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Abstract: We incorporate the consumption-ability relationship of
static "efficiency wage" models into a dynamic general equili-
brium model. We show that for many aggregate land stocks, there
is a continuum of unemployment rates which could persist indefi-
nitely as part of a stationary equilibrium. For many of these
aggregate land stocks, both unemployment and full employment are
distinct possibilities. Broadly speaking, more unemployment
corresponds to more undernourishment and more inequality in land
distribution. Thus our results suggest that the market mechanism
is less efficacious than land reform in reducing unemployment and

undernourishment.

JEL Classification Numbers: 821, 111.



1. Introduction

We analyze a competitive dynamic model which incorporates
unemployment, undernourishment, and asset inequality as its
central variables. Our objective is to characterize fully the
stationary general equilibria of such a system. In doing so,
some insight is gained into the persistence of unemployment and
undernourishment in developing countries, and in particular) into
the role of market forces in combatting such phenomena.

‘Widespread undernourishment is a pervasive and undeniable
fact of life in many developing countries, though the exact
magnitudes are open to debate. It is known that the under-
nourished are assetless (or near-assetless) and that they have
difficulty gaining secure access to the labor marke%. Economic
theory has been applied to understand some of these correlations.
In particular, the "efficiency wage" theories of unemployment,
pioneered by Leibenstein (1957), have been put forward to address
precisely these issues.1 Indeed, the formal structure has turned
out to be broader in scope than the nutrition-related issues they
were originally designed to handle.2

We now have fairly comprehensive static general equilibrium
models of asset inequality, undernourishment and unemployment
(Dasgupta and Ray, 1986, 1987a). The focus of inquiry in those
studies is on the nature of the causal mechanism "inequality =
undernourishment - unemployment”. This mechanism is best studied
in a static context, for in a dynamic model, the labor market
affects asset inequality. In the present paper, we study the

entire bidirectional dynamic relationship. Accordingly, we




construct a dynamic model and accommodate a number of features
that cannot be satisfactorily explored in a static setting.
Among these, two bear mentioning at the outset.

First, we incorporate the important observation that a
person's current ability to perform productive tasks depends at
least as much on his nutritional .history as on his current
nutritional intake.3 Indeed, this observation has often been
advanced as a criticism of static "efficiehcy wage" models that
view ability as a function of current consumption alone. How-
ever, the implications of this observation have not been studied
previously in an explicit dynamic model, and our results demon-
strate that this observation does not lead to results that are
markedly at variance with the "static" predictions.

Second, we permit asset holdings to vary endogenously over
time. An individual derives nutrition, not only from consumption
out of wage and rental income, but also from consumption financed
by the sale of land. Thus, relatively poor individuals may need
to decumulate land in order to maintain a nutrition level suffi-
cient for work. On the other hand, relatively rich individuals
are in a position to accumulate land without jeopardizing their
ability to work. 1Indeed, these are the fundamental ways in which

asset inequality evolves over time in our model.



1.1. Brief Description of Model

We consider a competitive infinite-horizon economy, where a
single output ("food") is produced using land and labor power in
a constant-returns-to-scale technology. There is a large number

of agents, each endowed with an initial nutrition stock and an

initial land holding. Each agent is free to cultivate his own

land, fo lease in or to lease out land, to hire in or to hire out
labor power, as well as to buy or to sell land. All markets are
taken to be perfectly competitive. 1In order to be able to work,
however, the individual must possess a minimum nutrition stock.4
His current nutrition stock is last period's nutrition stock
after "depreciation" plus current energy intake minus current
energy expenditure. The individual's land holding is updated to
reflect purchases and sales of land.

Each individual solves a dynamic optimization problem, while
in their role as firms they maximize profits in every period. We
study the dynamic general equilibrium of this system, postulating
that all markets clear. In particular, we assume that the labor
market clears. This particular specification, made primarily to

simplify the exposition, is different from the non-Walrasian

concept studied in static efficiency Wage theories, so it is
worth commenting on this difference at the very outset.

Unemployment might conceivably arise in three ways. First,
a person may be able to work (in the sense that his nutrition

stock exceeds the critical minimum) but is unwilling to do so.




Second, a person may be unable to work, although he would 1like
to. Finally, a person may be both able and willing to work, but
is excluded from the labor market b§ some rationing mechanism.
This last concept is usually referred to as involuntary unemploy-
ment. By our pocstulate that labor markets clear, we do not
accommodate the third variety of unemployment. Neither do we
study the first. Rather, we focus on the second: the unemployed
are unable to work, although they would like to.5 Whether we
call such unemployment involuntary or not,6 there is no doubt
that it represents awserious lack of access to the labor market.
In our ethical priorities, it is as unacceptable a state of
-affairs as involuntary unemployment in the narrower sense of the
term.

We could have incorporated the third variety of unemployment
as well, using the "extended equilibrium" approach developed in
Dasgupta and Ray (1986).7 We avoid doing so to keep technical

complications to a minimum.

1.2. Summary of Results

The Characterization Theorem (Section 3) completely charac-
terizes the stationary equilibria, and reveals that, in general,
there is a continuum of stationary equilibria for every aggregate
land stock. These equilibria differ in prices, land distribu-
tion, and unemployment rate. Broadly speaking (see Section 4 for

details), higher unemployment rates correspond to more undernou-




rishment and greater inequality in land distribution.

Although it is not surprising that different distributions
of the same aggregate land stock can perpetuate themselves,8 it
is significant that different unemployment rates can persist
indefinitely in stationary equilibrium. For many aggregate land
stocks, there are stationary equilibria with unemployment even
though there is also a stationary equilibrium with full employ-
ment. The perpetually unemployed individuals simply lack the
necessary nourishment-in spite of the fact that other equilibria
with less unemployment may exist. Our result suggests that there
is nothing inherent in the competitive market system which will
alter the situation over time, and that the root cause of this
difficulty is the initial land distribution.

At one level, it might seem possible to construct, for any
aggregate land stock, a stationary equilibrium involving under-
nourishment and unemployment: simply start some individuals off
with extremely low nutrition stocks and zero land holdings. But
this is not true: we must also find a price system (wages, rental
rates, and land prices) that sustains this configuration as a
dyanamic general equilibrium. Indeed, if the aégregate land
stock of the economy is "large enough" (in a sense made precise
in Section 3), there cannot be a stationary equilibrium involving
undernourishment and unemployment. On the other hand, if the
aggregate land stock is "small", every stationary equilibrium
must involve undernourishment and unemployment. It is the

intermediate zone that is of greatest interest. Here, as already




mentioned, there are equilibria with full employment (the economy
is "productive" enough), but there are also equilibria with
unemployment. In this case, a careful and progressive land
reform will not only improve income distribution-it will also
increase employment and output.

Given thé multiplicity of stationary equilibria, it is not

surprising that no one of them is globally stable. (Global

stability would mean that starting from any initial land distri-
bution and nutrition distribution, there exists a dynamic equili-
brium whose prices and distributions converge over time to those
of the stationary equilibrium in question.) Nevertheless, some

remarks can be made on the local stability of each stationary

eguilibrium. Section 5 takes this up.

First, we study individual stability, in the sense that we

perturb an individual's initial land and nutrition stocks while
keeping equilibrium prices fixed (they will indeed remain unal-
tered in response to a "measure-zero" change). We establish that
a small increase in an unemployed individual's initial stocks
will not bring about a permanent change in his employment status.
Indeed, in one version of our model, the additional stocks are
drawn down over time as the individual regresses to his earlier
stationary position (Stability Thgorem 2). We establish similar
stability results for employed individuals.

Finally, we briefly discuss (local) system stability, which
analyzes changes in the initial stocks of a set of individuals of

positive measure. In general, such changes perturb dynamic equi-




librium prices, and thereby complicate the analysis immensely.
Nevertheless, individual stability results throw some light on
system stability. For instance, we show that a "small" land
reform, in the sense of a minor redistribution of land from the
employed to the unemployed, has no effect on the equilibrium
unemployment rate. Rather, the land reform must exceed a

critical minimum size if it is to reduce unemployment.

