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ABSTRACT 

" The analogy principle proposes that population parameters be estimated 

by sample s~atistics which make known properties of the population hold 

as closely as possible in the sample. Applications of the analogy 

principle are ubiquitous. Nevertheless, estimation theory has not been 

studied from a consistent analog perspective. This paper makes a start • 
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1. INTRODUCTION 

ESTIMATION PROBLEMS AND METHODS: Many estimation problems have the 

following elements. One wants to learn some property of a population 

probability measure. It is known that the population has certain other 

properties. A sample of observations drawn at random from the population 

is available. The problem is to use the known properties of the 

population and the sample evidence to learn the property of interest. 

Once such an estimation problem is specified, consideration of 

estimation methods becomes possible. The •analogy principle' offers a 

means for generating estimators. The analogy principle is instantly 

recognized. Many authors routinely refer to sample statistics as the 

•sample analog' of corresponding population parameters. Nevertheless, 

the analogy principle is rarely stated explicitly. 

is expressed succinctly in the following quote: 

The essential idea 

"the analogy principle of estimation ••• proposes that population 

parameters be estimated by sample statistics which have the same 

property in the sample as the parameters do in the population" 

CGoldberger,1968,p.4) 

This statement needs to be augmented only in that it presumes the 

existence of a sample statistic having the same property in the sample 

as the paramete~s do in the population. More generally, an analog 

estimate is one chosen so that, in some well-defined sense, the known 

properties of the population hold as closely as possible in the sample. 
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SOME APPLICATIONS: Applications of the analogy principle are ubiquitous. 

Perhaps the oldest are the use of the sample average and median as 

estimates for the population mean and median. The method of moments 
* 

CK. Pearson, 1894) applies the analogy principle, as does minimum chi 

square estimation(Neyman,1949). Maximum likelihood, least squares, and 

least absolute deviations estimation are analog methods. Econometric 

contribution to the theory of analog estimation dates back to the 

development of instrumental variables estimation(Wright,1928; Reiersol, 

1941,1945). 

Among modern developments, Von Mises(1947) introduced the notion of 

differentiable statistical functions and studied the local asymptotic 

behavior of their analog estimates. Wolfowitz(1953,1957> proposed 

minimum distance estimation, a very general application of.the analogy 

principle to the problem of estimating distribution functions. Most of 

the literature on robust estimation(Huber,1981) presumes analog 

estimation. For example, M-estimates<Huber,1967) are analog methods. 

The term 'Fisher-consistency'<Rao,1973,p.345) refers to analog 

estimation of a parameter that is a smooth functional of the population 

distribution. In the recent econometric literature, Burguete, Gallant, 

and Souza(1982>, Hansen(1982), and Manski(1983) have independently 

proposed analog estimation of a fairly general class of econometric 

models defined by smooth moment restrictions. 

earlier instrumental variables work. 

These methods subsume the 

ESTIMATION FROM THE ANALOG PERSPECTIVE: The myriad applications of the 

analogy principle demonstrate its usefulness as a tool for generating 

estimators. Consideration of specific applications, however, may not 

convey the more general value of the analogy principle as a paradigm for 
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the study of estimation. 

I have found that the analogy principle offers an effective framework 

for teaching estimation. In analog estimation, one begins by asking 

what he knows about the population. One then treats the sample as if it 

were the population. Finally, one selects an estimate that makes the 

known properties of the population hold as closely as possible in the 

sample. What could be more intuitive? 

I have found that the analogy principle disciplines the researcher by 

encouraging him to focus attention on estimation problems rather than on 

methods. Much of the statistical literature begins with a method and 

looks for problems to which it can be applied. It seems more sensible 

to begin by specifying what it is the researcher wants to learn and then 

seek applicable methods. The analogy principle forces this mode of 

thought. Analog estimation follows rather than precedes specification 

of the estimation problem of interest. 

I have, moreover, come to feel that the analogy principle has a 

certain elegance. Esthetic appeal may not suffice to make a subject 

worthy of study. It does help though. 

PLAN OF THIS PAPER: It is surprising that estimation has not been 

studied from a consistent analog perspective. This paper makes a start. 

A monograph under preparation(Manski,1987> will provide further depth 

and breadth. 

Section 2 develops a formal framework and sets out concepts. We pose 

an abstract estimation problem and define identification. We show that a 

given estimation problem generally has many alternative representations 

to which the analogy principle may be applied. Except in special cases, 

the derived analog estimate depends on the chosen representation. We 
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discuss informally the consistency and efficiency of analog estimates. 

The remainder of the paper gives applications. Section 3 presents 

short case studies of five leading classes of estimation problems. 

These are the finite dimensional moment problems, nonparametric density 

problems, smooth statistical functions, index problems, and separable 

econometric models. In each case, we define the estimation problem, 

develop alternative representations of that problem, and obtain analog 

estimates by applying the analogy principle to these representations. 

Sections 4 and 5 study analog estimation of regressions. Section 4 

introduces an abstract class of regression problems, examines the method 

of moments approach to the estimation of moment regressions, and 

discusses method of moment estimation of best conditional predictors. 

Section 5 develops analog methods for the estimation of general 

regression functions. Here, we introduce the smallest neighborhood 

method for nonparametric estimation of regressions. 

DISCLAIMERS: Writing this paper, I have had to struggle to achieve an 

appropriate balance of abstraction and concreteness, of formal analysis 

and heuristics. To make the task manageable, I have decided to forego 

treatment of some rather important. topics. 

First, we shall consider no sampling process other than random 

sampling from a fixed probability measure. As an idealization, random 

sampling is central to statistics, much as competitive behavior is to 

economics. It seems essential to understand the analogy principle in 

the random sampling setting before giving attention to more complex 

sampling processes. 

Second, we maintain the assumption that all prior information is 

exact and correct. Thus, we do not consider application of the analogy 
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principle to misspecified models. Nor do we consider probabilistic 

prior information, as in Bayesian analysis. 

Third, we do not investigate the researcher's choice among estimation 

problems. To apply the analogy principle, the researcher must specify 

what he knows and what he wants to learn. These logically necessary 

requirements are undeniably burdensome in practice. We often have 

difficulty eliciting our information sets and making our objectives 

explicit. Nevertheless, we shall assume that a coherent estimation 

problem has specified and that the researcher is now prepared to 

proceed with estimation. 

My forthcoming monograph does give attention to these topics, 

particularly to the third. 

-
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2. THE ANALOGY PRINCIPLE 

2.1. THE ESTIMATION PROBLEM 

MAINTAINED ASSUMPTIONS: Throughout this paper, the sample space Z is a 

measurable subset of a finite dimensional real space, endowed with the 

Borel a-algebra. The population probability measure Pis known to be a 

member of Il, a specified space of probability measures on Z. An 

observable random variable distributed Pis denoted z. The parameter 

space Bis a metric space. Additional structure is assumed as needed. 

Let T<*,*> be a given function mapping nxa into T, where Tis a 

vector space. We are concerned with estimation problems of the 

following type. It is known that some beB solves the equation 

(2.1) T<P,b) = O. 

A random sample of N realizations from P, that is N observations of z, 

is drawn. The problem is to combine the sample data with the knowledge 

that beB, Pell, and T<P,b>=O so as to estimate b. 

We shall maintain the assumption that the estimation problem is 

properly specified. The data really are a random sample from P, the 

space rr contains P, and there exists a beB solving equation (2.1>. 

Given that the specification is proper, the spaces rr and B can be 

restricted to feasible probability measures and parameter values. That 

is, Qeil implies that TCQ,a>=O for some aeB and ceB implies that T<Q,c)=O 

for some Qefi. 

r 
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IDENTIFICATION: In analyzing a specified estimation problem, one should 

first ask whether the parameter b could be learned if P were known. 

After all, knowledge of P makes sample data superfluous. 

The parameter bis said to be identified relative to <P,B> if T<P,*) 

has a uniq9e zero in B. We say that b is uniformly identified relative 

to <IT,B> if for every QeIT, T(Q,*) has a unique zero in 8. In practice, 

we can be sure that b is identified only if it is· uniformly identified. 

The reason, of course, is that we do not know P and sample data cannot 

reveal P with certainty. 

If a parameter is uniformly identified with respect to <IT,B>, then 

there exists a function t:IT->B such that for all (Q,a)eilxB, 

(2.2) TCQ,a) = 0 <==> a= tCQ>. 

In particular, b = t<P>. It is possible to think oft<*> as defining 

the parameter of interest as a function of the population probability 

measure. 

EXTENSION OF THE DOMAIN OFT<*,*> TO THE SPACE OF EMPIRICAL MEASURES: 

Let PN be the empirical measure in a sample of size N. The analogy 

principle suggests that to estimate b, one should substitute PN for Pin 

TCP,*> and isolate the subset of Bon which T<PN,*) is as close as 

possible to zero, in some sense. But the domain of T<*,*> is the space 

rrxs. If PN~TI, then T<PN,*> is not defined. 

To apply the analogy principle in estimation problems where the 

empirical measure is not a feasible population measure, we must extend 

the domain of T<*,*> so that T<PN,*> is defined. The smallest space 
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certain to contain PN for all finite N is§, the space of probability 

measures on Z having finite support. So henceforth, T<*,~> is assumed 

defined on <Ilvt>xB. 

Of course, the extension of T(*,*> to txB is not unique. Application 

of the analogy principle requires that a definition of T<*~*> on §xB be 

chosen. In some contexts, there is a natural way to define T<*,*) on 

its enlarged domain. For example, if T<P,a> has the form HC!g<z,a>dPJ 

for some measurable g:ZxB->R 1 and H:R 1 ->T, then it is natural to define 

In other settings, it may not be obvious 

how the extension should be accomplished. For example, how should one 

define T<PN,a> when Il is a space of measures having densities with 

respect to Lebesgue measure and T<P,a> depends on P through its density. 

One general method for extending T<*,*> to txB is to replace T<*,*> 

with TCn<*>,*J, where n:Rvt->Il is such that QETI ~ n(Q)=Q. Consider 

TCn<*>,*J as a function on <Rv§>xB. For QER, TCn(Q),*J=T<Q,*). For 

Qet, TCw<O>,*J takes some value in T; hence, TCn<PN>,*J is well-defined. 

Thus, replacement of T<*,*> by TCn<*>,*J leaves the estimation problem 

unchanged and makes analog estimation possible. We shall use this 

method later to derive nonparametric analog estimates of density and 

regression functions. 

