

given by P, where

and for 0<i<K (3)
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p_(T=j-i | x*(i)),  for K2j>0

) I e (e=g-i (i), for je0.
TS-1

Two remarks are in order here. First, recall that realizations of w are
not observable. Realizations of (St) are, but S(nt)=§(wt)+U(nt), where
§(wt) = IS(nt)P(dn th), and U(nt) = S(nt)-g(wt). Since the distribution of
U(nt) is also determined by Wy and (wt) is a Markov process, St is a sum of two
Markov processes. But a process which is a sum of Markov processes is not, in
general, Markov. So the observable (St) process is not Markov.

The second point to note concerns the mortality of firms. Assumption
(1.14i1) insures that exists a finite n*, such that for n>n*

min {pq o ieQ) 2 e>0,
ieq

’

where p? j= Pr(wt+n = j |mt = i}. Since pO’0 = 1, this implies that all states
but O are 'transient'. That is, no matter its initial w, a firm will, with
probability one, reach zero in finite time and stay there. Firms, like people,
eventually die.

Since the passive learning model implies that firms can survive forever
there is a sense in which this latter result differentiates the active from the
passive learning model. However, in order to make empirical use of this
distinction we would require a very long time series of data. On the other
hand the passive learning model did have the additional implication that the
size distribution of surviving firms ought to be stochastically increasing in
any finite range of ages (corollary 2.9). To investigate the properties of the
survivor distribution in the active learning model we require some additional

notation.
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Let

Q- = (quRk: Zqi=1)

be an L-dimensional simplex, so that any quK+1 can be regarded as a density on
Q. Note that a potential entrant with an w=0 would not enter, so that the ini-
tial distribution of the w in a cohort is a pOeQK. Similarly an w distribution
for the survivors in a cohort is a quK. To obtain the properties of this
distribution we require the operator I: Qk»Qk, which produces the density of
survivors at t+1 from any quk at t, i.e.

k

(Tady = 2 ajpy; / [1-1 asp; o]

1 1

"MMx

i
or, in matrix notation,

] ' =1
F(q) = q'P(q'Pe)

where e is a column vector of ones. Then rt(po) provides the w distribution of
survivors at age t from a cohort with initial distribution po. Theorem 4, and
the explanation which follows it, are a direct consequence of the results in

Ericson and Pakes (1987).

4. Theorem (the distribution of survivors)
. .. . . . 0 .k . t, 0 * x .
i) For any initial w-distribution (any p €Q ), !1mt*w I (p’)=p~, where p” is

the unique solution to F(p*):p*.

ii) If Ps(o |t,p0) provides the size distribution of firms surviving until

0

period t from a cohort with an initial w-distribution of p , then Ps(-lt, po)

*
converges (pointwise) to Ps(o), where, for all z,

* - *
PL(2) = I P (nss” (2) | w=jp}. | []
j d
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(4.i) states that the w-distribution of the surviving firms converges to an
invariant distribution (invariant to both the initial distribution, and to the
passage of time) whose density is given by p*. (4.11) provides the analogous

limit property for the size distribution of the surviving firms. The Ericson

Pakes paper actually goes one step further than this and shows that, given some
additional regularity conditions on the location of Po and on the transition

probabilities, there will be a finite t*, such that for any p0

(5) P+ 1 ts1, %) > P+ | £,p°)

~SHW PS

provided t>t*. That is, not only does the size-distribution of surviving firms
converge to an invariant distribution, but after some t* the convergence will be
'monotone' and the size distribution of surviving firms will stochastically
increase from period to period (just as in the passive learning model).

Still, however, the empirical implications of the active learning model on
the evolution of the size-distributions of surviving firms are weaker than those
of the passive learning model. In particular the active learning model does not
predict that the size distribution will be stochastically increasing at each
age. On the other hand, the active learning model does not bar this event from
occurring, and it can predict that the size distribution will be stochastically
increasing at later ages.

There 1is, however, at least one set of observable implications which
differentiate between the two models more sharply. Recall that in the passive
learning model the parameter that determines the distribution of profits is
time invariant. This induces a dependence between the initial size of a firm
and the size at any future date. Indeed as equation (2.12) shows, the passive
learning model implies the stronger result that the conditional distribution

of size at t, conditional on the immediate past sizes and the initial size,
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will always be strictly increasing in the initial size. In the active learning
model the parameter determiniﬁg the firm's profitability distribution, i.e. w,
evolves over time. Later year size realizations are governed by a different
value of w than those from earlier years and, as time passes, the dependence
between the later and earlier values of w, and therefore of size, dies out.
This is also true for the conditional distribution of Syi i.e. the distribution
of St conditional on immediate past values of S should gradually become
independent of initial year sizes. Moreover, since the dependence of W, on its
history is only through the value of Wy_qr We might expect that if we condition
on immediate past sizes the dependence on initial size will die out relatively
quickly. 1Indeed, in the extreme case where St = §(wt), so that sales is a
deterministic function of Wes the conditional distribution of St depends only on

S In this case a three year panel is enough to differentiate the active

t-1°

from the passive learning model.

When there is noise in the relationship between w, and size, we must base

t

our distinction between the active and the passive learning model on a more

formal property of the stochastic process generating size conditional on

3)00

£ =1 be that process (it is described formally in

survival (¢-mixing). Let (S

Appendix 2). Then, the active learning model implies that as T grows large the

a a

distribution of (SX+T' sx+r+1""

) becomes, roughly speaking, independent of
realizations of (Sa,...,si). More precisely, we have lemma 6 (which is proved
in Appendix 2 and its implications (explained immediately after presentation of

the lemma).

6. Lemma (¢-mixing of the (Si) process).

Let (32):_1be the stochastic process formed from the distribution of sales
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conditional on survival and any initial wye{1,2,...,K}, and Mz be the o-algebra

generated by possible realizations of Si, Si ,...}S;. Then (S:} ¢-mixes at a

+1

geometric rate, i.e.

00

) T
sup( IP(EZ|E1)'P(52) |, E, with P(E;) > 0 and E1eM¥,EzeMX+T) < A

with ¢ < 1. []

Lemma 6 states that any dependence between size realizations that occur
after x+t, and size realizations that occur before x, goes down geometrically in
T. It implies that for k 2 0
(7) Y le(z]s Sy 1 1S1:X31) - po(z]s SpXe=1) | € A ST

z s t-17°"°""""t-k’71'¢ S t-17°°°""t-k’'"t K
for some ¢<1, on a set of (st—1""st-k) with probability one. That is by
choosing k sufficiently large we can make the conditional distribution of St'
conditional on Sg_qre+++Sg_kr 8S close as we like to being independent of Sq-
Note that equation (2.13) insures that this is not the case in the passive

learning model. The next corollary is an immediate implication of (6) and (7).

