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Abstract: We incorporate the consumption-ability relationship of 

static "efficiency wage" models into a dynamic general equili­

brium model. We show that for many aggregate land stocks, there 

is a continuum of unemployment rates which could persist indefi­

nitely as part of a stationary equilibrium. For many of these 

aggregate land stocks, both unemployment and full employment are 

distinct possibilities. Broadly speaking, more unemployment 

corresponds to more undernourishment and more inequality in land 

distribution. Thus our results suggest that the market mechanism 

is less efficacious than land reform in reducing unemployment and 

undernourishment. 

JEt Classification Numbers: 821, 111 . 
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1. Introduction 

We analyze a competitive dynamic model which incorporates 

unemployment, undernourishment, and asset inequality as its 

central variables. Our objective is to characterize fully the 

stationary general equilibria of such a system. In doing so, 

some insight is gained into the persistence of unemployment and 

undernourishment in developing countries, and in particular, into 

the role of market forces in combatting such phenomena. 

-Widespread undernourishment is a pervasive and undeniable 

fact of life in many developing countries, though the exact 

magnitudes are open to debate. It is known that the under­

nourished are assetless {or near-assetless) and that they have 

difficulty gaining secure access to the labor market. Economic 

theory has been applied to understand some of these correlations. 

In particular, the "efficiency wage" theories of unemployment, 

pioneered by Leibenstein (1957), have been put forward to address 

precisely these issues. 1 Indeed, the formal structure has turned 

out to be broader in scope than the nutrition-related issues they 

were originally designed to handle. 2 

We now have fairly comprehensive static general equilibrium 

models of asset inequality, undernourishment and unemployment 

(Dasgupta and Ray, 1986, 1987a). The focus of inquiry in those 

studies is on the nature of the causal mechanism "inequality ➔ 

undernourishment ➔ unemployment". This mechanism is best studied 

in a static context, for in a dynamic model, the labor market 

affects asset inequality. In the present paper, we study the 

entire bidirectional dynamic relationship. Accordingly, we 
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construct a dynamic model and a·ccommodate a number of features 

that cannot be satisfactorily explored in a static setting. 

Among these, two bear mentioning at the outset. 

First, we incorporate the important observation that a 

person's current ability to perform productive tasks depends at 

least as much on his nutritional.history as on his current 

nutritional intake. 3 Indeed, this observation has often been 

advanced as a cri tic·ism of static "efficiency wage" models that 

view ability as a function of current consumption alone. How­

ever, the implications of this observation have not been studied 

previously in an explicit dynamic model, and ol,r results demon­

strate that this observation does not lead to results that are 

markedly at variance with the "static" predictions. 

Second, we permit asset holdings to vary endogenously over 

time. An individual derives nutrition, not only from consumption 

out of wage and rental income, but also from consumption financed 

by the sale of land. Thus, relatively poor individuals may need 

to decumulate land in order to maintain a nutrition level suffi­

cient for work. On the other hand, relatively rich individuals 

are in a position to accumulate land without jeopardizing their 

ability to work. Indeed, these are the fundamental ways in which 

asset inequality evolves over time in our model. 
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1.1. Brief Description of Model 

We consider a competitive infinite-horizon economy, where a 

single output ("food") is produced using land and labor power in 

a constant-returns-to-scale technology. There is a large number 

of agents, each endowed with an initial nutrition stock and an 

initial land holding. Each agent is free to cultivate his own 

land, to lease in or to lease out land, to hire in or to hire out 

labor power, as well as to buy or to sell land. All markets are 

taken to be perfectly competitive. In order to be able to work, 

however, the individual must possess a minimum nutrition stock. 4 

His current nutrition stock is last period's nutrition stock 

after "depreciation" plus current energy intake minus current 

energy expenditure. The individual's land holding is updated to 

reflect purchases and sales of land. 

Each individual solves a dynamic optimization problem, while 

in their role as firms they maximize profits in every period. We 

study the dynamic general equilibrium of this system, postulating 

that all markets clear. In particular, we assume that the labor 

market clears. This particular specification, made primarily to 

simplify the exposition, is different from the non-Walrasian 

concept studied in static efficiency wage theories, so it is 

worth commenting on this difference at the very outset. 

Unemployment might conceivably arise in three ways. First, 

a person may be able to work (in the sense that his nutrition 

stock exceeds the critical minimum) but is unwilling to do so. 
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Second, a person may be unable to work, although he would like 

to. Finally, a person may be both able and willing to work, but 

is excluded from the labor market by some rationing mechanism. 

This last concept is usually referred to as involuntary unemploy­

ment. By our postulate that labor markets clear, we do not 

accommodate the third variety of unemployment. Neither do we 

study the first. Rather, we focus on the second: the unemployed 

are unable to work, although they would like to. 5 Whether we 

call such unemployment involuntary or not, 6 there is no doubt 

that it represents a serious lack of access to the labor market. 

In our ethical priorities, it is as unacceptable a state of 

affairs as involuntaJ~Y unemployment in the narrower sense of the 

term. 

We could have incorporated the third variety of unemployment 

as well, using the "extended equilibrium" approach developed in 

Dasgupta and Ray (1986). 7 We avoid doing so to keep technical 

complications to a minimum. 

1.2. Summary of Results 

The Characterization Theorem (Section 3) completely charac­

terizes the stationary equilibria, and reveals that, in general, 

there is a continuum of stationary equilibria for every aggregate 

land stock. These equilibria differ in prices, land distribu­

tion, and unemployment rate. Broadly speaking (see Section 4 for 

details), higher unemployment rates correspond to more undernou-
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rishment and greater inequality in land distribution. 

Although it is not surprising that different distributions 

of the same aggregate land stock can perpetuate themselves, 8 it 

is significant that different unemployment rates can persist 

indefinitely in stationary equilibrium. For many aggregate land 

stocks, there are stationary equilibriaL with unemployment even 

though there is also a stationary equilibrium with full employ­

ment. The perpetually unemployed individuals simply lack the 

necessary nourishment-in spite of the fact that other equilibria 

with less unemployment may exist. Our result suggests that there 

is nothing inherent in the competitive market system which will 

alter the situation over time, and that the root cause of this 

difficulty is the initial land distribution. 

At one level, it might seem possible to construct, for any 

aggregate land stock, a stationary equilibrium involving under­

nourishment and unemployment: simply start some individuals off 

with extremely low nutrition stocks and zero land holdings. But 

this is not true: we must also find a price system (wages, rental 

rates, and land prices) that sustains this configuration as a 

dyanamic general equilibrium. Indeed, if the aggregate land 

stock of the economy is "large enough" (in a sense made precise 

in Section 3), there cannot be a stationary equilibrium involving 

undernourishment and unemployment. On the other hand, if the 

aggregate land stock is "small", every stationary equilibrium 

must involve undernourishment and unemployment. It is the 

intermediate zone that is of greatest interest. Here, as already 
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mentioned, there are equilibria with full employment (the economy 

is "productive" enough), but there are also equilibria with 

unemployment. In this case, a careful and progressive land 

reform will not only improve income distribution-it will also 

increase employment and output. 

Given the multiplicity of stationary equilibria, it is not 

surprising that no one of them is globally stable. (Global 

stability would mean that starting from any initial land distri­

bution and nutrition distribution, there exists a dynamic equili­

brium whose prices and distributions converge over time to those 

of the stationary equilibrium in question.) Nevertheless, some 

remarks can be made on the local stability of each stationary 

equilibrium. Section 5 takes this up. 

First, we study individual stability, in the sense that we 

perturb an individual's initial land and nutrition stocks while 

keeping equilibrium prices fixed (they will indeed remain unal­

tered in response to a "measure-zero" change). We establish that 

a small increase in an unemployed individual's initial stocks 

will not bring about a permanent change in his employment status. 

Indeed, in one version of our model, the additional stocks are 

drawn down over time as the individual regresses to his earlier 

stationary position (Stability Theorem 2). We establish similar 

stability results for employed individuals. 

Finally, we briefly discuss (local) system stability, which 

analyzes changes in the initial stocks of a set of individuals of 

positive measure. In general, such changes perturb dynamic equi-
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librium prices, and thereby complicate the analysis immensely. 

Nevertheless, individual stability results throw some light on 

system stability. For instance, we show that a "small" land 

reform, in the sense of a minor redistribution of land from the 

employed to the unemployed, has no effect on the equilibrium 

unemployment rate. Rather, the land reform must exceed a 

critical minimum size if it is to reduce unemployment. 