2. The Model

2.1. Production

We consider an infinite-horizon dynamic economy in which
food is the only consumption good. Food is produced using the
production function F(k,e) , where k denotes land and e
denotes labor-power as measured in efficiency units (i.e. tasks
accomplished). The production function is taken to be concave,
continuously differentiable and constant-returns-to-scale. It is
also assumed to increase in k and in e , to display dimini-
shing marginal product in each input, and to satisfy the Inada
end-point conditions for each input. The interpretations that

F(k,e) 1is a production technology for one giant competitive

firm, or that it is a technology available to all individuals in
the economy, are both equally consistent with our analysis, and

the reader may adopt either. Let K be the aggregate land stock

in the economy.



2.2. Individual Feasibility

There is a continuum of agents, indexed by a and distr-
ibuted uniformly on [0,1] . Each individual begins every time
period with two stocks: his land ownership ( k2 0 ) and his

previous nutritional level ( n 2 0 ) . In every period the

individual may be employed (signalled by a dummy variable e set
equal to 1 ) or unemployed ( e = 0 ). He also consumes a
certain amount of food ( ¢ 2 0 ). Given the current price of

land ( p ), the rental rate on land ( r ), and the wage rate per

efficiency unit, i.e. piece rate per task accomplished ( q ), the
agent's employment status and consumption level determine his
nutritional level and his land ownership for the next time
period, and the whole process repeats itself.

We make the following assumption concerning the relationship

between employment and nutrition.

Assumption 1: An agent either supplies one (efficiency)

unit of labor if he is employed, or zero units if he is
unemployed. To be employed, the agent's current nutritional
level must be at least 0 , where n is an exogenously given
positive number. If employed, the agent expends x units of

energy on work, where X is an exogenously given nonnegative

number. If unemployed, the agent expends no energy.

We postpone our comments on Assumption 1 until we have

completed a formal description of the agent's feasible set.




Suppose that a vector of prices (p,q,r) is given and is time-

stationary.g Then consider an agent at time t with stocks

(ky_,/ne_y) of land and nutrition at the end of date t-1
If e =1 (the agent is employed), we then have
(1) kt = kt-l + (rkt_1 + q - ct)/p 2 0 , and
- - >~
(2) n, =bn,_, + Alcy) X2n.

Equation (1) describes the evolution of land holdings and is
self-explanatory. Equation (2) is the nutrition balance egqua-

tion. Last period's nutrition stock n._,
10

factor (1-b) , so that bnt_1 is available at time t

Current consumption Cy adds to the nutrition stock via a

depreciates by a

function A(ct) . We take it that A(0) = 0 , that A 1is weakly

increasing11 and differentiable, and that the derivative A' |is

bounded above by the constant h .12 Finally, employment
requires an energy expenditure x =2 0 . The inequality n, > n
in (2) captures the stipulation of Assumption 1: in order to
work, the agent must have attained a certain threshold level of
nutrition.

If e =0 (the agent is unemployed), the stock equations

(1) and (2) are modified to read:

(3) k

k + (rk

& -1 - ct)/p 2 0 , and

t-1

& bnt_1 + A(ct) 2 0 .

]

(4) n

Again, (3) should be self-explanatory. The nutrition balance

equation (4) now subtracts no energy due to work,13 and further-
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more, the constraint n, > n does not appear.

For an examination of nutrition balance equations such as
(2) and (4), the reader is referred to Dasgupta and Ray (1987b)
and the references contained therein. It should be observed that
our formulation places iméortance on both the agent's nutrition

history (captured via n ) and his current consumption as

t-1
determinants of current work ability. This is in contrast to the
numerous models of nutrition-efficiency relationships in a static
context. While many of these acknowledge the inherently dynamic
nature of the relationship, their questions are somewhat differ-
ent than the ones addressed here and do not necessitate an
explicit modelling of this dynamic.14
While our model is richer in this respect, it does simplify
matters by assuming that labor-power is a simple step-function

15 This is the crux of

defined over the nutritional stock.
Assumption 1. It would be desirable, but much more difficult
analytically, to formulate labor-power as a smoothly increasing

function of both nutrition stock and current energy expenditure.

We do not interpret c¢ 0 as complete fasting, e = 0 as

coﬁplete inactivity, and n 0 as death. Rather, we use
(c,e,n) = (0,0,0) to represent subsistence on consumption
created outside the economy under review, such as Eegging or
gleaning. One could, at the cost of additional complexity,

represent such subsistence with positive constants.
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2.3. Individual Preferences

Each agent derives a single-period utility v(c) from a
consumption of ¢ in that period. The function v 1is taken to
be nonnegative-valued, weakly increasing, differentiable and
strictly concave. Moreover,‘we assume there is some e0 < 1

.16 Future

such that for sufficiently large ¢ , v(c) < ceo
utilities are discounted, and the agent seeks to maximize the
infinite-horizon sum of discounted utilities.

This much is fairly standard. However, we are dealing here
with a framework that embodies persistent malnutrition as one of
its fundamental variables, and this is likely to have repercus-
sions on behavior via a lowered probability of survival.17 We
incorporate this possibility by assuming that the discount factor

applied at date t to the infinite-horizon utility from date

t+1 is a weakly increasing function of nutrition. Specifically,

for any stream of consumption and nutrition '<(ct'nt)>t=1 , we
write the agent's utility function as
] t-1
(5) Zioq{Mgid(ng)}v(c,)
where &(n) = o(n)/(1+p) , p > 0 is a fixed rate of impatience,

and 0 < og(n) £ 1 gives the probability of being alive during
the next period given current nutrition n . We assume that o
is continuous, weakly increasing when n < n , and constant at s
when n2>2n . Thus, & is continuous, weakly increasing when

n <n, and constant at d = s/(1+p) when n = n . One special
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case is certain survival: o 1is constant at one and &8 is

constant at d = 1/(1+p) .18

The individual seeks to maximize (5) subject to the
constraints (1)-(4) given prices (p,q,r) and his initial

endowment of land and nutrition (kO,nO) . A solution to this

problem is a sequence <(ct'et'kt'nt)>t=1 . Such a solution is

. stationary if the subscript t can be dropped.

2.4. Stationary Equilibria

A stationary equilibrium in this model is an infinite-
horizon competitive equilibrium with stationary prices and a

stationary solution for each individual. Formally, a stationary

equilibrium consists of the following (time-stationary) objects:

prices (p,q,r) , a consumption distribution ¢ : [0,1] - R+ , an

employment distribution e : [0,1] - {0,1} , a land distribution

k: [0,1] - R+ , and a nutrition distribution n : [0,1] = R+

This collection of prices and distributions is a stationary
equilibrium if it satisfies the following four properties.19
(a) For every a e [0,1] , (c(a),e(a),k(a),n(a)) is a
stationary solution to the maximization problem (1)-(5) given
prices (p,q,r) and initial stocks (k(a),n(a)) .20
(b) The aggregate land holding K is distributed by k
[raw=x.

(c) The input markets clear given competitive behavior by

the producer(s): (K,J e dpy) maximizes F(K',E') - rK' - gE'
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over (K',E') e Ri .21

(d) The food market clears: I c dy = F(K,J e dy)

3. Characterization of Equilibrium Unemployment Rates
3.1. Characterization Theorem

For most aggregate land stocks, our model admits a continuum
of stationary equilibria. These stationary equilibria are
substantially different from one another: they involve different
equilibrium prices and different unemployment rates. 1In parti-
cular, we shall see that the same economy could possess two
stationary equilibria, one with full employment and the other
with a positive unemployment rate. Which of the two prevails in
the long-run depends on the initial distribution of stocks.

Let U denote the unemployment rate 1 - I edy . We will
characterize the various unemployment rates U that can prevail
as the aggregate land stock K 1is parametrically varied.

Accordingly, we shall often equate an economy with its aggregate

land endowment K . We define two critical values of the aggre-
gate land endowment K : Define K by
A[F(K,1)] = (1-b)n + x ,

and define K by
A[FE(K,l)] =n + x

Although we postpone a full interpretation of these critical
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values until Subsection 3.2, note that K < K follows

immediately.22

Characterization Theorem: Consider any economy K with

K >0 . Define U(K) = (K-K)/K , and U(K) = (K-K)/K . Then the
economy K has a stationary equilibrium with unemployment rate
U if and only if one of the following three conditions is met:
1) Ke (0,K) and Ue [g(x))ﬁ(x)) ,
2) Ke [K,R) and U e [0,0(K)) , or

3) K2K and U =0 . -

Remark: See Figure 1. The theorem states that for econo-
mies such as K1 , the set of all equilibrium unemployment rates
is precisely equal to the interval [g(Kl),ﬁ(Kl)) . Thus, every
equilibrium for these economies exhibits unemployment ( U > 0 ) .
In contrast, for economies such as K2 , both full employment
( U =0 ) and unemployment ( U > 0 ) are possible in equili-

brium. Finally, for economies such as K all equilibria

3 !
necessarily exhibit full employment.