8. Corollary

For any k 2 0
5(51) ELS, | Sp_q=Sq_qr - +Spok=Stok 51751 X=1] -

t
E0S, | Sy q=Sgoqre e rSe =S Xe=1) | € AS

on a set of (st-1""st-k) with probability one. [ 1]

Recall that corollary (2.14) insures that in the passive learning model the
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conditional expectation of S, conditional on any realization, (st-T'
st-2""st-k’s1) and survaa] until t, is strictly increasing in Sq- Hence
corollary (8) differentiates the active from the passive learning model. The
distinction between the two models is particularly striking in the special case
where St = §(wt), in which case Ak=0 for k>1. We now consider the econometric

.techniques needed to bring this distinction to data.
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Section 3: Estimation and Testing

There are two nonparametric implications of the models we are considering
that will be investigated empirically. The first is whether the size
distribution of surviving firms is stochastically increasing in age; or

whether, for all t

PL(e]t) > P(]t-1). (1)

The passive learning model implies it must, while the active learning model
implies it may, but need not - at least in the early ages. The second question

posed of the data is whether, for different values of k,
EIS ISy = Seoqrevr Spo = Seer Sp = S0 X = 1] (2)

is strictly increasing in Sy Again the passive learning model says it must be.
But here there is a sharper contrast with the implications of the active
learning model. The active learning model implies that, for t large enough,

the regression function in (2) cannot depend on Sq- To check whether (1) seems
consistent with the data, we will simply plot and compare the size distribution
at different ages. It is more difficult to present a pictoral representation
of the regression function in (2). Our analysis of its properties must,
therefore, be somewhat more formal.

This section develops an intuitive nonparametric estimator for (2), and then
considers tests of whether or not it is increasing in Sq- Indeed, since both
models imply that the regression function is nondecreasing in S, We employ a
two-part testing sequence. We first test whether (2) is weakly increasing in

s If this were not the case we would doubt whether either of our models

7
provided an adequate approximation to the process generating the data being

analyzed. If, on the other hand, the hypothesis of weak monotonicity
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is acceptable, we move on to test the null of whether the regression function
does not depend on S, against the alternative of it being strictly increasing
in that variable. Acceptance of both null hypotheses is interpreted as support
for the active learning model, while acceptance of only the first is interpreted
as support for passive learning.

To obtain our estimator of the regression function we define J positive
numbers, say (Ej)j=1 ., and use them to break jR+ into cells, as in figure 3.
We then define the function o(«): JR+ - [1,...,J] which assigns to each S,

the number of the cell it falls into, i.e. for j=1,...,J,

o, = 0(S,)=J, if and only if, 5 < S, € 95 (3a)

where it is understood that 50 = 0, and EJ = o,

l | ! I I
|a(st)=1 | a(S,)=2 | a(sy)=3] ...... | 0(Sy)=J

0 a1 02 03

Ql

J-1
Figure 3: The Function, a(St).

k+1

Similarly for k < t define the function ok(-): JRT1 - [1,...,J] by

(1) = (a(s, ), 0(S,,). -.us 0(S, ). a(S,)), (3b).

In the empirical analysis we treat all values of S that fall into the same
cell as equivalent (for the theoretical properties of the test statistics we
require that the cell or 'band' width go to zero at an appropriate rate). For

our purposes, then, a (S S —2""'St-k's1) history of a firm which

t-1" Tt
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k+1

survives until period t is one of the J possible values of ak(St'I). Each

of these values is a k+1 dimensional cell, and we denote the set of such cells

k+1)_

by (og;p=1,.,,,J Our testing procedure is based on estimating the mean

and the variance of the regression function in (2) in the intervals defined by

these cells.

K k

More precisely let pu° and V' denote the vectors

k Kk K,ot-1, _ Kk
wo=loug s E(S o (s™) = o) 1.
and (4)
k _ WK = K, ot-1 oK
Ve o= = Var{(S S = ) .
[ o ar tIa ( ) o |

k k

Further, let ﬁk and V< be the sample analogues of u and Vk (that is the vector
of cell means and within cell variances) from a randomly drawn sample from the
population of interest. /ﬁk Wwill denote the vector containing the square root
of the number of firms falling into each cell. Then, provided that the size
realizations of the firms in the population are independent of one another, the

central limit theorem and the law of large numbers imply that

diag[VN¥1(uK-iK) ~> N(0, diag[vK])
while (5)

diag[V®] —2—> diag[V¥],

where diag[x] denotes a diagonal matrix with x on the principal diagonal, ~>
reads converges in distribution, —E—> denotes convergence in probability, and
N(+,+) denotes the multivariate normal distribution.

Now consider possible values of o* = [o(St_1),...,a(St_k)]. The test for
weak monotonicity of the regression function in S1 is a test of whether, for

all o* ¢ [1,...,41%
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u(o*, 0(81) = 01) > u(o*, 0(51) = 02)

whenever o, 2 o, Similarly the test of whether the realization of S1 does

not effect the regression function is a test of whether for o* € [1,...,J]k,

H(U*:U(S1) = 01) = “(0*10(51) = 02)
whenever 9, # 0y-
More formally assume that, for each o*, the vector uk is ordered by the
associated values of 0(31). Then each of the weak monotonicity constraints

K o,

can be represented as a linear inequality constraint of the form r'p
when r' = (0,...0,-1,1,0,...0]. Gathering all such constraints into the

matrix R, the null hypothesis of weak monotonicity is written as

M
HO.

RS = r 20, (6).

Note that R is of full row rank, say C. We want a test of (6) under the main-
tained hypothesis that r e JRC.

To this end we consider the following two estimators for r,

r = R (7a)
and
M arg min [(r-r)'RIVETTTRY (r-F) T, (7b).
r20

F is an 'unconstrained' estimator of r obtained from substituting sample

for population means. FM is a 'constrained' estimator, an estimator forced to
satisfy the inequality constraint in (6). Subject to that constraint, it is
obtained by minimizing a quadratic form in (r—F), where the weighting matrix,
R[Vk]_1R', js chosen to be the variance-covariance of r under the null that

rRuk = 0.
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-~

Since the quadratic form in (7b) is nonnegative and equal to zero if r = r,
ifr > o, ro= FM. Figure (4) 1illustrates possible solutions for FM in the case
where C = 2. The ellipsoids represents sets of r which produce a constant

(P’F)'R[9k1-1 R'(r-r) value.

