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Abstract 

This paper considers two models for analyzing the dynamics of firm 

behavior that allow for idiosyncratic (or firm-specific) sources of uncertainty, 

and discrete outcomes (exit and/or entry). Models with these characteristics 

are needed for the structural econometric analysis of several economic 

phenomena, including the behavior of capital markets when there are signi­

ficant failure probabilities, and the analysis of productivity movements in 

industries with large amounts of entry and exit. In addition, these models 

provide a means of correcting for the self-selection induced by liquidation 

decisions in empirical studies of firms responses to alternative policy and 

environmental changes. It is shown that both models have nonparametric 

implications - implications that depend only on basic behavioral assumptions 

and mild regularity conditions on the functional forms of interest - that can 

be taken directly to data. This circumvents the need for the computationally 

difficult, and functional-form specific, estimation algorithms that have been 

needed for analyzing stochastic control models with discrete outcomes in the 

past. One difference between the two models corresponds to the distinction 

between heterogeneity and an ergodic form of state-dependence (a form in which 

the effect of being in a state in a particular period erodes away as time from 

that period lapses). So we develop a test for this difference based on~­

mixing conditions. The paper concludes by checking for the implications of the 

two models on an eight-year panel of Wisconsin firms. We find one model to be 

consistent with the data for manufacturing, and the other to be consistent with 

the data for retail trade. 



1. Introduction 

In this, and in a companion piece (see Ericson and Pakes, 1987), we consider 

structural econometric models for analyzing the dynamics of firm behavior that 

allow for idiosyncratic, or firm-specific, uncertainty, and discrete events 

(exit and/or entry). Our reason for providing an empirical framework with 

these features are twofold. First, the nature of uncertainty, and its 

relationship to exit and/or entry, is at the heart of several issues we, as 

economists, try to analyze. Examples include the analysis of capital markets 

when there are diverse possible outcome paths and significant failure probabili­

ties; the evolution of the size distribution of the firms in an industry; and 

the analysis of industry supply (or productivity) changes when more efficient 

firms thrive and grow, and less efficient contract and, in the extreme case, 

exit. The second reason for studying models that allow for uncertainty and exit 

is that some allowance has to be made for these phenomena before we can get an 

accurate empirical picture of firms' responses to any policy or environmental 

change. Table 1 illustrates why this is so. 

The table provides information on the fraction of firms operating in 

Wisconsin in 1978 that were liquidated by 1986 (more details on the data will 

be given in Section 5). Firms are classified as liquidated only if they 

physically closed down (changes of ownership are treated separately). If we 

were to use these data to build a panel of firms to follow the impact of some 

(say) policy change, we would, at least traditionally, start from the 1978 

cross-section and then construct the panel by eliminating those firms not in 

operation over the entire eight-year period. Column 5 shows that this proce­

dure would lose a third of the firms due to liqOidations, and column 6 shows 

.- that this third would account for about a fifth. of the jobs in 1978 .. If we 



Table 1. 
a Liquidation in the 1978/86 Wisconsin Panel 

1 2 3 4 5 6 
Sec tor II Firms % of Employ- % of all % of Firms % of 1978 

Active all FirmE ment Employ- Active in Employment 
in 1978 in 1978 in 1978 ment 1978 in firms 

in 1978 Liquidated Liquidated 
by 1986 by 1986 

Wholesale 7,251 17 85,135 8 29.5 16.0 

Retail 22,568 51 316,498 30 39.S 26.0 

Manu-
facturini:, 6,987 16 550,200 52 24.0 13.0 

Eating 
and 
Drinking 7,466 17 103,192 10 44.5 29.5 

Toail 44,272 100% 1,055,205 100% 36.5 19.0 

I 
Substitute "transJerred out.J for 

I 
"liquidated" 

in colums 5, 6, and 8. 8.5 11.1 

Substitute "either transferred out or liquidated" 
for "liquidated" in columns 5, 6, and 8 45.0 30.1 

7 8 
% of 1978 % of 1978 
Employment Firms with 

in firms > 50 Employees 
with > SO Liquidated 
Employees by 1986 

35 10.5 

45 17.0 

87 13.0 

36 18.5 

65 14.5 

10.5 

25.0 

a If a firm ever undergoes a change in legal status (a change in ownership) it will not be counted as a 
liquidation thereafter (even though the resulting firm may have liquidated). Firms in the cons true tion 
and service sectors in 1978 have be.en excluding from this sample. These firms accounted for about 
340,000 jobs. 

N 
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decided to consider only the larger of the 1978 firms, say those with more 

than 50 employees (and as column 7 shows, this is a selection which, by itself, 

omits over a third of the 1978 jobs), liquidation would be somewhat less preva­

lent, but would still cause an attrition rate of about 15 percent. The last two 

rows of the table give an indication of the extent of changes in ownership in 

this data (this includes mergers and acquisitions). To the extent that the pre 

and post change firms cannot be spliced together, changes in ownership also 

generate attrition. It is a relatively more important source of attrition 

among larger firms, but even if we confine ourselves to firms with over 50 

employees, and assume that all the changes in ownership result in attrition, 

changes of ownership would still only account for 40 percent of total attrition 

(liquidation accounts for the rest). Note that, when taken together, liquida­

tions and changes of ownership would cause the attrition of almost half the 

firms in the 1978 sample, and of about a quarter of those with more than 50 

employees. 

If liquidation decisions were independent of the economic phenomena typi­

cally being investigated, then the omission of the liquidated firms from the 

.sample might lead to an imprecise, but would not lead to an inconsistent, 

description of the phenomena of interest. This is, however, hardly likely. 

Firms terminate their activities when they perceive adverse changes in the 

distribution of their future profit streams. The phenomena we typically want to 

investigate involve the actual profitability (and productivity) changes 

resulting from alternative policy and environmental changes. If there is any 

relationship at all between perceptions and realizations we will, by eliminating 

those firms which liquidate, omit precisely thos~ firms for whom the events in 

question are likely to have had a particularly negative impact. That is, we 
.. -- ...... 1 

will tend to omit one tail of the distribution of responses we set out to study. 
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To control for the selection induced by the liquidation process we need a 

model that explains why firms operating in similar environments develop dif­

ferently - a model with idiosyncratic outcomes that allows for exit. At least 

two such models are currently available, and each will, no doubt, prove more 

useful in approximating the characteristics of different industries in dif­

ferent time periods. This paper provides a simple set of procedures which 

enable the researcher to determine whether either of them might be relevant for 

the problem at hand. 

The first model considered here is a model with passive or Bayesian 

learning. Firms are endowed at birth with an unknown value of a time-invariant 

profitability parameter which determines the distribution of its profits 

thereafter. Past profit realizations contain information on the value of the 

parameter which determines the distribution of possible future profit streams, 

and this fact is used by management to form a probability distribution over 

future net cash flows (see Jovanovic, 1982). The second, or active learning, 

model assumes the firm knows the current value of the parameter that determines 

the distribution of its profits, but that the value of that profitability 

parameter changes over time in response to the stochastic outcomes of the firm's 

own investments, and those of other actors in the same market (see Ericson and 

Pakes, 1987). In both models firms act so as to maximize the expected 

discounted value of future net cash flow, and in both cases optimal behavior 

generates a set of stopping states; i.e. outcomes which, if realized, would 

induce the firm to exit. Moreover, both models are 'complete' in the sense that 

if we were willing to append a set of precise functional form assumptions to 

them, they would produce frameworks rich enough to take directly to data. 
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The strategy of appending precise functional form assumptions and then 

using their implications to structure the data, is the strategy taken in all of 

the recent econometric literature on analyzing stochastic control models 

involving discrete outcomes (see Miller, 1984; Wolpin, 1984; Pakes, 1986; and 

Rust, 1987). Its success depends upon, among other diverse factors, the extent 

of prior information on the relevance of alternative assumptions. We eschew 

it here because there is not a great deal of a priori information on either 

which of the models (if any) is appropriate for different data sets or on the 

relevance of alternative functional form assumptions. Moreover, just as in all 

the previous literature on discrete choice optimal stochastic control models, 

were we to estimate fully parametric versions of these models we would have to 

build a different estimation algorithm for each form estimated. This makes it 

difficult, if not impossible, to examine the robustness of the major empirical 

results to changes in the specification of the model. 

The alternative strategy we choose is to look for empirical implications of 

the different models that depend only on the models' basic behavioral assump­

tions, and some mild regularity conditions on the relevant functional forms. 

Precisely because these 'nonparametric' implications have to be valid for a 

variety of functional forms, they cannot require functional form specific esti­

mation and testing algorithms. Consequently, there are computationally simple 

ways of checking whether they are consistent with the data. Therefore, in addi­

tion to not being dependent on particular functional form assumptions, our stra­

tegy is easy to implement. On the other hand, the nonparametric procedures 

provided here do not produce precise values for alternative response parameters. 

Their goals are only to: 1) provide a low cost way of obtaining (we hope 

reliable} information on which of the alternative models seems relevant for the 

problem at hand, and 2) to provide a reduced form empirical characterization of 
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the data which is easily interpretable and can be used to indicate which of the 

different ad hoc procedures for correcting for the selection problem induced 

by the liquidation process is more appropriate. 

One of the nonparametric differences between the two models corresponds to 

the distinction between heterogeneity and state dependence that has played so 

large a role in labor econometrics (see Heckman, 1983; Chamberlain, 1984; 

and Heckman and Singer; 1984). In particular the passive learning model implies 

that the stochastic process generating the size of a firm is characterized by a 

generalized form of heterogeneity, while the active learning model implies that 

this stochastic process is generated by a quite general form of state depen­

dence. Theory restricts the state dependence in the active learning model to 

have ergodic characteristics; i.e. the effect of being in a state in a par­

ticular period erodes away as time from that period lapses. So we develop a 

test for the distinction between heterogeneity and ergodic forms of state depen­

dence based on ¢-mixing conditions. The test is simple, intuitive, and seems to 

be able to distinguish between the two models on panel data sets the size of the 

ones used here (these follow about 400 observations over eight years). 

In particular, we find both the ¢-mixing test, and an analysis of the 

evolution of the size distribution of firms in a cohort, suggest that one model 

is consistent with the data for manufacturing, while the other seems consistent 

with the data for retail trade. The importance of this result is twofold. 

First the different models have distinctly different implications for the manner 

and the extent to which firm-specific uncertainties get resolved over time, and 

hence for the way in which issues related to these uncertainties ought to be 

analyzed. Second, the two models imply different determinants for the 

probability of liquidation, and hence different procedures for correcting for 
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liquidation induced attrition in the analysis of firm's responses to alternative 

policy and environmental changes. 

Section 2 of the paper provides the passive learning model and then derives 

its nonparametric implications. Section 3 does the same for the active learning 

model. In section 4 we develop appropriate estimation and testing procedures. 

Section 5 begins with a description of the Wisconsin panel, and then examines 

various subsets of it for the implications of the two models. Brief concluding 

remarks close the paper. 

Notation 

The distribution of any random variable, say x, conditional on any event, say 

z, is denoted P ( • I z), and its density (with respect to the implied dominating 
X 

measure) by p (• I z). Superscripts denote the vector of all prior realizations 
X 

t -of a process, and subscripts denote a particular value, so x - (x1, ... , xt). 

Weak vector inequalities are interpreted element by element, but a strong vector 

inequality means only that at least one of the element by element inequalities 

is strong. Z will be used for the generic set, z for a member of that set, and 

diag[x] for a diagonal matrix with x on the principal diagonal. Lemmas, 

theorems, examples etc. will be numbered in one consecutive ordering within each 

section. They are referred to in the following sections with a section 

prescript. 
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Section 2. Passive Learning. 

This section considers models in which each firm is endowed with a time­

invariant characteristic which determines the distribution of its profits, but 

whose value is not known to management at the time the firm begins operation. 

Models of industries composed of firms which learn about an unknown profitabi­

lity parameter have been provided by Jovanovic (1982} and Lippman and Rumelt 

(1982}. Following Jovanovic (1982}, we consider a Bayesian learning process. 

