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ABSTRACT

’
The analogy principle proposes that population parameters be estimated

by sample statistics which make known properties of the populafion hold
as closely as possible in the sample. Applications of the analogy
principle are ubiquitous. Nevertheless; estimation theory has not been

studied from a consistent analog perspective. This paper makes a start.
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1. INTRODUCTION

ESTIMATION PROBLEMS AND METHODS: Many estimation problems have the
following elements. One wants to learn some property of a population
probability measure. It is known that the population has certain other
properties. A sample of observations drawn at random from the population
is available. The problem is to use the known properties of the
population and the sample evidence to learn the property of interest.
Once such an estimation problem is specified, consideration of
estimation methods becomes possible. The “analogy principle’ offers a
means for generating estimators. The analogy principle is instantly
recognized. Many authors routinely refer to sample statistics as the
‘sample analog’ of corresponding population parameters. Nevertheless,
the analogy principle is rarely stated explicitly. The essential idea

_is expressed succinctly in the following quote:

"the analogy principle of estimation...proposes that population
parameters be estimated by sample statistics which have the same
property in the sample as the parameters do in the population”

(Goldberger19468,p.4)

This statement needs to be augmented only in that it presumes the
existence of a sample statistic having the same property in the‘sample
as the parameters do in the population. Moré generally, an analog
estimate is one chosen so that, in some well-defined senses; the known

properties of the population hold as closely as possible in the sample.
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SOME APPLICATIONS: Applications of tHe analogy principle are ubiquitous.
Perhaps the oldest are the use of the sample average and median as
estimates for the population mean and median. The method of Toments
(K. Pearson, 18%94) apﬁlies the analogy principles as does minimum chi
square estimation(Neyman,;1924%9). Maximum likelihood, least squares; and
least absolute deviations estimation are analog methods. Econometric
contribution to the theory of analog estimation dates back to the
development of instrumental variables estimation(Wright,1928; Reiersol,
1941,1949).

Among modern developments, Von Mises(19247) introduced the notion of
differentiable statistical functions and studied the local asymptotic
behavior of their analog estimates. Wolfowitz(1953,1957) proposed
minimum distance estimation, a very general application of.the analogy
principle to the problem of estimating distribution functions. Most of
the literature on robust estimation(Huber,1981) presumes analog
estimation. For example, M-estimates(Huber,1967) are analog methods.
The term ‘Fisher-consistency’(Rac;1973,p.345) refers to analog
estimation of a parameter that is a smooth functional of the population
distribution. In the recent econometric literature, Burguete, Gallant,
and Souza(1982), Hansen(1982), and Manski(1983) have independently
proposed analog estimation of a fairly general class of econometric

models defined by smooth moment restrictions. These methods subsume the

earlier instrumental variables work.

ESTIMATION FROM THE ANALOG PERSPECTIVE: The myriad applications of the
analaogy principle demonstrate its usefulness as a tool for generating
estimators. Consideration of specific applications; however, may not

convey the maore general value of the analogy principle as a paradigm for



the study of estimation.

I have found that the analogy principle offers an effective framework
for teaching estimation. In analog estimation, one begins by asking
what he knows about the population. One then treats the sample as if it
were the population. Finally, one selects an estimate that makes the
known properties of the population hold as closely as possible in the
sample. What could be more intuitive?

I have found that the analogy principle disciplines the researcher by
encouraging him to focus attention on estimation problems rathef than on
methods. Much of the statistical literature begins with a method and
looks for problems to which it can be applied. It seems more sensible
to begin by specifying what it is the researcher wants to learn and then
seek applicable methods. The analogy principle forces this mode of
thought. Analog estimation follows rather than precedes specification
of the estimation problem of interest.

I have, moreover, come to feel that the analogy principle has a
certain elegance.( Esthetic appeal may not suffice to make a subject

warthy of study. It does help though.

PLAN OF THIS PAPER: It is surprising that estimation has not been
studied from a consistent analog perspective. This paper makes a start.
A monograph under preparation{Manski,1987) will provide further depth
and breadth.

Section 2 develops a formal framework and sets out concepts. We pose
an abstract estimation problem and define identification. We show that a
given estimation problem generally has many alternative representations
to which the analogy principle may be applied. Except in special cases,

the derived analog estimate depends on the chosen representation. We
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discﬁssiinformally the consistency and efficiency of analog estimates.
The remainder of the paper gives applications. Section 3 presents
short case studies of five leading classes of estimation problems.
These are the finite dimensional moment problemss nonparametric density
problems,; smooth statistical functions,; index problems, and separable
econometric madels. In each case, we define the estimation problem;
develop alternative representations of that problem, and obtain analog
estimates by applying the analogy principle to these representations.
Sections 4 and S study analog estimation of regressions. Section &
introduces an abstract class of regression problems, examines the method
of moments approach to the estimation of moment regressionss and
discusses method of moment estimation of best conditional predictars.
Section S5 develops analog methods for the estimation of general
regression functions. Here, we introduce the smallest neighborhood

method for nonparametric estimation of regressions.