Figure 4. Constrained and Unconstrained Estimates of r

If

x2 = min (r-r)'RIVITTRY (P-F),
M
r20

0
M‘

Barlow, Bartholemew, Bremner, and Brunk (1972) have shown that for all a 2 0

then large realized values of this statistic are evidence against H Indeed,

C
Tu(a) = Pr(x2 > a|r=0} - ) w(c)Pr(x2 > a) (9a)
M M c=0 c

(8)
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as sample size grow large, where
W(c) = Pr(FM has exactly c zero components |r=0}, (9b)

and xﬁ denotes a chi-square deviate with precisely c degrees of freedom

(c=0,...,C). Thus, if xa is the realized value of x:

"p-value" (or the probability of type I error) of a test that would reject

0 .
, TM[xM] provides the

the null if x: = x: when the true value of r was zero. The p-value when r is
any value greater than zero cannot be larger.7

Unfortunately the orthant probabilities, that is the values of (W(c)zgo
needed to obtain (9a), are difficult to calculate. As a result we obtain simu-
lated estimates of their values, say wc, and provide a simulated estimate of
TM(-) say TM' where

= > = W'
Tylal = ) W, Pr(x_>a) = W'X

c=0

and (10)

-~

- " 1
W' = [wo,...,wc], whereas X' = [Pr(x0>a).--.,Pr(xg>a)]-

-

Since the wc can be regarded as cell means from repeated draws from a multino-
mial distribution (where NSIM, the number of simulations, is the number of
draws), the variance of TM[a] about its expected value of TM[a] can be obtained

from the formla for the variance of a multinomial as;
Var[Ty(a)] = X' [diag W-WH'IX(NSIM) ™'

So, along with TM(a), we provide an estimate of its variance obtained from

substituting the simulated for the actual values of W in this variance formula.
We now move on to the test of the null hypothesis that the regression func-

tion in (2) does not depend on S4 conditional on it being nondecreasing in that
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variable. That is we consider a test of

0 k_.._
HZ. Ru~=r=0

under the maintained hypothesis given by Ha in (6). Once again FM in (7b) will

serve as our estimate of r given H:, while under Hg the estimate of r is zero

(thus, in figure 4, the ellipsoids bring us from F to the estimator which abides

by Ho, while the dashed lines bring us from the latter to the estimator which

M
abides by Hg). A measure of the distance between the estimator obtained con-
ditional on the null and the estimator which is only constrained to satisfy the

maintained hypothesis is given by

' -1 .
o= MRV R, (11).
Once again, for all a>0
2 ¢ 2
T,(a) = Pr{x5>a|r=0) - Y W(c)Pr{x>a) (12a)
Z z c=0 ¢

as sample size grows large, where, in this case
W(c) = Pr(FM has exactly c positive components | r=0) (12b)

Ozbe the observed value of

x;, we Will provide estimates of Tz[xg], say Tz[xg] (obtained from simulating

and xi is defined as above (c=0,1,...,C). Letting Xx
the W(c)), together with an estimate of the variance of T;[xg]-

It is useful to compare this sequence of tests, that is the test for weak
monotonicity under an unconditional maintained hypothesis coupled with the test
of the hypothesis that S, has no effect on the regression function conditional
on the maintained that any effect is nondecreasing, to the more familiar direct

test of whether S4 has no effect on the regression function conditional on an
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unconstrained maintained hypothesis. One test of the latter would check whether

a measure of the distance between r and 0, say
2 aotke e
X7 = r'R[V'] R'r
is close to zero. Under the unconstrained maintained hypothesis x? has the
familiar chi-square distribution with C degrees of freedom. Since the proper-

ties of Lagrange multipliers insure that
tr-r RV TR M = o,

we have from (7) and (11),

with probability one. That is the observed value for the test of no effect of

S4 conditional on an unconstrained maintained, say xg, will be just the sum of

xa and xg. For comparison, our tables will also provide the p-value of xg,

TT[x$] (these can be found in standard tables).
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Section 5. The Data and the Empirical Results

The data used in this study were obtained from the Wisconsin Department of
Industry Labor and Human Relations' (DILHR's) records for unemployment insurance
(UI) coverage. The records for the years between 1978 and 1986 (inclusive)

were linked together by UI account number by David Neuendorf and Ron Shaffer

‘(see Neuendorf and Shaffer, 1987).8

Any private employer hiring at least one worker and paying at least $1,500
in a quarter is required to file information on the number of workers, wages,
and UI tax contributions to DILHR. For the purposes of our analysis the first
time it does so is treated as the 'birth' of the firm. Size in that, and in
subsequent, years is measured by the number of employees.

The unit used to match observations over time was the UI account number.
When a new business changes ownership or legal status, DILHR freezes its
current account and either creates a new account, or, in the case of an
acquisition, merges the employment information into another account. When this
occurs the old account has a successor code, and a new account, if created,
will have a predecessor code. New accounts which were a result of a change in
legal status (and therefore had a predecessor code) were sepérated out and not
treated as a part of a birth cohort in this analysis. Analogously we use the
successor code to distinguish between attrition due to liquidation, and attri-
tion due to mergers (and other changes in legal status). A major advantage of
this type of data is that it can distinguish between these two sources of
‘exit'.

Tables 2 and 3 provide information on the evolution of the size distribution
of the surviving firms from the 1979 birth cohort in retail and in manufac-

turing, respectively (recall, from table 1, that these two sectors account for




Table 2: Evolution of Size Distribution Over Age Retail:

1979 Cohort

(Entries are proportion of active firms with employment > X)

Age Cross Sectiona
X 1 2 3 4 5 6 7 8 1978 1986
1 67.0 73.3 76.8 77.7 78.2 80.0 80.3 83.9 85.5 82.5
2 47 .6 52,0 57.5 57.8 58.7 62.9 63.1 66.0 72.5 74,8
3 34,6 40.5 42.9 45,7 47.9 51.0 50.5 53.6 61.3 64.1
4 26.4 33.7 34.9 36.5 37.7 41.0 40.1 43,7 52,2 55.2
5 22.3 28.2 29.4 30.7 32.5 35.0 34,2 38.3 45.0 47.8
10 11.1 12,7 13.7 14.7 17.2 17.5  18.9 21.7 25.5 27.5
15 6.7 7.5 8.7 | 10.1 10.0 9.6 10.8 14,6 16.9 18.6
20 5.3 6.2 6.4 7.0 7.5 7.9 8.2 9.8 12,2 13.6
25 4,2 4.9 5.4 5.6 5.7 6.0 6.7 7.3 9.3 10.6
30 3.1 3.7 3.7 4.5 4.6 5.3 | 6.3 6.2 | 7.2 8.5
50 1.0 1.0 1.5 1.8 1.8 2.1 2,2 3.2 3.3 4,2
Count 1180 973 816 713 610 571 539 464 22,568 23,435 ~
O
Mean 5.42 5.98 6.41 6.87 7.14 7.71 7.85 8.80 14,02 15.23
Mortality b]
Rate 17.54 13.31 8.73 8.73 3.31 2.71 6.27 [60.67
Hazard
Rate 17.54 16,14 12,62 14,45 6.39 5.60 13.73
Number Subsequentlg
"Transferring Out"
95 72 59 5 3 1 0

Notes to table 2:

a. Size distribution of all firms active in 1978 (1986) regardless of birth cohort

b. Mortality rate over the eight year period.

c. These are firms active at the relevant age but who "transferred out”,
They are not

due to a change in legal status, at some point thereafter.

included in the size distribution calculations at that age.