At entry the firm believes the value of its characteristic, say 8, is a random 

draw from some known distribution. Each period the firm is in operation it 

obtains a realization from the distribution of profits conditional on the true 

value of its 8. These realizations are used to compute a sequence of posterior 

distributions. The posterior available in each period is used as a basis for 

decision-making in that period. The decisions of interest are whether to pro­

duce at all and, if so, at what scale. If the firm does decide not to produce 

it sells off its assets and exits, never to reappear again. Note that in this 

model learning is passive in the sense that information is obtained as a 

costless byproduct of operating. Perhaps the clearest analogy is to the opera­

tion of a retail outlet. The outlet learns whether its neighborhood will sup­

port its product, and, if so, at which scale of operation. 

Jovanovic (1982} focuses on establishing the existence of a perfect fore­

sight equilibrium for a homogeneous product industry composed of firms which 

operate in this manner. We focus on the implications of the learning process on 

the evolution of cohorts of firms, where cohorts are defined by entry dates. In 

particular we shall look for empirical implications that rely on the nature of 

the learning process, and only some mild regularity conditions on the form of 

the profit function and the underlying distributions of interest. 
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Later we compare these implications to data in an attempt to identify those 

sectors in which this form of learning process seems relevant. 

2.1 The Model 

It will be assumed that each entrant is endowed with a value of 8 which, in 

turn, determines the distribution of a payoff relevant random variable Tl, say 

P (• I 8). To motivate our assumptions, consider the example of a homogeneous 
Tl 

product industry of price-takers whose production efficiencies are subject to 

random perturbations so that profits in period tare nt = at Tit F(!t) -

wt'Rt where; Rt is a vector of input quantities, wt provides their prices, F(•) 

is a concave production function, <nj) is a sequence of independent and iden­

tically distributed (i.i.d.) random variables, and at is the product price. 

Assume Tit is known at the time Rt is chosen. Then 

nt = n(nt; wt, pt) = max(! ) {atntF(Rt) - wt'lt}, 
t 

and n(n; wt' pt) is an increasing function of Tl• In a perfect foresight 

equilibrium future prices will be known, so that if 8 were also known the 

distribution of future profits could be calculated directly from P (• I 8). 
Tl 

Since management does not know 0 it is assumed to summarize its beliefs about 

that parameter in terms of a probability distribution over the possible values 

of 8. At entry, management only knows that 0 is a random draw from GO(0). The 

first period produces an Tl which management uses, together with Bayes law, to 

update its prior [GO(0)] and form a posterior which is then used to make second 

period decisions. If the firm stays in operation, this updating process con­

tinues and decisions are made on the basis of the sequence of updated posteriors. 

As the example illustrates, the model will require at least four primitives; 

a sequence of random variables, a class of distributions for those random 

--variables indexed by a, a prior distribution fof'BI and a payoff function. 
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Before introducing these primitives we need a way of comparing distribution 

functions; i.e. we need an interpretation for the statement that one value of 8 

is 'better than' another. We shall assume that the family of distributions 

formed from different values of 8 can be ordered in the likelihood ratio 

sense defined below. This ensures that higher realizations of the payoff 

relevant~ lead to Bayesian posteriors for 8 that assign larger probability to 

higher values of 8 (see below, and Milgrom 1981). 

1. Definition (likelihood ratio ordering, or ~Rr) 

Let P1(•) and P2(•) be two distributions possessing densities p1(•) and 

k p2(•) (with respect to some dominating measure), and with support, Z, a com-

pact subset of jRk, k-dimensional Euclidean space. We will say that 

P1 likelihood ratio dominates P2, in the strong sense, and write P1 ~Rr P2, if 

and only if, 

whenever z1 > z2, and p1(z 1) or p2(z2) > o, z1,z2 € zk. If weak inequalities 

replace the strong inequalities in this definition, we will say that 

P1 likelihood ratio dominates P2 in the weak sense, and write P1 ~Rr\,t 2. [] 

If P1 ~lr P2 then, for any two possible values of z, the ratio of the 

probabilities of a larger to the smaller z value is always higher for P1; 

i.e., P1 is more likely to have generated the higher z value. The following 

lemma points out that ~!r is a stronger criteria for ordering distribution 

functions than the more familiar first order stochastic dominance criteria. 

2. Lemma (likelihood ratios and stochastic dominance). 

Say P1 stochastically dominates P2, and writ~~P1 ~s P2, if and only if 
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for every nondecreasing nonconstant function, h(•), such that /h({)P1(d{) < oo, 

Then, 

If weak inequalities replace the strong inequalities in this definition we say 

that P1 stochastically dominates P2 in the weak sense, and write P1 ~sw P2. 

P, ~!rw P2 implies pl ~SW P2· 

Proof See Ross (1982), Appendix 1, 3.1, and 4.1. [ ] 

Assumption 3 provides the primitives of the passive learning model and 

endows them with some regularity conditions. It generalizes the assumptions 

used in our example. In particular the example assumed that conditional on a 

8€8, the sequence of payoff relevant random variables, <nt>, are independently 

and identically distributed (i.i.d.) over time. Then the joint distribution of 

the sequence <nt> conditional on a 8€8 is entirely described by the single 

distribution, P (•18). Though the i.i.d. case is easy to deal with, it produces 
n 

a host of very strong empirical implications which are a result of the ;.i.d. 

assumption and not of the logic of the passive learning model per se. We, 

therefore, allow for dependence in the stochastic process generating <nt} 

conditional one. In (3.i) we assume only that the marginal distribution of 

nt conditional on 8 is stationary (does not depend on time), and that the con­

ditional distribution of nt (conditional on past n-realizations) satisfies the 

condition that higher past values of n are at least as likely to lead to higher 

future values of n. (3.ii) insures that higher values of 8 are better in 

the !r-sense; i.e. it insures that for any t, higher values of the vector 
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nt = (n1, ••• ,nt) are more likely to be generated by larger 9 values. (3.iv) 

provides the profit and size functions. It is important that both be increasing 

. 2 
in n. 

3. Assumption (primitives of the model) 

(i) {J)t} is a sequence of payoff relevant random variables (a stochastic 

process) whose joint distribution, say f(8), is indexed by a 8e9, where a is a 

compact subset of JR+. The marginal distribution of nt is stationary and is 

denoted by Pn(•l8), while its conditional distribution satisfies a weak 

.er-ordering in realizations of. J)t-l, say nt-l: i.e. 

I t-1 P11 ( 0 n1 ,8) 
t 

> I t-1 • .erw Pl)(• n2 ' 0) 
t 

whenever t-l ~ t-l n, n2 . 

(ii) The family of distributions 

JP = {f(8) :8€9}, 

have marginal distributions with support N (a compact subset of JR+) and den­

sities with respect to some dominating measure. Further, these distributions 

satisfy an .er-ordering in 0; i.e., provided 8 > 8' we have, for every t 

(iii) GO(•) is a prior probability distribution with density gO(•) on 9. 

(iv) rr(•) and S(•) are continuous increasing functions from N into JR+. 

rr(•) provides the payoff to, and S(•) the size of, the firm. [ ] 
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Our behavioral assumption is that management acts so as to maximize the 

expected discounted value of future net cash flow conditional on current 

information, where the conditional distribution of future net cash flows are 

formed, in a Bayesian fashion, from; the family of ij processes (JP), the prior 

t for 0 [G0(•)], and past realizations of ij, say n = (n 1 , ••• ,nt>· The next 

assumption provides these conditional distributions. 

4. Assumption [posterior distributions] 

Let Jt contain all information available in period t. Then 

measure (for nt c Nt, and all t). [ ] 

Lemma 5 states that, under their-ordering assumptions, higher past ij 

realizations lead to more favorable posteriors for 0. It follows directly 

from Bayes law and assumption (3.ii). 3 

5. Lemma (monotonicity of posteriors) 

For any t, and nt nt c Nt with nt > nt 
, I 2 1 2 

[ ] 

Now consider the decision problem facing the owners of a firm which has 

been in existence t periods and has had ij realizations of nt. The owners 

must choose whether to continue in operation over the coming period, or close 

down and sell the firm at the value, ~- If the owners decide to operate the 

1irm they will obtain the profits over the coming period, plus the option of 
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keeping the firm in operation over subsequent periods should they desire to 

4 do so. 

Assume, temporarily, the existence of a bounded function, say Vt+l(nt+l), 

from Nt+1 into IR, which provides the value of continuing in operation from 

period t+1 given a realization of nt+i equal to nt+i. Then, letting ~e(0,1) 

be the discount factor, we have 

t I t t+1 I t (6) Vt(n ) = E[rr(nt+i) n] + ~E[max{t,Vt+i<n )} n ], 

Given (6) the optimal strategy of the owner is straightforward. Operate the 

firm if and only if Vt(nt) ~ t. Theorem 7 insures that the value function in 

(6) exists and then provides some of its properties. 

7. Theorem (existence and montonicity of the value function) 

At each t there exists a unique Vt(•):Nt - JR+ which provides the value 

of continuing in operation assuming optimal behavior in each future period. 

Vt(•) is bounded, satisfies (6), and is nondecreasing in nt; i.e., if n~ ~ n!, 

t t t t then Vt(n 1) ~ Vt(n 2) [for n EN, and all t] 

Proof See Appendix I. [ ] 

Note that Theorem 7 depends only on Assumption 3. It does not depend on: 

the precise functional form (or even the curvature) of the profit function (so 

the production function could display regions of increasing returns); on the 

form of G0(•); or on the family JP provided that it satisfy the monotone 

likelihood ratio properties in (3) (in particular the posteriors for 8 need 

not possess simple sufficient statistics, nor need they be weakly continuous 
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in their arguments). We now move on to consider the empirical implications of 

the passive learning model and we shall focus on implications which require 

only the assumptions reviewed above. 

2.2 Empirical Implications of Passive Learning. 

Throughout we shall focus on the empirical implications of the passive 

learning model that are true at each age (that model also has limit properties 

as age grows large, but it is hard to use these as a basis for empirical analy­

sis without further, a priori, information). We begin by deriving the implica­

tions of the passive learning model on the evolution of the size distribution of 

firms. 

The theorem that underlies our results on the evolution of the size dis­

tribution is the economist's (far more palatable) version of the Darwinian 

dictum of "survival of the fittest." It states that as age passes the a-dis­

tribution of the surviving firms improves (in the stochastic dominance sense). 

This is a result of self-selection. As time passes firms with lower B's are 

more likely to draw lower ij's and self-liquidate. 

8. Theorem (the evolution of the 8-distribution) 

if 

if 

Then a firm is still operating in period t if and only if xt = 1. Further, 

for every z € a and all t let 
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Then 

Proof Take an arbitrary (z,t). Then, by Bayes law, 

We must show that P8(zlt-1) ~ P8(zlt). For this it suffices that 

( 8. 1 ) 
8/Pr<xt=11e>GO(d8) 

8/Pr<xt_,=1le>GO(d8) 

Using the fact that 

and letting 

(8.2) 

{8.1) can be rewritten as 

8~2 /Pr{xt=11e>GO(d8) 

~ 8~2 /Pr<xt_ 1=11e>GO(d8) 

for a > z ] 

otherwise 

Since {8.2) implies Q1(•) ~sw Q2(•), (8.3) will be true provided Pr{xt=1 

I Xt_,=1,0} is nondecreasing in 0. To see that this is indeed the case write 

I f I t-1 t-1 I t-1 t-1 Pr{xt=1 xt_,=1,0} = Pr{xt=1 . n ,0}f11t-1.<dn . n £.A ,0}. 

Then, taking 0 ~ 8' 
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/Pr<xt=1 I nt-1,8}P11t-1<dnt-1 I nt-1e:At-1,9} ~ 

/Pr { xt = 1 I n t-1 , 8 ' } P 11 t-1 { d n t -1 I n t -1 e:A t-1 , 8 } ~ 

/Pr{xt=1 I nt-1,8'}P11t-1<dnt-1 I nt-1e:At-1,9'}, 

where the first inequality follows from the monotonicity of V(•) and the fact 

that P t(•lnt-1,e) is stochastically increasing in 9, and the second from (3.1) 
11 

and the fact that if P t(•l 8) >,. P t(•l 9'), then, for any Ae:Nt, 
11 .,.&r 11 

P t(•l 11te:A,8) > p (•l11te:A,8') (see Ross, 1982, appendix I). [] 
11 .. .rr 11 

Our first empirical implication of the passive learning model is a direct 

corollary of Theorem 8. Since size is an increasing function of 11, and 11 

is stochastically increasing in 9, the fact that the 8 distribution of the 

surviving firms is stochastically increasing over time implies that the size 

distribution of surviving firms ought to be stochastically increasing in time. 