DISCLAIMERS: Writing this paper, I have had to struggle to achieve an
appropriate balance of abstraction and concreteness, of formal analysis
and heuristics. To make the task manageable, I have decided to forego
treatment of some rather important, topics. '

First, we shall consider no sampling process other than random
sampling from a fixed probability measure. As an idealization, randaom
sampling is central to statistics, much as competitive behavior is to
economics. It seems essential to understand the analogy principle in
the random sampling setting before giving attention to more complex
sampling processes.

Second,; we maintain the assumption that all prior information is

exact and correct. Thus, we do not consider application of the analogy
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principle to misspecified models. Nor do we consider probabilistic
prior information, as in Bayesian analysis.

Third, we do not investigate the researcher’s choice amang estimation
problems. To apply the analogy principle, the researcher must specify
what he knows and what he wants to learn. These logically necessary
requirements are undeniably burdensome in practice. We often have
difficulty eliciting our information sets and making our objectives
explicit. Nevertheless, we shall assume that a coherent estimation
problem has specified and that the researcher is now prepared to
proceed with estimation.

My forthcoming monograph does give attention to these topics,

particularly to the third.

&




2. THE ANALOGY PRINCIPLE

€.1. THE ESTIMATION PROBLEM

MAINTAINED ASSUMPTIONS: Throughout this paper, the sample space 2 is a
measurable subset of a finite dimensional real space, endowed with the
Borel g-algebra. The population probability measure P is known to be a
member of I, a specified space of probability measures on 2. An
observable random variable distributed P is denoted z. The parameter
space B is a metric space. Additional structure is assumed as needed.
Let T(*,%) be a given function mapping IxB into T, where T is a

vectar space. We are concerned with estimation problems of the

following type. It is known that some beB solves the equation

(2.1) T(P,b) = 0.

A random sample of N realizations from P, that is N observations of 2z,
is drawn. The problem is to combine the sample data with the knowledge
that beB, Pell, and T(P,b)=0 so as to estimate b.

We shall maintain the assumption that the estimation problem is
properly specified. The data really are a random sample from P, the
space I contains P, and there exists a beB solving equation (2.1).

Given that the specification is proper,; the spaces T and B can be
restricted to feasible probability measures and parameter values. That
is, Qe&ll implies that T(QR,a)=0 for some aeB and ceB implies that T(Q@,c)=0

for some Qell.



IDENTIFICATION: In analyzing a specified estimation problem, one should
first ask whether the parameter b could be learned if P were known.
After all, knowledge of P makes sample data superfluous.

The parameter b is said to be identified relative to (P,B) if T(P,«*)
has a unique zero in B. We say that b is uniformly identified relative
to (I,B) if for every Qell, T(Q,*) has a unique zero in B. In practice,
we can be sure that b is identified only if it is uniformly identified.
The reason, of course, is that we do not know P and sample data cannot
reveal P with certainty.

If a parameter is uﬁiformly identified with respect to (II,B), then

there exists a function t:N—>B such that for all (Q@,;a)&llxB,
(2.2) T(Rya) = 0 <K== a = t(Q).

In particular, b = t(P). It is possible to think of t(*) as defining
the parameter of interest as a function of the population probability

measure.

EXTENSION OF THE DOMAIN OF T(*,%) TO THE SPACE OF EMPIRICAL MEASURES:
Let PN be the empirical measure in a sample of size N. The analogy
principle suggests that to estimate b, one should substitute PN for P in
T(P,%) and isolate the subset of B on which T(PN,*) is as close as
possible to zero, in some sense. But the domain of T(*,%) is the space
IxB. If PNEH, then T(PN,*) is not defined.

To apply the analogy princiéle in estimation problems where the

empirical measure is not a feasible population measure, we must extend

the domain of T(*,%) so that T(PN,*) is defined. The smallest space
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certain to contain PN for all finite N is &, the space of probability
measures on 2 having finite support. So henceforth,; T(*,%) is assumed
defined on (Nud) xB.

Of course; the extension of T(*,%) to #xB is not unique. Application
of the analogy principle requires that a definition of T(*,%) aon $xB bé
chosen. In some contexts,; there is a natural way to define T(*,%) on
its enlarged domain. For example, if T(P;a) has the form HC fg(z,a)dP]
for some measurable g:Z2xB—>R* and H:R*—>T, then it is natural to define
vT(PN,a) to be H[Ig(z,a)dPN]. In other settings, it may not be obvious
how the extension should be accomplished. For example, how should one
define T(PN,a) when T is a space of measures having densities with
respect to Lebesgue measure and T(P,a) depends on P through its density.

One general method for extending T(*,%) to &xB is to replace T(#*,*)
with TLw(*),*], where w:llud—>N is such that Qell = w(Q)=Q. Consider
TCw(*),%] as a function on (MMud)xB. For Qell, TLw(QR),*#I=T(Q,*). For
Qed, TLw(QR),*#] takes some value in T3 hence, TEn(PN),*J is well-defined.
Thus, replacement of T(#*,%) by TE&(*),*] leaves the estimation problem
unchanged and makes analog estimation possible. We shall use this
method later to derive nonparametric analog estimates of density and

regression functions.