Y



Table 3: Evolution of Size Distribution Over Age Manufacturing: 1979 Cohort
(Entries are proportion of active firms with employment > X)

Yo

Age Cross Sectiona
X 1 2 3 4 5 6 7 8 1978 1986
1 71.9 78.6 80.9 | 86.9 86.3 | 89.5 90.2 90.9 93.3 92.1
2 49.9 61.2 65.1 71.7 73.1 80.8 82.9 82.5 87.2 89.0
3 38.8 49.6 55.7 63.6 64.3 69.8 75.0 72.7 80.7 78.4
4 32.4 40.6 44.3 53.0 55.0 62.8 66.5 65.0 74.9 72.9
5 25,1 33.7 38.8 45.0 47.8 55.2 57.9 57.8 70.6 68.4
10 8.6 18.1 20.9 21.7 23.1 31.4 31.4 34.4 54,1 51.3
15 4.3 9.1 9.5 13.1 15.4 { 19.2 18.9 | 22,7 43.9 40.3
20 3.1 3.3 6.0 9.1 9.3 T12.2 12.8 15.6 36.8 34.1
25 2.8 2.2 3.4 4.6 6.0 9.3 9.8 12.3 31.2 29.3
30 2.1 1.5 [ 2.1 2.0 | 5.0 7.6 8.5 9.7 28.0 25.9
50 .6 o7 .9 1.5 2.8 4,1 6.1 6.5 19.6 18.3
Count 327 276 235 198 182 172 164 154 6,987 7,789
Mean 4,92 6.27 7.09 8.10 8.79 10.79 12.38 13.34 73.81 61.70
Mortality b]
Rate 15.60 12.54 11.31 4.89 3.06 2.45 3.06 [52.91
Hazard
Rate 15.60 14.86 15.74 8.08 5.49 4,65 6.10
Number Subsequentl
"Transferring Out”
13 11 10 1 0 0 0

0S

Notes to table 3:

Notes a,b, and ¢, are identical to the same notes in Table 2.
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80 percent of the employment in our sample). The row labelled 'count' gives the
number of firms active in the column age. The row labelled transferring out
provides the number of firms which were active in the column year but trans-
ferred out (due to a change in legal status) before 1986. This source of
attrition accounts for about 8% of the 1979 cohort in retail trade, and about
4% in manufacturing. This should be compared to the extent of liquidation
(the figures given in the row labelled mortality rates). Over 60% of the
1979 birth cohort in retail liquidated before 1986, and the analogous figure
in manufacturing was over 50%. Since liquidation was quantitatively so much
more important a source of attrition in these data, we simply omitted those
firms who subsequently changed ownership from the ana]ysis.9

The passive learning model implies that the proportion of surviving firms
with size greater than any X, or the numbers in each row of the body of the
tables, should increase with age (i.e., as we move from left to right on the
table). We have 'squared off' the adjacent transitions which do not satisfy
this condition. On the whole, the consistency of the data with the hypothesis
is quite striking -- particularly in retail. Of the seventy-seven possible
adjacent transitions, only six are decreasing, and none of them indicate a fall
of more than 1.0%. In manufacturing there are nine transitions which decrease;
two fall by more than 1.5%, and two more by .6%. Given the possibilities for
reporting and recording errors in this type of data (see Neuendorf and Shaffer,
1987), if the null were true, we would not find these results to be
'surprising’'. That is, to us these results are quite consistent with the impli-
cations of passive learning -- indeed amazingly so for retail trade. Note

also that, in both sectors, the means are strictly increasing in age.
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There are also some interesting contrasts in the evolution of the size
distribution between the two sectors. The size distribution in the initial year
is not much different between the two sectors; indeed if anything the initial
size distribution is slightly 'larger' in retail trade (retail has the larger
initial year mean, 5.4 vs. 4.9, and a higher percentage of the firms in the
largest size classes). However, by age eight this ordering has turned around.
That is, by age eight the size distribution for manufacturing is stochastically
larger (even in the strict sense) than that in retail (the means are.13.3 vs
8.8, and manufacturing has over twice the fraction of firms with 50 or more
employees). The size distribution is stochastically increasing in age in both
sectors, but it is increasing at a much more rapid rate in manufacturing.

Moreover, the age eight distribution in retail is quite close to the cross-
sectional distribution of all retail firms active in 1978 (or 1986, see the
last two columns of the table). Both have about 3% of their firms with more
than 50 employees (though the cross-sectional distribution still has the larger
mean, 14 vs. 9). In contrast, the age eight distribution in manufacturing is
much smaller than the 1978 cross-sectional distribution in that sector. 1In
manufacturing the cross-sectional distribution has more than three times the
fraction of firms with more than 50 employees (19.6 vs. 6.5), and a mean which
is almost six times that from the age eight distribution (73.8 vs. 13.3). If we
were to think of the cross-sectional distribution as an approximation to the
limit distribution (even though formally it is not), then we might conclude that
by age eight the retail cohort had almost reached it, but the manufacturing

cohort was still nowhere near its limit distribution. Indeed, if we also

assumed that eight years was enough time to form a fairly precise posterior

about a time invariant profitability parameter, then we would conclude that
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the data from retail was supportive of the passive learning model, but the data
from manufacturing was not.

A more formal check of the consistency of the data with the two models can
be derived frém an analysis of the regression for size at age eight on size in
the <immediate preceding periods, and size at age one. Both models imply that
this function will be weakly increasing in initial size, but the passive
learning model implies that it will be strictly increasing in that variable, and
the active learning model implies that it will not.