Thus, the essential indeterminacy of this model is captured
in stark detail: If K < K , the market mechanism can support a
whole range of unemployment rates. This range of unemployment
rates corresponds to the range of land distributions which
perpetuate themselves in a dynamic general equilibrium (see

Section 4): Greater inequality in land distribution leads to

more unemployment and more malnutrition.
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Figure 1: The economy K has a stationary equilibrium with
unemployment rate U if and only if the pair (K,U) is on the
solid line or within the shaded triangle.
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The region K e [E,E) is of particular interest, for here,
unemployment and malnutrition (i.e. nutrition levels below n)
can exist in equilibrium even when there are other equilibria
that can guarantee full employment and adequate nutrition for
all. This unattractive outcome is perpetuated by the market
mechanism given an initial inequitable distribution of land.

One naturally wonders whether this indeterminacy affects
economic efficiency. One measure of efficiéncy would be aggre-
gate food production: Clearly production increases with employ-
ment, and thus, equilibria with relatively high rates of unem-
ployment are inefficient in this sense. Pareto-efficiency
provides another criterion: We conjecture that every stationary
equilibrium is Pareto-efficient just like the static general
equilibrium of Dasgupta and Ray's (1986) malnutrition model is

shown to be Pareto-efficient.

Proof of Characterization Theorem: The proof has three main

parts.

Part 1. First, suppose K and U satisfy one of the three

conditions. We will construct for economy K a stationary

equilibrium with unemployment rate U . Define prices by
q= FE(K,I-U) ’
r = FK(K,l—U) , and

(d/(1-d)]r

o]
]

' Define the distributions (c,e,k,n) by
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(c(a),e(a),k(a).,n(a))

r(0,0,0,0) if a e [0,U)

L ( rk(a)+g, 1, K/(1-U), {Alc(a)]l-x}/(1-b) ) if a e [U,1]
Properties (b)-(c) follow immediately from the definitions of
k, r, and q . Property (d) follows from Euler's Theorem:
c(a) = F(K,1-U)/(1-U) for all a e [U,1]

Property (a) is more involved. First consider the unem-
.ployed agents. If U = 0 , this case is vacuous. If U > 0 ,

take a e [0,U) . By the fact that U < U(K) ,

Ag) - x A[FE(K,I—U)] - X

A

A[FE(E,I)] - x

=1 .

Thus it is impossible that agent a can work without first
accumulating land or nutrition. It is also impossible for agent
a to accumulate either one without labor income. Therefore the
stationary stream (c(a),e(a),k(a),n(a)) = (0,0,0,0) is the only
feasible stream. (Section 5 makes the distinct and significant
observation that this optimum is locally stable.)

Second consider the employed agents. Take a € [U,1] and

consider the following "artificial" maximization problem: Given

k ,nt)> to maximize

(ko,no) = (k(a),n(a)) , choose <(ct,et, + =1

® t-1
(6) zt=1 d v(ct)
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subject at each t to

(7) n, =bn,_, +A(c,) - xe , and

(8) kt = kt-l + (rkt_1 + gqe - ct)/p

In this "artifical" problem, we deliberately do not impose a
nutritional requirement for work. Therefore, the agent always
works and nutrition plays no role. It can be shown by standard
arguments, using p = [d/(1-d)]r and the strict concavity of .
v , that the unique optimum of (6)-(8) is the stationary stream
(c(a),e(a),k(a),n(a))

We make an important preliminary observation concerning this
optimum: n(a) 2 n . If K < K, this observation follows from

the fact that U 2 U(K)

n(a) {A(rk(a) + q) - x}/(1-b)

{AoF[K/(1-U),1] - x}/(1-b)

2 {AoF[K/(1-U(K)).,1] - x}/(1-D)

{AoF[K,1] - x}/(1-b)

n

If K2 K , the observation follows from the definition of K

n(a) {A(rk(a) + q) - x}/(1-b)

{AoF[K/(1-U),1] - x}/(1-b)

2 {AoF[K,1] - x}/(1-b)
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2 {AoF[K,1] - x}/(1-b)

= ﬁ .

The "artifical" maximization problem (6)-(8) is intimately
related with the "true" maximization problem (1)-(5). First,
the objective function (5) is bounded above by the objective
function (6) because the function &6 is bounded above by the
constant d . Second, the feasible set defined by (7)-(8)
contains the feasible set defined by (1)-(4), for in contrast
to" (1)-(4), work does not require adequate nutrition in (7)-(8).
Third, because of our preliminary observation that n(a) 2 n ,
(c(a),e(a),k(a),n(a)) is also feasible in (1)-(4). And fourth,

because n(a) 2 n , the objective function (5) equals the

objective function (6) at (c(a),e(a),k(a),n(a)) . These four
facts prove that (c(a),e(a),k(a),n(a)) is the unique optimum of
(1)-(5).

Part 2. Suppose K < K and U < U(K) . Assume (contrary

to the theorem) that there exists a stationary equilibrium
[p,q,r;c,e,k,n] with unemployment rate U . Since K 1is the
aggregate land stock and 1-U is the measure of the set of

employed people, there must be some employed agenf a such that
k(a) € K/(1-U) . This fact, together with (1) and Euler's

Theorem, implies

c(a) = rk(a) + ¢q
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< rK/(1-U) + g

F[K/(1-U),1] .
Yet, (2) and the definition of K require

c(a) 2 A" ((1-b)E + x)

= F(E'I]

These two statements about c(a) require that K/(1-U) 2 K
This, however, is impossible because U < U(K) .

Part 3. Consider an economy K and unemployment rate U
such that U > 0 and U 2 U(K) . Assume that there is a
stationary eguilibrium [p,q,r;c,e,k,n] with unemployment
rate U . By property (c) of the equilibrium, the fact that

U 2 U(K) , the definition of U(K) , and the definition of K ,

Alg) - x A(FE(K,l-U)) - X
> A(FE(K,l—U)) - X
= A(FE<1‘<,1)) - x

=n .

This inequality reveals, via (1) and (2), that any individual can

work in every time period, regardless of the land and nutrition

he inherits from the previous period. Thus, every agent will
necessarily be employed in every time period. Consequently, it
is impossible that there is a stationary equilibrium with a
positive rate of unemployment greater than or equal to U(K)

Q.E.D.
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3.2. Viable and Full-Employment Thresholds

One interesting feature of the Characterization Theorem is
the zone [K,ﬁ) . Within this region, both full employment and
unemployment are possibilities, depending on the initial distri-
butions of land and nutrition. Accordingly, .it may be worth
interpreting the threshold levels K and K .

The latter may be called the full-employment threshold. It

is a level of the capital stock beyond which every stationary
equilibrium, no matter how unequal the implied (utility) distri-
bution, must yield full employment and therefore a nutrition
level of at least N to all. For such economies, poverty and
malnutrition cannot be an outcome of the mechanisms stressed in
this paper.23

The former threshold may be called the viable threshold. We

will define this somewhat differently, and then demonstrate its
equivalence with K . Define the viable threshold to be the

smallest economy K that can feasibly employ all its members

(thereby providing each with a nutrition level of at least

n ).24 More precisely, the viable threshold is the smallest K

such that there exist distributions ¢, e, k , and n (each

a function from [0,1] into R+ ) satisfying
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F(K,1) ,

I c dpy
e(a) =1 for all ae [0,1] ,
J.kdu‘--K,and

~

n(a) = [A(c(a))-x]/(1-b) 2 n for all a e [0,1] .

Observe that this definition only deals with feasible alloca-
tions, and not with allocations that might arise out of some
market equilibrium. However, it can be shown that this alloca-
tion for the viable threshold can be supported with prices as a

stationary equilibrium.25

A corollary of this observation is
that the viable threshold equals K .