2.2. ALTERNATIVE REPRESENTATIONS OF THE'ESTIMATION PROBLEM

Given T and B, one can construct alternative representations of the
knowledge that b solves (2.1). Let T’ be any vector space. Let

T?>(%,%): (IUB) XB—>T?> be such that for all (G,a)ellxB,



2-4

(2.3) T(Qsa) = 0 <== T’(Qsa) = 0.
It follows that whatever the true measure Pell may be,
(2.4) T(P,b) = 0 <K== T’(P,b) = 0.

Hence, given I and B, one can replace (2.1) by the right hand side of
(2.4) and leave the estimation problem unchanged. )

When PNEH, the choice of representation of an estimation problem has
no consequences for analog estimation. Here, there exists a non—empty
subset of B on which T(PN,*) equals zero. By (2.3), T’(PN,*) equals
zero on the same subset. Hence, the analog estimate is invariant with
respect to representation of the esfimation problem.

When PNEH, selection_of a representation is critical to application
of the analogy principle. Depending on the chosen T’(#%,%),; there ma9 or
may not exist a subset of B on which T’(PN,*) equals zero. If T’(PN,*)
has no zero on B, the analog estimate of b generally depends both on
T’(%*,%) and on the sense in which one makes T’(PN,*) close to zero.

It does not seem possible to characterize exhaustively the set of all
representations of a given estimation problem. It will suffice to callv

attention to three classes of representations which are commonly used in

the development of analog estimates.

THE STATISTICAL FUNCTION REPRESENTATION: We noted earlier that if b is
uniformly identified with respect to (l,B), then there exists a t:lI—->B
such that equation (2.2) holds. Thus, b;t(P)=O is an alternative
representation of (2.1).

Thus far, t(*) has been defined only on the domain NI. Now extend the
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domain of t(#) to . Then application of the analogy principle yields
t(PN) as an estimate of b. Following convention, we shall refer to t(%)

defined on NMMud as a ‘statistical function’.

REPRESENTATIONS FORMED FROM ORIGIN-PRESERVING TRANSFORMATIONS OF T:

A class of representations can be obtainéd by taking ‘origin-preserving
transformations’ of the space T. Let Q@ be an arbitrary space and T’ be
a vector space. Then r:(TxQ)—>T’ is said to be an origin-—-preserving
transformation of T if, for all we, T=0 & r(T,w)=0.

Let r(*,%) be origin—preserving. Then for all (Q,a,w)e(llud) xBxQ,

(2.3) T(Qs;a) = 0 <== rlT(Qya)sw] = O.
Hence,
(2.68) T(P,b) = 0 <K=> rl{T(P,b)ywl = 0.

Among the class of origin-preserving transformations of T, those with
range space T’=[0;@) are particularly useful. Such transformations
translate the statement that b zeroces T(P,¥*), which takes values in the
vector space T, into a statement that b minimizes a real-valued functiaon
riT(P,;*),wl. This translation is central to the construction of analag

estimates when T(PN,*) has no zero on B. See Section 2.3.

REPRESENTATIONS FORMED FROM ALTERNATIVE DEFINITIONS OF T(*,%) ON &xB:
The above representations can be varied by defining T(*,%) on &xB in
alternative ways. In Section 2.1, we noted that the extension of T(*,%*)

to 8xB is not unique. For example, one can replace T(%,%) with
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TLw(*),%], where n(Q)=Q for Qell. This construction does not restrict
the behavior of w(*) on &. Clearly, the behavior of T[n(PN),*J an B

depends critically on the chosen function w(¥*).

2.3. ANALOG ESTIMATES

Assume now that one has chosen an extension of T(*,*) to &xB. The

analogy principle suggests that to estimate b, one should use

(2.7) BN = [ceB: T(PN,C) = 0].

If BN is non—-empty, then it is the analog estimate. Moreover, BN remains
the analog estimate under any origin—-preserving transformation of T. If
PNEH, then BN is the analog estimate under any representation of the
estimation problem.

If PNEH and BN is empty, then one must select the sense in which
T(PN,*> is to be brought as close as possible to zero. The following
approach describes essentially all of current practice.

First, aone chooses an origin—-preserving transformation of T whose
range space is the naon—-negative half line. Thus, let r:TxQ—>[0,®) be
such that T=0 & r(T,w)=0, YuweQ. Next, one sets the auxiliary variable w

equal to some function of (Py,b). Thus, let w:(NMud)xB—>Q. Then one

expresses the knowledge that T(P,b) = O by the condition
(2.8) rCT(P;b),w(P,b)] = 0.

To estimate b, one minimizes on B the sample analog of r{T(P,*),w(P,%)].

Provided that rET(PN,*),w(PN,*)] attains its minimum on B, the analog




estimate is

(2.9) B = argmin rLT(P

,a),(ﬂ(P ,a)]-
Nrw aeB N

N

4

We write BNrw rather than BN to reflect the fact that the estimate

depends on the chosen representation of the estimation problem.