Tables 4 and 5 provide some evidence on the relevant hypothesis. Because
there were less than half the number of entering firms annually in manufac-
turing, we aggregated the 1979 and 1980 manufacturing cohorts and examined the
regression for expected sales at age seven of the aggregated cohort. The cell
size cutoffs were set at the beginning of the analysis and not changed
thereafter. For the weak monotonicity, and the zero conditional on monotoni-
city, restrictions, we have presented two sets of 'p-values' for each observed
value of the test statistic. The first column provides the simulated estimates
of the true p-values as explained in section 4 (the estimated standard errors of
these estimates appear in parenthesis below their values). The second column
provides the p-value that would be obtained if each 'orthant' had equal probabi-

lity. In this case

C
2 _ C 2 C
Prix>al = [ g (JIPrix2>a1/27,

c=0
which can be easily calculated (here (X) is notation for the numbers of com-
binations of y elements taken x at a time). The orthants would have equal
probability if the constraints being tested were independent of one another -

which they are not. On the other hand the figure in column (2) is trivial to
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Table 4. Tests for Mean Independence of the Distribution of St

from S

Cmﬁiﬂmmlonstd,".,srk, 1

ata: Retail, 1979 Cohort and t=8,2

o

Size Cutoffs: 2,5,10,25,50, +=

Weak Zero Conditional Unconditional
k Monotonicity b on Montonicity b Zero
C XM p-values c Xg p-values Df X% p-value
(1) (2) (1) (2)

1 17 1.1 1.00 .99 17 37.2 .00 O 17  38.2 .00
(.00) (.00)

2 22 6.5 .88 .80 22 23.9 .00 .02 17  30.4 .11
(.03) (.00)

3 25 11.5 .66 .52 25 28.0 .00 .01 25  39.5 .03
(.05) (.00)

4 22 19.1 .05 .05 22 19.1 .04 .08 22 38.2 .02
(.01) (.o1)

5 19 17.6 .05 .07 19 13.6 .12 .19 19 31.2 .04
(.01) (.02)

8Cohort dimensions: number in cohort = 1,275; number of firms reaching
age eight = 464,

b‘I‘he value in column (1) is a simulated estimate of the true p-value and
the value just below it 1s the standard error of this estimate. Ten
simulation draws were used to calculate the estimates of the orthant
probabilities. The value in column (2) is obtained by assuming each
orthant has equal probability (see the explanation in the text).
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Table 5. Tests for Mean Independence of the Distribution of St

Conditional on St—l""’ St—k’ from S1

Data: Manufacturing, Combined 1979 and 1980 Cohorts
for t =7.,3

Size Cutoffs: 2,5,10,25,50, + e

Weak Zero Conditional Unconditional
k MonotoBicity p o0 Montanicity b Zsro
C Xy p-values c Xy p—values Df X p-value
(1) (2) 1) (2)
1 16 8.0 .54 .44 16 3.5 .57 .86 16 11.5 .78
(.06) (.07)
2 25 17.6 .19 .17 25 5.8 .79 .91 25 23.6 .55
(.03) (.03)
3 23 14.3 .28 .27 23 4.9 .81 .92 23 19.3 .67
(.05) (.06)
4 15 10.1 .13 .24 15 5.9 .54 .59 15 16.0 .39
(.02) (.03)

3Firm dimensions: number born in cohorts = 737, number of firms
reaching age seven = 353,

bSee note b to Table 4.
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calculate and, if it tended to be very close to the figure in column (1), one
might use it as a preliminary indication of the true p-value in situations where
a 'close guess' might do (a strategy we actually followed). A comparison of
column (1) to column (2) therefore provides some indication of just how close
the guess would be for problems with structures similar to ours. The answer
seems to be, quite close.

Note first that there is no evidence against weak monotonicity in either
retail or manufacturing. So both data sets seem to be consistent with the
hypothesis that the regression function is nondecreasing in Sqv just as both our
models predict. There the similarity in the test results on the two data sets
ends. In retail it is clear that if we condition on one lagged value of S, that
is on realizations of 87, and then vary Sqs firms with larger S4 have larger
expected sales at age 8. There is really no doubt about this point as the p-
value of the test statistic is essentially zero, so we would reject the null at

any traditional significance level. The same is true if we condition on Sq and

Sgi Or On Sq, Sg and Sg: Or even on sq, Sg, Sg and s,; and then vary s,. In all
these cases realizations of S, have an independent effect on the expectation of
sales at age eight. This dependence only starts to become insignificant at five .
percent significance levels when we condition on five past sales realizations.
However, this might well be a result of the possibility that, with our limited
amount of data, a fifth order nonparametric autoregression would provide an
adequate approximation to the expectation for size generated from any stochastic

process - (¢-mixing or not; we come back to this point be]ow).10

The results for the test of zero conditional on weak monotonicity are
strikingly different in manufacturing. Table 5 indicates that, in manufac-

turing, once we condition on a single lagged value of S, i.e. a realization of
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Sgr any differences in s, do not effect the expected size at age seven. This
time there is little doubt about accepting the null as the p-value is well
above .5. Moreover, the same results obtain if we condition instead on Sg and
Sgi OF On sg, Sg, and S4i OF Sgs Sgs Sy and S3-

Tables 6 and 7 push the nonparametric analysis one step further and ask
what order of Markov process provides an adequate nonparametric fit to the
(expectation from the) stochastic process generating size conditional on sur-
vival in retail and in manufacturing. The tests in these tables follow a pat-
tern analogous to that in tables 4 and 5. That is, we first test whether first
year size, size in the first two years, ..., have a nondecreasing effect con-
ditional on the variables left in the regression function; and then test whether
we can accept a zero effect conditional on any of the existing effects being
nondecreasing. Again the results are quite clear. We never reject weak monoto-
nicity. In retail we need a fifth order nonparametric Markov process to ade-
quately approximate the data. Recall that this is precisely the same 'k' we
needed before we could accept the null that the conditional regression function

for size, conditional on s ceer Selr did not depend on S;- In contrast, in

t-1
manufacturing.a third order nonparametric Markov process seems to provide an
adequate fit to the data. That is, in manufacturing there is a distinction bet-
ween the orders needed for the ¢-mixing and the Markov tests (compare tables 7
and 5). Table 5 says that conditional on realizations of S6 realizations of

S, do not affect the regression function. Table 7 says that realizations of

85, and of 84, do. The active learning model explains this difference by

allowing the parameter that determines the size distribution to evolve over time

in a ‘smooth' fashion, so that its value in year 5 will tend to be closer to its
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Table 6. Markov Tests for Properties of Retail Regression Function

for Size at Age Eight

Data: Retail, 1979 Cohort®
Size Cutoffs: 2,5,10,25,50, + wb
Markov Weak Markov Conditional Unconditional
Order Monotopicity c on Montgnicity Markov
for C X p—~value c Xy, p—-value Df X p—-value
Tests (1) (2) 1) (2)
7 +6 13 9.5 .13 .20 13 5.0 .48 .58 13 14,5 .34
(.03) (.05)
7+5 23 18.3 .16 .11 23 5.9 .64 ,87 23 24,2 40
(.02) (.05)
7 + 4 32 18.3 .47 .32 32 96 .00 ,00 32 114 .00
(.05) (.00)
7 +3 38 18.7 .56 .48 38 100 .00 .00 32 118 .00
(.05) (.00)
7 2 43 19.7 .76 .56 43 107 .00 .00 43 121 .00
(.03) (.00)
7 >1 48  20.1 .92 .67 48 149 .00 .00 48 169 .00
(.01) (.00)

a

Cohort Dimensions: number in cohort = 1275; number
age elght = 465; number in cells with > 2 = 291,

bCell Dimensions: possible number = 279,936; number

(o

number with > 2 observations = 54,

See note b, Table 4.

of firms reaching

populated 228;
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Table 7. Tests for Properties of Manufacturing Regression Function
for Size at Age Seven

Data: Manufacturing, Combined 1979 and 1980 Cohorts?