So K is a threshold level where full-employment is just
feasible, and K is another threshold level where full employ-
ment is an inevitable consequence of every stationary equili-
brium. We reiterate our simple but important observation: K is
less that K . It is this intermediate zone of economies,
capable of attaining full employment and an adequate level of
nutrition, but locked into competitive equilibria that do not
come close to achieving these standards, that is consequently of
greatest interest. We feel that this zone is a caricature—but a
useful one—of many developing countries, where resources are
adequate but nevertheless unemployment and malnutrition prevail.
OQur analysis reveals that there is nothing inbuilt in the market

mechanism that will correct this.
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4. Graphical Depiction of Equilibrium Land Distributions

For any economy with aggregate land stock K , there is a
wide variety of stationary equilibria. This variety has two
dimensions. First, and the more important, the Characterization
Theorem states that if K < K , the economy K can sustain a
continuum of equilibrium unemployment rates U . Second, given
K, U, and the resulting equilibrium prices (p,q,r) , there is
considerable freedom concerning the distribution of land among
individuals. This second dimension is explored in a graphical

manner here in Section 4.

4.1. Construction

Consider an individual's two stock variables: land Lk and
nutrition n . The constraints (3)-(4) require that every

stationary land-nutrition pair without employment lies within
S={ (kn) | n=A(rk)/(1-b) }

Similarly, the constraints (1)-(2) require that every stationary

land-nutrition pair with employment lies within

S={ (k,n) | n=(A(rk + q) - x}/(1-b) and n 2 & }

See Figures 2-5. For future reference, we define the point
(k,n) to be the unique element of S which satisfies either

n=n or k=0 . Both S and S must be upward-sloping, and
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S must contain the origin. (Only the lower portion of S is
shown in Figures 2-5 since the rest is irrelevant.)

The curves S and S shift with the aggregate land stock
K , the unemployment rate U , and the resulting equilibrium
prices. Fortunately, this dependence is easily understood: S
and S depend only on r and g , which in turn, depend only on
the land/labor-power ratio K/(1-U)

As Figure 6 shows, the egquilibrium land/labor ratio can be
as low as K ; it can be nearly as high as K even when U > 0 ;
and it can equal or exceed K when U =0 . Also note that the
statements U 2 U(K) and K/(1-U) 2 K are algebraically
equivalent, and similarly, that U < U(K) ard K/(1-U) < K are
equivalent. The land/labor ratios labeled "3", "4", and "5"
lead to the configurations of S and S depicted in Figures 3,
4 and 5.

The movement of S can be easily understood in terms of the
point (k,n) € S . When X/(1-U) =K, (k,n) = (K,A) . As the
ratio K/(1-U) increases, the point (E,ﬁ) slides along toward
the corner (0,n) . Once (k,n) hits the corner, it moves up
the vertical axis indefinitely.

The movement of (k,n) can be easily interpreted: As the
ratio K/(1-U) increases from E , the wage g also rises; and
hence it takes less rental income rk in order to maintain the
necessary nutrition level n .2%  When (k,n) hits the corner

(0,n) , the wage q alone suffices: no rental income is required

in order to maintain n . Then if K/(1-U) continues to
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I5'

Figure 6: The straightforward relationship between the aggregate

land stock K , the unemployment rate U , and the land/labor

ratio K/(1-U) . The numbers "3", "4", and "5" label the land/

labor ratios which are considered in Figures 3, 4, and 5.
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increase, a landless worker is able to maintain a nutrition level

exceeding the minimum n .

4.2. Application

Consider an economy K and take an equilibrium unemployment
rate U and the resulting prices as given. 1In such a stationary
equilibrium, the (stationary) optimum of an unemployed agent can
be represented by a land-nutrition pair in S . The optimum of
an employed agent can be represented by a point in S

Suppose that &(n) <d for all n<n . In this case, no
unemployed agént would maintain a positive stock of land, because
his subjective discount factor 6(n) is less than d , which is
the market discount factor determined by the discount factor of
the employed agents. Thus, all the land is distributed among the
employed agents. In terms of Figures 2-5, all unemployed agents
are at (0,0) € S and the employed agents are arbitrarily
scattered along S with the one restriction that they divide up
the aggregate land stock K among themselves. More formally,

the set of all equilibrium distributions is characterized by27

1) If ae [0,U) , then (c(a),e(a),k(a),n(a)) = (0,0,0,0) ,
2) If ae [U,1] , then k(a) 2 k and (c(a).e(a),k(a),n(a)) =
( rk(a)+q, 1, k(a), {A(c(a))-x}/(1-b) ) ,28 and

3) J[U,ll k dyg =K
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Now suppose 46(n) = d for all n . In this case, unem-
ployed agents would be willing to hold perpetually a positive
amount of land. Thus, unemployed agents can be at points on S
other than (0,0) . However, if an agent's land;nutrition pair
is too far from the origin, he will choose to seek employment by
accumulating the necessary stocks of land and nutrition. Lemmavs
(Appendix) demonstrates that if K/(1-U) < K , there is some
point on° S other than the origin below which agents will choose
to remain unemployed. Such agents do not choose to seek employ-
ment because the necessary accumulation of land and nutrition
requires that they consume very little in the meantime. (This
low consumption is very unattractive because of the concavity of
the single-period utility function v .) This point on S is
called (k,n) , and accordingly, the set of all equilibrium

distributions includes29

1) If a e [0,U) , then k(a) <k and (c(a),e(a),k(a),n(a))

( rk(a), 0, k(a), A(c(a))/(1-b) ) ,30 and

2) If ae [U,1] , then k(a) 2 k and (c(a),e(a),k(a),n(a))

( rk(a)+q, 1, k(a), {A(c(a))-x}/(1-b) ) , and

_ 31
3) J[o,ll kdy =K .

4.3. The Characterization Theorem, Revisited

There are two critical land/labor ratios: K and K . The

ratio K 1is critical because if a worker's labor is complemented
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with less than K wunits of land, his total output is less than

F(K,1) , which is the minimum amount of consumption required to
sustain his nutrition at n . Thus, no stationary equilibrium
has a land/labor ratio below K . Recall that as the land/labor
ratio increases from KX , k declines from K . This movement
is depicted in Figures 2 and 3. .

The ratio K is critical because if the land/labor ratio
equals or exceeds K , the marginal product of.labor is suffi-
cient in and of itself to adequately nourish a worker with a zero
nutritional stock at the start of the period. 1In such a case,
everyone will choose to be employed in every period. Thus, there
is no stationary equilibrium with unemployment that has a land/
labor ratio at or above K .°2 Note that the statements K/(1-U)
<K and n < n/(1-b) are algebraically equivalent. The second
inequality appears on the vertical axis of Figures 4 and 5.

We now relate our understanding of equilibrium distributions
to Section 3's Characterization Theorem for equilibrium unemploy-
ment rates.

If K < K , the minimum unemployment rate U(K) is obtained
by putting 1-U(K) workers precisely at (k,n) = (K,n) and
putting the rest at (0,0) (Figure 2). The land/labor ratio is
then K and every worker is just adequately nourished. The
higher the K , the more workers can be provided with K units
of land, and hence, the lower the minimum unemployment rate. If

K is fixed and U increases from U(K) toward U(K) , then the
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land/labor ratio increases, the wage q increases, and (k,n)
slides to the left and then up the vertical axis (Figures 3 and
4). Employed and unemployed people can be scattered on S and
S as discussed in Subsection 4.2. The unemployment rate U can
be made nearly as high as ﬁ(K) . In other words, the land/labor
ratio can be made nearly as high as K . This bound is shown in
Figure 4 by the fact that (k,n) lies below (0,n/(1-b)) .

Suppose K = K . Here full employment is possible: See
Figure 2 and set all agents precisely at (k,n) = (K,) . As U
is increased from O toward ﬁ(K) , see first Figure 3 and then
Figure 4, and scatter the agents on both S and S as discussed
in Subsection 4.2. Again, the bound U < U(K) is shown in

Figure 4 by n < n/(1-b) .

Suppose K € (g,ﬁ) . If U =0, see Figure 3 or 4 and
scatter agents on S alone. If U e (O,ﬁ(K)) , see Figure 3 or
4 and scatter agents on both S and S . Note that as K

increases, the full-employment land/labor ratio rises, the full-
employment wage rises, and the full-employment (k,n) rounds the
corner and climbs toward (0,n/(1-b)) . Any positive unemploy-
ment rate entails a higher land/labor ratio, a higher wage, and a
higher § curve.