9. Corollary (The evolution of the size distribution.) 

Let xt be defined as in theorem 8, recall that St= S(l}t), and for all z and 

t define 

Then, provided t ~ t' 

[ ] 

There are many ways of employing Corollary 9 to identify industries that 

might abide by the passive learning model. The simplest is to plot the size 

distribution for different ages and compare them; the proportion of the sample 

-~reater than any given size should increase in age. _More generally the 

corollary implies that if h(•) is any increasing function, then whenever t ~ t' 
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h(t) = fh({)Ps(d{ It), /h({)Ps(d{ It')= h(t'). 

So we could take the sample analogue of h(t) [the sample mean of h(S)], and 

investigate whether it increases in age. We come back to these points below. 

Note also that Theorem (8) and Corollary (9) imply that each sequence of distri­

bution functions, {P0(•lt)}, and {Ps(•lt)}, converges (pointwise), to a well­

defined limiting distribution, say P0 (•loo) and Ps(•loo). 

Implications of the passive learning model that specify a monotonic rela­

tionship between two or more observables are particularly useful since they can 

be checked against data without imposing undue functional form restrictions. 

Though the literature on the passive learning model seems to have missed 

Corollary 9, it has associated at least three other monotonic relationships with 

passive learning. These are that: 

i) the hazard rate is nonincreasing in current size; i.e., that 

Pr{xt=O I xt_,=1, St_1=st-l} is nonincreasing in st-l for all t; 

ii) the hazard rate is nondecreasing in age (usually, but not always, con­

ditional on size); 

iii} and that the variance in growth rates (again usually conditional on size) 

is nonincreasing in age 

(these implications are discussed in Jovanovic, 1982; Evans, 1987a and 

1987b; and Dunne, Roberts and Samuelson, 1987). 

The next example shows that of these three only the first survives our 

search for nonparametric implications of the passive learning model (the 

example assumes, as did Jovanovic, 1982, that the distribution of <nt> con­

ditional on 8 is i.i.d.). It is true, however, that the first implication, that 

is that hazard rates are nonincreasing in size at a given age, is consistent 
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with the data from every empirical study we are aware of [Churchill, 1955; 

Wedervang, 1965; Evans 1987a and 1987b; Dunne, Roberts, and Samuelson, 1987]. 

However, most other models that allow for mortality, including the active 

learning model of Ericson and Pakes (1987), also imply mortality rates that 

decrease in size for a given age. Therefore, this property fails to distinguish 

among the alternative models, and we do not pay further attention to it in this 

paper. 

As to the other implications, the fact that the passive learning model 

does not imply that either hazard rates, or the variance in growth rates, 

decline in age (at least not without further ad hoc assumptions) is somewhat 

disconcerting. Decreasing hazards and decreasing variances in growth rates 

have both been associated with the passive learning model in the past, and, in 

addition, have been shown to be fairly robust features of the data. On the 

other hand, the intuition underlying our counterexample is clear enough. For 

many functional forms it will take take time to accumulate the information 

necessary to ensure that exit is optimal, and this fact generates an initial 

increasing portion to the hazard function (actually the example generalizes this 

intuition and generates a hazard function which oscillates over age). As to 

differences in the variance in growth rates over age, these will depend upon, 

among other factors, the relative variances of ij conditional on 0 for different 

values of 0. If 0-values which are more likely to induce exit are associated 

with low variances, the observed variance in growth rates may well increase over 

age. 

10. Example 

Let rrt = rr•ijt, with {ijt} i.i.d. conditional on 0, 
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O= jo with probability.I 

l O otherwise 

The posterior for 8 in this problem depends only on the couple (xt,t), where 

xt = max[n1, ... ,ntl• Consequently the value function in (6) has the simple 

form, 

xt is either o or 1. If xt=1 management knows that 8=o and a direct calculation 

shows 

V(1,t) = no/(1-~)>t, 

where the inequality is by assumption. This inequality ensures that if xt=1 

management will never drop out. If xt=O the firm continues in operation if and 

only if V(O,t)~$. It is easy to show that Pr(xt+,=1 I xt=O,t} = Pr(71t+1=1 

I Xt=O,t} decreases int, and converges to zero. This ensures that V(O,t) 

decreases int and converges to zero. Clearly then, there exists a unique t* 

such that V(O,t)~$ if and only if t~t*. Let S(71t=1)=S, S(71t=O)=O, H(t,St) 

be the hazard rate for firms of size St in period t, and H(t) be the uncon­

ditional hazard. Straightforward calculations show that for 

H(t) 

t<t* 0 0 0 

* * t=t* [(1-o)t R+(1-R)l/[(1-o)R+(1-R)J, 0 I (1-o)t R+(1-R) 

t>t* 0 0 0 

So neither the conditional, nor the unconditional~~hazard declines in age. This 

simply reflects the fact that for many possible ~~~umptions on the relevant 



21 

functional forms it will take time to gather the information required to decide 

whether exit is optimal. 

Next we consider the variance in growth rates. Provided t > t*, any firm 

that is active has 0 = o, and V(St+i-st I st)=V(St+i I B=o) = s 2o(1-o), regardless 

of st. If t < t* and st= s, then B still is o with probability one, and 

v(st+i-st I st> is sti 11 given by the above formulae. So the variance in growth 

rates conditioned on St= Sis constant over age. However, if t < t*, and 

St= O, then 0 can equal either o or O with positive probability, and the 

variance in the growth rate is [oS2(1-1)(1-o)1]/[(1-1) + (1-o)1] 2. Thus 

= cc1-1)+(1-0)1J 2 
(1-1).2•0 

which can be made as large as we like by choosing o or 1 small enough. The 

variance in growth rates need not decline in age. Whether or not they do will 

depend upon whether growth rates associated with high B's are more variant than 

growth rates associated with low B's, an issue which the basic passive learning 

model is silent on. 

To see how this example generalizes, consider the case where B has a beta 

prior distribution with parameters (r,s), i.e., G0(·) = B(r,s), so that B can 

take 

with 

any value between zero 
t 

parameters r + In. and 
1 

and one. The 
t 

s + t - In i, 
posterior in this case is 

t 
so that the sum, xt = In;, 

another beta 

and t, can 

be used as sufficient statistics. (Note that xt is a nonnegative integer.) 

Using an argument analogous to that given above we find that for any fixed x, 

V(x,t) declines to zero with t. Thus for each x there exists a t*(x) such that 

V(x,t) ~ cp ac_cording as t; t*(x) [see Figure 1]. Both the mortality, and the 

hazard rate will be zero for a value oft such that t*(x) < t < t*(x+1) (for x = 

1,2, ... ). Moreover it can be shown that t*(x~1)- ~annot equal t*(x)+1 for con­

secutive values of x. That is, the hazard function will usually have a zero 
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between any two positive portions, making it oscillate over age. Fort= t*(x) 

the hazard and mortality rates will be determined by the precise form of the 

prior. One such sequence of hazard rates is given in the bottom part of Figure 

1. Similar pictures could be drawn for the variance in growth rates. [] 

This example illustrates that if we are interested in other nonparametric 

implications of the passive learning model we should look beyond the implica­

tions of passive learning on the pattern of either the hazard or the variance in 

growth rates. It is, therefore, fortunate that the passive learning model has 

some very distinctive implications on the underlying structure of the con­

ditional probabilities generating growth and mortality. 

These implications stem primarily from the fact that e is time-invariant. 

As a result, early realizations of n contain information about the parameter 

that determines the distribution of its future values; and this will be true no 

matter the time that elapses in the interim. Put differently, the dependence in 

the joint distribution of nt and n1 does not erode away as t grows large. This 

is seen most clearly in the special case where, conditional one, the <nt> are 

an i.i.d. process. In this case, as can easily be verified, for any n' 

P < • I nk = n' > = P ( • I n' ) , 
nt n 

which is independent oft and k. This strong invariance property is destroyed 

when we allow e to index the more general family of stochastic processes per­

mitted in (3). In the general case we have, for any Z€N, 

and since P (z I nk=n' ,0) can depend upon t and k, so can Pn (z I 11k=n'). 
11 t : .... t 

However, the passive learning model does imply that the dependence in this 



V(x,t} 

• 

Hazard 
Rate 

0 

\V(O,t) 
\ 

\ 

o" 
\. 

1 2 

t*(0}=2 

1 2 

3 

3 

23 

4 5 6 7 t 

t*{1}=5 t*(2}=7 

4 5 6 7 t 

•·~ ·'c· -::;7~~~~~~::'..~::;~~~)~·?· ~·,~ ' 
, -o,_- '.· .. _.·_~-~:~_:::\{~,,:~~-;-~:~::_. 



-', .. 
24 

latter distribution has two sources, one of which will not erode away as t 

grows large. Though the dependence in the process generating nt conditional on 

0 (in the integrand) may erode away with t (it will if the process generating 

nt is ergodic), the dependence that results from the effect of the realization 

of nk on the posterior for 0 will not. 

This argument can be formalized and then used to produce a test for the 

passive learning model based on differences between the marginal distribution of 

St= S(nt), and the distribution of st conditional on s 1. Actually we can do 

better than this and produce tests based on a comparison of the distribution of 

St conditional on St_1, ••. ,St-k to the distribution of St conditional on 

St_,, ••. ,st-k' and s 1, for any k~O. With a positive k this test is likely to be 

more powerful against alternatives in which the value of the parameter deter­

mining the firm's distribution of profits evolves in a Markovian fashion over 

time (and one such alternative is the active learning model considered in the 

next section). 

Our test is a direct implication of the following theorem. The theorem 

states that if we choose~ group of years for which there is information on 

past realizations of n, and derive the family of posterior distributions for 0 

conditional on possible n-realizations in those years, then members of the 

family with higher past n-realizations will stochastically dominate those with 

lower n-realizations. 

11. Theorem (conditional distributions for nt) 

Lett and k be positive integers with t~k, and (i;,···,ik) be any selection 

of k distinct elements from {1, ... ,t-1}. 

2 2 (n. , ... ,n. ) are arbitrary 
, 1 , k 

• I 1 1 I Then 1f n1 = (n. , ... ,n.) and n2 = 
- ,1 ,k -

(i 1, ... ik) histories of n satisfying ~1 > ~2, and 

xt is defined as in (8), 
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Proof. For any Z€N and~= ~1 or ~2, 

(11.1) 

where 

Now use Bayes law to show that for nt- 1~n;-1 

t-1 I t-1 I t-1 I t-1 I p(n ~1,0)p(n* ~2 , 0) - p(n ~2 ,0)p(n* ~1,0) 

I t-1 I t-1 I t-1 I t-1 = K [p(~1 n ,0) p(~2 n* ,0) - p(~1 n* ,0)p(~2 n ,0)] ~ o, 

where the inequality is a trivial consequence of n being determined by nt- 1 

t t t Since conditioning on n €At= <n : xt(n) = 1} does not affect the 

Rr-ordering, we have 

(11.2) 

Given (11.1),(11.2) and lemma 2, the theorem requires only that 

p ( • In ) ~ .er p ( • I n2). But by lemma 4, this condition is satisfied provided 
0 -1 0 -

whenever 01 ~ 02. Take any ~1 > n2, then 

= J [pnt(dn, ~1 I e1) Pnt<dn, ~2 I 02 ) Pnt{dn,~~2 1 e1)Pnt(dn,~1 I e2 )J > o 
-.~,-----~-·-
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where the integral runs over those ~t whose indices are in {1, ••• ,t-1} but are 

not in {i 1, ••• ,i }, and the inequality results from (3.ii). 
IC 

[ ] 

The empirical implication of theorem (11) that we will be using is that it 

k-1 
implies that for any k ~ O, and any (nt_1, ••• ,nt-k) €N , 

whenever n1 > 

13. Corollary 

I 
n • 

1 
Corollary (13) is an immediate implication of (12). 

Lett and k be nonnegative integers with t>k, and let xt be defined as in 

Theorem a. Then 

is strictly increasing in s 1 for almost every (st_1, .•. ,st-k). [ ] 

That is, expected future size conditional on k past sizes and survival 

will be strictly increasing in the initial size. This is because the para­

meter which determines the conditional distribution of th~ payoff relevant~ is 

time-invariant. In models in which these conditional distributions depend on a 

parameter which evolves over time in response to, say, the outcomes of a firm's 

exploratory investment, corollary (13) will not necessarily be true. We turn to 

these types of models now. 
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Section 3. Active Learning 

This section considers the empirical implications of a model (originally 

developed by Ericson and Pakes, 1987), in which firms can invest to improve the 

value of a parameter, say w, which determines the distribution of its profits. 