2.2. ALTERNATIVE REPRESENTATIONS OF THE'ESTIMATION PROBLEM 

Given Il and B, one can construct alternative representations of the 

knowledge that b solves <2.1>. Let T' be any vector space. Let 

T'<*,*>:<IlV§)xB->T' be such that for all (Q,a)eilxB, 
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(2.3> T<Q,a) = 0 <==> T'(Q,a) = O. 

It follows that whatever the true measure Perr may be, 

<2.4> T<P,b> = 0 <==> T'<P,b> = O. 

Hence, given IT and B, one can replace (2.1) by the right hand side of 

(2.4> and leave the estimation problem unchanged. 

When PNEil, the choice of representation of an estimation problem has 

no consequences for analog estimation. Here, there exists a non-empty 

subset of 8 on which T(PN,*> equals zero. By (2.3>, T'(PN,*> equals 

zero on the same subset. Hence, the analog estimate is invariant with 

respect to representation of the estimation problem. 

When PNiIT, selection_ of a representation is critical to application 

of the analogy principle. Depending on the chosen T'<*,*>, there may or 

may not exist a subset of Bon which T'<PN,*> equals zero. 

has no zero on 8, the analog estimate of b generally depends both on 

T'<*,*> and on the sense in which one makes T'(PN,*> close to zero. 

It does not seem possible to characterize exhaustively the set of all 

representations of a given estimation problem. It will suffice to call 

attention to three classes of representations which are commonly used in 

the development cf analog estimates. 

THE STATISTICAL FUNCTION REPRESENTATION: We noted earlier that if b is 

uniformly identified with respect to (IT,B>, then there exists a t:ll->8 

such that equation <2.2> holds. Thus, b-t<P>=O is an alternative 

representation of <2.1>. 

Thus far, t<*> has been defined only on the domain rr. Now extend the 



2-5 

domain oft(*) to i. Then application of the analogy principle yields 

t<PN) as an estimate of b. Following convention, we shall refer tot<*> 

defined on rru~ as a •statistical function'. 

REPRESENTATIONS FORMED FROM ORIGIN-PRESERVING TRANSFORMATIONS OFT: 

A class of representations can be obtai~ed by taking 'origin-preserving 

transformations' of the space T. Let Q be an arbitrary space and T' be 

a vector space. Then r:(TxQ)->T' is said to be an origin-preserving 

transformation of T if, for all WEQ, T=O # r(T,w>=O. 

Let r<-11-,*) be origin-preserving. Then for all (Q,a,w)E(JCu~>xBxn, 

(2.5) T<Q,a> = 0 <==> rCT<Q,a),wJ = 0. 

Hence, 

< 2. 6 > T < P, b ) = 0 < => r CT C P, b > , <&>J = 0. 

Among the cl.ass of origin-preserving transformations of T, those with 

range space T'=CO,~> are particularly useful. Such transformations 

translate the statement that b zeroes T<P,*>, which takes values in the 

vector space T, into a statement that b minimizes a real-valued function 

rCT<P,*>,wJ. This translation is central to the construction of analog 

estimates when TCPN,*> has no zero on E. See Section 2.3. 

REPRESENTATIONS FORMED FROM ALTERNATIVE DEFINITIONS OFT<*,*> ON ~xB: 

The above representations can be varied by defining T<*,*> on §xB in 

alternative ways. In Section 2.1, we noted that the extension of T<*,*> 

to fxB is not unique. For example, one can replace T<*,*> with 
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TCrr<*>,*l, where rr(Q)=Q for QEil. This construction does not restrict 

the behavior of rr(*) on f. Clearly, the behavior of TCrr<PN>,*l on 8 

depends critically on the chosen function rr<*>. 

2.3. ANALOG ESTIMATES 

Assume now that one has chosen an extension of T<*,*> to §xB. The 

analogy principle suggests that to estimate b, one should use 

<2.7> BN s CceB: T<PN,c> = OJ. 

If BN is non-empty, then it is the analog estimate. Moreover, BN remains 

the analog estimate under any origin-preserving transformation of T. If 

PNeIT, then BN is the analog estimate under any representation of the 

estimation problem. 

If PNfil and BN is empty, then one must select the sense in which 

T<PN,*> is to be brought as close as possible to zero. The following 

approach describes essentially all of current practice. 

First, one chooses an origin-preserving transformation of T whose 

range space is the non-negative half line. Thus, let r:TxO->CO,m) be 

such that T=O # r<T,w>=O, Ywen. Next, one sets the auxiliary variable w 

equal to some function of CP,b>. Thus, let w:CRvt>xB->Q. Then one 

expresses the knowledge that T<P,b> = 0 by the condition 

< 2. 8 > rCTCP,b>,w<P,b>J = 0. 

To estimate b, one minimizes on B the sample analog of rCT<P,*>,w(P,*>l. 

Provided that rCT<PN,*>,w<PN,*>J attains its minimum on B, the analog 
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< 2. 9 > 
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argmin rCT<PN,a>,w<PN,a>J. 
ae:E 

We write BNrw rather than BN to reflect the fact that the estimate 

depends on the chosen representation of the estimation problem. 

CARDINALITY OF THE ANALOG ESTIMATE: In general, the analog estimate may 

be set-valued rather than a point estimate. The statistical literature 

most commonly focusses on point estimates of parameters. A point analog 

estimate can be obtained by applying some auxiliary rule to select 

within the set estimate. We shall usually not do so. The analogy 

principle offers no reason to select one element for special attention. 

One may ask whether the presence of a set-valued estimate implies a 

failure of identification. The answer depends on whether the empirical 

measure PN is an element of the space Il within which the population 

measure Pis known to lie. If PNe:IT, then it is possible that the true 

population measure is PN; hence a set-valued estimate implies that b is 

not uniformly identified. If PNfIT, then PN cannot be the true measure. 

So the analog estimate may be set-valued and b uniformly identified. 

2.4. CONSISTENCY OF ANALOG ESTIMATES 

Subject to identification and smoothness conditions, analog estimates 

are generally consistent. We shall take consistency to be the sine qua 

non of an estimation method. If an estimator is consistent, then in a 

basic sense it •works'. A heuristic explanation of the consistency of 
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analog estimates follows. 

As the sample size N grows, the empirical measure PN converges in 

various senses to the population measure P. It follows that for large N, 

TCPN,*) and w<PN,*) behave on B much like T<P,*> and <o<P,*>, provided 

that T<*,*> and w<*,*> are suitably smooth. Moreover, rCT<PN,*>,w<PN,•>J 

tends to behave like rCT<P,*>,w<P,*>J, provided that r maps rxn smoothly 

into the non-negative half line. In particular, the minima on B of 

rCT<PN,*>,w<PN,*>J tend to occur near the minima of rCT<P,*>,w<P,*)]. 

Given identification, rCT<P,*>,w<P,*>J is minimized at b alone. 

large N, the analog estimate tends to be close to b. 

So for 

Rigorous demonstration of consistency requires that one specify the 

desired sense of convergence of the estimate to band give content to 

all the above references to •smoothness• of T<*,*>, w<*,*>, and r(*). 

It would be too much to expect one theorem to cover all the applications 

of interest. To the contrary, the literature contains a multitude of 

consistency results of varying generality. 

One would like to know whether there exist identified estimation 

problems for which there are no consistent analog estimators but there 

are consistent non-analog estimators. (By a non-analog estimator, I mean 

one that cannot be obtained by applying the analogy principle to some 

representation of the estimation problem>. At one time, I thought that 

nonparametric density and regression estimation were such problems. In 

the conventional statement of the density problem, T<PN,*> is not 

defined as PN is not absolutely continuous with respect to Lebesgue 

measure. In the regression case, consistent analog estimation would seem 

blocked by the fact that the empirical probability measure conditioned 

on a given event does not converge to the corresponding population 

conditional measure if the conditioning event has probability zero. 
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It turns out that with suitable repre•entations of the estimation 

problems, consistent nonparametric analog estimates of densities and 

regressions can be obtained. See Sections 3.2 and 5.3. As it stands, 

I have no example of a problem where the analogy principle does not work 

yet consistent estimation is possible by other means. 

2.5. EFFICIENCY OF ANALOG ESTIMATES 

One would like to characterize the situations in which there exists 

an efficient analog estimate, efficiency having been defined in some 

suitable sense. For example, a cornerstone of classical statistics is 

the fact that the maximum likelihood method is asymptotically efficient 

for estimation of a population density known to be a member of a smooth 

finite dimensional family of densities. Section 3.1 cites recent 

results on the asymptotic efficiency of analog estimates of parameters 

solving smooth finite dimensional moment problems. But a general theory 

of efficiency is lacking. 

may be helpful. 

The following comments are speculative but 

' 

ESTIMATION OF b VS. ESTIMATION OF <P,b): Analog estimates disregard two 

kinds of information that may be relevant to estimation of b. First, 

they use the sample data only through the empirical measure, which does 

not preserve information about the sample size. (Analog estimates also 

disregard the ordering of the observations, but this information cannot 

be relevant under random sampling>. 

Second, analog estimates use the empirical measure only to replace P 

in the function T<P,*>. To the extent that n restricts Pin ways that 
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are not represented by the equation T<P,b>=O, analog estimates ignore 

this information. 

It seems reasonable to think that the analogy principle does make , 

efficient use of the available information whenever the realized 

empirical measure is inn. Recall that if PNeil, then T<PN,*> has a zero 

on Band prior knowledge does not exclude the possibility that P=PN. 

Moreover, the analog estimate BN is invariant with respect to the 

representation of the estimation problem. Thus, if PNeIT, the sample 

data and prior knowledge are fully compatible with the hypothesis 

<P,b>=<PN,BN). Given this, it is difficult to imagine that one can do 

better than use <PN,BN) to estimate <P,b). 

The efficiency of analog estimation seems a much more complex question 

in those cases where PNerr. Here, the analog estimate generally depends 

on one's representation of the estimation problem~ By definition, all 

representations identify b. But representations may differ in the 

extent to which they fully express the restriction Perr. Hence, as is 

well known, alternative analog estimates may differ in their precisions. 

Moreover, it may be that one can improve on any estimator that uses PN 

as an estimate for P. 