When K = K , there is no way to get the land/labor ratio
below K , and thus, unemployment becomes impossible. Conse-
quently, each K entails a unique land/labor ratio ( K itself)
and a unique S curve whose (k,n) lies on the vertical axis at

or above (0,n/(1-b))
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5. Stability

5.1. Individual Stability

We divide our discussion of stability into two parts.
First, we consider "individual stability", that is, we take
stationary equilibrium prices as given and study an agent (of
measure zero) whose initial land-nutrition pair entails a
nonstationary optimum. We ask whether or not the optimum
converges over time to a stationary optimum. Second, we make
some remarks on "system stability", that is, we consider initial
distributions of land and nutrition which are not stationary
equilibrium distributions, and we ask how those distributions
evolve over time in a nonstationary dynamic general equilibrium.
In this case, prices can vary over time. Individual stability is
addressed formally in this subsection, while the much more
difficult issue of system stability is addressed verbally in
Subsection §.2.

Take an equilibrium land/labor ratio K/(1-U) with
associated equilibrium prices (p,q,r) . A set Q consisting of

stationary optimal land-nutrition pairs is a global attractor if

]

e e 2 .
at each initial (ko,no) € R+ , every optimum <(ct’et'kt’nt)>t=1

satisfies limtﬁo(kt,nt) € Q. Such a set Q 1is a local

attractor if there is an open set B containing Q such that if

3 “ 3 K3
(ko,no) € B , every optimum <(ct'et’kt'nt)>t=1 satisfies

limt*“(kt,nt) € Q . An attractor Q is monotonic if the optima




33

converging to Q also satisfy either (vt) kt+1 P- 1<t or (vt)
Kepr S KRy

Stability Theorem 1: Suppose that K/(1-U) < K and that

8(n) <d for all n<f . Then {(0,0)}) and S~{(k,n)} are
monotonic local attractors. However, S is not necessarily a
monotonic local attractor. (See Figure 7, and Lemmas §, 7, and 9

in the Appendix.)

Stability Theorem 2: Suppose that K/(1-U) < K , that

8(n) = d for all n , and that limcﬁ v'(c) = +» ., Then there is

0]
a land-nutrition pair (k,n) >> (0,9) such that S o {(k,n)|
(k,n) << (k,n) } and S~{(k,n)} are monotonic local attractors.
However, S is not necessarily a monotonic local attractor.

(See Figure 8, and Lemmas 5, 8, and 9 in the Appendix.)

Essentially, this pair of stability theorems says that all
the stationary optima discussed in previous sections are locally
stable, with one exception: (k,n) . It is not at all surprising
that S~{(k,n)} is stable, for near this set, the nutritional
requirement of employment is not binding. Thus, the strict
concavity of v implies that agents consume the samé amount in
every period: rko + q .

It is important that the low stationary optima on S are
locally stable. If these optima were locally unstable, our
entire argument could be crippled by arguing that any slight

increment to the assets of the poor would permit them to climb




Figure 7:

for n <n .

K/(1-U) < K and 6(n) < d
(Stability Theorem 1.)

~Figqure 8:
for all

K/(1-U) < K
n, and 1linm

o

(Stability Theorem 2.)

. 6(n) =4d

L'(c) = o

we
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out of poverty. Rather, our analysis shows that such small
increments do not significantly alter thé long-run behaviour of
the poor.

The key to this result is the observation that there is some
neighborhood of the origin from which agents would not ever seek
employment by accumulating the necessary land and nutrition.
Because land generates rental income and nutritién depreciates,
an.agent seeking to gain employment would first accumulate land
rather than nutrition. By buying more land with the rental
income, the agent's land stock could accumulate at a rate of d
This option is unattractive for one of two reasons: either
(Stability Theorem 1) malnourished agents are less likely to live
to reap the benefits of the accumulation ( 8(n) < 4 ), and hence
run down their land stock to finance current consumption, or
(Stability Theorem 2) the strict concavity of v makes low
4consumption during the accumulation process very onerous (as
discussed in Subsection 4.2).

Although it was surprising to us that (k,n) 1is unstable,
the result is intuitive. If nj = n  and ko, is just a little
less that k > 0 , the agent could work for many periods while
maintaining his land close to k . In each period, he would sell
a tiny bit of land to make up for the slight deficiency in rental
income. In this case, <1<t>:=1 is clearly moving away from k
The alternative to this scenario is to forego employment in the

first period and to accumulate. This second option entails a

large loss in consumption during the first period, and it is thus
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less attractive than the first option for agents whose ko is
very close to k .

It is technically difficult to solve the agent's maximiza-
tion problem when (kg ,n,) lies between (k,n) and (k,n) .33
These difficulties are illustrated by the instability of (k,n)

One further observation can be made in a casual manner: If
K < K , increases in U shrink the region of attraction sur-
rounding~the low stationary optima on S .34 This observation
suggests that as unemployment increases, "rags-to-riches" stories
become more prevalent, i.e. slight increments in the assets of a
poor agent are more likely to have long-run effects. Thus the
frequency of rags-to-riches stories varies directly, rather than
inversely, with the degree of inequality, malnutrition, and
unemployment,

Finally, if K 2 K (implying that K/(1-U) 2 K ), the
nutritional requirement for employment is never binding and every

agent consumes rkO + @ in every time period. Consequently, the

following theorem is straightforward.

Stability Theorem 3: Suppose that K/(1-U) 2 K . Then S

is a monotonic global attractor. (See Figure 9, and Lemma 10 in

the Appendix.)
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Figure 9:

K/(1-U) 2 K .

(Stability Theorem 3.)
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5.2. System Stability

It is important to study system stability in order that we
might understand the long-run effects of land reform.

Let us begin by considering a stationary equilibrium under
the assumptions that 6(n) = d for all n and that limcaev(c)
= += , Suppose that K e [K,K) , that U > 0 , that all thé
unemployed are landless, and that all the employed have K/(1-U)
units of land each. Clearly, an equitable redistribution in
which everyone has K 2 K units of land would eradicate unem-
ployment and malnutrition.35 However, actual land reforms are
typically much less dramatic. Let B ke the fraétion of the
complete land reform that is actually accomplished, so that the
land owned by each originally-unemployed agent is BK and by
each originally-employed agent is [(1-UB)/(1-U)]K

Stability Theorem 2 (Figure 8) indicates that sufficiently
small land reforms ( B near zero) will not have any effect on
unemployment. Rather the stationary equilibrium prices will be
unaffected, the new land distribution will not change over time,
and the rental income will have been permanently redistributed to
the benefit of the unemployed. On the other hand, a sufficiently
large land reform ( B near one) will employ all agents. A new
stationary equilibrium will result with a lower land/labor ratio,
the new land distribution will not change over time, and the
originally-unemployed will now permanently receive both wages and

a substantial rental income.
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We expect that somewhere in the unit interval there is a
threshold land reform B* such that if B > B* , everyone will
eventually be employed, and if B < B* , the originally-
unemployed will revert back to perpetual unemployment. The
story, however, is complicated even under the simplifying
assumption of certain survival ( 6(n) = d ): If the originally-
unemployed gain enough land to make them want to accumulate land
for future employment, a dynamic general equilibrium with
nonstationary prices will result.

Let us consider a similar land reform B8 under the

alternative assumption that &(n) < d for all n <n . Once
again, small land reforms ( B near zero) would not have any
effect on unemployment (Stability Theorem 1). But, in contrast

to the previous case, the new land distribution will not result
in a stationary equilibrium. Rather, unemployed agents would
seek to decumulate land because of their low survival probabi-
lities. Since the unemployed want to sell land, the employed
must be enticed to buy it. Yét the employed wish constant
consumption streams because of the concavity of v . As a

result, the price of land would fall immediately following the
land reform, and then it would climb back to its original level.
Bigger land reforms under uncertain survival are very similar to
those discussed previously under certain survival, except for the
fact that variable discount factors will further complicate the
nonstationary dynamic equilibria which must be studied in order

to calculate the threshold land reform 8% .36
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APPENDICES
Appendix 1. Existence of Optima

Here we prove the existence of a solution to the indivi-
dual's optimization problem given stationary equilibrium prices.
OQur stability analysis (Section 5 and Appendix 2) relies upon
this result.