In the active (in contrast to the passive) learning model, management is assumed 

to know its current value of w (and hence the actual profit distribution it 

faces), and makes current production decision based on it. On the other hand 

w itself evolves over time in response to the outcomes of the firm's own invest­

ment process, and the investments of other firms operating in related markets. 

These outcomes are stochastic; in the active learning model the firm is 

investing to explore and develop alternative market niches which may, or may 

not, prove profitable. 

In this model the distribution of futures states is determined entirely by 

the current state and the optimal investment policy. It is, therefore, indepen­

dent of the age of the firm per se. Startup is treated as the appearance of an 

idea which, given current market conditions, appears worth exploring. Formally 

it is an initial location on thew-axis. If the idea requires substantial suc­

cessful development before it can generate noticeable profits, the initial w is 

associated with a distribution of profits which is degenerate (or nearly so) at 

zero. Successful investment will enable the idea to be embodied in a more pro­

fitable marketable good or service. Unsuccessful exploration may well convince 

the entrepreneur that the whole idea is not worth pursuing and lead to liquida­

tion. 

Ericson and Pakes begin with a three-dimensional state vector and then show 

how, under certain conditions, the three dimensions can be collapsed into two; 

____ one providing the outcomes of the firm's own investments relative to those of 
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its competitors, and one providing the strength of the market per se (a factor 

which can be affected by exogenous shifts in demand and supply conditions). The 

latter has a role similar to that of output price in the passive learning model 

(its value is the same for all firms at a given point in time), and we shall, 

for expositional simplicity, ignore it here also. We provide a brief descrip­

tion of the active learning model focussing on those results needed to compare 

its empirical implications to those from the passive learning model. Again we 

consider only those empirical implications that are nonparametric in the sense 

that they require only mild regularity conditions on the relevant functional 

forms. 5 

The Active Learning Model 

We will assume that the state space is countable and index it by the inte­

gers so that W€Z. Each firm operating in period tis endowed with an wt. 

Higher values of ware better in the sense that the distribution of the payoff 

relevant ij is stochastically increasing in w. Management has three choices to 

make in each period, and they are made to maximize the expected discounted value 

of future net cash flows. First the firm must decide whether to operate at all. 

If it decides against it receives a liquidation value oft and exits never to 

reappear again. If the firm does operate management must decide on both a level 

of current input demand, and an amount of exploratory investment, say xt. Given 

a realization of ij, current input choices will determine current operating pro­

fits, say rr(ijt). Current cash flows are 

where c(•)>O, and can be decreasing in w to reflect the possibility that more 

profitable firms may find it easier to raise finance capital. Increases in 
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current investment decrease current cash flow but make higher values of wt+l' 

and hence higher future profits, more likely. In particular, let Tt+l=wt+l-wt, 

and Jt be the information available to management at t. Then we assume that 

for Z€7., 

where PT ( • I xt) is stochast i ca 11 y increasing in x. Hence, to forma 1 i ze the 

firms decision problem we will require the following primitives. 6 

1. Assumption (primitives of the active learning model) 

i) Jpij = {Pij(• I w):w€Z}, is a family of distribution functions indexed by 

w. The family has support, N, a compact subset of Z containing zero, and 

exhibits a weak first order stochastic dominance ordering in w, i.e. 

P (• I w) > P (• I w') ij -sw ij 

whenever w>w'. It is assumed that Rim P (0 I w)=1. (This, together with the 
<..>-t--oo ij 

assumption that rr(O)=O, insures that for small enough w payoffs are zero with 

probability one.) 

i i ) JP = {P (• !x):xt=.:JR+> is a family of distributions with support T, 
T T 

a compact subset of Z, exhibiting a weak first order stochastic dominance 

ordering in x, i.e. 

P(•lx)> P(•lx') 
T _sw T 

whenever x>x', and satisfying the condition that 

so that the firm's product cannot be improved-wftliout some investment. The 
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family of densities (pT(· I x):xeJR+}, is (pointwise) differentiable in x with 

derivatives which are decreasing in x for T>O, and increasing in x for T<O 

(this insures that the investment problem is concave and therefore has a unique 

solution}, and both pT(O Ix) and pT(-1 Ix) are strictly positive for all x less 

than any finite upper bound (these are technical conditions whose roles are 

explained in more detail below). 

iii) n(•) and S(•) are increasing functions of n, and c(•) is a non­

increasing function of w, into JR+. rr(•) provides the profits, and S(•) provi­

des the size, of the firm; while c(•) provides the cost of a unit of x. n(O)=O, 

and c(•) is bounded away from zero. [ ] 

We now consider management's choice of policies. Letting w0 be the initial 

state and xT be the indicator function which takes the value one if the firm is 

active in period T and zero elsewhere, a policy, say d, is a sequence of func­

tions mapping available information into operating and investment decisions, 

that is 

with xT=xt(JT), xT=O implying xt+T=O for teZ+, xT = xT (JT}, and JT = 

{wT,XT_,,xT_,,wT_,, ... ,wo>- Recall that R(nT,wT,xT,XT) = n(nT)-c(wT)XT if 

xT=l and zero otherwise, so the expected discounted value of net cash flows 

given the policy dis 

where ~e(0,1) is a discount factor, and the expectation is taken assuming that 

the d-policy is followed. Note that (1) implies that R(•) is bounded, and let 
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V(w) = sup Vd(w) 
d . 

for each w. A policy d* will be optimal if Vd*(w) =V(w) for all w. If an opti­

mal policy exists management chooses it, in which case the expected discounted 

value of future net cash flow is V(w). Management will operate the firm if and 

only if V(w)>~, the liquidation value. The following theorem combines the 

results from Ericson and Pakes (1987) that are used in our derivation of the 

empirical implications of their model. The theorem is followed by diagrammatic 

and verbal expositions of its contents. 

2. Theorem (properties of the active learning model). 

A unique optimal policy and associated value function exist and they have 

the following characteristics: 

i) V(w) is bounded and nondecreasing in w. 

ii) The optimal policy, x~(JT) is bounded, depends only on current w, and 

is stationary, i.e. for all T 

iii) There exists a couple, (w,w) with, -oo < w ~ w < oo, such that 
= = 

x*(w)=O if w t {~': w ~ w' ~ w}. 
= 

-iv) There exists a second couple (~,w), with -oo < w ~ w ~ w ~ w < oo, such that 
= 

V(w)>t if and only if w>~, 

and 

[ ] 
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Parts (i) and (ii) of this theorem ensure that both the value function and 

investment policy are stationary functions of w, the value function being 

increasing in w. Figure 2 illustrates this with one special case developed in 

Ericson and Pakes. In the figure A(w) = Jn(n)Pn(dn I w), provides expected pro­

fits conditional on w. The value of w below which a firm exits, i.e. the~ in 

(2.iv), is determined by the point at which V(w) equals t. In this example 

~ = w, that value of w below which a firm stops investment. So positive 
= 

investment occurs at ~1, even though profits at that point are zero with 

probability one. The incentive for the investment is that it makes higher 

values of wt+1' and hence higher future profits, more likely. The monetary 

value of an increase in w is V(wt+1> - V(wt>· Since V(w) is bounded, after some 

point increases in w cannot bring with it much of a change in V(•). It follows 

that, after some w, it will not be in the firm's interest to invest at all. The 

w at which this occurs is thew of (2.iii). If w>w, no investment takes place 

and this insures (see 1.ii) that the firm's w does not increase (in fact it will 

stochastically deteriorate as other firms gradually develop goods and services 

that obsolete the product of this firm). Let T* be the largest value of T that 

- -has positive probability when x=x (recall that x=max x,(w), and that T* is 

finite by virtue of 1.ii). Then firms with wt< w have wt+i , ~+T* = w, and 

since firms with~< wt, w have wt+ 1 , wt, if wt, w so must be wt+,· This 

-explains the second statement in 2.iv; that is, if w0 , w, then, with 

00 
probability one, so will be the entire sequence {wt}t=o· 
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V(w} 
$ 

A w 

--- - x(w} 
t / ,. 

' 
~=tt> w 

= 
Figure 2: Policies in the Active Learning Model 

-Since all values of w,w induce permanent exit, there is no need to 

distinguish among them. It is, therefore, convenient to transform the state 

space by the map f(•}, where 

f (w) 

-

for w,~ 

elsewhere. 

Let K=w-~, so that if f(wt),K, so is f(wt+,>· We shall work only with values of 

f(w) in what follows. At the risk of some notational confusion, then, we also 

label its values by w. 

With this understanding, theorem 2.2, implies that the sequence {wt} 

together with any w0,K is a finite state Markov chain on n = {0,1, ••• ,K}. Its 

'zero' or 'death' state is absorbing, so the transition matrix for the chain is 

given by f, where 

f = [p. .] 
1,J 

and for O<i~K 

= [ 1,0 ••• ,0] 
p .. , , J 

(3) 
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L PT ( T= j- i I x* ( i )) , 
T~-i 

for Ki!lj>O 

for j=O. 

Two remarks are in order h~re. First, recall that realizations of ware 

not observable. Realizations of {St} are, but S(nt)=S(wt)+U(nt), where 

S(wt) = Js<nt)P(dn I wt), and U(nt) = S(nt)-S(wt). Since the distribution of 

U(nt) is also determined by wt, and {wt} is a Markov process, St is a sum of two 

Markov processes. But a process which is a sum of Markov processes is not, in 

general, Markov. So the observable {St} process is not Markov. 

The second point to note concerns the mortality of firms. Assumption 

(1.iii) insures that exists a finite n*, such that for n>n* 

. ( n mm p. O 
i€Q ,, 

Since Po,o = 1, this implies that all states 

but Oare 'transient'. That is, no matter its initial w, a firm will, with 

probability one, reach zero in finite time and stay there. Firms, like people, 

eventually die. 

Since the passive learning model implies that firms can survive forever 

there is a sense in which this latter result differentiates the active from the 

passive learning model. However, in order to make empirical use of this 

distinction we would require a very long time series of data. On the other 

hand the passive learning model did have the additional implication that the 

size distribution of surviving firms ought to be stochastically increasing in 

any finite range of ages (corollary 2.9). To investigate the properties of the 

survivor distribution in the active learning model we require some additional 

notation. 
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Let 

be an L-dimensional simplex, so that any q€QK+i can be regarded as a density on 

n. Note that a potential entrant with an w=O would not enter, so that the ini­

tial distribution of thew in a cohort is a po€QK. Similarly an w distribution 

for the survivors in a cohort is a q€QK. To obtain the properties of this 

distribution we require the operator r: Qk-+-0.k, which produces the density of 

survivors at t+1 from any q€Qk at t, i.e. 

k k 
c rq) . = I q. P .. 1 c 1- I q. P. 01 

J i=1 , iJ i=1 , ,, 

or, in matrix notation, 

-1 
r( q ) "' q '.E ( q '_Ee ) 

where e is a column vector of ones. Then rt(po) provides thew distribution of 

survivors at age t from a cohort with initial distribution po. Theorem 4, and 

the explanation which follows it, are a direct consequence of the results in 

Ericson and Pakes (1987). 

4. Theorem (the distribution of survivors) 

i) For any initial w-distribution (any p0eQk), 1imt->00 ft(po)= p*, where p* is 

the unique solution to f(p*)=p*. 

ii) If Ps(• I t,p0 ) provides the size distribution of firms surviving until 

period t from a cohort with an initial w-distribution of po, then P (•It, po) 
s 

converges * (pointwise) to P (•), where, for all z, 
s 

p*(z) =LP {ij~S- 1 (z) I w=j}p~. 
s . ij J 

J 

[ ] 
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(4.i) states that thew-distribution of the surviving firms converges to an 

invariant distribution (invariant to both the initial distribution, and to the 

passage of time) whose density is given by p*. (4.ii) provides the analogous 

limit property for the size distribution of the surviving firms. The Ericson 

Pakes paper actually goes one step further than this and shows that, given some 

additional regularity conditions on the location of Po and on the transition 

probabilities, there will be a finite t*, such that for any po 

(5) 

provided t>t*. That is, not only does the size-distribution of surviving firms 

converge to an invariant distribution, but after some t* the convergence will be 

'monotone' and the size distribution of surviving firms will stochastically 

increase from period to period (just as in the passive learning model). 