2. The Model 

2.1. Production 

We consider an infinite-horizon dynamic economy in which 

food is the only consumption good. Food is produced using the 

production function F(k,e) , where k denotes land and e 

denotes labor-power as measured in efficiency units (i.e. tasks 

accomplished). The production function is taken to be concave, 

continuously differentiable and constant-returns-to-scale. It is 

also assumed to increase in k and in e , to display dimini­

shing marginal product in each input, and to satisfy the Inada 

end-point conditions for each input. The interpretations that 

F(k,e) is a production technology for one giant competitive 

• firm, or that it is a technology available to all individuals in 

the economy, are both equally consistent with our analysis, and 

the reader may adopt either. Let K be the aggregate land stock 

in the economy. 
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2.2. Individual Feasibility 

There is a continuum of agents, indexed by a and distr­

ibuted uniformly on [0,1] . Each individual begins every time 

period with two stocks: his land ownership { k ~ O ) and his 

previous nutritional level { n ~ O ) . In every period the 

individual may be employed (signalled by a dummy variable e set 

equal to 1) or unemployed { e = O ). He also consumes a 

certain amount of food { c ~ O ). Given the current price of 

land ( p ), the rental rate on land ( r ), and the wage rate per 

efficiency unit, i.e. piece rate per task accomplished ( q ), the 

agent's employment status and consumption level determine his 

nutritional level and his land ownership for the next time 

period, and the whole process repeats itself. 

We make the following assumption concerning the relationship 

between employment and nutrition. 

Assumption l: An agent either supplies one (efficiency) 

unit of labor if he is employed, or zero units if he is 

unemployed. To be employed, the agent's current nutritional 

level must be at least n, where -n is an exogenously given 

positive number. If employed, the agent expends x units of 

energy on work, where x is an exogenously given nonnegative 

number. If unemployed, the agent expends no energy. 

We postpone our comments on Assumption 1 until we have 

completed a formal description of the agent's feasible set. 
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Suppose that a vector of prices {p,q,r) is given and is time­

stationary.9 Then consider an agent at time t with stocks 

, (kt-l'nt_1 } of land and nutrition at the end of date t-1 . 

If e = 1 (the agent is employed), we then have 

( 2) --x2:n. 

Equation (1) describes the evolution of land holdings and is 

self-explanatory. Equation (2) is the nutrition balance equa-

tion. Last period's nutrition stock nt-1 depreciates by a 

factor (1-b} 10 
' so that bnt-1 is available at time t . 

Current consumption ct adds to the nutrition stock via a 

function A(ct} . We take it that A(O} = O , that A is weakly 

increasing11 and differentiable, and that the derivative A' is 

bounded above by the constant 12 h . Finally, employment 

requires an energy expenditure x 2: O . The inequality nt 2: n 

in (2) captures the stipulation of Assumption 1: in order to 

work, the agent must have attained a certain threshold level of 

nutrition. 

If e = O (the agent is unemployed), the stock equations 

(1) and (2) are modified to read: 

( 3 ) 

( 4) 

kt= kt-l + (rkt-l - ct)/p 2: o , and 

nt = bnt-l + A(ct) 2: O . 

Again, (3) should be self-explanatory. The nutrition balance 

13 equation (4) now subtracts no energy due to work, and further-
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more, the constraint nt ~ n does not appear. 

For an examination of nutrition balance equations such as 

(2) and (4), the reader is referred to Dasgupta and Ray (1987b) 

and the references contained therein. It should be observed that 

our formulation places importance on both the agent's nutrition 

history (captured via nt-l ) and his current consumption as 

determinants of current work ability. This is in contrast to the 

numerous models of nutrition-efficiency relationships in a static 

context. While many of these acknowledge the inherently dynamic 

nature of the relationship, their questions are somewhat differ­

ent than the ones addressed here and do not necessitate an 

explicit modelling of this dynamic. 14 

While our model is richer in this respect, it does simplify 

matters by assuming that labor-power is a simple step-function 

defined over the nutritional stock. 15 This is the c.rux of 

Assumption 1. It would be desirable, but much more difficult 

analytically, to formulate labor-power as a smoothly increasing 

function of both nutrition stock and current energy expenditure. 

We do not interpret c = O as complete fasting, e = O as 

complete inactivity, and n = O as death. Rather, we use 

(c,e,n) = (0,0,0) to represent subsistence on consumption 

created outside the economy under review, such as begging or 

gleaning. One could, at the cost of additional complexity, 

represent such subsistence with positive constants. 
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2.3. Individual Preferences 

Each agent derives a single-period utility v(c) from a 

consumption of c in that period. The function v is taken to 

be nonnegative-valued, weakly increasing, differentiable and 

strictly concave. Moreover, we assume there is some e 0 < 1 

such that for sufficiently large c , 
eO 

v{c) < c 
16 Future 

utilities are discounted, and the agent seeks to maximize the 

infinite-horizon sum of discounted utilities. 

This much is fairly standard. However, we are dealing here 

with a framework that embodies persistent malnutrition as one of 

its fundamental variables, and this is likely to have repercus­

sions on behavior via a lowered ·probability of survival. 17 We 

incorporate this possibility by assuming that the discount factor 

applied at date t to the infinite-horizon utility from date 

t+l is a weakly increasing function of nutrition. Specifically, 

for any stream of consumption and nutrition 

write the agent's utility function as 

( 5 ) 

where O(n) = cr(n)/(l+p) p > O is a fixed rate of impatience, 

and O < cr(n) ~ 1 gives the probability of being alive during 

the next period given current nutrition n . We assume that cr 

is continuous, weakly increasing when -n < n, and constant at 

when n ~ n. Thus, 0 is continuous, weakly increasing when 

n < n, and constant at d = s/(l+p) when n ~ n. One special 

s 
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case is certain survival: cr is constant at one and O is 

constant at d = 1/(l+p) . 18 

The individual seeks to maximize (5) subject to the 

constraints (1)-(4) given prices (p,q,r) and his initial 

endowment of land and nutrition (k0 ,n0 ) . A solution to this 
OD 

problem is a sequence <(ct,et,kt,nt)>t=l . Such a solution is 

stationary if the subscript t can be dropped. 

2.4. Stationary Equilibria 

A stationary equilibrium in this model is an infinite­

horizon competitive equilibrium with stationary prices and a 

stationary solution for each individual. Formally, a stationary 

equilibrium consists of the following (time-stationary) objects: 

prices (p,q,r) , a consumption distribution c : [0,1] ... IR+ , ,"in 

employment distribution e : [0,1] ... {0,1} , a land distribution 

k: [0,1] ... IR+ , and a nutrition distribution n: [0,1] ... IR+ . 

This collection of prices and distributions is a stationary 

equilibrium if it satisfies the following four properties. 19 

(a) For every a E [0,1] , (c(a),e(a) ,k(a),n(a)) is a 

stationary solution to the maximization problem (1)-(5) given 

prices (p,q,r) and initial stocks (k(a) ,n(a)) . 20 

(b) The aggregate land holding K is distributed by k 

I k dJJ = K . 

(c) The input markets clear given competitive behavior by 

the producer(s): (K,J e dJJ) maximizes F{K' ,E') - rK' - qE' 
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(d) The food market clears: Jc dµ = F(K,J e dµ) . 

3. Characterization of Equilibrium Unemployment Rates 

3.1. Characterization Theorem 

For most aggregate land stocks, our model admits a continuum 

of stationary equilibria. These stationary equilibria are 

substantially different from one another: they involve different 

equilibrium prices and different unemployment rates. In parti­

cular, we shall see that the same economy could possess two 

stationary equilibria, one with full employment and the other 

with a positive unemployment rate. Which of the two prevails in 

the long-run depends on the initial distribution of stocks. 

Let U denote the! unemployment rate 1 - J e dµ . We will 

characterize the various unemployment rates U that can prevail 

as the aggregate land stock K is parametrically varied. 

Accordingly, we shall often equate an economy with its aggregate 

land endowment K. We define two critical values of the aggre­

gate land endowment K: Define K by 

A[F(~,l)] = (1-b)n + x, 

and define K by 

-n + X , 

Although we postpone a full interpretation of these critical 
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values until Subsection 3.2, note that K < K follows 

· d. t l 22 imme ia e y. 