Following Streufert (1987), let 2Z = R+x{0,1}xRi be the
action space, let zy, = (0,0,ko,no)
initial action, and let z, = (ct'et’kt'nt) denote the action in

be the exogenously-given

period t . Define the stationary Malinvaud production

correspondence G : Z 9Z by

1 and (c,k,n) e Gl(k

G(zt_l) = { z ' e t_llnt_l) }

w{(z| e=0 and (c.,k,n) € Go(k

t-1/Pg-1) b o

where

6" Ky mey)

{ (c,kn) e R) | n2d and (k,n) e £i(c,k_,.n._ ) } .
6%(k,_,.n,_;) = ( (c.k,n) e R2 | (k.n) e £2(c,k_ une_y) ) .
f1 : Ri - Ri is defined by equations (1)-(2) , and fo : Ri - Ri
is defined by equation (3)-(4) . Both f1 and fo are

continuous.

Lemma 1: G is compact-valued.
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Proof: Take any 2z The set Gl(kt is the

t-1 -1 P¢-q)

graph of a continuous function, namely fl(o,k R

t-1'P¢-1) ¢ Ry
- Ri , which is restricted by weak inequalities. Hence,

Gl(zt_l) is closed. Similarly, Go(zt_l) is closed.

1
Furthermore, G (zt-l) c [ o, (p+r)kt—1 +q]1x1[o0, kt—l +
(rke_; +Q)/p 1 x [ n, bn_, +A((p+r)k,_, +q) - x ] .

e 0
Similarly, G (k. _,.,n._,) ¢ [ 0, (p+r)k, _, ] x [ 0, ke o #

rk_,/p 1 = [ 0, bn__, + A((p+r)k,_,) 1 . Since both G'(z _,)
and Go(zt_l) are closed andeounded subsets of R3 , G(zt-l)
is compact. Q.E.D.

Lemma_2: G 1is upper hemicontinuous.

Proof. Consider <(z_":1,zm)>:=1 - (zgl,zo) such that (vm)
zm € G(zfl) . Since eo € {0,1} , there is a subsequence
<(z:‘_1,z")>:=1 - (zgl,zo) such that (vx) &t = e?

Suppcse eo = 1 . Then <(kf_1,nf_l,ck,k",n")>:=1 is
contained in the graph of G1 . The graph of G1 is closed
because it is the graph of a continuous function, namely £ : Ri
- Ri , restricted by weak inequalities. Thus, (cO,kO,no)
€ Gl(kgl,ngl) . and consequently, 20 e G(zgl) . A similar
argument can be made if eo =0 . Q.E.D.

Following Streufert (1987), define U : Z“ - R by equation

(5), and define W : ZxR - R by

Wz ) =vicy) +8(n)eu
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The aggregator W is continuous since v and & are continuous
by assumption, and it is strictly increasing in Upq since
6(nt) > 0 by assumption. Clearly, W recursively expresses

U .

Lemma 3: If p = [d/(1-d)]r , U is tail insensitive over

G at any z,

Proof. First we derive an upper bound for consumption in
period t . Suppose that the entire initial land stock kO , as
well as the entire wage q from periods s =1,...t-1 is saved
to finance consumption in period t . Then, because savings (in
-1

land) grow at the rate 1 + r/p , and because (1 + r/p) = d

since p = [d/(1-d)]r by assumption,

t t t t-s
(9) sup ncG (zo) € (1 + r/p) pko + Zs=1 (1 + r/p) q
P t-1 -1.m
=d pk0 + g 2m=0 (4 7)
-t
Sd al ’
where a, = pky + gq/ln a~t .

Next we derive an upper bound for utility in period t + 1
Since the exponent of v 1is asymptotically bounded below unity,

there is ¢® 2 0 and €% € (0,1) such that v(c) £ v(co) +

at
c . Thus, by (9),
® s-1 t+s
(10) Zs=1 d vV (sup wcG (zo))
s-1 -(t+ °
s 50, & Hw(eo) + (a7 H9)a )
=a +a%%

2 3/
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where a, = v(co)(1-d)~! and a, = (d—lal)eo(l-d(l_eo))—l
Finally, take any 12 € x:=1 Gt(zo) . By (10),
limtﬂw sup U({ 1Z¢ x;=t+1 Gs(zo) )
S lmg U020 00 ) * a®.s2_, @ lu(sup m 6" (2))
s lim, U( jz,, .,,0) +dfa, + al?™®) %,
= lme e U0 1Zer 402 )
< limtﬁa inf U{ 1Z¢- x:=l Gs(zo) ) . Q.E.D.

Lemma 4: If p = [d/(1-d)]r , an optimum exists.

Proof. Lemmas .-3 and Streufert (1987, Theorem A). Q.E.D.

Appendix 2. Stability of Optima

Here we study the stability of solutions to the individual's
optimization problem given stationary equilibrium prices.
Specifically, we take as parametric a land/labor ratio
K/(1-U) 2 K , and assume ¢q = FE(K,l—U) , r = FK(K,l-U) , and
p = [d/(1-d)]r . The lemmas of this Appendix yield the stability

theorems of Section 5.

Lemma 5: Define (E,ﬁ) as in Section 4. If (no,ko) 2

=1 * and for

(E,ﬁ) , there is a unique optimum <(ct,et,kt,nt)>

all t, c_ = rko +q, e_ =1, and kt = k

t t 0
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Proocf: Consider the stream <(ct'et’kt'nt)>t=1 defined at
ea;h t by (c..e. k) = (rky +gq, 1, ky) and n, =bn, _, +
Py -]
/\(rk0 + ) - x . Since A(rko + gq) - x 1is constant, <nt>t=1

converges monotonically to {A(rko + q) - x}/(1-b) > {AMrk + q)
- x}/(1-b) 2 n . Then since n, 2 n=n, each n, 2 R . The
argument employed in paragraphs 3 and 5 of Part 1 in the proof of
the Characterization Theorem (Subsection 3.1) can now be

straightforwardly applied to demonstrate that <(Ct'et’kt’nt)>:=1

is the unique optimum. . Q.E.D.

Definitions: Recall that the derivative A' is bounded
above by the constant h (Subsection 2.2). Define (k*,n*) >>
(0,0) to be a point on S such that if another (k,n)

satisfies phk + n £ phk* + n* , then (k,n) must also satisfy

both
(11) n < n/2 , and
(12) bn + A[(p+r)k + q) - x < n

See Figure 10. Such a (k*,n*) .exists because the subset of Ri

which satisfies (11)-(12) is open and contains (0,0) since

K/(1-U) < K (Subsection 4.3).

Define C = {(n,k)] k2 k* } , B =~Cn {(n,k)|] phk + n <
phk* + n* } , and A = ~C n ~B . See Figure 10.
Lemma 6: Suppose K/(1-U) < K. If <(ct,et,kt,nt)>z=1 is

feasible from (ko,no) € B and there is some s for which
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A, B, and C .

n n
A —
. - S
n/2 -+ - -
\ bn+X[(p+r)k+q]-x
~/ % %
K(k .n") c
— * *
_ \phk+n = phk +n
K" K
Figure 10: The point (k*,n*) and the sets

(Lemma 6.)

n
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ng > n/2 , then there is a period T for which ko 2 k* and

(kt'nt) e B for t < T

Proof: Consider any (k,_,.,n _,) on the border between A
and B . Since (kt~1'nt-1) € B , e, = 0 by (12), and since it
lies above S , A(rkt_l) (1--b)nt_l < 0 . Thus, equations (3)-
(4) imply

n, = bnt_1 + /\[rkt__1 + p(kt__1 - kt)] '
n, £ bn,_, + A(rk,_,) + phik,_, - ki),

nt + phkt < s + phkt-l + [A(rkt_l) (1-b)nt_1] , and

n, + phk, = n,_, + phk,_, .

Therefore, if (k,_,.,n._,) lies on the border between A and

B , (kt'nt) must not lie in A . Since any point in B is
dominated by a point on the border between A and B , we have
that (kt-l'nt-l) € B implies (kt'nt) € ~A
Y ]
Now take some feasible <(°t'et’kt’nt)>t=1 from (ko,no)
e B and suppose that n_ > n/2 . Then (ks,ns) e Av C . Since

(k ) € B requires (kt'nt) € ~A by the previous

t-1'"t-1
paragraph, there must be some T £ s such that (kT,nT) e C and

(k,,n,) € B for t < T, ' Q.E.D.