It would appear that a full understanding of the efficiency of analog 

estimation can emerge only if the problem of estimating b is embedded 

within the larger problem of estimating the pair <P,b>. One would first 

consider the question of optimal estimation of this pair. Then, treating 

bas the parameter of interest, one would seek to determine the circum­

stances in which using PN to estimate P suffices to obtain an optimal 

estimate of b. 
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3. EXAMPLES 

3.1. FINITE DIMENSIONAL MOMENT PROBLEMS 

FINITE DIMENSIONAL MOMENT OPTIMIZATION PROBLEMS: Much of present day 

econometrics is concerned with estimation of the parameter b solving a 

finite dimensional moment optimization problem. Here, <2.1> has the 

form 

(3.1) T<P,b> b - argmin Jh<z,a>dP = o, 
aeB 

where Bis a subset of RK and where h(*,*> is a known function mapping 

zxB into R1 • The space n is composed of probability measures with 

respect to which the functions h<*,a>, aeB are integrable. 

If Jh<z,*>dP has a unique minimum on B, the parameter b is identified. 

Contrariwise, if JhCz,*>dP has a set-valued minimum, bis not 

identified. In the latter case, we interpret equation (3.1) to mean 

that bis an element of the minimizing set. 

Application of the analogy principle to (3.1> yields the estimate 

(3.2) = argmin fh<z,a>dPN. 
a~ 

This estimate exists provided only that Jh<z,*>dPN attains its minimum 

on B. Given existence, BN is invariant under origin-preserving 

transformations of the estimation problem. 

FINITE _DIMENSIONAL MOMENT EQUATIONS: Another important part of 

econometric work is concerned with estimation of the parameter b solving 

t 
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a finite dimensional moment equation. Here, <2.1) has the form 

(3.3) T<P,b) = Jg< z, b) dP = 0, 

where Bis a subset of RK and where g<*,*) is a known function mapping 

ZxB into RJ. So (3.2) is a system of J equations in K unknowns. The 

space rr is composed of probability measures with respect to which 

g<*,a>, aeB are integrable. 

The analogy principle applied to (3.3) yields the estimate 

(3.4) BN = CceB: Jg<z,c>dPN = OJ, 

provided that BN is non-empty. If BN is empty, the analog estimate 

depends on the chosen origin-preserving transformation of T. A common 

choice is a quadratic form 

(3.5) r C Jg C z , * > dP J C Jg< z, * > dP J ' 6C Jg< z , * > dP J , 

where g<*,*> is written as a Jxl vector and where 6 is a positive 

definite JxJ matrix picked by the analyst. The resulting analog 

estimate is 

(3.6) = argmin CJg<z,a>dPNJ'6CJg<z,a>dPNJ. 
aeB 

Given regularity conditions, Hansen(1982) and Chamberlain(l986) have 

shown that in various first order asymptotic senses, the estimate (3.6> 

is the most precise possible, provided that 6 is set equal to the 

inverse of 
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(3.7) E = !g<z,b>g<z,b)'dP. 

The matrix Eis not known so the ideal estimate is not computable. On 

the other hand, a familiar multi-step procedure yields a computable 

estimate that is asymptotically equivalent to the ideal<Hansen,1982). 

That is, one selects some positive definite JxJ matrix 6,::,, computes BN6.:, 

as in (3.6), and picks a point bNO from BNA::," Then one computes 

< 3. 8") = 

Finally, one re-estimates b by 

(3.9) argmin 
aeB 

The derivation of BNl applies the analogy principle recursively, 

first to obtain bNO' then EN, and finally BNl" This recursion can be 

rewritten, albeit somewhat clumsily, as a single application of the 
. 

analogy principle. In particular, BNl minimizes on B the sample analog 

of the following origin-preserving transformation of T: 

(3.10) rC!g<z,*>dP,w<P>J -1 C fg ( z, * > dP J '11> < P > C fg < z , * > dP J , 

where w<P> - !Cg<z,c<P>JCg<z,c<P>J'dP and where 

c<P> = argmin CJg<z,a)dPJ'A~C!g<z,a>dPJ. 
aeB 

Simply observe that c(PN> = bNO and w(PN> = EN. 

Thus, bNl is interpretable as an analog estimate. Similarly, feasible 

generalized least squares, one step approximations to maximum likeli­

hood, and other multi-stage methods can be written as analog estimates. 

.. 
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3.2. NONPARAMETRIC DENSITY PROBLEMS 

Next, we consider an estimation problem which seemingly defies treat­

ment by the analogy principle. Let Z=R 1 and let IT be the space of all 

probability measures that are absolutely continuous with respect to 

Lebesgue measure, denoted~- For QeIT, let• <*,Q) denote the density of 
~ 

Q with respect to~- Consider the problem of estimating the population 

density in the absence of restrictions on its form, that is nonparamet­

rically. Thus, 8 is the space of all measurable, non-negative valued 

functions on the real line whose Lebesgue integral equals one. And 

equation (2.1 > is 

(3.11) T<P,b) = o. 

As stated, this estimation problem is not amenable to application of 

the analogy principle. The empirical measure is not absolutely 

continuous with respect to Lebesgue measure. So ~~<*,PN> is not defined. 

Indeed, the available methods for nonparametric estimation of densities 

do not give the appearance of analog estimates. These methods all 

require that the analyst choose the value of some auxiliary parameter 

• unrelated to P; for example, a smoothing parameter, a number of nearest 

neighbors, or a number of terms in an orthogonal expansion. Most of the 

literature supposes that the value chosen for the auxiliary parameter 

varies as a function of the sample size. Some analyses study the use of 

resampling methods, such as cross-validation, to determine this value. 

See Prakasa Rao(1983) for a survey of methods for density estimation. 
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Appearances notwithstanding, the analogy principle does apply to the 

problem of density estimation. In what follows, we use the analogy 

principle to derive the familiar kernel method. 

The key is to reformulate the estimation problem so that T<PN,*) is 

well-defined. To do this, let Z, rr, and B remain as specified above. 

Let a<*> be any function mapping rrut into CO,m> such that a(Q)=O # Qerr. 

Let Gen and let o be a random variable distributed G, with o independent 

of z. Let Pfficr(P)G denote the probability measure of the random variable 

z+a<P>o. 

Now replace equation (3.11) with 

(3.12) T<P,b> = o. 

Given that Pell, a(P)=O. So (3.11) and (3.12} both state that b is the 

density of P. On the other hand, these two statements of the estimation 

problem diverge with respect to the analogy principle. Whereas PN is 

not absolutely continuous, PNfficr<PN>G is. 

~~C*,PN~(PN>GJ has the form of a kernel estimate.of ~~<*,P). To see 

this, let zN be a random variable distributed PN, with zN independent of 

o. Let HN:R 1 ->CO,lJ denote the distribution function of zN+a<PN>o. Let 

g denote the density of G. Given that PNgrr, aCPN)>O. Hence, for each 

(ER 1 ' 

( (-zN) /a(PN) 

(3.13) = j Jg(o)do dPN. 

-m 

H (¼) is differentiable, the derivative at ('eR 1 being 
N· 

(3.14} = = 

"' 
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Differentiability of HN(*) implies absolute continuity of PNffia(PN>G, 

with ~~C*,PNffio"(PN>GJ = hN(¼). So hN<*> is the analog estimate of 

~ (¼,P) obtained by applying the analogy principle to (3.12). hN<*> is 
~ . 

also a kernel estimate of •~<*,P>, the kernel being g<*> and the 

smoothing parameter being a<PN>. 

This derivation of the kernel method makes the smoothing parameter a 

functional on the space nut. Thus far, we have required only that 

a(Q)=O ~ Qerr. How should a<*> behave on the space~ of probability 

measures with finite support? Heuristically, we would like a(Q) to be 

closer to zero the less Q deviates from an absolutely continuous 

measure. Given that the elements of Rut are measures with no singular 

continuous component, absolute continuity of an element of nut is 

equivalent to continuity. So we would like a(Q) to be closer to zero 

the less Q deviates from a continuous measure. 

Perhaps the simplest reasonable index of a probability measure's 

deviation from continuity is the supremum of its point masses, denoted 

M(Q). This suggests setting a(Q) = sCM(Q)J, where s:CO,lJ->CO,m) is 

strictly increasing and where s<O>=O. Continuity of P implies that 

M<PN)=l/N with probability one. Hence, a<PN) = s(l/N) with probability 

one. This translates our specification of the smoothing parameter as a 

functional on the space of probability measures into the conventional 

specification as a decreasing function of sample size. So standard 

results on the consistency of kernel estimation<e.g. Prakasa Rao,1983, 

Section 2.1) imply that our analog version of kernel estimation is 

consistent if S(*) satisfies the condition s(M)/M ->mas M->O. 
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3.3. SMOOTH STATISTICAL FUNCTIONS 

Recall that if b is uniformly identified with respect to <IT,B>, then 

there exists a t:Il->B such that 

(3.15) b - tCP) = O. 

Extending the domain of tC*) from Il to IlU§ defines a statistical 

function t:(Ilu~>->B and an associated analog estimate 

(3.16) = 

Representation of an estimation problem in the form (3.15) and estima­

tion o~ b by tCPN> is particularly appealling when t(*) is a function 

that varies smoothly on Ilu~. Knowledge that t<*> varies smoothly makes 

it easy to analyze the asymptotic behavior of t<PN>. Moreover, 

smoothness brings with it the desirable property of •robustness'. 

SMOOTHNESS AND ASYMPTOTIC ANALYSIS: When tC*> is appropriately smooth, 

characterization of the asymptotic behavior of t(PN> is almost trivial. 

Perhaps the most striking demonstration of this is proof of consistency 

by the well-known •continuous mapping' theorem: 

Let A be a metric on B. Let n° denote the space of all probability 

measures on z. Assume that there exists a metric p on n° with respect 

to which Ci> PN converges to P almost surely(or in probability> and 

(ii) t<*> is continuous at P. Then t(PN> converges to t<P> with 

respect to A almost surely<or in probability). 

• 
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To apply the continuous mapping theorem, one draws on the literature 

on the convergence of empirical measures, which shows that PN converges 

to P with respect to a variety of metrics. By the theorem, it suffices 

to find one such metric p such that t<*> is continuous with respect to 

p. For details and examples, see Manski(1987>. 

Whereas continuity oft<*> simplifies proof of consistency, differen-
~ 

tiability eases derivation of limiting distributions. Assume that in an 

appropriate sense, the functional derivative dt(*)/dQ exists in a 

neighborhood of P. Then a Taylor's series expansion shows that for N 

large, 4NCt<PN>-t<P>J behaves like {dt<P>ldQ}{~N<PN-P>}. The limiting 

distribution of 4N<PN-P> is a tied down Brownian motion process. Hence, 

derivation of the limiting distribution of 4NCt<PN>-t<P>J reduces to the 

problem of characterizing dt(P)/dQ. See Serfling(1980>, Chapter 6. 