CARDINALITY OF THE ANALOG ESTIMATE: In general; the analog estimate may
be set-valued rather than a point estimate. The statistical literature
most commonly focusses on point estimates of parameters. A point analog
estimate can be obtained by applying some auxiliary rule to select
within the set estimate. We shall usually not do so. The analogy
principle offers no reason to select one element for special attention.
One may ask whether the presence of a set-valued estimate implies a
failure of identification. The answer depends on whether the empirical
measure PN is an element of the space Il within which the population
measure P is known to lie. If PNEH, then it is possible that the true
population measure is PN; hence a set-valued estimate implies that b is
not uniformly identified. If PNKH, then PN cannot be the true measure.

So the analog estimate may be set-valued and b uniformly identified.

2.4. CONSISTENCY OF ANALOG ESTIMATES

Sub ject to identification and smoothness conditions, analog estimates
are generally consistent. We shall take consistency to be the sine qua
non of an estimation method. If an estimator is consistent, then in a

basic sense it ‘works’. A heuristic explanation of the consistency of



analog estimates follows.

As the sample size N grows, the empirical measure PN converges in
various senses to the populatioh measure P. It follows that for large N,
T(PN,¥) and m(PN,*) behave on B much like T(P,%) and w(P,%), provided
that T(*,%) and w(*,%*) are suitably smooth. Moreover, r[f(PN,*),m(PN,*)]
tends to behave like rl{T(P,*),w(P,*)], provided that r maps T*XQ smoothly
into the non—-negative half line. In particular, the minima on B of
rCT(PN,*),m(PN,*)J tend to occur near the minima of rLT(P,*),w(P,*)1].
Given identification, r{T(P,*),w(P,*)] is minimized at b alone. So for
large N, the analog estimate tends to be close to b.

Rigorous demonstration of consistency requires that one specify the
desired sense of convergence of the estimate to b and give content to
all the above references to “smoothness’ of T(*,%), w(*,#), and r(*).

It would be too much to expect one theorem to cover all the‘applications
of interest. To the contrary,; the literature contains a multitude of
consistency results of varying generality.

One would like to know whether there exist identified estimation
problems for which there are no consistent analog estimators but there
are consistent non—-analog estimators. (By a non-analeog estimator, I ﬁean
one that cannot be obtained by applying the analogy principle to some
representation of the estimation problem). At one time, I thought that
nonparametric density and regression estimation were such problems. In
the conventional statement of the density problem, T(PN,*) is not
defined as PN is not absolutely continuous with respect to Lebesgue
measure. In the regression case, consistent analog estimation would seem
blocked by the fact that the empirical probability measure conditioned
on a given event does not converge to the corresponding population

conditional measure if the conditioning event has probability zero.
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It turns ocut that with suitable representations of the estimation
problems, consistent nonparametric analog estimates of densities and
regressions can be obtained. See Sections 3.2 and 5.3. As it stands;

I have no example of a problem where the analogy principle does npot work

vet consistent estimation is possible by other means.

2.5. EFFICIENCY OF ANALOG ESTIMATES

One would like to characterize the situations in which there exists
an efficient analog estimate, efficiency having been defined in some
suitable sense. For examples a cornerstone of classical statistics is
the fact that the maximum likelihood method is asymptotically efficient
for estimation of a population density known to be a member of a smooth
finite dimensional family of densities. Section 3.1 cites recent
results on the asymptotic efficiency of analog estimates of parameters
solving smooth finite dimensional moment problems. But a general theory
of efficiency is lacking. The following comments are speculative but

may be helpful.

ESTIMATION OF b VS. ESTIMATION OF (P,b); Analbg estimates disregard two
kinds of information that may be relevant to estimation of b. First;
they use the sample data only through the empirical measure, which does
not preserve information about the sample size. (Analog estimates also
disregard the ordering of the observations,; but this information cannot
be relevant under random sampling).

Second, analog estimates use the empirical measure only to replace P

in the function T(P,*). To the extent that M restricts P in ways that
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are not represented by the equation T(P,b)=0, analog estimates ignore
this information.

It seems reasonable to think that the analogy principle does ma&e
efficient use of the available information whenever the realized
empirical measure is in N. Recall that if PNEH, then T(PN,*) has a zero
on B and prior knowledge does not exclude the possibility that P=PN.
Moreover,; the analog estimate BN is invariant with respect to the
representation of the estimation problem. Thus, if PNEH, the sample

data and prior knowledge are fully compatible with the hypothesis

(Pyb)=(P_sB ). Given this, it is difficult to imagine that one can do

N
better than use (PN,BN) to estimate (P,;b).

The efficiency of analog estimation seems a much more complex guestion
in those cases where PNER. Here, the analog estimate generally depends
ocn one’s representation of the estimation problem. By definition, all
representations identify b. But representations may differ in the
extent to which they fully express the restriction Pe&ll. Hence, as is
well known, alternative analog estimates may differ in their precisions.
Moreover, it may be that one can improve on any estimator that uses PN
as an estimate for P.