Still, however, the empirical implications of the active learning model on 

the evolution of the size-distributions of surviving firms are weaker than those 

of the passive learning model. In particular the active learning model does not 

predict that the size distribution will be stochastically increasing at each 

age. On the other hand, the active learning model does not bar this event from 

occurring, and it can predict that the size distribution will be stochastically 

increasing at later ages. 

There is, however, at least one set of observable implications which 

differentiate between the two models more sharply. Recall that in the passive 

learning model the parameter that determines the distribution of profits is 

time invariant. This induces a dependence between the initial size of a firm 

and the size at any future date. Indeed as equation (2.12) shows, the passive 

learning model implies the stronger result that the conditional distribution 

of size at t, conditional on the immediate past sizes and the initial size, 



.. 
37 

will always be strictly increasing in the initial size. In the active learning 

model the parameter determining the firm's profitability distribution, i.e. w, 

evolves over time. Later year size realizations are governed by a different 

value of w than those from earlier years and, as time passes, the dependence 

between the later and earlier values of w, and therefore of size, dies out. 

This is also true for the conditional distribution of St; i.e. the distribution 

of St conditional on immediate past values of S should gradually become 

independent of initial year sizes. Moreover, since the dependence of wt on its 

history is only through the value of wt_ 1, we might expect that if we condition 

on immediate past sizes the dependence on initial size will die out relatively 

quickly. Indeed, in the extreme case where St= S(wt), so that sales is a 

deterministic function of wt' the conditional distribution of St depends only on 

St_,. In this case a three year panel is enough to differentiate the active 

from the passive learning model. 

When there is noise in the relationship between wt and size, we must base 

our distinction between the active and the passive learning model on a more 

formal property of the stochastic process generating size conditional on 

survival (<P-m~ixing). a oo Let (St}t=l be that process (it is described formally in 

Appendix 2). Then, the active learning model implies that as T grows large the 

a a 
distribution of (Sx+T' Sx+T+1, ... ) becomes, roughly speaking, independent of 

a a 
realizations of (S1, ... ,Sx). More precisely, we have lemma 6 (which is proved 

in Appendix 2 and its implications (explained immediately after presentation of 

the lemma). 

6. Lemma (<P-mixing of the {S~} process). 

Let {S~>;=1be the stochastic process formed from the distribution of sales 
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conditional on survival and any initial w0e(1,2, ••• ,K}, 

a a · a generated by possible realizations of Sx' S 1 , ••• ,S. x+ Y 

geometric rate, i.e. 

with ~ < 1. 

and My be the a-algebra 
X -

Then {Sa} ~-mixes at a 
t 

[ ] 

Lemma 6 states that any dependence between size realizations that occur 

after x+T, and size realizations that occur before x, goes down geometrically in 

T. It implies that fork~ O 

for some ~<1, on a set of (st_ 1, .•. st-k) with probability one. That is by 

choosing k sufficiently large we can make the conditional distribution of St, 

conditional on st_1, ... ,st-k' as close as we like to being independent of s 1 • 

Note that equation (2.13) insures that this is not the case in the passive 

learning model. The next corollary is an immediate implication of (6) and (7). 

8. Corollary 

For any k ~ O 

E(s,) I E[St I st_,=st-1•···•st-k=st-k'S1=s,,xt=1] -

E(St I st_,=st-1' ... ,st_k=st-k'xt=1) 

on a set of (st_,, ... st-k) with probability one. [ ] 

Recall that corollary (2.14) insures that in the passive learning model the 
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conditional expectation of St, conditional on any realization, (st_1, 

st_2, .•. st-k's1) and survival until t, is strictly increasing in s 1• Hence 

corollary (8) differentiates the active from the passive learning model. The 

distinction between the two models is particularly striking in the special case 

where St= S(wt), in which case Ak=O for k>1. We now consider the econometric 

techniques needed to bring this distinction to data. 
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Section 3: Estimation and Testing 

There are two nonparametric implications of the models we are considering 

that will be investigated empirically. The first is whether the size 

distribution of surviving firms is stochastically increasing in age; or 

whether, for all t 

Ps(•lt) > Ps<•lt-1). _sw ( 1 ) 

The passive learning model implies it must, while the active learning model 

implies it may, but need not - at least in the early ages. The second question 

posed of the data is whether, for different values of k, 

(2} 

is strictly increasing in s 1. Again the passive learning model says it must be. 

But here there is a sharper contrast with the implications of the active 

learning model. The active learning model implies that, fort large enough, 

the regression function in (2) cannot depend on s 1. To check whether (1) seems 

consistent with the data, we will simply plot and compare the size distribution 

at different ages. lt is more difficult to present a pictoral representation 

of the regression function in (2). Our analysis of its properties must, 

therefore, be somewhat more formal. 

This section develops an intuitive nonparametric estimator for (2), and then 

considers tests of whether or not it is increasing in s 1. Indeed, since both 

models imply that the regression function is nondecreasing in s 1, we employ a 

two-part testing sequence. We first test whether (2) is weakly increasing in 

s 1 . If this were not the case we would doubt whether either of our models 

provided an adequate approximation to the process generating the data being 

analyzed. If, on the other hand, the hypothesis of weak monotonicity 
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is acceptable, we move on to test the null of whether the regression function 

does not depend on s 1 against the alternative of it being strictly increasing 

in that variable. Acceptance of both null hypotheses is interpreted as support 

for the active learning model, while acceptance of only the first is interpreted 

as support for passive learning. 

To obtain our estimator of the regression function we define J positive 

numbers, say (a.}~ 1 , and use them to break JR into cells, as in figure 3. 
J J= + 

We then define the function a(•): JR+ ➔ [1, ... ,J] which assigns to each St 

the number of the cell it falls into, i.e. for j=1, .•• ,J, 

if and only if, aj-i <st, aj , (3a) 

where it is understood that a0 = o, and aJ = oo. 

O a 1 a2 a3 

Figure 3: The Function, a(St). 

Similarly fork< t define the function ak(•): jRk+l ➔ [1, ... ,J]k+l, by 
+ 

k t-1 
a (S ) = (a(St-l), a(St_2), ... , a(St-k), a(s1)}, ( 3b) • 

In the empirical analysis we treat all values of S that fall into the same 

cell as equivalent (for the theoretical properties of the test statistics we 

require that the cell or 'band' width go to zero at an appropriate rate). For 

our purposes, then, a (St-l' St_2, ... ,st-k's1} history of a firm which 
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survives until period tis one of the Jk+1 possible values of ak(st-1). Each 

of these values is a k+1 dimensional cell, and we denote the set of such cells 

by k k+1 {ap;p=1, •.• ,J }. Our testing procedure is based on estimating the mean 

and the variance of the regression function in (2) in the intervals defined by 

these cells. 

More precisely let µk and vk denote the vectors 

], 

and (4) 

--k --k k k Further, letµ and V be the sample analogues ofµ and V (that is the vector 

of cell means and within cell variances) from a randomly drawn sample from the 

population of interest. YNk will denote the vector containing the square root 

of the number of firms falling into each cell. Then, provided that the size 

realizations of the firms in the population are independent of one another, the 

central limit theorem and the law of large numbers imply that 

while (5) 

where diag[x] denotes a diagonal matrix with x on the principal diagonal,~> 

reads converges in distribution, _f_> denotes convergence in probability, and 

N{•,•) denotes the multivariate normal distribution. 

Now consider possible values of u-k = [a(St_ 1), ... ,u(St-k)]. The test for 

weak monotonicity of the regression function in s1 is a test of whether, for 

k all u-k € [1, •.. ,J] 
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whenever u1 ~ u2. Similarly the test of whether the realization of s1 does 

k not effect the regression function is a test of whether for u* € [1, .•• ,J] , 

whenever u1 t u2 • 

More formally assume that, for each u*, the vector µk is ordered by the 

associated values of u(S 1 ). Then each of the weak monotonicity constraints 

can be represented as a linear inequality constraint of the form r'µk ~ 0, 

when r' = [0, ... 0,-1,1,0, ... 0]. Gathering all such constraints into the 

matrix R, the null hypothesis of weak monotonicity is written as 

H~: Rµk m r ~ 0, (6). 

Note that R is of full row rank, say C. We want a test of (6) under the main­

tained hypothesis that r c jRc. 

To this end we consider the following two estimators for r, 

r = Rµ (7a) 

and 

AM 
r = arg min (7b). 

r~O 

r is an 'unconstrained' estimator of r obtained from substituting sample 

for population means. rM is a 'constrained' estimator, an estimator forced to 

satisfy the inequality constraint in (6). Subject to that constraint, it is 

obtained by minimizing a quadratic form in (r-r), where the weighting matrix, 

R(Vk]- 1R1 , is chosen to be the variance-covariance of r under the null that 

k Rµ = 0. 
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Since the quadratic form in (7b) ;s nonnegative and equal to zero ;fr= r, 
... ...M 

if r ~ o, r = r. Figure (4) illustrates possible solutions for rM in the case 

where C = 2. The ellipsoids represents sets of r which produce a constant 

(r-r)'R(vf<]-1 R'(r-r) value. 

If 

/ ,,,,. 
I 
I 

,cr1,r2 >1 
I 

I 

Figure 4. Constrained and Unconstrained Estimates of r 

min 
00 

0 then large realized values of this statistic are evidence against HM. Indeed, 

Barlow, Bartholemew, Bremner, and Brunk (1972) have shown that for all a~ O 

2 C 
= Pr{xM > alr=O} - f W(c)Pr{x~ > a} 

c=O 
(9a) 

(8) 
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as sample size grow large, where 

W(c) = Pr{rM has exactly C zero components lr=O}, {9b) 

and x1:._ denotes a chi-square deviate with precisely c degrees of freedom 
C 

(c=O, ••• ,C). Thus, if x~ is the realized value of x~, TM[x~] provides the 

"p-value" (or the probability of type I error) of a test that would reject 

the null if x~ = x~ when the true value of r was zero. The p-value when r is 

any value greater than zero cannot be larger. 7 

Unfortunately the orthant probabilities, that is the values of {W(c)!~o 

needed to obtain (9a), are difficult to calculate. As a result we obtain simu­

lated estimates of their values, say Wc, and provide a simulated estimate of 

and ( 10) 

W' = [W0, .•. ,Wcl, whereas X' 

Sjnce the Wc can be regarded as cell means from repeated draws from a multino­

mial distribution (where NSIM, the number of simulations, is the number of 

draws), the variance of TM[a] about its expected value of TM[a] can be obtained 

from the formla for the variance of a multinomial as; 

A -1 
Var[TM(a)] = X'[diag W-WW']X(NSIM) 

So, along with TM(a), we provide an estimate of its variance obtained from 

substituting the simulated for the actual values of Win this variance formula. 

We now move on to the test of the null hypothesis that the regression func­

tion in (2) does not depend on s 1 conditional on it being nondecreasing in that 
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variable. That is we consider a test of 

under the maintained hypothesis given by H~ in (6). Once again rM in (7b) will 

serve as our estimate of r given H~, while under H~ the estimate of r is zero 
A 

(thus, in figure 4, the ellipsoids bring us from r to the estimator which abides 

0 by HM, while the dashed lines bring us from the latter to the estimator which 

abides by H~). A measure of the distance between the estimator obtained con­

ditional on the null and the estimator which is only constrained to satisfy the 

maintained hypothesis is given by 

Once again, for all a>O 

2 M' k - 1 AM 
X = r R[V] R'r, z 

C ~ 
Pr{x~>a I r=O} ➔ L W(c)Pr<x2>a} 

c=O c 

as sample size grows large, where, in this case 

W(c) = Pr{rM has exactly C positive components I r=O} 

( 11 ) • 

( 12a) 

(12b) 

and x2 is defined as above (c=0,1, ... ,C). 
C 

Letting x02be the observed value of 

2 0 A 0 
x2 , we will provide estimates of T2[x2], say T2[x2] (obtained from simulating 

A 0 
the W(c)), together with an estimate of the variance of T2[x2]. 