SMOOTHNESS AND ROBUSTNESS: The literature on robustness seeks to 

characterize the manner in which the solution to an estimation problem 

varies with small changes in the process generating the data. Formally, 

this amounts to the study of the behavior oft<*> in neighborhoods of P. 

A statistical function is said to be robust if it varies smoothly; the 

more smoothly the better. See Huber(1981>. 

The judgement that robustness(smoothness) is desirable is most often 

motivated by reference to a model of contaminated sampling. Here, one 

wishes to learn t<P> but PN is not obtained by random sampling from P. 

Rather, it is obtained by random sampling from some measur& Q. It is 

known that for a given metric p on n°, Q is near P. Other facts about Q 

may or may not be known. 

In this setting, t(PN> will generally converge to t(Q), not t<P>. So 
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t<PN) is not generally consistent for t<P>. Nevertheless, it is still 

desirable that the limit of t<PN) be close to t(P). This will be the 

case if t<*> is smooth at P, in the sense of p. 

APPLICATIONS: Applications of the powerful theory developed for analog 

estimation of smooth statistical functions have focussed on a small set 

of problems admitting relatively simple expressions fort(*). In 

particular, a vast literature on the estimation of location parameters 

has developed. Most of this has focussed on the setting in which Z=Rl-, 

n is the space of probability measures with symmetric distribution 

functions, and t<P> is the center of symmetry. In this context, there 

are many interesting ways to define t<*> on f. For example, one may 

select t<*> to be the mean, median, or some trimmed mean. These 

functionals coincide on Il but not on f. Hence, they yield distinct 

analog estimates of the center of symmetry. 

It appears rather difficult to apply smooth statistical function 

theory to typical econometric problems. To use this theory, one must be 

able to determine the smoothness characteristics of the functional t(¼). 

In econometric work, however, t(*) is usually not a simple function on 

Il~. For example, in moment optimization problems, t<*> is an argmin 

operator. In nonlinear moment equation problems, t<*> can often only be 

defined implicitly. So determination of the senses in which t(*) is and G 

is not smooth is problematic. 
• 
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3.4. INDEX PROBLEMS 

The parameter space B indexes the family Hof probability measu~es if , 

(3.17) T<P,b> P - T(b) = o, 

where T(*) is an invertible function mapping B onto H. Thus, an index 

problem has the special characteristic that Band n are one-to-one. In 

-1 particular, n = CT(a) ,aeBJ and B = CT CQ) ,QeJ[J. 

Two prominent approaches to the estimation of indices are the maximum 

likelihood method and minimum distance estimation. These are obtained 

by application of the analogy principle to alternative representations 

of the estimation problem. 

THE MAXIMUM LIKELIHOOD METHOD: Assume that all the probability measures 

in Il are absolutely continuous with respect to a common measure v on Z. 

For QeJ£, let • <*,Q) denote the density of Q with respect to v. For aeB, 
11 

let• <*,a) denote the density of T(a). Then we may replace (3.17) with 
V 

< 3. 18) • <*,P> - 11) <*,b) = O. 
11 V 

As is well-known, b solves (3.18) if and only if 

(3.19) b - argmax JlogCIJ) <z,a)JdP = O. 
aeB 11 

See, for example, Rao(1973), p.58. So the moment optimization problem 

(3.19) is an alternative representation of the index problem (3.17). 

Application of the analogy principle to (3.19) yields the maximum 

likelihood estimate 
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argmax tlogCtv<z,a)JdPN. 
aeB 

MINIMUM DISTANCE ESTIMATION: Let P< *, * > be a metric: on the space J[•:~ of 

all probability measures on z. 
(3.17> is 

Then an alternative representation of 

(3.21) b - argmin pCP,T(a)J = O. 
aeB 

Applying the analogy principle to (3.21) yields 

(3.22) = argmin pCPN,T<a>J, 
aeB 

the minimum distance estimate introduced by Wolfowitz(1953,1957>. 

Minimum distance estimation is a class of methods whose members are 

distinguished by the chosen metric p. Following the original work of 

Wolfowitz, it has been observed that the theme of minimum distance 

estimation does not require that p be a metric. In particular, equation 

(3.21) remains a valid representation of the index problem if p is any 

mapping from (JIU§)xJ{ to CO,mJ such that p(Q1,Qe>=O if and only if Q1=Qe. 

Analog esti~ates obtained under such general pare termed 'minimum 

discrepancy• estimates. See Sahler(197O). 

One may also generalize the definition of p to let it depend on an 

auxiliary variable win the manner of the origin-preserving transfor­

mations discussed in Section 2. Let Q be an arbitrary space. Let 

Now set w=w<P,a>, where w<*,*> maps <ITV§)xB into Q. Then the index 

problem is representable as 

(3.23) b - argmin pCP,T(a>,w<P,a>J = 0. 
aeB 

" ' 
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Applying the analogy principle to (3.23) yields 

(3.24) = argmin pCPN,T(a),w(PN,a)J. 
aeB 

Minimum chi-square estimation is a familiar example of (3.24}. Let 

Z=<l, ••• ,I> for I finite, let BCRK, and let CT(a),aeBJ be a family of 

multinomial distributions on z. Let QCRI and let w.<P,a>>O be the i th 
l 

component of w<P,a>. Let T(a><z=i> denote the probability under T(a) 

that z=i. Let 

(3.25) pCP,T(a) ,w<P,a) J = 
I 
I: CP<z=i) - T(a)Cz=i>J 2 /t11.CP,a}. 

i=l 1 

With this choice of p, (3.24) is a minimum chi-square estimate for b. 

Different versions of the minimum chi-square method are obtained by 

defining the weighting function 111(*,*) in alternative ways. See, for 

example, Rao(1973), p.352. 

RELATIVE MERITS OF THE TWO APPROACHES: It is of interest to compare the 

maximum likelihood and minimum distance approaches to estimation. The 

former is favored for its asymptotic efficiency properties and for the 

relative simplicity of its moment optimization form. The latter has a 

broader domain of application; it does not require tha~ the measures in 

rr be absolutely continuous with respect to any common measure. 

Some recent literature has emphasized the superior robustness of 

certain minimum distance estimates. Maximum likelihood and minimum 

distance estimators apply the analogy principle to different statistical 

functions. In general, the functional t(*) = argmax 8 IlogC~ <z,a)]d* 
ae v 

is not continuous with respect to the usual(weak> topology on n°. On the 

other hand, one can often select p so that t<*> = argmin 8 P[*,T(a>J is 
ae 

continuous. See, for example, Parr and Schucany(1980). 



3-13 

3.5. SEPARABLE ECONOMETRIC MODELS 

The reader will have observed that we have, thus far, made no mention , 

of unobservable random variables. The basic equation T<P,b>=O defining 

an estimation problem relates the probability measure Pen of an 

observable random variable z to a parameter beB. 

Econometric models, on the other hand, posit restrictions on an 

assumed probabilistic process generating realizations of a random pair 

<z,u>, where realizations of u are not observable by the researcher. 

Suppose that one wishes to estimate an unknown feature of this process. 

Then one must derive from the available information a relationship 

connecting observables and the parameter of interest. 

STATEMENT OF THE PROBLEM: Many ec~nometric models can be formulated as 

follows. It is assumed that realizations of <z,u> are drawn by 

independent sampling from some probability measure P on zxu, where U zu 

is the domain of u. It is known that P is a member of a given space~ 
ZU 

of probability measures on zxu. 

Let CCRK. Let f<*,*,*> be a given function mapping ZXUXC into RJ. 

It is known that for some ceC, the random pair Cz,u) satisfies 

(3.26) f<z,u,c> = O. 

That is, almost every realization 1 (,~> of <z,u) satisfies the equation 

f<(,~,c>=O. The estimation problem is to combine sample data on z with 

the knowledge that P e~, ceC, and f(z,u,c)=O so as to learn c. zu 

To apply the analogy principle, we need to express this knowledge in 

a form that relates P, the probability measure of z, to the parameter c. 
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In what follows, we describe approaches that are applicable if f is 

separable in either u or z. 

MODELS WITH f SEPARABLE IN u: Consider the class of econometric models 

in which 

(3.27) f(z,u,c) - uo<z,c> - u, 

where uo:ZxC->U is a given measurable function. Then (3.26) implies that 

(3.28) (.z , u > = C z , Uc::, C z , c > J • 

This expresses the unobservable random variable u as a function of the 

observable z and of the parameter c. 

Recall that Il0 denotes the space of all probability measures on z. 

For Qeil0 and aeC, let ~(Q?a) denote the probability measure of 

Cz,uo<z,a>J when z is distributed Q. Then P =~<P,c). Moreover, zu 

knowing that P e~ is the same as knowing that c solves the equation 
ZU 

(3.29) T<P,c> c - argmin rC~<P,a)J 
aeC 

= o, 

where r<*> is a function mapping the space C~CQ,a),Qeil0 ,aeCJ of measures 

on zxu into CO,mJ and satisfying the condition rC~(Q,a>J=O ~ ~(Q,a>e~. 

Application of the analogy principle to (3.29) yields 

(3.30) = argmin rC~<PN,a)J, 
aeC 

the •closest empirical distribution' estimate studied in Manski(1983>. 

In the most familiar application of (3.30), ~ is the space of 

measures on zxu that satisfy a given finite dimensional moment equation. 



Let it be known that for 

3-15 

J a given measurable function g:ZxU->R 

(3.31) J'g<z,u>dP = zu J'g<z,u)d~(P,c) = J'gCz,ua<z,c>JdP = 0. 

Select r(*) to be a quadratic form function 

(3.32) rC~<Q,a)J = CJ'g<z,u)d~(Q,a)J'6CJ'g<z,u>d~<Q,a)J 

= CJ' g ( z, Uc:, ( z, a> }dQ J • 6[ jg ( z, Uc::, ( z, a) }dQ J , 

where 6 is a chosen JxJ positive definite matrix. Then 

(3.34) = argmin C/gCz,uo<z,a)JdPNJ'6C/gCz,uo<z,a)JdPNJ 
aeC 

is a moment equation estimate of the form seen in Section 3.1. 

MODELS WITH f SEPARABLE IN z: Now consider the class of models in which 

(3.35) f<z,u,c) z - zoCx<z>,u,cJ, 

where x:Z->X and zo:XxUxC->Z are given measurable functions. Let P be 
XU 

~he probability measure of (x,u). Assume that the space q, within which 

P is known to lie restricts P only through P 
ZU ZU XU 

That is, for some 

given space q, of prob ab i 1 i ty measures on X xU, Q e\V ~ Q e\{1 • For 
XU ZU XU XU 

(Q ,a>eW xc, let T(Q ,a> denote the probability measure of zoCx,u,aJ 
XU XU XU 

when <x,u) is distributed Q 
XU 

Then <3.26> implies that 

(3.36) TCP,<P ,c>J 
XU 

P - T(P ,c) 
XU 

= o. 