It would appear that a full understanding of the efficiency of analog
estimation can emerge only if the problem of estimating b is embedded
within the larger problem of estimating the pair (P,b). One would first
consider the question of optimal estimation of this pair. Then, treating
b as the parameter of intérest, one would seek to determine the circum-
stances in which using PN to estimate P suffices to obtain an optimal

estimate of b.



3. EXAMPLES

3.1. FINITE DIMENSIONAL MOMENT PROBLEMS

FINITE DIMENSIONAL MOMENT OPTIMIZATION PROBLEMS: Much of present day

econometrics is concerned with estimation of the parameter b solving a

finite dimensional moment optimization problem. Here, (2.1) has the
form
(3.1) T(Psb) = b - argmin fh(z,a)dP = 0,

aeB

where B is a subset of RK and where h(*,#) is a known function mapping
ZxXB into R*. The space Il is composed of probability measures with
respect to which the functions h(%¥,;a), aeB are integrable.

If fh(z,#)dP has a unique minimum on B, the parameter b is identified.
Contrariwise,; if fh(z,*)dP has a set-valued minimum, b is not
identified. In_the latter case, we interpret equation (3.1) to mean
that b is an element of the minimizing set.

Application of the analogy principle to (3.1) yields the estimate
(3.2) BN = argmin Ih(z,a)dPN.
aeB
This estimate exists provided only that !h(z,*)dPN attains its minimum
on B. Given existence; B, is invariant under origin—-preserving

N

transformations of the estimation problem.

FINITE DIMENSIONAL MOMENT EQUATIONS: Another important part of

econometric wark is concerned with estimation of the parameter b solving
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a finite dimensional moment equation. Here, (2.1) has the form

(3.3 T(P,b) = [fg(z,b)dP = 0,

where B is a subset of RK and where g(*,%) is a known function mapping
ZxB into RJ. So (3.2) is a system of J equations in K unknowns. The
space I is composed of probability measures with respect to which
g(*,a), aeB are integrable.

The analogy principle applied to (3.3) yields the estimate

(3.4) BN = [ceB: Ig(z,c)dPN = 01,

provided that BN is non—empty. If BN is empty, the analog estimate
depends on the chosen origin—-preserving transformation of T. A common

" choice is a quadratic form

¢3.5) rLfg(z,*)dP] = L[fg(z,*)dP]’ AL fg(z,*)dP1,

where g(*,%) is written as a Jx1 vector and where & is a positive
definite IJxJ matrix picked by the analyst. The resulting analog
estimate is
(3.6) BNA = argmin EIg(z,a)dPN]’AEIg(z,a)dPNJ.
aeB
Given regularity conditions, Hansen(1982) and Chamberlain(198&) have
shown that in various first order asymptotic senses, the estimate (3.6)

is the most precise possibles provided that A is set equal to the

inverse of




(3.7) ¥ = fglz,b)g(z,b)’dP.

The matrix £ is not known so the ideal estimate is not computable. On
the other hand, a familiar multi-step procedure yields a computable
estimate that is asymptotically equivalent to the ideal (Hansen,1982).

That is,; one selects some positive definite IJxJ matrix Aens computes B

NA‘:)
as in (3.6)s and picks a point bNO from BNAQ' Then one computes
(3.8" ZN = Ig(z,bNo)g(z,bNo) dPN.
Finally, one re-estimates b by
_ . ’ S |
(3.9) BN1 = argmin CIg(z,a)dPN] ZN Efg(z,a)dPN].
aeB
The derivation of BNl applies the analogy principle recursively,
first to obtain bNO’ then ZN’ and finally BNI' This recursion can be
rewritten, albeit somewhat clumsily; as a single application of the
analogy principle. In particular, BN1 minimizes on B the sample analoé
of the following origin-preserving transformation of T:
(3.10) rLfglz,*)dP,w(P)] = L[ fg(z,*)dP1’w(P) Y[ fg(z,*)dP],
where w(P) = flg(z,c(P)Ilg(z,c(P)1’dP and where
c(P) = argmin [fg(z,a)dPl’AsLfg(zsa)dP1].
aeB
Simply observe that c(PN) = bNO and m(PN) = ZN.
Thus, b is interpretable as an analog estimate. Similarly, feasible

N1

generalized least squares; one step approximations to maximum likeli-

hood, and other multi-stage methods can be written as analog estimates.



3.2. NONPARAMETRIC DENSITY PROBLEMS

Next, we consider an estimation problem which seemingly defies treat-
ment by the analdgy principle. Let Z=R* and let I be the space of all
probability measures that are absolutely continuous with respect to
Lebesgue measure, denoted H. For Qell, let ¢H(*,Q) denote the density of
Q‘with respect to H. Consider the problem of estimating the population
density in the absence of restrictions on its form, that is nonparamet-
rically. Thus, B is the space of all measurable, non—-negative valued
functions on the real line whose Lebesgue integral equals one. And

equation (2.1) is
(3.11) T(Pyb) = b - @H(*,P) = 0.