Size Cutoffs: 2,5,10,25,50, + «°

Markov Weak Markov Conditional Unconditional
Order MonotoBicity c on Montanicity c Ma6kov
for c Xy p-value c Xz p-value Df X p-value

Tests 1) () (1) (2) '

6 > 5 9 11.9 .02 .04 9 2.0 .65 .75 9 14,0 .12
(.01) (.10)

6 » 4 15 13.3 .09 .10 15 11.7 .07 .16 15 25.1 .05
(.02) (.02)

6 >~ 3 25 15.5 .24 .27 25 17.6 .11 .17 25 33,1 .13
(.05) (.03)

6 +» 2 31 16.1 .42 .42 31 61.3 .00 .00 31 77.4 .00
(.04) (.00)

6 + 1 37  16.3 .66 .59 37 76.0 ,00 .00 37 92.3 .00
(.04) (.00)

aCohort Dimensions: number of firms =

age seven = 353; number in cells with
bCell Dimensions: possible number = 46,656; number populated 217;
number with > 2 observations 43,

737; number of firms reaching
> 2 =179,

®See note b, Table 4.
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value in year 7, and therefore have a more distinct effect on the regression

function for 87, then its value in year 1 wi11.11

Section 6. Concluding Remarks

Our empirical results can be summarized quite succinctly. The nonparametric
implications of the active learning model are consistent with the data in
manufacturing, while the nonparametric implications of the passive learning
model definitely are not. On the other hand, the nonparametric implications of
the passive learning model seem consistent with the data in retail trade, while
those from the active learning model do not. These distinctions ought to effect
the type of models we use to analyze phenomena that are tightly tied to firm-
specific uncertainty and differences in output paths among firms within an
industry; phenomena such as the behavior of capital markets when there are
significant failure probabilities, or the evolution of the size distribution
of output among firms within an industry.

They also ought to effect how we account for liquidation induced attrition
in the analysis of longitudinal firm-level data (with or without a detailed
model of liquidation). As an example, consider the following excerpt from
Davis, Gallman, and Hutchins, "Productivity in American Whaling: The New

Bedford Fleet in the Nineteenth Century."

"The age of the vessel (entered as age and age squared) also
captures the effects of more than a single set of factors.
Elements of wear and tear that influenced productivity, a
technical characteristic that one might hope to capture in
the age variable, are confounded with the consequence of

qualitative differences among survivors; ineffective vessels
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were transferred by their owners to other activities, were
condemned at an early age, or were destroyed in service."

Davis, Gallman and Hutchins (1987) p.26.

This quotation illustrates how even one of the most traditional of variables
(age), in one of the most traditional of settings (productivity analysis), can
have its “"structural" effects (as a measure of the likely extent of physical
deterioration) confounded by the self-selection process induced by the endoge-
neity of the liquidation decision (it also demonstrates a remarkable
understanding of the environment generating the data). Davis, Gallman and
Hutchins (1987) do indeed find a significant positive first order effect of age
on vessel productivity. Our models would allow one to separate out the struc-
tural coefficients by adding equations to account for the selection process.

If the active learning model were relevant then the selection equations should
be based on productivity realizations in the immediately preceding periods,
but if the passive learning model were, then both age, and earlier years' pro-
ductivity, will also determine the selection probabilities. The simple non-
parametric procedures detailed in the previous sections ought to provide
guidance as to which of the alternatives seems relevant.

The results in section 5 also illustrate two more technical points. First,
it is possible to develop computationally simple, yet rigorously correct,
checks for the relevance of alternative stochastic control models with discrete-
ness in their choice sets that are independent of precise assumptions on the
functional forms of interest. When possible, we think that the nonparametric

implications of stochastic control models should be checked against data before
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sinking alot of resources into building an estimation algorithm for a particular
parametric form of a model. Finally, if we are willing to use either theory

(as we have done), or ad hoc argumentation to restrict our use of state
dependence to Eefer to state dependence in ergodic processes, then there is a
natural test for the distinction between state dependence and heterogeneity
based on ¢-mixing. Heterogeneity implies that initial and later years realiza-
tions of a process will be dependent -- no matter the time that elapses in the
interim -- whereas state dependence, in an ergodic setting, implies that they
will not be. The distinction can often be made more powerful by conditioning on
years just prior to the current year, and doing so made the tests quite effec-
tive in distinguishing among the alternatives on our, moderately sized, eight-

year panels.




Footnotes

1. See Heckman and Robb, 1985, and the literature cited there, for a discussion
of related issues in labor economics.

2. Two points should be noted here. First we are ignoring the effect (on both
n(+) and S(¢)) of random variables which have the same value for different indi-
viduals at the same point in time, but differ in value over time (this would
have occurred in our example if prices had varied over time). At the cost of
complicating the notation we could add a price process to our problem without
changing any of our major results (though some modifications would have to be
made to the procedure that matches the model to data; see below.) Second, it
should be noted that the interpretation of n(¢) and S(-) as mappings from reali-
zations of n, would only be appropriate for our example if n were realized
before input decisions were made (Marschak and Andrews, 1944). In this case
both output and inputs can be determined from U and the size measure can be
either output produced or inputs purchased. The extreme alternative is to
assume there is no within-period adjustment to n (Zellner, Kmenta, and Dreze,

E

1966), in which case inputs are chosen to maximize L (t) P F(2t+1) -

W 1t+1' where Et provides expectations conditional on current information (and

t

will be defined more precisely below). In this case n(4) and S(+) would be

interpreted as mappings from E, n. ., to Ey My,q, and input demand in period t+1
respectively. There are, of course, intermediate cases where within period
adjustment is either partial, or more costly (the apprqpriate characterization
is likely to depend upon the characteristics of the industry being studied). We
shall discuss the various alternatives 1in more detail in the empirical section,
but for now suffice it to note that the results we focus attention on do not

depend on the timing of the input decision.




3. The following counterexample shows that this would not be the case if we
were to assume only a weaker first order stochastic dominance ordering. Let

8 = (91,62) with 62 > 91, and consider the following family of densities (with
respect to a counting measure): p(n = 2 |62) =p(n = 4 |92) = 1/2, and p(n =

1 I61) = p(n =3 |91) = 1/2. Clearly, Pn(- |62) 25 Pn(- |91). However if

n, = 2, the posterior is 6 = 62 with probability one, whereas if Ny = 3, the
posterior is 0 = 91 with probability one; i.e., the posterior for n = 2 domi-
nates the posterior for n = 3.