CP ,c> solves 
XU 

Equation (3.36) defines an index problem of the kind discussed in 

... 
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Section 3.4, with the parameter (P ,c> indexing P. 
XU 

In general, minimum distance estimation is applicable to the problem 

of estimating (P ,c>. 
XU 

If the measures T(Q ,a), (Q ,a>e~ xc are 
XU XU XU 

absolutely continuous with respect to a common measure on Z, the maximum 

likelihood method is applicable. Observe, that these analog estimation 

procedures call for estimation of P along with the parameter of 
XU 

inte~est c. In special cases, the estimation problem may decompose in a 

manner that makes it possible to estimate c without explicit 

consideration of P • 
XU 
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4. REGRESSION PROBLEMS 

The estimation of regressions is a central theme of econometrics. 

In common _usage, the regression of yon x refers to the expected value 

of some measurable function y:Z->Y conditional on the realization of 

some other measurable function x:Z->X, considered as a function on the 

space X where x lives. More generally, a regression of z on x is some 

property of the probability measure of z conditional on the realization 

of x<z>, again considered as a function on X. 

In this section and the next, we apply the analogy principle to the 

estimation of regression functions. A recurring theme is that alter­

native representations of a regression problem generate distinct analog 

estimation methods. The relative usefulness of these methods varies 

with the regression function under study, with the characteristics of 

the population measure P, and with the nature of the parameter space B. 

Section 4.1 formally defines regression problems and discusses the 

identification of regression functions. Then Section 4.2 exposits a 

familiar and widely used analog estimation method, the method of 

moments. This approach to estimation has the very attractive feature 

that it avoids reference to conditional probability measures. It is 

applicable if the regression is defined by a collection of moment 

problems and the parameter space is sufficiently small. Section 4.3 

describes the application of the method of moments to a leading moment 

regression problem, that of conditional prediction. Section 4.4 gives 

an example of a regression problem that is not a collection of moment 

problems. 

Section 5 considers analog methods that explicitly cope with the fact 

• 
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that regressions are properties of conditional measures. Section 5.1 

briefly discusses •naive' analog estimation of regression problems in 

which Xis discrete. Section 5.2 applies the kernel density estimation 

method of Section 3.2 to regression problems in which Pis absolutely 

continuous. Our main contribution is presented in Sections 5.3 and 5.4. 

There we introduce a novel representation of regression problems. 

Applying the analogy principle to this representation yields an analog 

estimation method that is applicable quite generally. This method is 

termed •smallest neighborhood' estimation. 

4.1. THE ESTIMATION PROBLEM 

MAINTAINED ASSUMPTIONS: Henceforth, Xis a measurable subset of a finite 

dimensional real space, x:Z->X is a measurable function, and P is the 
X 

probability measure on X of the random variable x. The parameter space 

Bis a metric space of functions mapping X into some space e. Thus, for 

each aeB and EeX, a<E>ee. 

For measurable ACX and Qeilut, let QIA be the probability measure Q 

conditioned on the event CxeAJ. For EeX and Qenut, let QIE be Q 

conditioned on the event Cx=EJ. Let RIX denote the collection of 

measures CQIE,EeX,QeRJ. Let S<*,*> be a given function mapping <RIXut>xe 

into some vector spacer. In regression problems, (2.1> has the form 

< 4. 1 > T<P,b> CS { P IE , b < E > } , E eX J = o. 

That is, for each EeX, b< E> solves the equation SCPIE,b<E>J = O. 
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IDENTIFICATION: One would like to say that the regression function b i$ 

identified relative to <P,B> if T<P;*> defined in (4.1) has a unique 

ze~o on B. This statement is unexceptional if the space X is discrete 

with P <E>>O for all feX. On the other hand, if there exist an XaCX 
X 

such that P (X,~>=O, then one must contend with the fact that knowledge 
X 

of P does not distinguish the collection of measures CPIE,EeXJ from any 

other collection CQlf,EeXJ such that Qlf=PIE, feX-Xa. It follows that 

if b solves (4.1), then any other ceB such that b(x)=c<x>, a.e. P must 
X 

also be said to solve (4.1). Hence, b cannot be identified relative to 

such c. 

The literature copes in two ways with the. inherent indeterminacy of a 

regression function whose domain contain sets of probability zero. One 

approach relies on the specification of the parameter space to exclude 

functions that differ only on sets of P -probability zero. Assume that 
X 

for all distinct aeB, ceB and for all Qeil, there exists some X1CX, which 

may depend on <a,c,Q), such that Qx<X1>>0 and a(f)r'-c:(f), feX1. Then the 

parameter space contains only functions that differ on some set of 

positive probability. Hence, identification of b may be defined in the 

traditional manner. 

The other approach is used in problems where one does not have 

sufficient prior information to restrict the parameter space as above. 

Then it is conventional to weaken the definition of identification. In 

particular, bis said to be identified relative to <P,B> if, for ceB, 

CS{Plx,c(x)}=O, a.e. P J ~ c<x>=b<x>, a.e. P . See, for example, the 
X X 

Stone(l977) treatment of nonparametric regression. 

AN ALTERNATIVE FORMULATION: It is worth noting that the indeterminacy of 

regression functions can be rephrased as a sampling problem rather than 
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as a failure of identification. 

To do this, let us not take Pas the primitive probability concept 

for the analysis of regression. Rather, let us begin by positing the 

existence of the collection of measures <Pte,eeX> and of the marginal 

measure P 
X 

Then it is unambiguous to say that bis identified relative 

to C<Ple,eex>,BJ if the solution to <4.1) is unique. 

In this formulation of the regression problem, Pis defined as the 

mixture of <Plt,eeX> with respect to the mixing measure P . 
X 

That is, 

for measurable ACZ, P<A> = IP<Alx)dP , where P<AI*> is assumed a 
X 

measurable function on X. The indeterminacy of regressions is now a 

consequence of the fact that we can sample only from the mixture P, not 

from each of the measures <Ple,eex>. 

4.2. METHOD OF MOMENT ESTIMATION OF MOMENT REGRESSIONS 

With few exceptions, the regression problems that have been studied 

to date are members of the subclass of moment regressions. These are 

problems in which b solves either a collection of moment optimization 

problems or a collection of moment equations. 

S<*,*> has the form 

In the former case, 

C4.2) SCPI e,b< OJ - b( 0 - argmin !h<z,a>dP 1e, 
w aee 

where h:Zxe->R 1 • 

(4.3) SCPlf,bCOJ 

J where g:zxe->R 

In the latter, 

!g C z, b ( 0 J dP If , 

In both cases, K ecR and Bis some subset of the 
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Cartesian product space <xe,eex>. 

REPRESENTATION OF OPTIMIZATION REGRESSIONS BY OPTIMIZATIONS IN <b,P): 

Regression problems of the moment optimization type have representations 

which avoid reference to the collection of conditional measures Plt,eex. 

Assume that S(*,*> ~as the form (4.2). Let w:X->CO,m) be any measurable 

function such. that w<x>>O a.e. P. 
X 

only if b also solves the problem 

Then b solves (4.1) a.e. P 
X 

(4.4) b - argmin jw(x)Cjh{z,a(x)}dPlxJdP = 
aeB x 

b - argmin jw{x(z)}hCz,a{x(z)}JdP = O. 
aeB 

if and 

Thus, a collection of moment optimization problems, each relating b({) 

to Pie for a given feX, can be represented by a single such problem 

relating b to P. Note that if Bis a finite dimensional space of 

functions, this representation is a finite dimensional moment 

optimization problem of the type described in Section 3.1. 

Application of the analogy principle to (4.4) yields the estimate 

(4.5) = argmin fw{x(z)}hCz,a{x(z)}JdPN. 
a~ 

The attractivenss of this method of moments estimate depends critically 

on the parameter space. If Bis finite dimensional, the discussion of 

Section 3.1 implies that given regularity conditions, estimates of the 

form BN are very appealling. Indeed, they dominate practice. 

On the other hand, method of moments estimation of moment regressions 

breaks down if the parameter space is too large. This is most easily 

seen in the extreme case in which 8 is unrestricted; that is B=<xe,eEX). 

Let PNx be the empirical measure of x. Let XN denote the support of 
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PNx" For each EeXN, let BN<E> be the subset of 8 on which Jhtz,*>dPNIE 

is minimized. For each EeX-XN, let BN<E>=e. Then the analog estimate 

BN is the set of functions (xBN<E>,EeX>. Except in the special case 

where Px<E>>O, BN<E> does not generally converge to b<E>. Hence, BN 

does not generally converge to b • 

It should be understood that when Bis unrestricted, the failure of 

the method of moments to be consistent does not derive from an absence 

of identification; the unconditional moment problem (4.4) inherits the 

identification properties of the original regression problem (4.1). It 

is rather that as N->~, Jw{x(z)}hCz,*{x(z)}dPN does not converge as a 

function on B to Jw{x(z)}hCz,*{x(z)}JdP. 

At present, we can offer no general characterization of the behavior 

of method of moments estimation in regression problems where Bis not 

finite dimensional but is a proper subset of (x8,EeX>. Results have, 

however, been obtained in specific settings. We shall cite some 

findings in Section 4.3, where we consider the class of conditional 

prediction problems. 

REPRESENTATION OF EQUATION REGRESSIONS BY EQUATIONS IN Cb,P): The fore-

going discussion of moment optimization regressions applies to some, but 

not all, moment equation regressions. Assume that S<*,*> has the form 

JxJ 
(4.3) and let v:X->R be any measurable function such that v<x>, 

written as a JxJ matrix, is non-singular a.e. 

a.e. P , then b also solves the problem 
X 

p • 
X 

If b solves (4.1> 

(4.6) Jv(x)CJg{z,b(x)}dPlxJdP = 
X 

Jv{x(z)}gCz,b{x(z)}]dP = 0. 

So a collection of moment equations, each relating b<E> to PIE for a 
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given eex, implies a moment equation relating b to P. 

Solutions to (4.6), however, do not necessarily solve the regression 

problem defined by (4.3). That is, there may exist aeB, a:;t.b such that 

fv{x(z)}gCz,a{x(z)}JdP = 0 even though .fgCz,a(x)JdPlx:;t-0 on a set of 

positive P -measure. 
X 

If so, then solution of (4.6) does not identify b. 