As stated, this estimation problem is not‘amenable to application of
the analogy principle. The empirical measure is not absolutely
continuous with respect to Lebesgue measure. So QH(*,PN) is not defined.
Indeed, the available methods for nonparametric estimation of densities
do not give the appearance of analog estimates. These methods all
require that the analyst choose the value of some auxiliary parameter
unrelated to P; for example, a smoothing parameter; a number of nearest
neighbors, or a number of terms in an orthogonal expansion. Most of the
literature supposes that the value chosen for the auxiliary parameter
varies as a function of the sample size. Some analyses study the use of
resampling methods, such as cross-validation, to determine this value.

See Prakasa Rao(1983) for a survey of methods for density estimation.
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Appearances notwithstanding, the analogy principle does apply to the
problem of density estimation. In what follows, we use the analogy
principle to derive the familiar kernel method.

The key is to reformulate the estimation problem so that T(PN,*) is
well-defined. To do this, let 2, I, and B remain as specified above.
Let o(*) be any function mapping Nud into [O;®) such that c(@)=0 & Qell.
Let Gell and let § be a random variable distributed G, with § independent
of z. Let P®c(P)G denote the probability measure of the random variable
z+a(P) 4.

Now replace equation (3.11) with
(3.12) T(Py,b) = b - @HE*sPQU(P)G] = 0,

Given that Pell, ¢(P)=0. So (3.11) and (3.12) both state that b is the
density of P. On the othef hand, these two statements of the estimation
problem diverge with respect to the analogy principle. Whereas PN is
not absolutely continuous, PNQU(PN)G is.

¢HC*,PN$U(P )G] has the form of a kernel estimate of QH(*’P)' To see

N

this, let ZN be a random variable distributed PN’ with zN

S. Let HN:R1->EO,1] denote the distribution function of 2z

independent of

N+G(PN)6. Let

g denote the density of G. Given that PNQH, U(PN)>O. Hence, for each
{eR*,

((-ZN)/G(PN)
(3.13) HN({) = Prob[zN+U(PN)SS{] = J fg(&)rdé dPN.

HN(*) is differentiable, the derivative at {’eR? being

(3.14) hN({ ) = dHN({ y/d¢ = 1/G(PN) Jgl(¢ -ZN)/U(PN)JdPN.



Differentiability of H (%) implies absolute continuity of PN$G(PN)G,

N

@c(PN)G] = h (*). So h_(%) is the analog estimate of

with @HE*sP N N

N
@H(*,P) obtained by applying the analogy principle to (3.12). h_ (%) is

N
also a kernel estimate of @H(*,P), the kernel being g(*) and the
smoothing parameter beihg G(PN).

This derivation of the kernel method makes the smoothing parameter a
functional on the space NTugd. Thus far, we have required only that
c(Q)=0 & Qell. How should o(*) behave on the space & of probability
measures with finite support? Heuristically, we would like o(Q) to be
closer to zero the less Q deviates from an absolutely continuous
measure. Given that the elements of NTU® are measures with no singular
continuous component,; absolute continuity of an element of MU is
equivalent to continuity. So we would like o(Q) to be closer to zero
the less @ deviates from a continuous measure.

Perhaps the simplest reasonable index of a probability measure’s
deviation from co;tinuity is the supremum of its point masses, denoted
M(Q@). This suggests setting ¢(Q) = sIM(Q)], where s:[(0,11->L0,®) is
strictly increasing and where s(0)=0. Continuity of P implies that
M(PN)=1/N with probability one. Hence, G(PN) = s(1/N) with probability
one. This translates our épecification of the smoothing parameter as a
functional on the space of probability measures into the conventional
specification as a decreasing function of sample size. So standard
results on the.consistency of kernel estimation(e.g. Prakasa Rao, 1983,

Section 2.1) imply that our analog version of kernel estimation is

consistent if s(%) satisfies the condition s(M)/M —> ® as M—>0.




3.3. SMOOTH STATISTICAL FUNCTIONS

Recall that if b is uniformly identified with respect to (l,B), then

there exists a t:M—->B such that

(3.15) b - t(P) = 0.

Extending the domain of t(*) from I to MU defines a statistical

function t:(lIud)—->B and an associated analocg estimate

(3.16) BN = t(PN).

Representation of an estimation problem in the form (3.15) and estima-
tion of b by t(PN) is particularly appealling when t(*) is a function
that varies smoothly on NMud. Knowledge that t(*) varies smoothly makes
it easy to analyze the asymptotic behavior of t(PN). Moreover,

smoothness brings with it the desirable property of ‘robustness’.

SMOOTHNESS AND ASYMPTOTIC ANALYSIS: When t(*) is appropriately smooth,

characterization of the asymptotic behavior of t(PN) is almost trivial.