Characterization Theorem: Consider any economy K with 

K > O . Define Q(K) = (~-K)/~, and fi(K) = (K-K)/i. Then the 

economy K has a stationary equilibrium with unemployment rate 

u if and only if one of the following three conditions is met: 

1) K E ( 0, ~) and U e [Q(K) ,fi(K)) I 

2) K E C~, KJ and U e [O,fi(K)) I or 

3) K ~ K and u = 0 

Remark: See Figure 1. The theorem states that for econo­

mies such as K1 , the set of all equilibrium unemployment rates 

is precisely equal to the interval [Q(K1 ),fi(K1 )) . Thus, every 

equilibrium for these economies exhibits unemployment ( U > O ) . 

In contrast, for economies such as K2 , both full employment 

( U = O) and unemployment ( U > O ) are possible in equili­

brium. Finally, for economies such as K3 , all equilibria 

necessarily exhibit full employment. 

Thus, the essential indeterminacy of this model is captured 

in stark detail: If K < K, the market mechanism can support a 

whole range of unemployment rates. This range of unemployment 

rates corresponds to the range of land distributions which 

perpetuate themselves in a dynamic general equilibrium (see 

Section 4): Greater inequality in land distribution leads to 

more unemployment and more malnutrition. 
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u 

1 

K K K 

Figure 1: The economy K has a stationary equilibrium with 

unemployment rate U if and only if the pair (K,U) is on the 

solid line or within the shaded triangle . 
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The region Ke [~,K) is of particular interest, for here, 

unemployment and malnutrition (i.e. nutrition levels below n 

can exist in equilibrium even when there are other equilibria 

that can guarantee full employment and adequate nutrition for 

all. This unattractive outcome is perpetuated by the market 

mechanism given an initial inequitable distribution of land. 

One naturally wonders whether this indeterminacy affects 

economic efficiency. One measure of efficiency would be aggre­

gate food production: Clearly production increases with employ­

ment, and thus, equilibria with relatively high rates of unem­

ployment are inefficient in this sense. Pareto-efficiency 

provides another criterion: We conjecture that every stationary 

equilibrium is Pareto-efficient just like the static general 

equilibrium of Dasgupta and Ray's (1986) malnutrition model is 

shown to be Pareto-efficient. 

Proof of Characterization Theorem: The proof has three main 

parts. 

Part 1. First, suppose K and U satisfy one of the three 

conditions. We will construct for economy K a stationary 

equilibrium with unemployment rate U . Define prices by 

q = FE(K,1-U) 

r = FK(K,1-U) and 

p = [ d/ ( 1-d) ] r . 

Define the distributions (c,e,k,n) by 
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(c(a) ,e(a) ,k(a) ,n(a)) 

r 
= ~ 

L 

o, o, o, O -) if a e [O,U) 

rk(a)+q, 1, K/(1-U), {A[c(a) ]-x}/(1-b) if a E [U,l] . 

Properties (b)-(c) follow immediately from the definitions of 

k, r , and q. Property (d) follows from Euler's Theorem: 

c(a) = F(K,1-U)/(1-U) for all a E [U,1] . 

Property (a) is more involved. First consider the unem­

.ployed agents. If U = O , this case is vacuous. If U > O , 

take a E [O,U) . By the fact that u < fi(K) ' 

A(q) - x = A[FE(K,1-U)] - x 

< A[FE(K,1-fi(K))] - x 

= A[FE(K,l)] - X 

-= n . 

Thus it is impossible that agent a can wor~ without first 

accumulating land or nutrition. It is also impossible for agent 

a to accumulate either one without labor income. Therefore the 

stationary stream (c(a) ,e(a) ,k(a),n(a)) = (0,0,0,0) is the only 

feasible stream. (Section 5 makes the distinct and significant 

observation that this optimum is locally stable.) 

Second consider the employed agents. Take a e (U,1] and 

consider the following "artificial" maximization problem: Given 

( k 0 , n 0 ) = ( k (a) , n (a) ) , choose to maximize 

( 6) 
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subject at each t to 

( 7) 

( 8 ) 

and 

In this "artifical" problem, we deliberately do not impose a 

nutritional requirement for work. Therefore, the agent always 

works and nutrition plays no role. It can be shown by standard 

arguments, using p = [d/(1-d)]r and the strict concavity of. 

v , that the unique optimum of {6)-(8) is the stationary stream 

{c(a) ,e(a) ,k(a) ,n(a)) . 

We make an important preliminary observation concerning this 

optimum: n(a) -::: n . If K < K, this observation follows from 

the fact that o::: Q(K) : 

If K ::!: K 

n(a) = {A(rk(a) + q) - X}/(1-b) 

= {AoF[K/(1-U),1] - X}/(1-b) 

::: {AoF[K/(1-Q(K)),1] - X}/(1-b) 

= {AoF[~,1] - X}/(1-b) 

-= n . 

the observation follows from the definition of K 

n(a) = {,\(rk(a) + q) - x}/(1-b) 

= {AoF(K/(1-0),1] - x}/(1-b) 

::: {AoF[K,1] - x}/(1-b) 
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~ {AoF[~,1] - x}/(1-b) 

-= n . 

The "artifical 11 maximization problem (6)-(8) is intimately 

related with the "true 11 maximization problem (1)-(5). First, 

the objective function (5) is bounded above by the objective 

function (6) because the function 6 is bounded above by the 

constant d. Second, the feasible set defined by (7)-(8) 

contains the feasible set defined by (1)-(4), for in contrast 

to· (1)-(4), work does not require adequate nutrition in (7)-(8). 

Third, because of our preliminary observation that n(a) ~ n, 
(c(a),e(a),k(a),n(a)) is also feasible in (1)-(4). And fourth, 

because n(a) ~ n, the objective function (5) equals the 

objective function (6) at (c(a),e(a),k(a),n(a)) . These four 

facts prove that (c(a),e(a),k(a),n(a)) is the unique optimum of 

(1)-(5). 

Part 2. Suppose K < K and U < Q(K) . Assume (contrary 

to the theorem) that there exists a stationary equilibrium 

[p,q,r;c,e,k,n] with unemployment rate U . Since K is the 

aggregate land stock and 1-U is the measure of the set of 

employed people, there must be some employed agent a such that 

k(a) S K/(1-U) . This fact, together with (1) and Euler's 

Theorem, implies 

c(a) = rk(a) + q 
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S rK/(1-U) + q 

= F[K/(1-U),1] 

Yet, (2) and the definition of K require 

= F[~,1] 

These two statements about c(a) require that K/(1-U) ~ K 

This, however, is impossible because U < ~(K) . 

Part 3. Consider an economy K and unemployment rate U 

such that U > O and U ~ O(K) . Assume that there is a 

stationary equilibrium [p,q,r:c,e,k,n] with unemployment 

rate U. By property (c) of the equilibrium, the fact that 

U ~ U(K) , the definition of U(K) , and the definition of K, 

A(q) - X = A(FE(K,1-U)) - X 

~ A(FE(K,1-U)) - X 

= A(FE(K,l)) - X 

-= n . 

This inequality reveals, via (1) and (2), that any individual can 

work in every time period, regardless of the land and nutrition 

he inherits from the previous period. Thus, every agent will 

necessarily be employed in every time period. Consequently, it 

is impossible that there is a stationary equilibrium with a 

positive rate of unemployment greater than or equal to U(K) . 

Q.E.D. 
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3.2. Viable and Full-Employment Thresholds 

One interesting feature of the Characterization Theorem is 

the zone (K,K) . Within this region, both full employment and 

unemployment are possibilities, depending on the initial distri­

butions of land and nutrition. Accordingly, .it may be worth 

interpreting the threshold levels K and K. 

The latter may be called the full-employment threshold. It 

is a level of the capital stdck beyond which every stationary 

equilibrium, no matter how unequal the implied {utility) distri­

bution, must yield full employment and therefore a nutrition 

level of at least -n to all. For such economies, poverty and 

malnutrition cannot be an outcome of the mechanisms stressed in 

this paper. 23 

The former threshold may be called the viable threshold. We 

will define this somewhat differently, and then demonstrate its 

equivalence with K. Define the viable threshold to be the 

smallest economy K that can feasibly employ all its members 

(thereby providing each with a nutrition level of at least 

n ). 24 More precisely, the viable threshold is the smallest K 

such that there exist distributions c , e , k, and n (each 

a function from (0,1] into ~+ ) satisfying 
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I Cdµ = F(K,l) I 

e(a) = l for all a e [O,l] I 

Jk~ = K I and 

n(a) = [A(C(a))-x]/(1-b) ~ -n for all a E [O,l] . 