Application of the analogy principle to <4.6) can be an attractive 

estimation method, but only if, for the given specification of <g,B,Il> 

and chosen v<*>, one can verify that (4.6) identifies b. 

4.3. CONDITIONAL PREDICTION PROBLEMS 

Perhaps the most familiar class of moment regression problems are the 

conditional prediction problems. Here, one observes a realization of· 

x<z> and wishes to make an optimal point prediction of the realization 

of some other random variable y<z> conditional on the realization of 

x<z>. An optimal prediction is one that minimizes expected loss with 

respect to a specified loss function. In general, the best predictor of 

y given the event x=e is some function of the probability measure of y 

conditional on x=e. The transformation from this measure to the best 

predictor depends on the loss function. 

Let y:Z->YCR 1 be a given measurable function and let ecR 1 be a given , 

space of feasible predictor values. Let L:R 1 ->CO,~J be a specified loss .. 
function, that is some measurable function such that 

(4.7) O~v<w ~ O=L(O)~L<v><L<w> and L<O><L<-v><L(-w). 

A conditional prediction problem is a collection of moment optimizations 
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in which h<*,*> of equation (4.2) has the form 

(4.8> h<z,a) = ·Lty<z>-aJ. 

A best predictor of y conditional on x=e solves the problem 

<4.9) b<t> - argmin !LCy(z)-aJdPlt 
8E6 

= o. 

METHOD OF MOMENT ESTIMATION: In problems where the parameter space is 

finite dimensional, the dominant approach to estimation of the best 

predictor function bis the method of moments. Applying (4.4) with 

w<*>=l, one observes that b(f) solves the conditional prediction problem 

(4.9) a.e. P if and only if b solves the unconditional prediction 
X 

problem 

(4.10) b - argmin !LCy(z)-a{x(z)}JdP = 0. 
ae:B 

Then one estimates b by 

(4.11) = argmin !LCy<z>-a<x<z>}JdPN. 
aeB 

For example, under the absolute loss function L<y-a)=ly-al, BN is the 

least absolute deviations estimate of q. Under the square loss function 

L(y-e>=<y-a> 2 , BN is the least squares estimate. 

It is important to understand the substantive distinction between the 

prediction problems (4.9) and (4.10). In <4.9>, the event Cx=eJ has 

been observed. The problem is to minimize over eee the expectation of 

LCy<z>-aJ with respect to the measure Pie. In (4.10), a realization of 

x will be drawn, following which a prediction of y will be made. The 

problem is to minimize over ae:8 the expectation of LCy<z>-a<x<z>}J with 

respect to the measure P. The fact that the same function b solves both 
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problems is a simple but remarkable consequence of the linearity of the 

expectation operator. 

ESTIMATION WHEN THE PARAMETER SPACE IS LARGE: To what extent does the 

estimate (4.11) remain attractive when the parameter space is not finite 

dimensional? One class of problems admitting positive results is 

isotonic regression. Here, X is a space endowed with a known partial 

ordering and Bis the space of functions that are monotone in this 

partial ordering. The simplest case is that in which X=R 1 ; then Bis 

the space of increasing functions on the real line. See, for example, 

Barlow et al.(1972> and Sager and Thisted(l982). 

A second class that has received attention are the binary response 

problems. Here, y is distributed Bernoulli conditional on x. Manski 

and Thompson(1986) consider various specifications for the loss function 

and for the parameter space. 

They find that (4.11) is consistent for b if Lis the log loss 

function L<y-e>=-logCl-ly-elJ and Bis the space of functions that are 

increasing in an index xa, where a is a parameter vector. This 

specification of B generalizes that of isotonic regression; with~ 

unknown, the ordering on X is not know.n. It turns out that BN is the 

maximum likelihood estimate studied by CosslettC1983>. 

They also study estimation when 8 is the space of functions c:X->R 1 

satisfying the 'single-crossing' condition c<x>LY ~ xaLo, where YECO,lJ 

is known and a is again an unknown parameter. Here, BN is consistent 

for b if an absolute loss function is imposed but not otherwise. 

Whatever loss function is imposed, (4.11) reduces to some version of 

maximum score estimation<Manski,1985). 
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4.4. PREDICTION BY MINIMIZATION OF QUANTILE LOSS 

,,, 

The literature on best prediction has focussed exclusively on 

optimality defined by minimization of the expectation of the loss 

function. There is, however, no compelling reason why one might not 

wish to minimize some other location parameter of the loss distribution, 

say some quantile, a trimmed mean, or the mode. For a decision theoretic 

analysis of some alternative decision rules, see Manski(1986). 

In general, conditional prediction problems minimizing location 

parameters other than the expectation are not moment problems. As an 

example, we shall consider predictors minimizing quantile loss. 

Let the loss function have the form L<y-e)=ly-el. Let oce<O, 1 >. Given 

a realization of· x<z>, suppose that one predicts y<z> by minimizing the 

oc-quantile of the conditional distribution of ly(z)-el. For simplicity, 

assume that the probability measure of y conditional on the event Cx=EJ 

has no mass points. Then the best predictor of y conditional on E 

solves the problem 

< 4. 12 > b CE> 

bCU 

argmin [fl: P{ ly<z>-alifl IO = oc] 
eee 

= 

argmin [fl: P{e-11~y<z>~e+11 IE}= oc] = 0. 
eee 

The first equality in (4.12> shows that the best predictor b(f) has a 

pleasing interpretation in terms of conditional confidence intervals for 

y. That is, the best predictor of y given E is the center of the 

smallest confidence interval for y that has coverage probability oc. 

Equation (4.12) is not a moment problem. Let 11<oc,E,e> denote the 
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oc-quantile of ly<z>-el conditional on f. For a given predictor value 

eeR~, ~(oc,f ,e) solves the moment equation 

(4.13) JlCe-TJ(oc,f ,e>s_y<z>s_e+ri<oc, f,e> JdP If = oc. 

But b(f) minimizes ri<oc,f,*> one and does not itself solve a moment 

problem. 

ANALOG ESTIMATION: Analog estimation of b(f) has been studied in the 

setting where one can sample directly from Plf. In particular, see 

Andrews et al.(1972>, who discuss analog estimation of the closely 

related •shorth', or mean of the shortest interval containing a fraction 

oc of the probability mass of y. 

We are concerned with estimation in the setting where one samples 

from P, not from Plf. In particular, it is of interest to learn whether 

the regression problem (4.12) can be represented in a manner that avoids 

reference to the conditional measures Plf,feX. This question is being 

investigated by the author in work in progress. 

One finding obtained thus far is that such a representation does exist 

if a homoskedasticity condition holds. Specifically, it suffices that 

fl[oc,f ,b(f)J be the same for all feX. In this case, application of the 

analogy principle to a suitable representation of (4.12) yields an 

estimator that has recently drawn attention for its robustness 

properties. This is the •1east median of squares' method proposed by 

Rousseuw < 1984 > • 

... 
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5. ANALOG ESTIMATION OF GENERAL REGRESSIONS 

' We now apply the analogy principle to representations of regression 

problems that refer explicitly to the conditional measures Plf,feX. 

The approaches to be developed here are less convenient than is method 

of moment estimation. On the other hand, they apply much more generally. 

We have seen that method of moments estimation of a moment regression is 

not consistent if the parameter space is too large or, in the case of 

moment equation regressions, if the derived moment equation does not 

identify b. Regression problems which are not collections of moment 

problems may have no representations that avoid reference to Plf,feX. 

The methods presented below are directed toward such problems. 

5.1. 'NAIVE' ANALOG ESTIMATION OF REGRESSIONS WITH DISCRETE X 

We begin with so-called 'naive' analog estimation. Naive estimation 

applies the analogy principle to our basic representation of a 

regression problem, equation (4.1). The sample analog of Pie is the 

empirical conditional measure PNlf. Hence, the analogy principle 

suggests that to estimate b, one might use 

< 5. 1 > 

provided that BN is non-empty. Otherwise, one might seek to minimize 

the distance of CS{PNlf,*<O}, feXJ from zero, in some sense. 
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This application of the analogy principle works if Xis a discrete 

set and Px<e>>O for all eex. Here, N->m implies that for each tEX, PNlf 

converges to Pit almost surely. So for each eex, SCPNlt,*<t>J behaves 

well as an approximation to SCPIE,*<f>J, provided only that S<*,*) is 

smooth. If Xis finite, the convergence of PNle to PIE is uniform on X. 

In this case, we can make the stronger statement that CSCPNle,•<e>>,EeXj 

behaves well as an approximation to CS{PI h*< e> >,_eeXJ. 

More generally, however, naive analog estimation does not work. The 

empirical measure of x, PN, puts all its mass on its finite support 
. X 

XNCX. For tiXN, PNlt is arbitrary. For feXN, PNlt is well-defined but 

does not converge to PIE unless P <e>>O. Hence, wherever P <E>=O, 
X X 

SCPNIE,*<E>J behaves poorly as an approximation to SCPIE,*<t>J. 

5.2. KERNEL ESTIMATION OF REGRESSIONS WITH ABSOLUTELY CONTINUOUS P 

The failure of naive analog estimation when Xis not discrete has 

fostered a widespread presumption that the analogy principle cannot be 

applied to general regression problems. The recent literature on 

nonparametric estimation of regressions has contributed to this view. 

Available nonparametric regression methods are in large part outgrowths 

of earlier work on nonparametric estimation of density functions. As 

indicated earlier, nonparametric density methods give the appearance of • 

being divorced from the analogy principle. 

In Section 3.2, we demonstrated that the density estimation problem 

can be represented in a manner that allows the analogy principle to 

work. Here, we use this representation to obtain an analog estimate of 

regressions that works when P has a Lebesgue density. 

Assume that Pis absolutely continuous with respect to Lebesgue 

• 
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measure J-1. Then Plf is completely characterized by the conditional 

density q,1-1<*,Plf). So an alternative representation of (4.1) is 

(5.2) CS ( q, I-' ( * , P I f ) , b < e > } , e eX J = 0 , 

where the domain of S<*,b(f)} is now a space of density functions rather 

than a space of probability measures. 