Lemma 7: Suppose that K/(1-U) < K , and that &(n) < d

for all n < n . Then there is a land-nutrition pair

(k,n) >> (0,0) such that if (kO,no) << (k,n) , then every
3 © 3

optimum <(ct’et’kt'nt)>t=1 is such that each et = 0 ,
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<k is monotonically decreasing, and 1lim c, = 1lim k, =

>Q
t t=1

1i =0

Mesalt
Proof: Define 0 < k < k* so that
vi(k/d) > ve (k*) "3 (r/d)27

where v = v(rk*/d + q)/(1-d) and a = 1ln 4(n/2)/lnd > 1 (note
ln 6(3/2) < 1lnd<0). Such a k exists because v'(k/d) is
nondecreasing as k appoaches 0 since v 1is concave, and
because lim, . v(k"‘)“a(k/d)a-1 =0 since a > 1 . Define n

to be the second coordinate of the point on S whose first

coordinate is k . Since 0 <k < k*¥ , 0 < n < n*

Now take any (ko,no) << (k,n) ‘and suppose that

t=1

exceeds n/2 in some period. By Lemma 6, there is a period T

<(ct’et'kt’nt)> is a feasible stream in which nutrition

such that 1<T 2 k* and (kt’nt) e B for t < T

Modify this stream by taking the land k and consuming in

T
the first period its present discounted wvalue dT—lkT . This

yields a utility gain in the first period of
T-1
v(c1 + d kT) - v(cl)
The loss entailed in period T+1 and thereafter can be bounded.

3 : . . ” .
First, assume that the original <(ct’et’kt’nt)>t=1 involved

employment in period T+1 and every succeeding period, and that

by stripping away kT , we sacrifice all this employment.

Second, (kT_l,nT_l) e B implies both €r = 0 and k., _, < k*,
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and consequently, kT < (1 + r/p)kT_1 < (1 + r/p)k* = k*/4

Thus, the current utility loss evaluated at period T+1 is at

most
v = v(rk*/d + q)/(1-4)

since (k,,n.) € B for t < T implies n, < n/2 for t < T

the utility loss evaluated at period 1 1is at most

’

8(f/2) T tav
T-1
< o(a/2) 1 (@ ky/k¥)/Ina

(@t /k*) 2y

where a = ln 6(n/2)/ln d as defined earlier, and the inequality
follows from the fact that kT 2 k* and thus T-1 2
In (@" 'ky/k*)/1n 4

By ¢, < kgy/d < k/d and the concavity of v , the
definition of k , the two facts that a > 1 and atk,, < k

T 0]
< k , and finally algebraic manipulation,

JT-1
v(c1 + d kT) - v(cl)

> vi(k/d)at i,

v

(k/k*13(a Ry /K] [v/d%]

v

[k/k*1%[d "k, /K12 [v/d™)

(dT’lkT/k*)av

Thus the utility gained by increasing first-period consumption by
dt_lkT outweighs the utility lost by reducing land in period T
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from kT to O . Since this modification is feasible, the

t=1
< n/2 in every period.

original <(ct'et'kt’nt)> cannot be optimal. Hence, every

optimum has n,

Since every optimum exhibits perpetual malnutrition whenever
(ko,no) << (k,n) , every optimum exhibits perpetual unemployment.
Since an optimum exists (Lemma 4), the maximization problem (1)-
(5) then reduces to finding the optimal way to distribute
consumption over time given the land endowment kO . Further-

more, n, < n/2 for all t implies é(nt) < 8(n/2) < 4 for all

t
t . Therefore, the agent will decumulate land holdings: <kt>°;=1
is monotonically decreasing, and llmt_mkt = llmt_wct = llmt_mnt

=0 . Q.E.D.

Lemma 8: Suppose that K/(1-U) < K , that 6(n) = d for

all n , and that 1i v'(c) = +« ., Then there is a land-

Meso

nutrition pair (k,n) >> (0,0) such that if (n,,k,) << (k,n) ,

3 Iy . “ p
there is a unique optimum <(ct’et'kt’nt)>t=1 , and for all ¢t ,

k .

c, =rk e, =0 , and kt 0

t 0’ "t
Proof: Define 0 < k < k* so that

v'(k/d) > v/k* ,

where v = v(rk*/d + q)/(1-d) . Such a k exists because
limc»ov'(c) = + o . Define n to be the second coordinate of
the point on S whose first coordinate is Lk . Since

0 <k<k*, 0<n< n*
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As in the proof of Lemma 7, we employ Lemma 6 to show that
every optimum from some (ko,no) << (k,n) exhibits perpetual
malnutrition. Only two modifications are required. First, the

utility loss evaluated at period 1 1is at most

T-1 in (dT—lkT/k*)/ln a,

d dv £ d

T-1

(d dT/k*)V .

Second, the gain from modifying the original stream is shown to
exceed the loss by <, < kO/d € k/d , the concavity of v , and

the definition of Kk :

1 T

v(ic™ + d 1

..1 t-
kT) - v(cl) > v‘(g)d kT
> (@ Mkt
Finally, since perpetual malnutrition implies perpetual
unemployment and since an optimum exists (Lemma 4), the

maximization problem (1)-(5) reduces to finding the optimal way

to distribute consumption over time given the land endowment

ko . Since p = [d/(1-d)]r and v is strictly concave, there
is a unique optimum <(ct,et,kt,nt)>:=1 such that for all ¢t ,
C¢ = rko » &y = 0 , and kt = ko . Q.E.D.

Lemma 9: Define (k,n) as in Section 4. If k > 0 ,

there is a ¢ > 0 such that if <(ct’et'kt'nt)>t=1

is optimal

from (ko,n) and ko € (k-¢,k) , then k1 < ko
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Proof: Define T such that

T

T, R 4 @) > v(rk + dq)/(1-d) .

z

Ty dTThv(rk + @) = v(rk + @)/(1-9) .

Such a T _exists because I

Then define 0 < ¢ < d'R .

Now take any ko e (k-¢,k) and assume ngy = n . Employment

in period 1 requires that n, 2 n , hence that c, 2 rk + q ,

and hence that k, < kj - (k - ky)r/p < ky . Hence, if

k then e, = 0 , and consequently, the agent's lifetime

1 2 ko ,
income cannot exceed [1/(1-d)]rE + [d/(1-d)]lq . Thus, if
kl > ko , the agent's utility cannot exceed virk + dq)/(1-4)

We show it is suboptimal to choose k1 2 ko by constructing
a feasible stream which exceeds this upper bound. Let
(ct,et,nt) = (rk + g, 1, n) for the first T periods. By the
definition of k , a consumption of rk + ¢ is sufficient to
maintain nutrition at n , and hence employment is feasible.

This consumption in excess of factor incomes is maintained by

whittling down the initial land holding during the first T

periods. To be precise, k, = R - a %k - ky) for t< T, and

by the definitions of k, and ¢ , kyp =Kk - d (K- ky) >

& - a¥s > 0 . This course of action yields a utility of at least

St "' (rk + q) , and by the definition of T , this exceeds

the upper bound derived when k1 2 ko . Q.E.D.
Lemma 10: Suppose K/(1-U) =2 K . Then for any (ky.nq)

there is a unique optimum <(ct,et,kt,nt)>t=1 , and for all ¢t ,
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c, = rko +q ., e

£ =1 ,»and kt = k

t 0

Proof: Since K/(1-U) 2 K , the nutritional requirement for

. employment is never binding-regardless of (kc,no) (Subseétion

4.3). Thus the agent will be employed and adequately nourished
in every period. Constant consumption is implied by the strict

concavity of v . Q.E.ﬁ.
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NOTES

1. Leibenstein's observations have been extended by a
number of writers. See, e.g., Mirrlees (1975), Stiglitz (1976),
Bliss and Stern (1978a,b), and Dasgupta and Ray (1986, 1987a).
The theories start from the postulate that there is a strong
connection between an individual's consumption and his ability to
perform productive work. This connection yields a number of
interesting results regarding labor markets. The theory has also
been subjected to testing-with mixed results depending on the
exact form under review. See Bliss and Stern (1978b) for a
summary of some of these tests.

2. In fact, the term "efficiency wage" has been carried
over to embrace an entire group of theories where the payment of
wages affects ability or effort, not necessarily for nutritional
reasons. See Yellen (1984) and the recent collection of readings
edited by Akerlof and Yellen (1986).