It is useful to compare this sequence of tests, that is the test for weak 

monotonicity under an unconditional maintained hypothesis coupled with the test 

of the hypothesis that s 1 has no effect on the regression function conditional 

on the maintained that any effect is nondecreasing, to the more familiar direct 

test of whether s 1 has no effect on the regression function conditional on an 
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unconstrained maintained hypothesis. One test of the latter would check whether 
A 

a measure of the distance between rand 0, say 

x2 = 
T 

is close to zero. Under the unconstrained maintained hypothesis x~ has the 

familiar chi-square distribution with C degrees of freedom. Since the proper­

ties of Lagrange multipliers insure that 

we have from (7) and {11), 

x2 = x2 + x2 
T M Z 

with probability one. That is the observed value for the test of no effect of 

s 1 conditional on an unconstrained maintained, say x~, will be just the sum of 

XO d 0 Man x2. For comparison, our tables will also provide the p-value of x~, 

TT[x~] (these can be found in standard tables). 
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Section 5. The Data and the Empirical Results 

The data used in this study were obtained from the Wisconsin Department of 

Industry Labor and Human Relations' {DILHR's) records for unemployment insurance 

{UI) coverage. The records for the years between 1978 and 1986 {inclusive) 

were linked together by UI account number by David Neuendorf and Ron Shaffer 

{see Neuendorf and Shaffer, 1987). 8 

Any private employer hiring at least one worker and paying at least $1,500 

in a quarter is required to file information on the number of workers, wages, 

and UI tax contributions to DILHR. For the purposes of our analysis the first 

time it does so is treated as the 'birth' of the firm. Size in that, and in 

subsequent, years is measured by the number of employees. 

The unit used to match observations over time was the UI account number. 

When a new business changes ownership or legal status, DILHR freezes its 

current account and either creates a new account, or, in the case of an 

acquisition, merges the employment information into another account. When this 

occurs the old account has a successor code, and a new account, if created, 

will have a predecessor code. New accounts which were a result of a change in 

legal status (and therefore had a predecessor code) were separated out and not 

treated as a part of a birth cohort in this analysis. Analogously we use the 

successor code to distinguish between attrition due to liquidation, and attri­

tion due to mergers (and other changes in legal status). A major advantage of 

this type of data is that it can distinguish between these two sources of 

'exit'. 

Tables 2 and 3 provide information on the evolution of the size distribution 

of the surviving firms from the 1979 birth cohort in retail and in manufac­

turing, respectively (recall, from table 1, that these two sectors account for 



Table 2: Evolution of Size Distribution Over A e Retail: 1979 Cohort 
(Entries are proportion of active firms with employment ;;, X 

Age Cross 

X 1 2 3 4 5 6 7 8 1978 

1 67.0 73.3 76.8 77. 7 78.2 80.0 80.3 83.9 85.5 
2 47.6 52.0 57.5 57.8 58.7 62.9 63.1 66.0 72.5 
3 34.6 40.5 42.9 45.7 47.9 51.0 50.5 53.6 61.3 
4 26.4 33.7 34.9 36.5 37.7 41.0 40.1 43.7 52.2 
5 22.3 28.2 29.4 30.7 32.5 35.0 34.2 38.3 45.0 

10 11.1 12.7 13. 7 14.7 17.2 17.5 18.9 21.7 25.5 
15 6.7 7.5 8.7 10.1 10.0 9. 6 I 10.8 14.6 16.9 
20 5.3 6.2 6.4 7.0 7.5 7.9 8.2 9.8 12.2 
25 4.2 4.9 5.4 5.6 5.7 6.0 6.7 7.3 9.3 
30 3.1 3.7 3.7 4.5 4.6 5.3 I 6. 3 6.2 I 7.2 
50 1.0 1.0 1.5 1.8 1.8 2.1 2.2 3.2 3.3 

Count 1180 973 816 713 610 571 539 464 22,568 

Mean 5,42 5.98 6.41 6.87 7.14 7.71 7.85 8.80 14.02 

Mortality 
[60.67b] Rate 17.54 13. 31 8.73 8. 73 3.31 2. 71 6.27 

Hazard 
Rate 17.54 16.14 12.62 14.45 6.39 5.60 13.73 

Number Subsequentl~ 
"Transferring Out" 

95 72 59 5 3 1 0 

Notes to table 2: 

a. Size distribution of all firms active in 1978 (1986) regardless of birth cohort 
b. Mortality rate over the eight year period. 
c. These are firms active at the relevant age but who "transferred out", 

due to a change in legal status, at some point thereafter. They are not 
included in the size dis tri bu tion calculations at that age. 

,: 

Section a 

1986 

82.5 
74.8 
64.1 
55.2 
47.8 
27.5 
18.6 
13.6 
10.6 
8.5 
4.2 

23,435 
~ 
I.O 

15.23 
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Table 3: Evolution of Size Distribution Over Age Manufacturing: 1979 Cohort 
(Entries are proportion of active firms with employment ;> X) M• 

Age Cross a Section 

X 1 2 3 4 5 6 7 8 1978 1986 

1 86. 9 86.31 1 71.9 78.6 80.9 89.5 90.2 90.9 93.3 92.1 
2 49.9 61.2 65.1 71.7 73.1 80.8 82.9 82.5 87.2 89.0 
3 38.8 49.6 55.7 63.6 64.3 69.8 75.0 72.7 80.7 78.4 
4 32.4 40.6 44.3 53.0 55.0 62.8 66.5 65.0 74.9 72.9 
5 25.1 33.7 38.8 45.0 47.8 55.2 57. 9 57.8 70.6 68.4 

10 8.6 18.1 20.9 21. 7 23.1 31.4 31.4 34.4 54.1 51.3 
15 4.3 9.1 9.5 13.1 15.4 19.2 18. 9 1 22.7 43.9 40.3 
20 3.1 3.3 6.0 9.1 9.3 12.2 12.8 15.6 36.8 34.1 
25 2.8 2. 21 3.4 4.6 6.0 9.3 9.8 12.3 31.2 29.3 
30 2.1 2.1 2.0 1 5.0 7.6 8.5 9.7 28.0 25.9 1.5 
50 .6 .7 .9 1.5 2.8 4.1 6.1 6.5 19.6 18.3 

Count 327 276 235 198 182 172 164 154 6,987 7,789 V1 
0 

Mean 4.92 6.27 7.09 8.10 8.79 10.79 12.38 13.34 73.81 61.70 

Mortality 
[52.91b] Rate 15.60 12.54 11.31 4.89 3.06 2.45 3.06 

Hazard 
Rate 15.60 14.86 15.74 8.08 5.49 4.65 6.10 

Number Subsequentli 
"Transferring Out" 

13 11 10 1 0 0 0 

Notes to table 3: 

Notes a, b, and c, are identical to the same notes in Table 2. 
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80 percent of the employment in our sample). The row labelled 'count' gives the 

number of firms active in the column age. The row labelled transferring out 

provides the number of firms which were active in the column year but trans­

ferred out (due to a change in legal status) before 1986. This source of 

attrition accounts for about 8% of the 1979 cohort in retail trade, and about 

4% in manufacturing. This should be compared to the extent of liquidation 

(the figures given in the row labelled mortality rates). Over 60% of the 

1979 birth cohort in retail liquidated before 1986, and the analogous figure 

in manufacturing was over 50%. Since liquidation was quantitatively so much 

more important a source of attrition in these data, we simply omitted those 

firms who subsequently changed ownership from the analysis. 9 

The passive learning model implies that the proportion of surviving firms 

with size greater than any X, or the numbers in each row of the body of the 

tables, should increase with age (i.e., as we move from left to right on the 

table). We have 'squared off' the adjacent transitions which do not satisfy 

this condition. On the whole, the consistency of the data with the hypothesis 

is quite striking -- particularly in retail. Of the seventy-seven possible 

adjacent transitions, only six are decreasing, and none of them indicate a fall 

of more than 1.0%. In manufacturing there are nine transitions which decrease; 

two fall by more than 1.5%, and two more by .6%. Given the possibilities for 

reporting and recording errors in this type of data (see Neuendorf and Shaffer, 

1987), if the null were true, we would not find these results to be 

'surprising'. That is, to us these results are quite consistent with the impli­

cations of passive learning -- indeed amazingly so for retail trade. Note 

also that, in both sectors, the means are strictly increasing in age. 
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There are also some interesting contrasts in the evolution of the size 

distribution between the two sectors. The size distribution in the initial year 

is not much different between the two sectors; indeed if anything the initial 

size distribution is slightly 'larger' in retail trade (retail has the larger 

initial year mean, 5.4 vs. 4.9, and a higher percentage of the firms in the 

largest size classes). However, by age eight this ordering has turned around. 

That is, by age eight the size distribution for manufacturing is stochastically 

larger (even in the strict sense) than that in retail (the means are 13.3 vs 

8.8, and manufacturing has over twice the fraction of firms with 50 or more 

employees). The size distribution is stochastically increasing in age in both 

sectors, but it is increasing at a much more rapid rate in manufacturing. 

Moreover, the age eight distribution in retail is quite close to the cross­

sectional distribution of all retail firms active in 1978 (or 1986, see the 

last two columns of the table). Both have about 3% of their firms with more 

than 50 employees (though the cross-sectional distribution still has the larger 

mean, 14 vs. 9). In contrast, the age eight distribution in manufacturing is 

much smaller than the 1978 cross-sectional distribution in that sector. In 

manufacturing the cross-sectional distribution has more than three times the 

fraction of firms with more than 50 employees (19.6 vs. 6.5), and a mean which 

is almost six times that from the age eight distribution (73.8 vs. 13.3). If we 

were to think of the cross-sectional distribution as an approximation to the 

limit distribution (even though formally it is not), then we might conclude that 

by age eight the retail cohort had almost reached it, but the manufacturing 

cohort was still nowhere near its limit distribution. Indeed, if we also 

assumed that eight years was enough time to form a fairly precise posterior 

about a time invariant profitability parameter, then we would conclude that 



53 

the data from retail was supportive of the passive learning model, but the data 

from manufacturing was not. 

A more formal check of the consistency of the data with the two models can 

be derived from an analysis of the regression for size at age eight on size in 

the immediate preceding periods, and size at age one. Both models imply that 

this function will be weakly increasing in initial size, but the passive 

learning model implies that it will be strictly increasing in that variable, and 

the active learning model implies that it will not. 

Tables 4 and 5 provide some evidence on the relevant hypothesis. Because 

there were less than half the number of entering firms annually in manufac­

turing, we aggregated the 1979 and 1980 manufacturing cohorts and examined the 

regression for expected sales at age seven of the aggregated cohort. The cell 

size cutoffs were set at the beginning of the analysis and not changed 

thereafter. For the weak monotonicity, and the zero conditional on monotoni­

city, restrictions, we have presented two sets of 'p-values' for each observed 

value of the test statistic. The first column provides the simulated estimates 

of the true p-values as explained in section 4 (the estimated standard errors of 

these estimates appear, in parenthesis below their values). The second column 

provides the p-value that would be obtained if each 'orthant' had equal probabi­

lity. In this case 

which can be easily calculated (here (y) is notation for the numbers of com-
x 

binations of y elements taken x at a time). The orthants would have equal 

probability if the constraints being tested were independent of one another -

which they are not. On the other hand the figure in column (2) is trivial to 
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Table 4. Tests for Mean Independence of the Distribution of St 

Conditional on S t-l' ••• , S t-k' from s1 

Data: 
a 

Retail, 1979 Cohort and t=8, 

Size Cutoffs: 2,S,10,25,SO, +co 

Weak Zero Conditional 
k Monotonicity b on Montonicity b 

Unconditional 
Zero 

1 

2 

3 

4 

5 

a 

C x~ p-values 
(1) (2) 

17 

22 

25 

22 

19 

1.1 1.00 .99 
(.00) 

6.5 .88 .80 
(.03) 

11.5 .66 .52 
(.OS) 

19.1 .OS .OS 
(.01) 

17.6 .os .07 
(. 01) 

C XO p-values 
z (1) (2) 

17 

22 

25 

22 

19 

37.2 .oo 0 
(.OO) 

23. 9 .oo .02 
( .oo) 

28.0 .oo .01 
(.OO) 

19.1 .04 .08 
(.01) 

13.6 .12 .19 
(.02) 

Of x¥ p-value 

17 38.2 .oo 

17 30.4 .11 

25 39.5 .03 

22 38.2 .02 

19 31. 2 .04 

Cohort dimensions: number in cohort= 1,275; number of firms reaching 
age eight= 464. 

b The value in column (1) is a simulated estimate of the true p-value and 
the value just below it is the standard error of this estimate. Ten 
simulation draws were used to calculate the estimates of the orthant 
probabilities. The value in column (2) is obtained by assuming each 
or than t has equal probability ( see the explanation in the text). 
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Table 5. Tests for Mean Independence of the Distribution of St 

Conditional on S t-l' ••• , S t-k' from s 1 

Data: Manufacturing, Combined 1979 and 1980 Cohorts 
for t = 7 .a 

Size Cutoffs: 2,s,10,25,50, + 0, 

Weak Zero Conditional Unconditional 
k Monotoflicity b on Mont8nicity b z5ro b 

C xM p-values C x p-values Df XT p-value 
(1) (2) z (1) (2) 

1 16 8.0 .54 .44 16 3.5 .57 .86 16 11.5 .78 
(.06) (.07) 

2 25 17.6 .19 .17 25 5.8 .79 .91 25 23.6 .55 
(. 03) (. 03) 

3 23 14.3 .28 .27 23 4.9 .81 .92 23 19.3 .67 
(.OS) ( .06) 

4 15 10.1 .13 .24 15 5.9 .54 .59 15 16.0 .39 
( .02) ( .03) 

a 
Firm dimensions: number born in cohorts= 737, number of firms 
reaching age seven= 353. 

b See note b to Table 4. 
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calculate and, if it tended to be very close to the figure in column (1), one 

might use it as a preliminary indication of the true p-value in situations where 

a 'close guess' might do (a strategy we actually followed). A comparison of 

column (1) to column (2) therefore provides some indication of just how close 

the guess would be for problems with structures similar to ours. The answer 

seems to be, quite close. 