4. The assumptions that & is the same known value for all agents, and is
constant over time, are made for expositional convenience. What is required is
that & not increase too rapidly with nt. More precisely, if Vt(nt) is the value
of continuing in operation at t given that nt=nt (a more precise definition of
this function is given below), then what we need is that Vt(nt) - ¢t(nt) be
nondecreasing in nt. Of course, the actual behavior of "exit values" is an
empirical question. If the process generating the exit we are modelling is
indeed a liquidation process, and not a process generated by changes of
ownership and continued operation of the firm in a different guise, the assump-
tions we require ought not to be problematic.

5. Ericson and Pakes (1987) also consider the more detailed theoretical
implications delivered by particular parametric examples. The parametric fami-
lies investigated were those that seemed suitable for the econometric specifica-
tion of estimable forms of the active learning model.

6. Just as in our description of the passive learning model we will assume
here, for expositional simplicity, that input choices are made after the reali-
zation of n, and that liquidation values are a constant &. Further the for-

mulation presented here assumes that the conditional distribution of T does not



depend on w, an assumption not required for our results (see Ericson and Pakes,
1987). | |

7. The reader interested in more detail on the testing procedures used in

this action should consult Barlow et al (1972), or the more recent econometric
literature on testing subject to inequality constraints which begins with the
work of Gouriéroux, Holly, and Monfort (1982). Golberger's (1987) exposition
is particularly clear.

8. We are grateful to them for granting us access to their data, and for
graciously answering our subsequent queries. More detail on the data can be
found in the appendix of Neuendorf and Shaffer (1987). Though multiestablish-
ment firms have a choice as to whether to report as a single, or as multiple,
units, we have, where possible, merged the establishments of multiestablishment
firms. This should therefore, be thought of as firm-level data.

9. However, as one might guess from the figures, we get very similar results
when we leave these firms in until the year they transfer out.

10. We have been motivating our two-part testing sequence as a way of providing
additional information on the relevance of alternative models. Inequality tests
were originally motivated as providing more powerful ways of testing a given
null. Table 4 also illustrates this point. Take, for example, the case where
k=2. The p-value 1in column 2 for acceptance of the null that realizations of
S1 do not matter under the maintained hypothesis that any effect of S1 is non-
decreasing, is zero; but the p-value for the test that 81 does not matter under
the unconstrained maintained hypothesis (the unconditional zero columns) is a
traditionally acceptable .11.

11. Footnote 2 discussed the possibility that input decisions are either

wholly, or partially, made before the realization of n, and concluded by




asserting that the various alternatives would not affect the results we focus
on. Table 7 insures this is so for the very special, but important, case which
Jovanovic's (1982) original article was based on. His assumptions were a spe-
cial case of the following ones; the process generating (nt) conditional on 6
was i.i.d., the posterior for 6 had sufficient statistics (Xt' t) with X¢ =
ft(xt-1' nt) for some ft(')' and that no input could be adjusted after any
information about n, was available. 1In this case, if input quantities were our
size measure, size in period t is determined by (xt_1; t) and for a given t,
there is a 1:1 correspondence between S¢-q and Xg_o- So size is a first order
Markov process. This conclusion would be destroyed if some, say costly, adjust-
ments could be made after n were realized, or if there were any dependence in
the process generating (nt) conditional on 8. However, if Jovanovic's restric-
tions were true, the passive learning model would satisfy the constraint that
the regression for St conditional on St-1' ooy St-k does not depend on S1
provided k > 1; i.e., it would satisfy the constraint used to test for the
active learning model. On the other hand Table 7 mades it clear that the
stochastic process generating size is not first order Markov, so the special

case discussed by Jovanovic (1982) is not relevant.
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A1

Appendix I (Proof of Theorem 2.7)

The proof proceeds as follows. First it considers the finite horizon
problem in which a firm which remains active until period T must liquidate for ¢
dollars at T+1. For this problem the value of continuing in operation from
period t (as a function of past n-realizations) will be denoted by VI(-): Nt~jR+,
and the resulting stopping function by x{(-): Nt~[0,1]. VI(-) can be determined
by backward recursion from the terminal year and a stopping policy which dic-
tates liquidation if and only if the value of continuing in operation is less
than ¢. The implied stopping function, xI(nt), is one if and only if nteAI=(nt:
V¥(n§)>¢, V;(nﬁ,ng) 2 @,...,VI(nt) 2 ®}). As T increases VI(-) converges
(pointwise) to a limit function, Vt(')‘ This 1imit function is bounded, monoto-
nic (in each component of) nt, and satisfies the Bellman condition, i.e.
equation 6, in the text. The proof concludes by showing that Vt(')’ and the

associated limit stopping policy, xt(o), are indeed the solution to the infinite

horizon problem.

t t t

Al Lemma P (¢« In;)>_P (o Int) whenever nt > nt (nt,nteN , and all t)
t+1 t+1
t t t
Proof Take any zeN. Then P (zln)=1/[P (z|n ,8)P (do |n").
T ¢ Me41 t T4 0
Pn (z|n ,8) is nonincreasing in n- by (3.1) and strictly decreasing in 6 by
t+1
(3.ii), while P_{(- ]nt) is stochastically increasing in nt by (4). [ ]

0

t
1

t

z,eNt, and t<T).

A2 Lemma Fix any T then, V:(ng) 2 VI(n;) whenever n_ 2 n; (n:,n

Proof The proof is by backward induction on t. Note that

V() = [r(¢)P,  (dC | nT)+po
T+1
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T by virtue of the monotonicity of m(+), and A1. Now

t
2

which is nondecreasing in n

assume monotonicity at t+1. Then if n: 2n

[m(QIP,  (d¢ In3) + Bfmax[@.v{  (¢,n])IP  (d¢ | n])

T, t
V. (n’)
t 1 nt+1 £41

A\

[m(€IP (d¢ Ind) + Bmax(o.vI (c.n%)IP (a1 nf)
Meor 2 t+1 L/ A 2

A\

t ty _ Tt

Im(CIP (d¢ | n3) + Bfmax[0.v{  (€,n)IP.  (dC | ng) = Vi(ng),
t+1 t+1

where the inequalities are due to A1, the monotonicity of m(¢), and the hypothe-

sis of the inductive argument. []

T+1 t t

A3 Lemma Fix T. Then, V (n ) 2 V (n ) (n- e N, and t £ T)

Proof. The proof is again by backward induction on t. For the initial con-
dition of the inductive argument, note that
vITaT) = sm(o)p (dg|nT) + Brmax[e,VIYI(¢,n) 1P (dt|n)
nt+1 1 nt+1