Perhaps the most striking demonstration of this is proof of consistency

by the well-known ‘continuocus mapping’ theorem:

Let N\ be a metric on B. Let N® denote the space of all probability
measures on 2. Assume that there exists a metric P aon NI® with respect
to which (i)'PN converges to P almost surelyf(or in probability) and
(ii) t(*) is continuous at P. Then t(PN) converges to t(P) with

respect to A almost surely(or in probability).

-
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To apply the continuous mapping theorem, one draws on the literature
on the convergence of empirical measures, which shows that PN converges
to P with respect to a variety of metrics. By the theorem, it suffices
to find one such metric P such that t(#) is continuous with respect to
p. For details and examples, see Manski(1987).

Whereas continuity of t(%*) simplifies proof’of consistency, differen-—
tiability eases derivation of limiting d;stributions. Assume that in an
appropriate sense; the functional derivative dt(#)/dQ exists in a
neighborhood of P. Then a Taylor’s series expansion shows that for N

large; INLt(P )-t(P)] behaves like Cdt(P)/dQ)CJN(PN—P)}. The limiting

N

distribution of JN(PN—P) is a tied down Brownian motion process. Hence,
derivation of the limiting distribution of JNEt(PN)—t(P)] reduces to the

problem of characterizing dt(P)/dQ. See Serfling(1980), Chapter 6.

SMOOTHNESS AND ROBUSTNESS: The literature on robustness seeks to
characterize the mammer in which the solution to an estimation problem
varies with small changes in the process generating the data. Formally,
this amounts to the study of the behavior of t(%) in neighborhoods of P.
A statistical function is said to be robust if it varies smoothlyg the
more smoothly the better. See Huber(1981).

The judgement that robustness(smoothness) is desirable is most often
motivated by reference to a model of contaminated sampling. Here, one
wishes to learn t(P) but PN is not obtained by random sampling from P.
Rather, it is obtained by random sampling from some measure Q. It is
known that for a given metric p on NI®, @ is near P. QOther facts about @
may or may noct be known.

In this setting, t(PN) will generally converge to t(Q),; not t(P). So
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t(PN) is not generally consistent for t(P). Nevertheless, it is still
desirable that the limit of t(PN) be close to t(P). This will be the
case if t(#) is smooth at P, in the sense of p.

APPLICATIONS: Applications of the powerful theory developed for analog
estimaéion of smooth statistical functions have focussed on a small set
of problems admitting relatively simple expressions for t(#*). In
particular, a vast literature on the estimation of location parameters
has developed. Most of this has focussed on the setting in which 2Z=R?,
T is the space of probability measures with symmetric distribution
functions, and t(P) is the center of symmetry. In this context, there
are many interesting ways to define t(*) on &. For example,; one may
select t(*) to be the mean,; median, or some trimmed mean. These
functionals coincide on N but not on . Hence, they yield distinct
analog estimates of the center of symmetry.

It appears rather difficult to apply smooth statistical function
theory to typical econometric problems. To use this theory, one must be
able to determine the smoothness characteristics of the functional t(*).
In econometric work, however; t(#*) is usually not a simple function on
MTugd. For example; in moment optimization problems, t(*) is an argmin
operator. In nonlinear moment equation problems, t(*) can often only be
defined implicitly. So determination of the senses in which t(*) is and

is not smooth is problematic.

[
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3.4. INDEX PROBLEMS

The patameter space B indexes the family N of probability measures if

(3.17) T(Psb) = P - 71(b) = 0,

where v(%*) is an invertible function mapping B onto M. Thus, an index
problem has the special characteristic that B and 1T are one-to-one. In
particular, T = [(T(a),aeB] and B = [T—l(Q),QEH].

Two prominent approaches to the estimation of indices are the maximum
likelihood method and minimum distance estimation. These are obtained

by application of the analogy principle to alternative representations

of the estimation problem.

THE MAXIMUM LIKELIHOOD METHOD: Assume that all the probability measures
in T are absolutely continuous with respect to a common measure v aon Z.
For Qell, let @u(*,G) denote the density of @ with respect to w. For aeB,

let ¢v(*,a) denote the density of T1(a). Then we may replace (3.17) with
(3.18) q’v(*,P) - tpv(*,b) = O.

As is well-known,; b solves (3.18) if and only if
(3.19) b - argmax Ilog[@v(z,a)JdP = 0.
aeB
See, for example, Rao(1973), p.58. So the moment optimization'problem
(3.19) is an alternative representation of the index problem (3.17).

Application of the analogy principle to (3.19) yields the maximum

likelihood estimate



3-11

(3.20) BN = argmax Ilogtwv(z,a)JdPN.
aeBb

MINIMUM DISTANCE ESTIMATION: Let p(*,%) be a metric on the space I® of

all probability measures on 2. Then an alternative representation of

(3.17) is

(3.21) b - argmin pCP;v(a)]l] = O.
aeB

Applying the analogy principle to (3.21) yields
(3.22) B, = ‘argmin PLP»T(a) ],
aeB
the minimum distance estimate introduced by Wolfowitz(1953,1957).