For each feX, the conditional density •1-1<*,Plf) can be written as the 

ratio of the density of P evaluated at realizations of z satisfying 

Cx<z>=eJ to the density of P evaluated at e, that is 
X 

(5.3) = 
lCx(z)=fJ •1-1<*,P) 

11)1-'(f,Px> 

We showed in Section 3.2 that <l)u<*,P> and q, <*,P ) are the same as 
r J-1 X 

q,u<*,PQkr(P)GJ and <1) C*,P Qkr·(p )GJ, where O"(¼) and G were defined in 
r }I. X X 

equation (3.12). Hence, the regression problem (5.2> is equivalent to 

the problem, 

(5.4) 
lCx(z)=fJ q,1-'<*,PQkr(P)GJ 

q,uce ,P EBa<P >GJ 
r X X 

feX] = o. 

The analogy principle may be applied to the representation (5.4) • 

For example, let (4.1) and <5.2) have the form 

<5.5) Cb(f)-jy(z)dPlf, feXJ = Cb<e)-jy(z)(q,J--l<z,Plf)}dz, feXJ = 0 

and let B = cxe,eex>. Then bis the mean regression of yon x. For 

each feX, the analog estimate of b<f> is, by (3.14), 
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1/u(PN> j y<z> lCx<z>=eJ Cfg{(z-zN)/u(PN>}dPNJ dz 

1/u(PNx> fgC<e-xN)/a(PNx)JdPNx 

where zN and xN are distributed PN and PNx respectively. Equation (5.6) 

is a kernel regression estimate. See Prakasa Rao(1983>, p.239-240. 

If Pis not absolutely continuous, one should not expect analog 

estimates derived from (5.4) to be well-behaved. In particular, if p 
X 

has mass points and a(PN) measures the distance of PN from a continuous 

measure, then u<PNx> does not converge to zero as N->~. So the local 

averaging on which kernel estimation is predicated goes askew. 

5.3. SMALLEST NEIGHBORHOOD ESTIMATION OF GENERAL REGRESSIONS 

So far, we have given a variety of analog estimates for regression 

functions, each appropriate to a different class of problems. In each 

case, the key to s~ccessful application of the analogy principle was 

selection of a suitable representation of the estimation problem. Thus, 

we transformed moment regressions into moment problems. We maintained 

the original regression form <4.1) for problems with discrete X. And we 

represented problems with absolutely continuous Pas ones with smoothed 

densities. 

Here, we introduce a new representation of regression problems that 

yields an appealing, generally appl1cable analog estimate. In short, we 

replace probability measures conditioning on events of probability zero 

by ones that condition on neighborhoods having vanishingly small 

positive probabi.lity. This done, application of the analogy principle 

• 
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works whether or not X is discrete and whether or not Pis absolutely 

continuous. We term the resulting analog method •smallest neighborhood' 

e5timation. 

REPRESENTATION OF THE REGRESSION PROBLEM: Let P<*,*> be a metric 

generating the usual topology on the space X. Let m<*) be a strictly 

increasing function mapping CO,m) into CO,m) with m(O)=O and m(d)Ld for 

d>O. For feX and d>O, define 

(5.7) 

< 5. 8 > 

and 

(5.9) 

X < hd > 

d(f,P > 
X 

A<f,P) 
X 

= 

C f ' eX : P ( f , f ' > <d J , 

i nf d : P C X < f , d > J > 0 , 
X 

XC f,m{d< f,P > }J. 
X 

Thus, X<f,d) is the closed ball of radius d centered at f and d(f,P > is 
X 

the infimum of d such that X(f,d) has positive probability under P . 
X 

The set A<f,P > is the closed ball of radius m{d(f,P )} centered at f. 
X X 

Now consider the regression problem (4.1) with CPIA<f,P ),feX] 
X 

replacing <Plf,feX>. That is, let b solve 

(5.10) CS< PI A< f , P > , b < f > } , f EX J = 0. 
X 

We shall show that the estimation problems defined by (4.1) and (5.10) 

are equivalent. 

To see this, let X CX be the support of P • That is, 
S X 
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< 5. 11 ) X - Ce eX: P C X C e, d) J >O, Vd >OJ • 
S X 

It follows from (5.7) through (5.9) that 

C 5. 12 > e EX ~ d C e, P > =O ::; m{ d < e, P ) }=0 ~ A< e, P ) ={ e} ~ P I AC e, P > =P I e • 
S X X X X 

Hence, CPIA<e,P >,eeX J = CPle,eex J. 
X 5 S 

It remains to consider feX-X • 
s 

In general, PIA<e,P > need not equal 
X 

Pl( for such e. 

< 1974 > , p • 31 • 

But X-X has probability zero under P • See Chung, 
S X 

So the behavior of PIA<e,P >,eex-x is immaterial. 
X 5 

SMALLEST NEIGHBORHOOD ESTIMATES: A smallest neighborhood estimate of b 

is obtained by applying the analogy principle to (5.10). Thus, the 

estimate is 

(5.13) = 

provided that BN. is non-empty. Otherwise, one minimizes the distance of 

CS{PNIA<e,PNx>,*<e>>, eeXJ from zero, in some sense. 

The expression PNIA<e,PNx> appears forbidding but actually has a 

simple interpretation. By (5.8>, 

= min P<e,f'>, 
e 'EX 

N 

where XNCX is the finite support of PNx" Thus, d<e,PNx> is the distance 

from e to its nearest neighbor among the sample observations of x. And 

xce,d<f,PNx>J is the smallest neighborhood of e having positive 

.. 
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empirical probability. 

in naive analog estimation. 

So A<f,PNx> is the neighborhood XCf,d<f,PNx>J 'blown up' to radius 

In this case, PNIA<f,PNx> is the empirical probability 

measure of z conditioned on the event that x is within distance 
" 

COMPARISON WITH THE NEAREST NEIGHBOR AND HISTOGRAM METHODS: Smallest 

neighborhood estimation is reminiscent of but distinct from the nearest 

neighbor and histogram methods. All three methods impose a metric on X 

and estimate Plf by the empirical measure of z conditioned on the event 

that xis within some neighborhood off. They differ in the way this 

neighborhood is determined. 

In nearest neighbor estimation, a positive integer k, dependent on 

the sample size N, is chosen by the analyst. Let dNk(f) be the distance 

from f to its k th nearest neighbor among the N observations of x. Then 

Plf is estimated by PNIXCf,dNk(f)J. Thus, the number of observations 

used to estimate Plf is predetermined and the neighborhood of f that 

contains these observations is random. 

In histogram estimation, a neighborhood radius o<N>>O, dependent on N, 

is chosen by the analyst. Then Plf is estimated by PNIXCf,o<N>J. Here, 

the number of observations within the selected neighborhood off is 

random. 

In smallest neighborhood estimation, m:CO,m>->mCO,m) is chosen by the 

analyst. When m<*> is evaluated at the random distance d(f,PNx> from f 

to its nearest neighbor, a random neighborhood A<f,PNx> results. The 
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number of observations within A<e,PNx> is random but always positive. 

It would be of interest to know whether the nearest neighbor and 

histogram methods can be derived as analog estimates. I have not yet 

found representations of the regression problem that yield these 

methods. 

k th -SMALLEST NEIGHBORHOOD ESTIMATION: Smallest neighborhood estimation 

has one irritating feature not shared by the nearest neighbor and histo-

gram methods~ Fix tEX. We pointed out earlier that if one or more 

sample observations of x have the value,, then the smallest neighbor-

hood estimate of Pit is the naive estimate PNlf. 

P <t>>O but not if P <t>=O. 
X X 

This is desirable if 

The equivalence of smallest neighborhood and naive estimates on ,eXN 

is immaterial if one is concerned only with pointwise consistency. If 

P <,>=O, then with probability one, no observation of x equals e. 
X 

Hence, BN<e> can still be a consistent estimate of b<,>. See Section 

5.4. On the other hand, this property of smallest neighborhood 

estimation implies that unless Px has finite support Xs' BN<*> cannot, 

in general, be uniformly consistent for b<*> on X • 
s 

The problem noted here can be fixed by generalizing smallest neighbor-

hood estimation to •k th -smallest neighborhood estimation', as follows. 

Fix an integer kLl• As earlier, let dNk<,> be the distance from , to 

th its k -nearest neighbor among the N observations of x. Let ANk<,> = 
XC,,m<dNk<,>}J. Now let PIANk<,> define the k th-smallest neighborhood 

est1mate of Pie. 

th A k -smallest neighborhood estimate of Pie reduces to the naive 

estimate only if k or more sample observations of x have the value,. 

With probability one, there exists no tEX with P <,>=Osuch that more 
S X 

.. 
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than one observation of x has the value e. Hence, with probability one, 

k th-smallest neighborhood estimation with k>2 does not misbehave 

anywhere on X . s 

I have not been able to find a representation of Plf for which 

PIANk<e> is the sample analog. The integer k refers to a number of 

sample observations. For k>2, the distance to the k th -nearest neighbor 

of e is not determined by the empirical measure PNx alone. Hence, this 

distance has no obvious counterpart in the population, which is 

characterized only by P. 

The case k=l, which yields smallest neighborhood estimation, is 

special. The distance to the nearest neighbor is the same as the 

distance to the smallest neighborhood having positive empirical 

probability. The latter distance is determined fully by PNx" 

5.4. CONSISTENCY OF SMALLEST NEIGHBORHOOD ESTIMATES OF MEAN REGRESSIONS 

To investigate the properties of smallest neighborhood estimation in 

a comprehensive way would require us to disgress too much from the theme 

of this paper. We shall therefore restrict attention to a central 

asymptotic question, the pointwise weak consistency of the smallest 

neighborhood estimate of a mean regression. 

In what follows, a theorem gives conditions that are sufficient for 

consistency. Then a set of lemmas show that these conditions can be 

satisfied if m<*> is selected appropriately, provided only that P be 

minimally regular. Proofs are in an Appendix. 
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Consistency Theorem: Let y:Z->YCR 1 be a given measurable function such 

that b<!'>=fy<z>dPIE' exists for all E'EX. Fix feX. Let N<E,PNx> be 

the number of sample observations of z for which x<z>EA<E,PNx). Assume 

that the following conditions hold: 

ClaJ E'->E:::; b(E'>->b(f}. 

ClbJ 3d,:,)0 and >..>0 s.t. Var(y lx=E') ~ >- for e • ex < e , d,:, > . 
; 

Cle] As N->m, d(e,PNx >->0 in probability. 

CldJ As N->m' N< E ,PNx >->m in probability. 

Then as N->m' jy(z)dPNIA<E,PNx) -> b<O in probability.II 

The four conditions of this theorem are unsurprising. Smallest 

neighborhood estimates, like histogram and nearest neighbor estimates, 

approximate the conditional mean b<e> by local averages. For such local 

averages to be consistent, the population must be sufficiently regular. 