Observe that this definition only deals with feasible alloca­

tions, and not with allocations that might arise out of some 

market equilibrium. However, it can be shown that this alloca­

tion for the viable threshold~ be supported with prices as a 

stationary equilibrium. 25 A corollary of this observation is 

that the viable threshold equals K. 

So K is a threshold level where full-employment is just 

feasible, and K is another threshold level where full employ­

ment is an inevitable consequence of every stationary equili­

brium. We reiterate our simple but important observation: K is 

less that K. It is this intermediate zone of economies, 

capable of attaining full employment and an adequate level of 

nutrition, but locked into competitive equilibria that do not 

come close to achieving these standards, that is consequently of 

greatest interest. We feel that this zone is a caricature-but a 

useful one-of many developing countries, where resources are 

adequate but nevertheless unemployment and malnutrition prevail. 

Our analysis reveals that there is nothing inbuilt in the market 

mechanism that will correct this. 
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4. Graphical Depiction of Equilibrium Land Distributions 

For any economy with aggregate land stock K, there is a 

wide variety of stationary equilibria. This variety has two 

• dimensions. First, and the more important, the Characterization 

Theorem states that if K < K, the economy K can sustain a 

continuum of equilibrium unemployment rates U . Second, given 

K, U, and the resulting equilibrium prices (p,q,r) , there is 

considerable freedom concerning the distribution of land among 

individuals. This se~ond dimension is explored in a graphical 

manner here in Section 4. 

4.1. Construction 

Consider an individual's two stock variables: land k and 

nutrition n. The constraints (3)-(4) require that every 

stationary land-nutrition pair without employment lies within 

~ = { (k,n) I n = A(rk)/(1-b) } . 

Similarly, the constraints (1)-(2) require that every stationary 

land-nutrition pair with employment lies within 

S = { (k,n) I n = {A(rk + q) - x}/(1-b) and n ~ n} . 

See Figures 2-5. For future reference, we define the point 

(k,n) to be the unique element of S which satisfies either 

n = n or k = 0 . Both S and S must be upward-sloping, and 
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s must contain the origin. (Only the lower portion of S is 

shown in Figures 2-5 since the rest is irrelevant.) 

The curves s and S shift with the aggregate land stock 

K, the unemployment rate U, and the resulting equilibrium 

prices. Fortunately, this dependence is easily understood: S 

and s depend only on r and q, which in turn, depend only on 

the land/labor-power ratio K/(1-U) . 

As Figure 6 shows, the equilibrium land/labor ratio can be 

as low as ~; it can be nearly as high as K even when U > O 

and it can equal or exceed K when U = o . Also note that the 

statements U ~ U(K) and K/(1-U} ~ K are algebraically 

equivalent, and similarly, that U < U(K) and K/(1-U) < K are 

equivalent. The land/labor ratios labeled "3", "4", and "5" 

lead to the configurations of S and S depicted in Figures 3, 

4 and 5. 

The movement of S can be easily understood in terms of the 

point (k,n) e S . When K/(1-U) = ! , (k,n} = (!,n) . As the 

ratio K/(1-U) increases, the point (k,n) slides along toward 

the corner (O,n) . Once (k,n) hits the corner, it moves up 

the vertical axis indefinitely. 

The movement of (k,n) can be easily interpreted: As the 

ratio K/(1-U) increases from K the wage q also rises; and 

hence it takes less rental income rk in order to maintain the 

necessary nutrition level - 26 n . When < k, ri > hits the corner 

(O,n) , the wage q alone suffices: no rental income is required 

in order to maintain -n . Then if K/(1-U) continues to 
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u 

1 

K 

K/( 1-U)•K K/( 1-U)•K -

Figure 6: The straightforward relationship between the aggregate 

land stock K, the unemployment rate U, and the land/labor 

ratio K/ ( 1-U) . The numbers "3", "4", and "5" label the land/ 

labor ratios which are considered in Figures 3, 4, and 5. 
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increase, a landless worker is able to maintain a nutrition level 

exceeding the minimum -n . 

4.2. Application 

Consider an economy K and take an equilibrium unemployment 

rate U and the resulting prices as given. In such a stationary 

equilibrium, the (stationary) optimum of an unemployed agent can 

be represented by a land-nutrition pair in S . The optimum of 

an employed agent can be represented by a point iri S . 

Suppose that 6(n) < d for all -n < n . In this case, no 

unemployed agent would maintain a positive stock of land, because 

his subjective discount factor 6(n) is less than d, which is 

the market discount factor determined by the discount factor of 

the employed agents. Thus, all the land is distributed among the 

employed agents. In terms of Figures 2-5, all unemployed agents 

are at (0,0) e S and the employed agents are arbitrarily 

scattered along S with the one restriction that they divide up 

the aggregate land stock K among themselves. More formally, 

the set of all equilibrium distributions is characterized by27 

1) If a E [0,U) I then (c(a) ,e(a) ,k(a) ,n(a)) = (0,0,0,0) I 

2) If a E [ U, 1] then k(a) 2: k and (c(a) ,e(a) ,k(a) ,n(a)) = 

( rk(a)+q, 1 , k (a) , {A{c(a))-x}/(1-b) ) 
28 

and , 

3) I [U,1] k dJJ = K . 
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Now suppose 6(n) = d for all n . In this case, unem­

ployed agents would be willing to hold perpetually a positive 

• amount of land. Thus, unemployed agents can be at points on S 

other than (0,0) . However, if an agent's land-nutrition pair 

is too far from the origin, he will choose to seek employment by 

accumulating the necessary stocks of land and nutrition. Lemma 8 

(Appendix) demonstrates that if K/(1-U) < K, there is some 

point on· S other than the origin below which agents will choose 

to remain unemployed. Such agents do not choose to seek employ­

ment because the necessary accumulation of land and nutrition 

requires that they consume very little in the meantime. (This 

low consumption is very unattractive because of the concavity of 

the single-period utility function v .) This point on S is 

called (k,~) , and accordingly, the set of all equilibrium 

distributions includes 29 

1) If a e [0,U) , then k(a) < ~ and (c(a),e(a),k(a),n(a)) = 

( rk(a), 0, k(a), A(c(a))/(1-b) ) , 30 and 

2) If a e [U,1] , then k(a) ~ k and (c(a),e(a),k(a),n(a)) = 

( rk(a)+q, 1, k(a), {A(c(a))-x}/(1-b) ) , and 

3) I k d K . 31 
[0,l] ~ = 

4.3. The Characterization Theorem, Revisited 

There are two critical land/labor ratios: K and K The 

ratio K is critical because if a worker's labor is complemented 
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with less than K units of land, his total output is less than 

F(!,1) , which is the minimum amount of consumption required to 

sustain his nutrition at -n . Thus, no stationary equilibrium 

has a land/labor ratio below K. Recall that as the land/labor 

ratio increases from ~, k declines from K. This movement 

is depicted in Figures 2 and 3. 

The ratio K is critical because if the land/labor ratio 

equals or exceeds K, the marginal product of labor is suffi­

cient in and of itself to adequately nourish a worker with a zero 

nutritional stock at the start of the period. In such a case, 

everyone will choose to be employed in every period. Thus, there 

is no stationary equilibrium with unemployment that has a land/ 

labor ratio at or above K . 32 Note that the statements K/(1-U) 

< K and n < n/(1-b) are algebraically equivalent. The second 

inequality appears on the vertical axis of Figures 4 and 5. 

We now relate our understanding of equilibrium distributions 

to Section 3's Characterization Theorem for equilibrium unemploy­

ment rates. 

If K < ~, the minimum unemployment rate Q(K) is obtained 

by putting 1-Q(K) workers precisely at (k,n) = (K,n) and 

putting the rest at {0,0) (Figure 2). The land/labor ratio is 

then K and every worker is just adequately nourished. The 

higher the K, the more workers can be provided with K units 

of land, and hence, the lower the minimum unemployment rate. If 

K is fixed and U increases from U(K) toward U(K) , then the 
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land/labor ratio increases, the wage q increases, and (k,n) 

slides to the left and then up the vertical axis (Figures 3 and 

4}. Employed and unemployed people can be scattered on S and 

S as discussed in Subsection 4.2. The unemployment rate U can 

be made nearly as high as U(K} . In other words, the land/labor 

ratio can be made nearly as high as K . This bound is shown in 

Figure 4 by the fact that (k,n} lies below (O,n/(1-b)) . 

Suppose K = K. Here full employment is possible: See 

Figure 2 and set all agents precisely at (k,n} = (K,n) . As U 

is increased from O toward U(K} , see first Figure 3 and then 

Figure 4, and scatter the agents on both S and S as discussed 

in Subsection 4.2. Again, the bound u < U(K} is shown in 

Figure 4 by n < n/(1-b} . 