> Im(C)P_ (d¢|n’) + o = VI(nT).
nt+1

Assuming the condition is true for a = t+1 we have
VI*Tnt) = sr()p  (agln®) + prmaxie,vItle,n®)IP  (d¢|n®)
t M1 1 Mi41

> In(¢)P_ (d¢|n®) + Brmax[o, v L4 (Con )]P (d¢lnt) = vI(nt). []
M4 T4

Proof of Theorem 2.7

Lemma A3 insures that for each (t,nt) the Timit,

ty 4 T, t
Vt(n ) = ]1mTath(n ),
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exists. Let supneNn(n) =7 [; exists and is finite by virtue of the compactness
of N and the continufty of n(-)]. It is straightforward to show that VI(-) is
bounded, uniformly over t, by the constant function (1—ﬁ)'1max[i,¢]. Since
boundedness and (weak) monotonicity are preserved by limit functions, this

insures that Vt(nt) is monotonic and bounded. Also

T
t+1

vim.  vi(nY) = rr(o)p. (de¢|nt) # Blim.  smax(e,vI _(¢.nY)P_ (d¢)nt)
T»o 't nt+1 —00 n

T t+1

Im(C)P. (d¢|nt) + prmaxte,v, (¢,nH)1P_ (dk|nt),
M4 ! £+ T+

. T+1 t t
because Vim,_ fmax[¢,Vy (<N )]Pnt+1(d(|n )
o T+, t t
= I11mT4mmax[¢,Vt+1((.n )]Pn (d¢n™)

t+1
by the Lebesque dominated convergence theorem, since (max[¢,VT+1((,nt))
is dominated by max(¢,(1—B)‘1;) which is integrable with respect to Pn (-Int).
+

We have shown that if Vt(')' and the associated stopping policy, er; opti-
mal, then they would satisfy the conditions of the theorem. What remains is to
show that they are indeed optional. To see this assume, to the contrary, that
there exists an alternative stopping policy, say (x?(-)):=o, where x:(nr) is one
if a firm with n realizations of n' is in operation in period T and zero other-
wise, which generates a value function, say Vt(nt), which satisfies, for at

least one (t,nt),

(A4) v;(nt) - Vt(nt) > e > 0.

Note that for any arbitrary T,
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A4

) -k (T T e1+ 8TR/(1-8)

t
*
Vt(n ) t+T-1

A

T
T t+T

Et(TZO B IxE, (n 7 )m(ng ) + Ok,

(A5)

VET(n®) + 8TR/(1-p) < v](n®) + TR(1-p) " < v (n%) + BTR(1-B),

where VtT(-) is the value function that arises when the policy (x*(+)) is
followed for a T-horizon problem. The first inequality follows from the fact
that current returns are bounded by ;, the second from the fact that VI(nt) is
the optimum for the T horizon problem, and the third is from A3. Provided T is
chosen to be greater than -2n[e(1-ﬁ)/;] / -2nB, equations A4 and A5 contradict

one other. [ ]
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Appendix 2.

This appendix proves the following Lemma.

3.6 Lemma.

Let (S:) be the stochastic process generated from the distribution of size

conditional on survival and any woe(1,2,...,K). The sample space for this
process consists of all possible sequences of elements from the finite set
S = {S: S(n), neN}. Its probability measure is obtained from the family an =

(Pn(-lw), wef1,2,...,K]) and the Markov transition matrix for conditional

t+1

on w, and survival until t+1, say Q=[q,i l]. Q is derived from P = [pi ] by

t J 'J

dividing its ith row by 1-p'i 0 (for i=1,...,K,) and then deleting its first

row and column. Let Mz denote the o-algebra generated by Si,...,ss. Then

00

M° ) € AP

X
sup(lP(EzlE1) - P(E,)|, EjeM], E,e T

with ¢ < 1.
Proof

Let Si = (Si,...,sz), and s" be the generic element 1in §r, r=1,2,...

Then it suffices to show that for any E1 € M? and any 52 € M§::+r
X+T+r
X+T

X+T+r

(A2.1) |P<(sx+T

X X T X
€E,)n(Sj€E )} - P(S €E,)P(ST€E ) | < Ap P(SjeE )
(Billingsley, 1967, section 20). But the left hand side of (A2.1) is

X+T+r__r = X - +T+r= r X= X
< LlPUs, " =s )n(s¥ s¥)) P(S§+T sTIP(sY=s") |

when the summation extends on sreE2 and ser1. Thus it suffices to show for

all E1 such that P(E1) >0
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X+T'H‘= r X_ Xy _ X+T+r__r T
(A2.2) ) IP(sx+T s V|§1-s ) = P(S T asT) |‘,A¢

a = -
Let St-st+ut where S -fS(nt)P(dn th) and U =S -S., and note that both S,

and Ut can take on only a finite set of values, say values in the sets S and u,

respectively. Finally let

JU,)

sY = (s S Y -
Sy = {S_,...,S.), Uy = (Ux,... y

and 5% and u® be the generic elements 1in 5% and UX. Then each element in the

sum in (A2.2) can be written as

(A2.3) Z P(ux+T+r uf | T Ty )P(§X+T+r=§r o’ |s¥=sx) - P(S§::+r=sr)

X+T

xrrer +TH+r_T +TH+r_T
=3 [ P(U1-u |s =s -u ™) [P('X T ost- |s¥=sx) P(§x AUPTUSTS
u i=X+T

where the equality follows from the fact that the distribution of Ut
conditional on all information prior to t, depends only on §t. Consider each

of the expressions in the latter square brackets separately. Letting (i,,...,ir)

be the unique values of w that lead to §§::+r=§r_ur those expressions can be

written as
s o X_=X_ Xy p XX X <Xy -
sxguxp(w star T e Oer T | Sy=s v )P(§1 s IS? s7)

(A2.4) - -
P(sx+1'+r' s'- ur)

Assumption (1.i1) guarantees that Q, the Markov transition matrix for the
survivor process, is irreducible aperiodic. It therefore has a unique invariant
distribution say g*. Moreover, for any i,j the n period transition probability,

qq. satisfies
1)




§

A7
r.n -,* n
a3 a; | € A",
for some ¢ < 1. (On these latter points see Billingsley, 1979, section 1.8).

Consequently if (j1,...,jx) indexes the values of w that lead to §¥, the
absolute value of (A2.4) is less than or equal to
q; . ey o |2 Q: . P(J, |s¥=sx) - Q§1|
rlr-1 2' 1 » I 19
(A2.5)

£q; . 1ee:Q; . AD .
1r‘r-—1 1211

To complete the proof of the proposition, substitute (A2.5) into (A2.4), the

result into (A2.3), and the result of that into (A2.2). [ 1]
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