Conditions ClaJ and Clb] suffice. That is, it is enough that b<*> be 

continuous at E and that, for E' ·near e, the variances of the measures 

Pie' be bounded. 

Given these regularity conditions on P, the local average converges 

if Conditions ClcJ and CldJ hold. That is, as N->m, the neighborhood of 

Eon which the average is taken should shrink toward e and, at the same 

time, the average should be computed on increasingly many observations. 

SELECTION OF m<*>: There is, of course, a tension between Conditions 

ClcJ and CldJ. To make the consistency theorem operational, we need to 

show that it is possible to select m<*> so that both Cle] and Cld] hold. 

To do this, we work with the distribution Ge<*> of the distance of 

the random variable x to the point EeX. That is, for dL0, define 

• 
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where X<e,d> was defined in <5.7>. By the Lebesgue decomposition 

theorem, the probability measure on CO,m> generated by Ge can be 

decomposed uniquely into the sum of a discrete measure, a singular 

continuous measure, and a measure that is absolutely continuous with 

respect to Lebesgue measure. See Chung(1974>, p.12. Let ge<*> denote 

the density of the absolutely continuous component. 

With this as background, we have the following: 

Lemma 1: Assume that eEX • Let N->m. 
s 

Then d<e,PNx>->O in probability.M 

Lemma 2: Assume that P <e>>O. Let N->m. Then N<e,PN >->m almost surely.~ 
X X 

d1 
Lemma 3: Assume that for some d1>0, Ge<d1>=Sge<o>do. 

0 
Moreover, 

g1~ge<o>~ge for o<d1, where O<g1<ge<m. Let m<*> be differentiable with 

with derivative m1<*> satisfying the condition m1<0>->m as o->O. 

N<e,PNx)->m in probability. ■ 

Then 

Lemma 1 states that Condition Cle] holds if e is in the support of P . 
X 

Lemma 2 says that Condition Cld] holds if P places positive mass ate. 
X 

These simple results require no conditions on m<*> beyond the maintained 

assumptions that m(O)=O and that m{d)Ld. 

Lemma 3 addresses a much more subtle question. Can m<*> be chosen so 

that Condition Cld] is satisfied when P places 7~ro mass at E? We 
X 

obtain a positive answer provided only that Ge<*> is well-behaved in a 

neighborhood of zero. In particular, it suffices that in a neighborhood 
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of zero, the density ge<*> of the absolutely continuous component of 

Ge<*> be bounded away from zero and infinity. The Lemma also assumes 

that Ge<*> has no s}ngular continuous component in a neighborhood of 

zero but this condition is inessential. 

We find that Condition CldJ is satisfied if m<*> is a function whose 

derivative m1<0>->m as o->O. This property is essential. It can be 

shown that if m1<0> stays bounded as o->O, then N<e,PNx> stays bounded 

with positive probability. 

One ~lass of functions m(*) that work are the power functions 

(5.16) m(d) = 

Given that all m(*) of the form <5.16) yield consistent estimates, 

one would like guidance on the selection of the constants (a 1 ,~ 2 ). More 

generally, one would like a criterion for selection of m<*> from the 

space of all functions that satisfy the assumptions of Lemma 3. This 

question, which will not be pursued here, resembles questions that arise 

in nearest neighbor and histogram estimation. There, the analyst must 

decide how to increase the number of neighbors or shrink the window 

width as N->m. Here, the problem of selecting a function whose argument 

is the sample size is replaced by one of selecting a function whose 

argument is the distance to the nearest neighbor.· 

• 
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APPENDIX: PROOFS OF RESULTS ON SMALLEST NEIGHBORHOOD ESTIMATION 

Proof of Theorem: For each N, let I<t,N> index the N< f,PNx> observations 

of z for which x<z>eA<t,PNx>. In general, 

<Al> = 
1 

I: yCz.>. 
iel<f,N> 1 

Hence, conditional on the sample size and on the realizations of x, the 

mean and variance of bN<e> are, provided that the relevant terms exist, 

1 
= 

and 

C.A3> Var C bN ( e ) Ip Nx J 

where x. =x < z. > • 
1 1 

1 
= 

I: b(x.) 
ieI<t,N> 1 

I: Var<y1x=x.>, 
ieI<t,N> 1 

Condition ClaJ implies that given any '11>0, there exists dfl>O such that 

<A4) x.eX<t,d > 
1 '11 

.... -, I b ( x . ) -b ( t ) I < 11 • 
l 

Recall that A<t,PNx) - XCf,m{d(f,PNx>}J. Hence, 

<AS> e Cb( 0-fl,b( 0-t-flJ. 

Condition ClbJ implies that the variances Var<y1x=xi>, iel<l,N> are 

bounded by A, provided that A<e,PNx) C X<e,d 0 ). Hence, 

CA6> 
N < e, p Nx > 
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-1 -1 Now let O<&<minCm (d~>,m <do>J and let O<J<m. Consider the mean 

and variance of bN<e> conditional on the sample size and on the event 

that the empirical measure of xis a member of the set of measures 

CA7> C<&,J) = CQ :d(t,Q ><& n N<e,Q >>JJ. 
X X X 

It follows from <AS> that for all feasible & and J, 

(AS> e Cb( e>-~,b( e)+T}J. 

It follows from <AS> and <A6> that f 

CA9> = 

= Var [EcbN( e> IPNx'd( e,PNx)<m- 1 <&J IPNxeC(&,J)] 

+ 

Chebychev's inequality and (A9> imply that for any v>O, 

> 

Hence, by <AB> , 

Finally, remove the conditioning on C<G,J). In ge~eral, 

·, 
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<A12> ProbClbN<e>-b<e>l<TJ+vJ = 

Prob( lbNC O-b< O t<r1+v IPNxeC<o,J>J x ProbCPNxeC<o,J>J 

Conditions ClcJ and CldJ imply that as N->m, 

CA13) ProbCPNxeC<o,J)J -> 1. 

This and CA12) imply that 

<A14> liminf ProbClbN<e>-b<f >l<TJ+vl L 1 - (41'Ja+A/J)/v 2 • 

N->m 

Now let TJ->O and J->m. By (A14), PrcbC lbNC O-b( 0 l<vJ -> 1 for 

every ·v>O. 

Q.E.D. 

Proof of Lemma 1: d(f,PNx> is the distance from e to its nearest 

neighbor among the N observations of x. By (5.15) and the assumption of 

random sampling, 

for oLO. By <5.11>, feXs ~ G,<o>>O for all o>O. Hence, for all o>O, 

ProbCdCf ,PN ><oJ -> 1 as N->m. 
X -

Q.E.D. 
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Proof of Lemma 2: By the strong law of large numbers, PN <e>->P <e>>O 
X X 

almost surely. Let 0<11<P < t >. 
X 

Then with probability one, there exists 

a finite N,:, such that N>Nc::, ~ PNx<e >>11. 

A<t,PN )=Ce}~ N<e,PN )=NPN (f))N,i. 

But PN <e>>,i ~ d<t,PN >=O ~ 
X X 

· . X X X 

Q.E.O. 

Proof of Lemma 3: Let J be any positive integer. The Lemma states that 

as N->a,, ProbCN<t,PNx><JJ->O. But 

(A16> = 
J-1 
~ ProbCN<t,PNx)=jJ. 

j=O 

By construction, N<t,PNx>Ll always. Hence, it suffices to show that as 

N-)a,, ProbCN< f,PN >=jJ->O for each positive integer j. 
. X 

For any d>O, 

<A17> ProbCN<e,PNx)=jJ 

= ProbCNCt,PNx)=j n d<t,PNx><dJ + ProbCN<t,PNx)=j n d<t,PNx>>dJ 

ProbCN< f,PNx)=j n d( f,PNx>i_dJ + ProbCd< t,PNx»dJ. 

By assumption, ge<*>>O in a neighborhood of zero. So feX . Hence, by 
s 

Lemma 1, ProbCd<e,PNx>>dJ->O. Therefore, we need only to show that 

In particular, it suffices to choose 

-1 
some de<m Cd1> and show that ProbCN<e,PNx)=j n d( €,PNx>~deJ->O. 

By (5.14), d(t,PNx) is the first order statistic in a random sample 

of size N from Ge. Also, N<e,PNx)=j if and only if the j th order 

statistic is less than or equal to mCd(f,PNx)J and the Cj+l) 5t is 
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greater than mCd<f,PNx)J. By assumption, the mass of Ge in the interval 

CO,ooJ derives entirely from the absolutely continuous component of Ge. 

It follows that 

<A18) = 

Thus, it suffices to show that as N->=, 

de N! 
<A19> J ge<&>----- [GeCm<&>J]j-l[l-GeCm<o>J]<N-j>d& -> o. 

0 (j-l>l<N-j)l 

The integrand in . th <A19) is closely related to the density of the J 

order statistic of a random sample of N observations drawn from the 

distribution function Ge[m(¼)J. To see this, first observe that strict 

monotonicity of m(¼) implies that GfCm(¼)J is a l~gitimate distribution 

function. Differentiability of m(¼) implies that the absolutely 

continuous component of Gf[m(¼)J has density geCm<*>Jm1<*>. Hence, the 

density of the absolutely continuous component of the distribution of 

the j th order statistic from GfCm<*>l is <see Lehmann, 1983, p.353> 

(A20) <PUN(¼) 

g f Cm<*~ J m1 < * > 
N! 

[G f Cm<*> J] j- l [1-G f Cm<*> J] ( N- j ) • 

( j -1 ) l < N- j > ! 

It follows that <A19> is equivalent to the condition 



de g e < s > 
(A21) J ti) ON< 0 > do -> o. 

0 geCm<cS'>J m1 ( o) 

By assumption, O<g1,Sge<o>~ge for o_sde. Henc:e, CA21> is equivalent 

de 1 
<A22> J •ejN<o> do -> o. 

0 m1 < o > 

Also by assumption, m1Co)->m as o->O. Hence, given any C>O, there 

de 1 
<A23> J •e·N<o> do 

0 J m1 < o > 

= 

< 
1 

C 

do + 

+ 

As N->m, the j th order statistic of GeCm<*>] approaches zero with 

probability one. Hence, for all C>O, 

<A24) 
SC 

<l)ON<o> do -> 1 J 
0 

and 

de 
<A25) J •uN<o> do -> o. 

oc 

It follows that the left hand side of <A23> is asymptotically bounded 

above by 1/C. Letting C->~ completes the proof. 

Q.E.D. 

to 
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