Suppose Ke (!,K) . If U = O , see Figure 3 or 4 and 

scatter agents on S alone. If U e (O,U(K)) , see Figure 3 or 

4 and scatter agents on both S and S . Note that as K 

increases, the full-employment land/labor ratio rises, the full­

employment wage rises, and the full-employment (k,n) rounds the 

corner and climbs toward (O,n/(1-b)) . Any positive unemploy­

ment rate entails a higher land/labor ratio, a higher wage, and a 

higher S curve. 

When K ~ K, there is no way to get the land/labor ratio 

below K, and thus, unemployment becomes impossible. Conse­

quently, each K entails a unique land/labor ratio ( K itself) 

and a unique s curve whose (k,n) lies on the vertical axis at 

or above (O,n/(1-b)) . 
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5. Stability 

5.1. Individual Stability 

We divide our discussion of stability into two parts. 

First, we consider "individual stability••, that is, we take 

stationary equilibrium prices as given and study an agent (of 

measure zero) whose initial land-nutrition pair entails a 

nonstationary optimum. We ask whether or not the optimum 

converges over time to a stationary optimum. Second, we make 

some remarks on "system stability", that is, we consider initial 

distributions of land and nutrition which are not stationary 

equilibrium distributions, and we ask how those distributions 

evolve over time in a nonstationary dynamic general equilibrium. 

In this case, prices can vary over time. Individual stability is 

addressed formally in this subsection, while the much more 

difficult issue of system stability is addressed verbally in 

Subsection 5.2. 

Take an equilibrium land/labor ratio K/(1-U) with 

associated equilibrium prices (p,q,r) . A set Q consisting of 

stationary optimal land-nutrition pairs is a global attractor if 

at each initial 

satisfies limt➔~(kt,nt) e Q . Such a set Q is a local 

attractor if there is an open set B containing Q such that if 

satisfies 

limt➔~(kt,nt) e Q . An attractor Q is monotonic if the optima 
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converging to Q also satisfy either (vt) kt+l ~ kt or (vt) 

kt+l ~ kt . 

Stability Theorem 1: Suppose that K/(1-0) < K and that 

O(n) < d for all -n < n . Then {(0,0)} and s-{(k,n)} are 

monotonic local attractors. However, S is not necessarily a 

monotonic local attractor. (See Figure 7, and Lemmas 5, 7, and 9 

in the Appendix.) 

Stability Theorem 2: Suppose that K/(1-0) < K, that 

O(n) = d for all n , and that lim 0v 1 (c) 
C➔ 

=~. Then there is 

a land-nutrition pair (k,~) >> (O,O) such that Sn {(k,n)I 

(k,n) << (k,~) } and S-{(k,n)} are monotonic local attractors. 

However, S is not necessarily a monotonic local attractor. 

(See Figure 8, and Lemmas 5, 8, and 9 in the Appendix.) 

Essentially, this pair of stability theorems says that all 

the stationary optima discussed in previous sections are locally 

stable, with one exception: (k,n) . It is not at all surprising 

that S-{(k,n)} is stable, for near this set, the nutritional 

requirement of employment is not binding. Thus, the strict 

concavity of v implies that agents consume the same amount in 

every period: rk0 + q. 

It is important that the low stationary optima on S are 

locally stable. If these optima were locally _!ffistable, our 

entire argument could be crippled by arguing that any slight 

increment to the assets of the poor would permit them to climb 
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Figure 7: K/(1-U) < K and 6(n) < d 

for n < n. (Stability Theorem 1.) 
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Figure 8: K/(1-U) < K, 6(n) = d 

for all n, and lim v'(c) = +• . ~-
(Stability Theorem 2.) 
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out of poverty. Rather, our analysis shows that such small 

increments do not significantly alter the long-run behaviour of 

the poor . 

The key to this result is the observation that there is some 

neighborhood of the origin from which agents would not ever seek 

employment by accumulating the necessary land and nutrition. 

Because land generates rental income and nutrition depreciates, 

an agent seeking to gain employment would first accumulate land 

rather than nutrition. By buying more land with the rental 

income, the agent's land stock could accumulate at a rate of d . 

This option is unattractive for one of two reasons: either 

(Stability Theorem 1) malnourished agents are less likely to live 

to reap the benefits of the accumulation ( ~(n) < d ), and hence 

run down their land stock to finance current consumption, or 

(Stability Theorem 2) the strict concavity of v makes low 

consumption during the accumulation process ve:~y onerous (as 

discussed in Subsection 4.2). 

Although it was surprising to us that (k,n) is unstable, 

the result is intuitive. If n = n and 
0 

is just a little 

less that k > O , the agent could work for many periods while 

maintaining his land close to k. In each period, he would sell 

a tiny bit of land to make up for the slight deficiency in rental 

income. In this case, <kt>;=l is clearly moving away from k 

The alternative to this scenario is to forego employment in the 

first period and to accumulate. This second option entails a 

large loss in consumption during the first period, and it is thus 
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less attractive than the first option for agents whose k 0 is 

very close to k. 

It is technically difficult to solve the agent's maximiza-

lies between (k,n) and - - 33 (k,n) . 

These difficulties are illustrated by the instability of (k,n) . 

One further observation can be made in a casual manner: If 

K < K, increases in U shrink the region of attraction sur-

rounding the low stationary optima on 34 s . This observation 

suggests that as unemployment increases, "rags-to-riches" stories 

become more prevalent, i.e. slight increments in the assets of a 

poor agent are more likely to have long-run effects. Thus the 

frequency of rags-to-riches stories varies directly, rather than 

inversely, with the degree of inequality, malnutrition, and 

unemployment. 

Finally, if K ~ K (implying that K/(1-U) ~ K ), the 

nutritional requirement for employment is never binding and every 

agent consumes rk0 + q in every time period. Consequently, the 

following theorem is straightforward. 

Stability Theorem 3: Suppose that K/(1-U) ~ K. Then s 
is a monotonic global attractor. (See Figure 9, and Lemma 10 in 

the Appendix. ) 
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Figure 9: K/(1-U) ~ K. (Stability Theorem 3.) 
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5.2. System Stability 

It is important to study system stability in order that we 

might understand the long-run effects of land reform. 

Let us begin by considering a stationary equilibrium under 

the assumptions that O(n) = d for all n and that lim v(c) 
C➔~ 

= +~ . Suppose that Ke [!,K) , that U > 0 , that all the 

unemployed are landless, and that all the employed have K/(1-U) 

units of land each. Clearly, an equitable redistribution in 

which everyone has K ~ K units of land would eradicate unem­

ployment and malnutrition. 35 However, actual land reforms are 

typically much less dramatic. Let S be the fraction of the 

complete land reform that is actually accomplished, so that the 

land owned by each originally-unemployed agent is SK and by 

each originally-employed agent is [(1-US)/(1-U)]K 

Stability Theorem 2 (Figure 8) indicates that sufficiently 

small land reforms ( S near zero) will not have any effect on 

unemployment. Rather the stationary equilibrium prices will be 

unaffected, the new land distribution will not change over time, 

and the rental income will have been permanently redistributed to 

the benefit of the unemployed. On the other hand, a sufficiently 

large land reform ( S near one) will employ all agents. A new 

stationary equilibrium will result with a lower land/labor ratio, 

the new land distribution will not change over time, and the 

originally-unemployed will now permanently receive both wages and 

a substantial rental income. 
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We expect that somewhere in the unit interval there is a 

threshold land reform S* such that if e > S* , everyone will 

• eventually be employed, and if e < S* , the originally­

unemployed will revert back to perpetual unemployment. The 
• 

• 

story, however, is complicated even under the simplifying 

assumption of certain survival ( 6(n) = d): If the originally­

unemployed gain enough land to make them want to accumulate land 

for future employment, a dynamic general equilibrium with 

nonstationary prices will result. 

Let us consider a similar land reform e under the 

alternative assumption that 6(n) < d for all n < n. Once 

again, small land reforms ( e near zero) would not have any 

effect on unemployment (Stability Theorem 1). But, in contrast 

to the previous case, the new land distribution will not result 

in a stationary equilibrium. Rather, unemployed agents would 

seek to decumulate land because of their low survival probabi­

lities. Since the unemployed want to sell land, the employed 

must be enticed to buy it. Yet the employed wish constant 

consumption streams because of the concavity of v . As a 

result, the price of land would fall immediately following the 

land reform, and then it would climb back to its original level. 