Note first that there is no evidence against weak monotonicity in either 

retail or manufacturing. So both data sets seem to be consistent with the 

hypothesis that the regression function is nondecreasing in s 1, just as both our 

models predict. There the similarity in the test results on the two data sets 

ends. In retail it is clear that if we condition on one lagged value of S, that 

is on realizations of s7, and then vary s 1, firms with larger s 1 have larger 

expected sales at age 8. There is really no doubt about this point as the p­

value of the test statistic is essentially zero, so we would reject the null at 

any traditional significance level. The same is true if we condition on s 7 and 

s6; or on s7, s6 and s 5; or even on s 7, s 6, s 5 and s 4; and then vary s 1• In all 

these cases realizations of s1 have an independent effect on the expectation of 

sales at age eight. This dependence only starts to become insignificant at five,. 

percent significance levels when we condition on five past sales realizations. 

However, this might well be a result of the possibility that, with our limited 

amount of data, a fifth order nonparametric autoregression would provide an 

adequate approximation to the expectation for size generated from any stochastic 

process - (~-mixing or not; we come back to this point below). 10 

The results for the test of zero conditional on weak monotonicity are 

strikingly different in manufacturing. Table 5 indicates that, in manufac­

turing, once we condition on a single lagged value of s, i.e. a realization of 
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s6, any differences in s 1 do not effect the expected size at age seven. This 

time there is little doubt about accepting the null as the p-value is well 

above .5. Moreover, the same results obtain if we condition instead on s 6 and 

s 5; or on s 6, s 5 , and s 4; or s 6, s 5, s 4 and s 3. 

Tables 6 and 7 push the nonparametric analysis one step further and ask 

what order of Markov process provides an adequate nonparametric fit to the 

(expectation from the) stochastic process generating size conditional on sur­

vival in retail and in manufacturing. The tests in these tables follow a pat­

tern analogous to that in tables 4 and 5. That is, we first test whether first 

year size, size in the first two years, ••. , have a nondecreasing effect con­

ditional on the variables left in the regression function; and then test whether 

we can accept a zero effect conditional on any of the existing effects being 

nondecreasing. Again the results are quite clear. We never reject weak monoto­

nicity. In retail we need a fifth order nonparametric Markov process to ade­

quately approximate the data. Recall that this is precisely the same 'k' we 

needed before we could accept the null that the conditional regression function 

for size, conditional on st-l' ... , st-k' did not depend on s 1. In contrast, in 

manufacturing~a third order nonparametric Markov process seems ta provide an 

adequate fit to the data. That is, in manufacturing there is a distinction bet­

ween the orders needed for the ~-mixing and the Markov tests (compare tables 7 

and 5). Table 5 says that conditional on realizations of s6 realizations of 

s1 do not affect the regression function. Table 7 says that realizations of 

s5, and of s4, do. The active learning model explains this difference by 

allowing the parameter that determines the size distribution to evolve over time 

in a 'smooth' fashion, so that its value in year 5 will tend to be closer to its 
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Table 6. Markov Tests for Properties of Retail Regression Function 
for Size at Age Eight 

Markov 
Order 

for 
Tests 

7 + 6 

7 + 5 

7 + 4 

7 + 3 

7 + 2 

7 + 1 

Data: 
a Retail, 1979 Cohort 

Size Cutoffs: 2,5,10,25,50, + =b 

Weak 
Monoto8icity c 
C Xtt p-value 

(1) (2) 

13 9.5 .13 .20 
(.03) 

23 18.3 .16 .11 
(.02) 

32 18.3 .47 .32 
(.OS) 

38 18.7 .56 .48 
(.05) 

43 19.7 .76 .56 
(.03) 

48 20.1 .92 .67 
(.01) 

Markov Conditional 
on Montanicity c 
C x p-value 

13 

23 

32 

38 

43 

48 

z (1) (2) 

5.0 .48 .58 
(.05) 

5.9 .64 .87 
(.05) 

96 .oo .oo 
(.OO) 

100 .oo .oo 
(.00) 

107 .oo .oo 
( .00) 

149 .oo .oo 
( .00) 

Df 

Unconditional 
Ma0kov 

xT p-value 

13 14.5 .34 

23 24.2 .40 

32 114 .oo 

32 118 .oo 

43 121 .oo 

48 169 .oo 

a 
Cohort Dimensions: number in cohort= 1275; number of firms reaching 
age eight= 465; number in cells with> 2 = 291. 

b 
Cell Dimensions: possible number= 279,936; number populated 228; 
number with~ 2 observations= 54. 

C See note b, Table 4. 
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Table 7. Tests for Properties of Manufacturing Regression Function 
for Size at Age Seven 

Data: Manufacturing, Combined 1979 and 1980 Cohorts a 

Size Cutoffs: 2,5,10,25,50, + ~ b 

Markov Weak Markov Conditional Unconditional 
Order Mono to5ic i ty c on Montsnicity c Ma0kov 

for C xM p-value C x p-value Df x, p-value 
Tests (1) (2) z (1) (2) 

6 + 5 9 11.9 .02 .04 9 2.0 .65 .75 9 14.0 .12 
(.01) (.10) 

6 + 4 15 13.3 .09 .10 15 11. 7 .07 .16 15 25.1 .05 
(.02) (.02) 

6 + 3 25 15.S .24 .27 25 17.6 .11 .17 25 33.1 .13 
(.OS) (.03) 

6 + 2 31 16.1 .42 .42 31 61.3 .oo .oo 31 77 .4 .oo 
(.04) ( .oo) 

6 + 1 37 16.3 .66 .59 37 76.0 .oo .oo 37 92.3 .oo 
(.04) ( .oo) 

a Cohort Dimensions: number of firms= 737; number of firms reaching 
age seven= 353; number in cells with> 2 = 179. 

b 
Cell Dimensions: possible number= 46,656; number populated 217; 
number with~ 2 observations 43. 

C See note b, Table 4. 
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value in year 7, and therefore have a more distinct effect on the regression 

function for s7, then its value in year 1 will. 11 

Section 6. Concluding Remarks 

Our empirical results can be summarized quite succinctly. The nonparametric 

implications of the active learning model are consistent with the data in 

manufacturing, while the nonparametric implications of the passive learning 

model definitely are not. On the other hand, the nonparametric implications of 

the passive learning model seem consistent with the data in retail trade, while 

those from the active learning model do not. These distinctions ought to effect 

the type of models we use to analyze phenomena that are tightly tied to firm­

specific uncertainty and differences in output paths among firms within an 

industry; phenomena such as the behavior of capital markets when there are 

significant failure probabilities, or the evolution of the size distribution 

of output among firms within an industry. 

They also ought to effect how we account for liquidation induced attrition 

in the analysis of longitudinal firm-level data (with or without a detailed 

model of liquidation)~ As an example, consider the following excerpt from 

Davis, Gallman, and Hutchins, "Productivity in American Whaling: The New 

Bedford Fleet in the Nineteenth Century." 

"The age of the vessel (entered as age and age squared) also 

captures the effects of more than a single set of factors. 

Elements of wear and tear that influenced productivity, a 

technical characteristic that one might hope to capture in 

the age variable, are confounded with the consequence of 

qualitative differences among survivors; ineffective vessels 
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were transferred by their owners to other activities, were 

condemned at an early age, or were destroyed in service." 

Davis, Gallman and Hutchins (1987) p.26. 

This quotation illustrates how even one of the most traditional of variables 

(age), in one of the most traditional of settings (productivity analysis), can 

have its "structural" effects (as a measure of the likely extent of physical 

deterioration) confounded by the self-selection process induced by the endoge­

neity of the liquidation decision (it also demonstrates a remarkable 

understanding of the environment generating the data). Davis, Gallman and 

Hutchins (1987) do indeed find a significant positive first order effect of age 

on vessel productivity. Our models would allow one to separate out the struc­

tural coefficients by adding equations to account for the selection process. 

If the active learning model were relevant then the selection equations should 

be based on productivity realizations in the immediately preceding periods, 

but if the passive learning model were, then both age, and earlier years' pro­

ductivity, will also determine the selection probabilities. The simple non­

parametric procedures detailed in the previous sections ought to provide 

guidance as to which of the alternatives seems relevant. 

The results in section 5 also illustrate two more technical points. First, 

it is possible to develop computationally simple, yet rigorously correct, 

checks for the relevance of alternative stochastic control models with discrete­

ness in their choice sets that are independent of precise assumptions on the 

functional forms of interest. When possible, we think that the nonparametric 

implications of stochastic control models should be checked against data before 
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sinking alot of resources into building an estimation algorithm for a particular 

parametric form of a model. Finally, if we are willing to use either theory 

(as we have done}, or ad hoc argumentation to restrict our use of state 

dependence to refer to state dependence in ergodic processes, then there is a 

natural test for the distinction between state dependence and heterogeneity 

based on $-mixing. Heterogeneity implies that initial and later years realiza-

tions of a process will be dependent no matter the time that elapses in the 

interim -- whereas state dependence, in an ergodic setting, implies that they 

will not be. The distinction can often be made more powerful by conditioning on 

years just prior to the current year, and doing so made the tests quite effec­

tive in distinguishing among the alternatives on our, moderately sized, eight­

year panels. 
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Footnotes 

1. See Heckman and Robb, 1985, and the literature cited there, for a discussion 

of related issues in labor economics. 

2. Two points should be noted here. First we are ignoring the effect (on both 

n(•) and S(•)) of random variables which have the same value for different indi­

viduals at the same point in time, but differ in value over time (this would 

have occurred in our example if prices had varied over time). At the cost of 

complicating the notation we could add a price process to our problem without 

changing any of our major results (though some modifications would have to be 

made to the procedure that matches the model to data; see below.) Second, it 

should be noted that the interpretation of n(•) and S(•) as mappings from reali­

zations of n, would only be appropriate for our example if n were realized 

before input decisions were made (Marschak and Andrews, 1944). In this case 

both output and inputs can be determined from nt' and the size measure can be 

either output produced or inputs purchased. The extreme alternative is to 

assume there is no within-period adjustment ton (Zellner, Kmenta, and Dreze, 

1966), in which case inputs are chosen to maximize at+l E(t) nt+l F(lt+l) -

wt lt+l' where Et provides expectations conditional on current information (and 

will be defined more precisely below). In this case rr(•) and S(•) would be 

interpreted as mappings from Et nt+l to Et rrt+l' and input demand in period t+1 

respectively. There are, of course, intermediate cases where within period 

adjustment is either partial, or more costly (the appropriate characterization 

is likely to depend upon the characteristics of the industry being studied). We 

shall discuss the various alternatives in more detail in the empirical section, 

but for now suffice it to note that the results we focus attention on do not 

depend on the timing of the input decision. 
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3. The following counterexample shows that this would not be the case if we 

were to assume only a weaker first order stochastic dominance ordering. Let 

e = (01,02 ) with 02 > 01, and consider the following family of densities (with 

respect to a counting measure): p(17 = 2 I 02) = p(17 = 4 I 02) = 1/2, and p(1) = 

1 I 01) = p(11 = 3 I 01) = 1/2. Clearly, P71 (• I 02) ~s P71 (• I 01). However if 

11 1 = 2, the posterior is e = 02 with probability one, whereas if 111 = 3, the 

posterior is e = 01 with probability one; i.e., the posterior for 11 = 2 domi­

nates the posterior for 17 = 3. 