3. A person's nutritional history may affect his current
ability in several ways. First, he may acquire stores of energy
(such as body fat) which can be run down during a period of low
consumption for the purposes of activity. Second, it has been
claimed that his very history of intakes might create adaptive
responses in his needs. Finally, nutritional history affects
current activity by altering survival probabilities. The first
and third aspects are explicitly considered in our model. For a
survey of the clinical literature in this context, see Dasgupta
and Ray (1987b).

4. We adopt in this paper the simplifying assumption that
an individual is able to supply one unit of labor power if he is
"adequately" nourished (i.e., if his nutrition stock exceeds the
critical minimum), and none otherwise. This is a step function
which can be generalized (at the cost of considerable technical
complexity) to the smoothly increasing functions used in the

static theory. However, we do allow fresh nutrition acquisition
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to be a smoothly increasing function of conéumption (see below in
the main text).
5. Our dynamic framework requires a refinement of this
second notion of unemployment. In our model, any positive
initial land holding enables the agent to work in some (perhaps
very distant) time period if he consumes little and accumulates
land in the meantime. As the initial land holding approaches
zero, the waiting time increases without bound. Consequently,
this option is unattractive for sufficiently small initial land
holdings, due to the concavity of the objective function (Section
4.2) or the decreased survival probability (Section 5.1).
6. If the option of being employed is outside the feasible
set, one might hesitate to call such unemployment involuntary.
Imagine, for example, an individual who wishes to be a profes-
sional pianist and therefore rejects other lucrative job offers,
but cannot find a job in the industry of his dreams because he
has not talent as a musician. 1Is his unemployment in the music
industry "involuntary"? Perhaps it should not be classified as
such! 1In the present context, however, agents are constrained by
their lack of adequate nutrition. The case for classifying such
an individual as involuntarily unemployed is far more compelling.
7. Indeed, the characterization of stationary equilibria
that we present below can be extended with no difficulty. Rather
more demanding is the extension of the stability analysis in
Section 5.
8. As noted by Bewley (1982, p. 234), stationary dynamic
, general equilibria are not unique and do depend upon initial
conditions. 1In other words, initially wealthy individuals

¢ generally remain wealthy. 1In essence, a concave intertemporal
production function uniquely determines the aggregate capital
stock (just as it does in.optimal growth theory, Gale, 1967), but
the distribution of this aggregate quantity among individuals
provides another degree of freedom. (Also see Coles (1983) and
Yano (1984).)
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9. Our formal analysis deals with stationary equilibria
where prices are indeed time-stationary. We could have, never-
theless, set up the agent's problem using a time-varying price
sequehce, but avoid this for notational ease.

10. The loss (1—b)nt_1 approximates the energy required
merely to maintain the agent's body given minimum activity
levels. This requirement increases with the agent's weight
(Bliss and Stern, 1978b, p. 369).

11. "Over-consumption" may even lead to a decline in
nutritional well-being, but we are obviously not concerned with
this extreme in the paper!

12. This imposes an upper bound on the efficiency with
which the digestive system converts food into nutrition.

13. There is, of course, the energy requirements for basal
matabolism and the maintenance of the body frame that must be
expended. We capture this is the depreciation factor b

14. We are referring to "partial equilibrium" models such
as Leibenstein (1957), Mirrlees (1975), and Bliss and Stern
(1978a); and "general equilibrium” models such as Dasgupta and
Ray (1986,1987a). For examples of two-period models with a
lagged nutrition-efficiency relationship, see, e.g., Gupta (1987)
or Guha (1987).

15. All the references in footnote 4 deal with a nutrition-
efficiency relationship that yields a smoothly increasing
endowment of efficiency units as nutrition increases. For an
example (in the static context) using the "step-function" case
that we consider here, see Dasgupta and Ray (1986).

16. In the terminology of Brock and Gale (1969), we assume
that the exponent of v 1is asymptotically bounded below unity.

17. There is (as is to be expected) a vast clinical
literature linking undernutrition to survival probabilities. See
the references in Dasgupta and Ray (1987bj.

18. The model assumes a constant population size although

the survival probability may fall below unity. This requires
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some story regarding reproduction: Each agent who dies after
period t is replaced in period t+1 by a perfect clone,
interpreted as the child of the deceased. 1In particular, this
child inherits the land holdings and nutritional stock of his
parent. This story accords crudely with the fact that in
relatively malnourished family lines, individuals have shorter
lifetimes and generations elapse more quickly. The utility
function of the individual living in period r is given by (5),
where "t=1" is replaced by "t=r" and "s=1" is replaced by "s=r".
Thus every individual in the family line maximizes expected
utility, given that the utility of death is zero (Heal, 1973).

19. It is also required that ¢, e , and k are measur-
able with respect to Lebesque measure p . This technicality is
handled appropriately in the proof of the Characterization
Theorem (Section 3).

20. The abstract theories of recursive utility and dynamic
programming in Streufert (1986a, 1986b, 1987) can be straight-
forwardly applied to this unusual optimization problem having
unbounded feasible streams, a variable discount factor, two state
variables, and a discrete employment variable. Given the stated
assumptions and that the price of land equals the present
discounted value of the rental stream (i.e. p = [d/(1-4)]1/r ;
this holds in any stationary equilibrium), we know, for any
initial (ko,no) , that an optimum exists (Lemma 4 ), and that
the objective function (5) is finite over the feasible set
(second paragraph in proof of Lemma 3 ).

21. Of course, by the constant-returns assumption, maximum
profits are zero.

22. The fact that K is well-defined follows from the
Inada condition on F , and, of course, the ability of A to
attain the value 1 + x

23. K can be thought of as a threshold beyond which the
"trickle-down" effects of growth can at least succeed in removing

the sort of poverty trap created by malnutrition. Of course,
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issues of inequalit? will continue to be important even in this
region.

24. There is another possible concept of the viable
threshold, namely, the smallest economy that can provide everyone
with an adequate level of nutrition ( n ), regardless of whether
all are employed or not. One can show that this viable threshold
is lower than the viable threshold defined in the text. More-
over, it may be possible to support such allocations as
stationary equilibria (see footnote in Subsection 4.2). These
equilibria would involve unemployment but no malnutrition.

25, The proof follows the first paragraph in the proof of
the Characterization Theorem, and it is omitted here.

26. As the ratio increases, the rental income from a given
amount of land also falls. This decrease in r is, however,
always dominated by the increase in q .

27. Of course, we can derive many more equilibrium distri-
butions by changing the names of the employed and the unemployed.
28, This implies that n(a) 2 n and that (k(a),n(a))

e S .

29. This is not a characterization of all equilibrium
distributions because (k,n) does not exactly demarcate those
points on $ from which employment would not be sought. Rather,
it gives a subset of those points.

30. This implies that (k(a),n(a)) e S.

31. There may be equilibrium prices in which certain points
on S above n = n are optima. Such points would represent
unemployed agents who are nonetheless adequately nourished.

32. A non-Walrasian equilibrium concept involving unemploy-
ment rationing would allow us to obtain an unemployment rate of
U(K) with a land/labor ratio of K . The "involuntary unemploy-
ment" of Dasgupta and Ray is a very similar concept. In this
case, landless workers with zero nutrition would be just capable
of providing labor power but would be rationed out of the labor

market. However, such workers are not capable of offering their
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labor power for any wage less than the equilibrium wage. They
are thus incapable of upsetting this extended equilibrium
concept.

33. We do however know that an optimum always exists
(Lemma 4), and that the abstract dynamic programming theory of
Streufert (1987, Theorem A) is applicable.

34. This casual observation accords with the formal fact
that if we try to set U above the upper limit U(K) , everyone
can work in every period and unemployment becomes impossible. It
also accords with the fact that the (k,n) defined in Lemmas 7
and 8 shrinks toward (0,0) as U increases toward 6(K)

35. We neglect in this discussion how the initial distri-
bution of nutrition is altered.

36. The dynamic stability of general equilibrium paths has
been studied under convex structures (see Bewley (1982), Coles
(1983), and Yano (1984)). However, the pervasive nonconvexities
of . our model preclude an application of the techniques developed
in those papers. The formulation of an adequate nonstationary
equilibrium theory in models such as ours remains a challenging
task.
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