~ Bigger land reforms under uncertain survival are very similar to 

those discussed previously under certain survival, except for the 

fact that variable discount factors will further complicate the 

nonstationary dynamic equilibria which must be studied in order 

to calculate t~e threshold land reform S* . 36 
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APPENDICES 

Appendix 1. Existence ·of Optima 

Here we prove the existence of a solution to the indivi­

dual's optimization problem given stationary equilibrium prices. 

Our stability analysis (Section 5 and Appendix 2) ~elies upon 

this result. 

Following Streufert (1981), let Z = IR+x{O,l}xlR! be the 

action space, let z 0 = (O,O,k0 ,n0 ) be the exogenously-given 

initial action, and let zt = (ct,et,kt,nt) denote the action in 

period t . Define the stationary Malinvaud production 

correspondence G : Z .q Z by 

where 

G(zt_1 ) = { z I e = 1 

u { z I e = o 

1 
G (kt-l'nt-1) = 

and 

and 

{ (c,k,n) 3 
E IR+ I n ~ ii 

0 
{ (c,k,n) G (kt-l'nt-1) = E 

(c,k,n) 

(c,k,n) 

and ( k, n) 

IR3 I ( k, n) 
+ I 

l 
E f (c,kt-l'nt-1) 

0 
E f (c,kt-l'nt-1) 

is defined by equations (1)-(2) , and 

is defined by equation (3)-(4) . Both and are 

continuous. 

Lemma 1: G is compact-valued. 

} 
' 

} 



41 

Proof: Take any zt-l . The set 

graph of a continuous function, namely 

➔ IR!, which is restricted by weak inequalities. Hence, 

1 0 G (zt_1 ) is closed. Similarly, G (zt_1 ) is closed. 

Furthermore, 1 
G (zt_ 1 ) s;; [ o, (p+r)kt-l + q ] x [ O, kt-l + 

(rkt-1 + q)/p] x [ n, bnt-1 + A((p+r)kt-1 + q) - x] . 

0 
Similarly, G (kt_ 1 ,nt_ 1); [ 0, (p+r)kt-l ] x [ 0, kt-l + 

rkt_1;p] x [ o, bnt-l + A((p+r)kt_1 ) ] . 
1 

Since both G (zt_1 ) 

0 
and G (zt_ 1 ) 

is compact. 

are closed and bounded subsets of G(zt-1) 

Q.E.D. 

Lemma 2: 

Proof. 

G is upper hemicontinuous. 

Consider 

Since 

m m m O 0 
<(z_1 ,z )>t=l ➔ (z_1 ,z) such that 

0 e e {0,1} , there is a subsequence 

such that ('1' l ) 
l 

e 
0 = e 

l l l l l m 
<(k_1 ,n_1 ,c ,k ,n )>t=l is 

('..,,m) 

Then 

contained in the graph of The graph of G1 is closed 

because it is the graph of a continuous function, namely f 

➔ IR! , restricted by weak inequalities. Thus, 
0 0 0 (c ,k ,n ) 

1 0 0 0 0 e G (k_1 ,n_1 ) , and consequently, z e G(z_1 ) . A similar 

argument can be made if e 0 = 0. 

m -

IR3 
+ 

Q.E.D. 

Following Streufert (1987), define U 

(5), and define W: ZxR ➔ IR by 

Z ➔ IR by equation 
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The aggregator W is continuous since v and 6 are continuous 

by assumption, and it is strictly increasing in ut+l since 

• 6(nt) > O by assumption. Clearly, W recursively expresses 

0 • 

Lemma 3: If p = [d/(1-d)]r , U is tail insensitive over 

G at any z 0 

Proof. First we derive an upper bound for consumption in 

period t . Suppose that the entire initial land stock k 0 , as 

well as the entire wage q from periods s = l, ... t-1 is saved 

to finance consumption in period t . Then, because savings (in 

land) grow at the rate l + r/p, and because 

since p = [d/(1-d)]r by assumption, 

-1 
(l + r/p) = d 

( 9) 

where -1 
al= pko + q/ln d . 

Next we derive an upper bound for utility in period t + 1 . 

Since the exponent of v is asymptotically bounded below unity, 

there is co~ O and eo e (0,1) such that v(c) ~ v(c0) + 

eO 
C 

( 10) 

Thus , by ( 9 ) , 

~ s-1 t+s 
Ls=l d v(sup TTCG (Zo)) 

~ L:=l ds-l(v(cO) + (d-(t+s)al)eo) 

-e0 t 
= a 2 + d a 3 
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where 
-1 

a = v ( co ) ( 1-d ) 
2 

Finally, take any 

limt ... 1111 
sup tr ( 1.et' X 
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and a3 = (d-lal)eo (l-d(l-e0))-1 

Gt(z0 ) By (10), 

GIi s 
s=t+l G (z0 ) ) 

~ limt ... 1111 
tr ( 1.e1:' t+12 

+ dt•LGII s-1 rrcGt+s(zo)) 
s=l d v(sup 

limt ... 1111 
tr ( t+12 

t (1-e0)t 
~ 1.et' + d a 2 + d a 3 

= limt ... 1111 tr( 1.et' t+12 
• GIi s 

~ limt ... 1111 inf tr( i.et' xt=l G (z0 ) ) . Q.E.D. 

Lemma 4: If p = [d/(1-d)]r , an optimum exists. 

Proof. Lemmas ~-3 and Streufert (1987, Theorem A). Q.E.D. 

Appendix 2. Stability of Optima 

Here we study the stability of solutions to the individual's 

optimization problem given stationary equilibrium prices. 

Specifically, we take as parametric a land/labor ratio 

K/(1-U) ~ ! , and assume q = FE(K,1-U) , r = FK(K,1-U) , and 

p = [d/(1-d)]r . The lemmas of this Appendix yield the stability 

• theorems of Section 5. 

Lemma 5: Define (k,n) as in Section 4. If (n0 ,k0 ) ~ 

(k,n) , there is a unique optimum 
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Proof: Consider the stream defined at 

00 

A(rk0 + q) - x. Since A(rk0 + q} - x is constant, <nt>t=l 

converges monotonically to {A(rk0 + q} - x}/(1-b} > {A(rk + q) 

- X}/(1-b) ~ n . Then since -n 0 ~ n ~ n, each > ~ nt _ n . The 

argument employed in paragraphs 3 and 5 of Part 1 in the proof of 

the Characterization Theorem (Subsection 3.1) can now be 
00 

straightforwardly applied to demonstrate that 

is the unique optimum. 

<(ct,et,kt,nt)>t=l 

Q.E.D. 

Definitions: Recall that the derivative A' is bounded 

above by the constant h (Subsection 2.2). Define (k*,n*) >> 

(0,0) to be a point on S such that if another (k,n) 

satisfies phk + n S phk* + n* , then (k,n) must also satisfy 

both 

( 1 1 ) 

( 12) 

n < n/2 , and 

~ bn + A[(p+r)k + q} - X < n 

See Figure 10. Such a (k*,n*} ,exists because the subset of IR 2 
+ 

which satisfies (11)-(12) is open and contains (0,0) since 

K/(1-U} < K (Subsection 4.3). 

Define C = {(n,k}I k ~ k*} B = -C n {(n,k)I phk + n < 

phk* + n* } , and A= -C n -B . See Figure 10. 

Lemma 6: Suppose K/(1-0) < K If 

feasible from (k0 ,n0 ) e B and there is some s for which 

is 
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n 

A 

n12 
s 

C 

* * phk+n = phk +n 

k 

Figure 10: The point (k*,n*) and the sets 

A, B , and c . (Lemma 6.) 

-== n 
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ns > n/2 , then there is a period T for which kT 2:: k* and 

(kt,nt) e B for t < T . 

Proof: Consider any (kt_ 1 ,nt_1 ) on the border between A 

and B . Since (kt-l'nt_1 ) e B , et= 0 by (12), and since it 

lies above S , A(rkt_ 1 } - (1-b)nt-l < 0 . Thus, equations (3)­

(4} imply 

nt = bnt-1 + A[rkt-l + p(kt-1 - kt}] I 

nt s bnt-1 + A ( rkt-l) + ph(kt-1 - k ) t I 

nt + phkt s nt-1 + phkt-1 + [A(rkt-l) - (1-b)nt-l] I and 

nt + phkt s nt-1 + phkt-1 . 