4. The assumptions that~ is the same known value for all agents, and is 

constant over time, are made for expositional convenience. What is required is 

that~ not increase too rapidly with nt. More precisely, if Vt(nt) is the value 

of continuing in operation at t given that 11t=nt (a more precise definition of 

t t 
this function is given below), then what we need is that Vt(n ) - ~t(n ) be 

nondecreasing in nt. Of course, the actual behavior of "exit values" is an 

empirical question. If the process generating the exit we are modelling is 

indeed a liquidation process, and not a process generated by changes of 

ownership and continued operation of the firm in a different guise, the assump­

tions we require ought not to be problematic. 

5. Ericson and Pakes (1987) also consider the more detailed theoretical 

implications delivered by particular parametric examples. The parametric fami­

lies investigated were those that seemed suitable for the econometric specifica­

tion of estimable forms of the active learning model. 

6. Just as in our description of the passive learning model we will assume 

here, for expositional simplicity, that input choices are made after the reali­

zation of 11, and that liquidation values are a constant~- Further the for­

mulation presented here assumes that the conditional distribution of T does not 
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depend on w, an assumption not required for our results (see Ericson and Pakes, 

1987). 

7. The reader interested in more detail on the testing procedures used in 

this action should consult Barlow et al (1972), or the more recent econometric 

literature on testing subject to inequality constraints which begins with the 

work of Gourieroux, Holly, and Monfort (1982). Golberger's (1987) exposition 

is particularly clear. 

8. We are grateful to them for granting us access to their data, and for 

graciously answering our subsequent queries. More detail on the data can be 

found in the appendix of Neuendorf and Shaffer (1987). Though multiestablish­

ment firms have a choice as to whether to report as a single, or as multiple, 

units, we have, where possible, merged the establishments of multiestablishment 

firms. This should therefore, be thought of as firm-level data. 

9. However, as one might guess from the figures, we get very similar results 

when we leave these firms in until the year they transfer out. 

10. We have been motivating our two-part testing sequence as a way of providing 

additional information on the relevance of alternative models. Inequality tests 

were originally motivated as providing more powerful ways of testing a given 

null. Table 4 also illustrates this point. Take, for example, the case where 

k=2. The p-value in column 2 for acceptance of the null that realizations of 

s1 do not matter under the maintained hypothesis that any effect of s1 is non­

decreasing, is zero; but the p-value for the test that s1 does not matter under 

the unconstrained maintained hypothesis (the unconditional zero columns) is a 

traditionally acceptable .11. 

11. Footnote 2 discussed the possibility that input decisions are either 

wholly, or partially, made before the realization of ij, and. concluded by 
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asserting that the various alternatives would not affect the results we focus 

on. Table 7 insures this is so for the very special, but important, case which 

Jovanovic's (1982) original article was based on. His assumptions were a spe­

cial case of the following ones; the process generating <nt> conditional on 8 

was i.i.d., the posterior for 8 had sufficient statistics (xt, t) with xt = 

ft(xt_ 1, nt) for some ft(•), and that no input could be adjusted after any 

information about nt was available. In this case, if input quantities were our 

size measure, size in period tis determined by (xt_1; t) and for a given t, 

there is a 1:1 correspondence between St_1 and xt_2. So size is a first order 

Markov process. This conclusion would be destroyed if some, say costly, adjust­

ments could be made after n were realized, or if there were any dependence in 

the process generating <nt> conditional on 8. However, if Jovanovic's restric­

tions were true, the passive learning model would satisfy the constraint that 

the regression for st conditional on St-l' ... , St-k does not depend on s 1 

provided k ~ 1; i.e., it would satisfy the constraint used to test for the 

active learning model. On the other hand Table 7 mades it clear that the 

stochastic process generating size is not first order Markov, so the special 

case discussed by Jovanovic (1982) is not relevant. 
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Appendix I (Proof of Theorem 2.7) 

The proof proceeds as follows. First it considers the finite horizon 

problem in which a firm which remains active until period T must liquidate fort 

dollars at T+1. For this problem the value of continuing in operation from 

period t (as a function of past 17-realizations) will be denoted by Vi(•): Nt➔JR+, 

and the resulting stopping function by Xi(•): Nt➔ [O,1]. v!(•) can be determined 

by backward recursion from the terminal year and a stopping policy which dic­

tates liquidation if and only if the value of continuing in operation is less 

than~- The implied stopping function, Xi(nt), is one if and only if nt€A!=<nt: 

Tt Ttt Tt . T V1(n1)~~. v2(n1,n2) ~ ~, ... ,Vt(n) ~ ~}. As T increases Vt(•) converges 

(pointwise) to a limit function, Vt(•). This limit function is bounded, monoto­

nic (in each component of) nt, and satisfies the Bellman condition, i.e. 

equation 6, in the text. The proof concludes by showing that Vt(•), and the 

associated limit stopping policy, xt(•), are indeed the solution to the infinite 

horizon problem. 

I t) I t) h t ~ t ( t t t 11 ) A1 Lemma P (· n1 > P (• n2 w enever n1 7 n2 n1 ,n2 €N , and a t 
17 t+1 _s 11t+1 

Proof Take any Z€N. Then P (z Int)= f P (z I nt,0)P0 (d0 Int). 
11 t+1 17 t+1 

P (z I n\e) is nonincreasing in nt by (3.i) and strictly decreasing in e by 
Tl t+1 

(3.ii), while Pe(· Int) is stochastically increasing in nt by (4). [] 

. h T( t) T( t) h t nt ( t t t d A2 Lemma F,x any T ten, Vt n1 ~ Vt n2 w enever n1 ~ 2 n1,n 2,€N , an t~T). 

Proof The proof is by backward induction on t. Note that 
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which is nondecreasing in nT by virtue of the monotonicity of rr(•}, and A1. Now 

assume monotonicity at t+1. Then if n~ ~ n~ 

v:cni> = /rr({)P11 t+i(d{ I ni) + f3/max[4>,v!+ 1({,ni}JP11t+i(d{ I ni> 

~ /rr(OP11 t+i (d{ In~) + f3/max[4>,V!+ 1(Cni}JP11t+1 (d{ In~) 

~ /rr({)P (d{ In~) + f3/max[4>,v!+i ({,n;)]P (d{ In~) 
17 t+1 11t+1 

T t = Vt(n2), 

where the inequalities are due to A1, the monotonicity of rr(•), and the hypothe-

sis of the inductive argument. [ ] 

A3 Lemma Fix T. 

Proof. The proof is again by backward induction on t. For the initial con­

dition of the inductive argument, note that 

Assuming the condition is true for a= t+1 we have 

Proof of Theorem 2.7 

Lemma A3 insures that for each (t,nt) the limit, 
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- -
exists. Let supn€NTT(n) = TT [TT exists and is finite by virtue of the compactness 

of N and the continuity of TT(•)]. It is straightforward to show that VT(•) is 
t 

bounded, uniformly overt, by the constant function (1-~)-1max[rr,t]. Since 

boundedness and (weak) monotonicity are preserved by limit functions, this 

t insures that Vt(n) is monotonic and bounded. Also 

I t t I t = /TT(()P (d( n1) + ~/max[t,Vt+1((,n )JP (d( n ), 
nt+1 nt+1 

because . T+1 t I t l1mT->00/max[$,Vt+l((,n )]P (d( n ) 
nt+1 

. T+1 t I t = /l1mT->00max[$,Vt+l((,n )]P (d( n ) 
nt+1 

by the Lebesque dominated convergence theorem, since {max[$,VT+l((,nt)} 

is dominated by max(~,(1-~)-1rr) which is integrable with respect to P (•Int). 
nt+1 

We have shown that if Vt(•), and the associated stopping policy, were opti-

mal, then they would satisfy the conditions of the theorem. What remains is to 

show that they are indeed optional. To see this assume, to the contrary, that 

oo T 
there exists an alternative stopping policy, say {~(•)}T=O' where ~(n ) is one 

if a firm with n realizations of nT is in operation in period T and zero other­

wise, which generates a value function, say Vt(nt), which satisfies, for at 

t least one (t,n ), 

(A4) 

Note that for any arbitrary T, 
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T 
~ , T[..Ar ( t+T) ( + {..Ar ( t+T) _ .,,+ (T/t+T-1)}t]+ RTff/(,-R) 

Et{ L {3 At+T T/ rr 71t+T) At+T T/ At+T-1 ~ ~ 
T=O 

where v~T(•) is the value function that arises when the policy{~(·)} is 

followed for a T-horizon problem. The first inequality follows from the fact 

that current returns are bounded by rr, the second from the fact that v!(nt) is 

the optimum for the T horizon problem, and the third is from A3. Provided Tis 

-chosen to be greater than -Rn[€(1-{3)/rr] / -Rn/3, equations A4 and AS contradict 

one other. [ ] 



A5 

Appendix 2. 

This appendix proves the following Lemma. 

3.6 Lemma. 

Let <s:> be the stochastic process generated from the distribution of size 

conditional on survival and any w0€{1,2, ... ,K}. The sample space for this 

process consists of all possible sequences of elements from the finite set 

~ = {S: S(ij), ~€N}. Its probability measure is obtained from the family JP = 
- ~ 

{P~(•lw), w€[1,2, .•• ,K]} and the Markov transition matrix for wt+l conditional 

on wt and survival until t+l, say Q=[q .. ] . Q is derived from P = [p. .] by 1J 1,J 

dividing its ; th row by 1-p. 0 (for i=l, .•. ,K,) and then deleting its first , , 
row and column. Let MY denote the a-algebra generated by Sa, ••• ,Sa. Then 

X X y 

sup{IP(E2le,) - P(E2)l, E1€M~, E2€M:+T} ~ A~T 

with ~ < 1. 

Proof 

Let sY = (Sa, ... ,Sa}, and sr be the generic element in §r, r =1,2, ... 
X X y 

Th . ff' h that f E MX and E MX+T+r en ,t su ,ces to sow or any 1 € 1 any 2 € x+T 

( A2. 1 ) 

(Billingsley, 1967, section 20). But the left hand side of (A2.1) is 

r X when the summation extends on s €E2 ands €E 1. Thus it suffices to show for 

all E1 such that P(E1) > o 
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(A2.2) 

Let S~=St+Ut where St=fS(J}t)P(dn I wt) and Ut=s:-st, and note that both st 

and Ut can take on only a finite set of values, say values in the sets Sand U, 

respectively. Finally let 

sY = 
X 

and sx and ux be the generic elements in Sx and ux. Then each element in the 

sum in (A2.2) can be written as 

(A2.3) 

where the equality follows from the fact that the distribution of Ut 

conditional on all information prior tot, depends only on St. Consider each 

of the expressions in the latter square brackets separately. Letting (i 1, ... ,ir) 

-x+T+r -r r be the unique values of w that lead to S =s -u those expressions can be X+T 

written as 

(A2.4) 

Assumption (1.ii) guarantees that Q, the Markov transition matrix for the 

survivor process, is irreducible aperiodic. It therefore has a unique invariant 

distribution say q*. Moreover, for any i,j then period transition probability, 

n t · f · q .. sa ,s ,es 
1J 
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-_ 1- n * I n q .. -q. ,Act,, 
1J , 

for some ct,< 1. (On these latter points see Billingsley, 1979, section 1.8). 

Consequently if (j1, ••• ,jx) indexes the values of~ that lead to?;', the 

absolute value of (A2.4) is less than or equal to 

(A2.5) 

To complete the proof of the proposition, substitute (A2.5) into (A2.4), the 

result into (A2.3}, and the result of that into (A2.2). [ 1 
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