Therefore, if (kt-l'nt_1 } lies on the border between A and 

B , (kt,nt) must not lie in A. Since any point in B is 

dominated by a point on the border between A and B, we have 

Now take some feasible from 

Since e B and suppose that ns > n/2 . Then (ks,ns) e Au c 

(kt-l'nt_1 ) e B requires (kt,nt) e -A by the previous 

paragraph, there must be some TS s such that (kT,nT) e C and 

Q.E.D. 

Lemma 7: Suppose that K/(1-U) < K, and that 0(n) < d 

for all n < n . Then there is a land-nutrition pair 

(~,~) >> (0,0) such that if (k0 ,n0 ) << (~,~) , then every 

optimum is such that each et= 0 , 
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00 

<kt>t=l is monotonically decreasing, and limt➔ooct = limt➔ookt = 

limt➔oont = O . 

Proof: Define O < k < k* so that 

where V = v(rk*/d + q)/(1-d) and a= ln O(n/2)/ln d > 1 (note 

ln O(n/2) < ln d < 0 ) . Such a k exists because VI (k/d) is 

nondecreasing as k appoaches 0 since V is concave, and 

because limk➔ O v(k*)-a(k/d)a-l = 0 since a > 1 . Define n 

to be the second coordinate of the point on s whose first 

coordinate is k. Since O < k < k* , O < n < n* . 

Now take any (k0 ,n0 ) << (k,n) ·and suppose that 

00 

<(ct,et,kt,nt)>t=l is a feasible stream in which nutrition 

exceeds n/2 in some period. By Lemma 6, there is a period T 

such that kT ~ k* and (kt,nt) e B for t < T . 

Modify this stream by taking the land kT and consuming in 

the first period its present discounted value 

yields a utility gain in the first period of 

T-·1 
v ( c l + d kT ) - v ( c l ) . 

This 

The loss entailed in period T+l and thereafter can be bounded. 

First, assume that the original involved 

employment in period T+l and every succeeding period, and that 

by stripping away kT , we sacrifice all this employment. 

Second, implies both e = O 
T 

and kT-1 < k* , 
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and consequently, kT < (1 + r/p)kT-l < (1 + r/p)k* = k*/d. 

Thus, the current utility loss evaluated at period T+l is at 

most 

v = v(rk*/d + g)/(1-d) 

Since (kt,nt) e B for t < T implies nt < n/2 for t < T , 

the utility loss evaluated at period 1 is at most 

O(n/2)T-ldv 

~ O(n/ 2 ) ln (dT-lkT/k*)/ln d v 

= (dt-lkT/k*)av 

where a= ln O(n/2)/ln d as defined earlier, and the inequality 

follows from the fact that kT ~ k* and thus T-1 ~ 

ln (dT-lkT/k*)/ln d . 

By c 1 < k 0 /d < ~/d and the concavity of v , the 

definition of k, the two facts that a> 1 and dTkT < k 0 

< k, and finally algebraic manipulation, 

T-1 v(c 1 + d kT) - v(c 1 ) 

> v'(k/d)dT-lk 
- T 

> [k/k*]a[dTkT/k][v/da] 

> [~/k*Ja(dTkT/~]a(v/da] 

= (dT-lkT/k*)av 

Thus the utility gained by increasing first-period consumption by 

dt-lkT outweighs the utility lost by reducing land in period T 
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from kT to O. Since this modification is feasible, the 

original Hence, every 

• optimum has nt < n/2 in every period. 

• 

• 

Since every optimum exhibits perpetual malnutrition whenever 

(k0 ,n0 ) << (k,~) , every optimum exhibits perpetual unemployment. 

Since an optimum exists (Lemma 4}, the maximization problem (1}­

(5} then reduces to finding the optimal way to distribute 

consumption over time given the land endowment k 0 • Further­

more, nt < n/2 for all t implies O(nt) < O(n/2) < d for all 

t . Therefore, the agent will decumulate land holdings: 

= 0 • Q.E.D. 

Lemma 8: Suppose that K/(1-U) < K, that O(n) = d for 

all n, and that 1 im QV 1 ( C} = +oo • 
C-t 

Then there is a land-

nutrition pair (~,~) >> (O,O) such that if (n0 ,k0 } _<< (~,~) , 

there is a unique optimum t , 

Proof: Define O < k < k* so that 

v' (~/d} > v/k* , 

where v = v(rk*/d + q}/(1-d} Such a k exists because 

lim v' (c) = + oo • Define n to be the second coordinate of 
C➔ O 

the point on S whose first coordinate is k . Since 

O < k < k* , o < n < n* . 
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As in the proof of Lemma 7, we employ Lemma 6 to show that 

every optimum from some (k0 ~n0 } << (~,~} exhibits perpetual 

• malnutrition. Only two modifications are required. First, the 

utility loss evaluated at period 1 is at most 

• 

T-1 d ln (dT-lkT/k*)/ln d v d dv ~ 

= (dT-ldT/k*)v 

Second, the gain from modifying the original stream is shown to 

exceed the loss by c 1 ~ k 0 /d ~ k/d, the concavity of v , and 

the definition of k: 

v(c 1 + dT-lkT) - v(c 1 } > v'(k)dt-lkT 

> (dT-lkT/k*)v. 

Finally, since perpetual malnutrition implies perpetual 

unemployment and since an optimum exists (Lemma 4), the 

maximization problem (1)-(5) reduces to finding the optimal way 

to distribute consumption over time given the land endowment 

k 0 . Since p = [d/(1-d)]r and v is strictly concave, there 

is a unique optimum such that for all t ' 

Q.E.D . 

Lemma 9: Define (k,n) as in Section 4. If k > 0 I 

there is a t > 0 such 
00 

that if <(ct,et,kt,nt)>t=l is optimal 

from (k0 ,ii) and ko E (k-t ,k) I then kl < kO . 
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Proof: Define T such that 

r~=l dt-lv(rk + q) > v(rk + dq)/(1-d) . 

Such a T exists because r;=l dt-lv(rk + q) = v(rk + q)/(1-d) . 

Then define o < £ < dTk. 

Now take any k 0 e (k-£,k) and assume Employment 

in period 1 requires that nl ~ ii I hence that cl ~ rk + q I 

and hence that kl s ko - (k - k 0 )r/p < ko Hence, if 

kl~ ko I then el = 0 I and consequently, the agent's lifetime 

income cannot exceed [1/(1-d)]rk + [d/(1-d)]q. Thus, if 

k 1 ~ k 0 , the agent's utility cannot exceed v(rk + dq)/(1-d) 

We show it is suboptimal to choose k 1 ~ k0 by constructing 

a feasible stream which exceeds this upper bound. Let 

(ct,et,nt) = (rk + q, 1, n) for the first T periods. By the 

definition of k, a consumption of rk + q is sufficient to 

maintain nutrition at n, and hence employment is feasible. 

This consumption in excess of factor incomes is maintained by 

whittling down the initial land holding during the first T 

- -t -periods. To be precise, kt= k - d (k - k0 ) for t ST , and 

by the definitions of k 0 and t , kT = k - d-T(k - k 0 ) > 

k - dT£ > O . This course of action yields a utility of at least 

r~=l dt-lv(rk + q) , and by the definition of T, this exceeds 

the upper bound derived when k 1 ~ k 0 Q.E.D. 

Lemma 10: Suppose K/(1-U) ~ K 

there is a unique optimum t , 
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Proof: Since K/(1-U) ~ K, the nutritional requirement for 

employment is never binding-regardless of (k0 ,n0) (Subsection 

4.3). Thus the agent will be employed and adequately nourished 

in every period. Constant consumption is implied by the strict 
. 

concavity of v • Q.E.D . 
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NOTES 

1. Leibenstein's·observations have been extended by a 

number of writers. See, e.g., Mirrlees (1975), Stiglitz (1976), 

Bliss and Stern (1978a,b), and Dasgupta and Ray (1986, 1987a). 

The theories start from the postulate that there is a strong 

connection between an individual's consumption and his ability to 

perform productive work. This connection yields a number of 

interesting results regarding labor markets. The theory has also 

been subjected to testing-with mixed results depending on the 

exact form under review. See Bliss and Stern (1978b) for a 

summary of some of these tests. 

2. In fact, the term "efficiency wage" has been carried 

over to embrace an entire group of theories where the payment of 

wages affects ability or effort, not necessarily for nutritional 

reasons. See Yellen (1984) and the recent collection of readings 

edited by Akerlof and Yellen (1986). 

3. A person's nutritional history may affect his current 

ability in several ways. First, he may acquire stores of energy 

(such as body fat) which can be run down during a period of low 

consumption for the purposes of activity. Second, it has been 

claimed that his very history of intakes might create adaptive 

responses in his needs. Finally, nutritional history affects 

current activity by altering survival probabilities. The first 

and third aspects are explicitly considered in our model. For a 

survey of the clinical literature in this context, see Dasgupta 

and Ray (1987b) . 
4. We adopt in this paper the simplifying assumption that 

an individual is able to supply one unit of labor power if he is 

"adequately" nourished (i.e., if his nutrition stock exceeds the 

critical minimum), and none otherwise. This is a step function 

which can be generalized (at the cost of considerable technical 

complexity) to the smoothly increasing functions used in the 

static theory. However, we do allow fresh nutrition acquisition 
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to be a smoothly increasing function of consumption (see below in 

the main text) . 

5. Our dynamic framework requires a refinement of this 

second notion of unemployment. In our model, any positive 

initial land holding enables the agent to work in some (perhaps 

very distant) time period if he consumes little and accumulates 

land in the meantime. As the initial land holding approaches 

zero, the waiting time increases without bound. Consequently, 

this option is unattractive for sufficiently small initial land 

holdings, due to the concavity of the objective function (Section 

4.2) or the decreased survival probability (Section 5.1). 

6. If the option of being employed is outside the feasible 

set, one might hesitate to call such unemployment involuntary. 

Imagine, for example, an individual who wishes to be a profes­

sional pianist and therefore rejects other lucrative job offers, 

but cannot find a job in the industry of his dreams becaus~ he 

has not talent as a musician. Is his unemployment in the music 

industry "involuntary"? Perhaps it should not be classified as 

such! In the present context, however, agents are constrained by 

their lack of adequate nutrition. The case for classifying such 

an individual as involuntarily unemployed is far more compelling. 

7. Indeed, the characterization of stationary equilibria 

that we present below can be extended with no difficulty. Rather 

more demanding is the extension of the stability analysis in 

Section 5. 

8. As noted by Bewley (1982, p. 234), stationary dynamic 

general equilibria are not unique and do depend upon initial 

conditions. In other words, initially wealthy individuals 

• generally remain wealthy. In essence, a concave intertemporal 

production function uniquely determines the aggregate capital 

stock (just as it does in optimal growth theory, Gale, 1967), but 

the distribution of this aggregate quantity among individuals 

provides another degree of freedom. (Also see Coles (1983) and 

Yano ( 1984) . ) 
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9. Our formal analysis deals with stationary equilibria 

where prices are indeed time-stationary. We could have, never­

theless, set up the agent's problem using a time-varying price 

sequence, but avoid this for notational ease. 

10. The loss (1-b)nt-l approximates the energy required 

merely to maintain the agent's body given minimum activity 

levels. This requirement increases with the agent's weight 

(Bliss and Stern, 1978b, p. 369). 

11. "Over-consumption" may even lead to a decline in 

nutritional well-being, but we are obviously not concerned with 

this extreme in the paper! 

12. This imposes an upper bound on the efficiency with 

which the digestive system converts food into nutrition. 

13. There is, of course, the energy requirements for basal 

matabolism and the maintenance of the body frame that must be 

expended. We capture this is the depreciation factor b . 

14. We are referring to "partial equilibrium" models such 

as Leibenstein (1957), Mirrlees (1975), and Bliss and Stern 

(1978a); and "general equilibrium" models such as Dasgupta and 

Ray (1986,1987a). For examples of two-period models with a 

lagged nutrition-efficiency relationship, see, e.g., Gupta (1987) 

or Guha ( 1 9 8 7 ) . 

15. All the references in footnote 14 deal with a nutrition­

efficiency relationship that yields a smoothly increasing 

endowment of efficiency units as nutrition increases. For an 

example (in the static context) using the "step-function'' case 

that we consider here, see Dasgupta and Ray (1986). 

16. In the terminology of Brock and Gale (1969), we assume 

that the exponent of v is asymptotically bounded below unity. 

17. There is (as is to be expected) a vast clinical 

literature linking undernutrition to survival probabilities. See 

the references in Dasgupta and Ray (1987b). 

18. The model assumes a constant population size although 

the survival probability may fall below unity. This requires 
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some story regarding reproduction: Each agent who dies after 

period t is replaced in period t+l by a perfect clone, 

interpreted as the child of the deceased. In particular, this 

child inherits the land holdings and nutritional stock of his 

parent. This story accords crudely with the fact that in 

relatively malnourished family lines, individuals have shorter 

lifetimes and generations elapse more quickly. The utility 

function of the individual living in period r is given by (5), 

where "t=l" is replaced by "t=r" and "s=l" is replaced by "s=r". 

Thus every individual in the family line maximizes expected 

utility, given that the utility of death is zero (Heal, 1973). 

19. It is also required that c , e, and k are measur­

able with respect to Lebesque measure ~ . This technicality is 

handled appropriately in the proof of the Characterization 

Theorem (Section 3). 

20. The abstract theories of recursive utility and dynamic 

programming in Streufert (1986a, 1986b, 1987) can be straight­

forwardly applied to this unusual optimization problem having 

unbounded feasible streams, a variable discount factor, two state 

variables, and a discrete employment variable. Given the stated 

assumptions and that the price of land equals the present 

discounted value of the rental stream (i.e. p = [d/(1-d)]/r 

this holds in any stationary equilibrium), we know, for any 

initial (k0 ,n0 ) , that an optimum exists (Lemma 4 ), and that 

the objective function (5) is finite over the feasible set 

(second paragraph in proof of Lemma 3 ) . 

21. Of course, by the constant-returns assumption, maximum 
profits are zero. 

22. The fact that K is well-defined follows from the 

Inada condition on F , and, of course, the ability of A to 

attain the value n + x. 

23. K can be thought of as a threshold beyond which the 

"trickle-down" effects of growth can at least succeed in removing 

the sort of poverty trap created by malnutrition. Of course, 
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issues of inequality will continue to be important even in this 

region. 

24. There is another possible concept of the viable 

threshold, namely, the smallest economy that can provide everyone 

with an adequate level of nutrition ( n ), regardless of whether 

all are employed or not. One can show that this viable threshold 

is lower than the viable threshold defined in the text. More­

over, it may be possible to support such allocations as 

stationary equilibria (see footnote in Subsection 4.2). These 

equilibria would involve unemployment but no malnutrition. 

25. The proof follows the first paragraph in the proof of 

the Characterization Theorem, and it is omitted here. 

26. As the ratio increases, the rental income from a given 

amount of land also falls. This decrease in r is, however, 

always dominated by the increase in q. 

27. Of course, we can derive many more equilibrium distri­

butions by changing the names of the employed and the unemployed. 

28. This implies that n(a) ~ n and that (k(a),n(a)) 

e S 

29. This is not a characterization of all equilibrium 

distributions because (k,g) does not exactly demarcate those 

points on S from which employment would not be sought. Rather, 

it gives a subset of those points. 

30. This implies that (k(a),n(a)) e S. 

31. There may be equilibrium prices in which certain points 

on s above n = n are optima. Such points would represent 

.. unemployed agents who are nonetheless adequately nourished. 

32. A non-Walrasian equilibrium concept involving unemploy­

ment rationing would allow us to obtain an unemployment rate of 

O(K) with a land/labor ratio of K. The "involuntary unemploy­

ment" of Dasgupta and Ray is a very similar concept. In this 

case, landless workers with zero nutrition would be just capable 

of providing labor power but would be rationed out of the labor 

market. However, such workers are not capable of offering their 
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labor power for any wage less than the equilibrium wage. They 

are thus incapable of upsetting this extended equilibrium 

concept. 

33. We do however know that an optimum always exists 

(Lemma 4), and that the abstract dynamic programming theory of 

Streufert (1987, Theorem A) is applicable. 

34. This casual observation accords with the formal fact 

that if we try to set U above the upper limit U(K) , everyone 

can work in every period and unemployment becomes impossible. It 

also accords with the fact that the (~,~) defined in Lemmas 7 

and 8 shrinks toward (O,O) as U increases toward U(K) . 

35. We neglect in this discussion how the initial distri­

bution of nutrition is altered. 

36. The dynamic stability of general equilibrium paths has 

been studied under convex structures (see Bewley (1982), Coles 

(1983), and Yano (1984)). However, the pervasive nonconvexities 

of.our model preclude an application of the techniques developed 

in those papers. The formulation of an adequate nonstationary 

equilibrium theory in models such as ours remains a challenging 

task. 
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