Minimum distance estimation is a class of methods whose members are
disfinguished by the chosen metric p. Following the original work of
Wolfowitz, it has been observed that the theme of minimum distance
estimation does not require that p be a metric. In particular, equation
(3.21) remains a valid representation of the index problem if p is any
mapping from (MU) X to [O,®] such that pP(R,:,Q8=)=0 if and only if Q,=Qx.
Analog estimates obtained under such general p are termed “minimum
discrepancy’ estimates. See Sahler(1970).

One may also generalize the definition of p to let it depend on an
auxiliary variable w in the manner of the origin-preserving transfor-
mations discussed in Section 2. Let Q be an arbitrary space. Let
P:(TUd) XIxQ —> [O,o]1 be such that for all weQ,; P(QR:;8=2w)=0 & Q,=0x.

Now set w=w(P,a),; where w(*,%) maps (MUB)XB into Q.  Then the index

problem is representable as

(3.23) b - argmin piP,v(a),w(P,a)l = O,
aeB
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Applying the analogy principle to (3.23) yields
(3.24) BN = argmin pCPN,T(a),m(PN,a)J.
aeBb
Minimum chi-square estimation is a familiar example of (3.24). Let
2=(1l3...351) for I finite, let BCRK, and let [r(a);aeBl] be a family of
multinomial distributions on 2. Let QCRI and let mi(P,a)>O be the ith

component of w(P,a). Let T(a)(z=i) denote the probability under ~(a)

that z=1i. Let

(3.29) pLPyr(a)w(Py,a)l] =

™M

tP(z=1) - T(a)(z=i)]e/mi(P,a).
1

i
With this choice of p, (3.24) is a minimum chi-square estimate for b.
Different versions of the minimum chi-square method are obtained by

defining the weighting function w(*,%) in alternative ways. See, for

example, Rao(1973), p.352.

RELATIVE MERITS OF THE TWO APPROACHES: It is of interest to compare the
maximum likelihood and minimum distance approaches to estimation. The
former is favored for its asymptotic efficiency properties and for the
relative simplicity of its moment optimization form. The latter has a
broader domain of application; it does not require that the measur;s in
T be absolutely continuous with respect to any common measure.

Some recent literature has emphasized the superior robustness of
certain minimum distance estimates. Maximum likelihood and minimum
distance estimators apply the analogy principle to different statistical

functions. In general, the functional t(*) = argmax flogE¢v(z,a)]d*

aeB

is not continuous with respect to the usual(weak) topology on I®. On the

other hand, one can often select P so that t(*) = argmin pl*,71(adl is

aeB

continuous. See,; for example, Parr and Schucany(1980).
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3.5. SEPARABLE ECONOMETRIC MODELS

The reader will have observed that we have, thus far, made no mention
vof unobservable random variables. The basic equation T(P,b)=0 defining
an estimation problem relates the probability measure Pell of an
observable random variable z to a parameter beB.

Econometric models, on the other hand, posit restrictians on an
assuméd probabilistic process generating realizations of a random pair
(z,u), where realizations of u are not observable by the researcher.
Suppose that one wishes to estimate an unknown feature of this process.
Then one must derive from the available information a relationship

connecting observables and the parameter of interest.

STATEMENT OF THE PROBLEM: Many econometric models can be formulated as
follows. It is assumed that realizations of (z,u) are drawn by
independent sampling from some probability measure qu on ZxU, where U
is the domain of u. It is known that qu is a member of a given space V¥
of probability measures on ZxU.

Let CCRK. Let f(*,%,%) be a given function mapping Z2>xUXC into RJ.

It is known that for some ceC, the random pair (z,u) satisfies
(3.26) f(zyu,c) = O.

That is,.almost every realization (¢{,n) of (z,u) satisfies the equation
f({ynsc)=0. The estimation problem is to combine sample data on z with
the knowledge that PZUEW, ceCy and f(z;u,c)=0 so as to learn c.

To apply the analogy principle, we need to express this knowledge in

a form that relates P, the probability measure of z, to the parameter c.



3-14

In what follows, we describe approaches that are applicable if f is

separable in either u or z.

MODELS WITH f SEPARABLE IN u: Consider the class of econometric models

in which

(3.27) TfT(zsusc) = ua(zsc) - u,

where u.:1Z2XC—>U is a given measurable function. Then (3.26) implies that

(3.28) (Z2yu) = [zyun(z,y,c)l.

This expresses the unobservable random variable u as a function of the
observable z and of the parameter c.

Recall that II® denotes the space of all probability measures on Z.
For Qell® and aeC, let Y(Qs;a) denote the probability measure of
(zsua(zsa)] when z is distributed Q. Then qu=w(P,c). Moreover,
knowing that quew is the same as knowing that c solves the equation
(3.29) T(Py,c) = ¢ - argmin r{yw(P,;a)] = 0,

aeC
where r(*) is a function mapping the space [¥(Qs;a),Qell®,aeC] of measures
on Z2xUY into [0,»] and satisfying the condition riw(R,a)]l=0 & w(Q,a)eV¥.
Application of the analogy principle to (3.29) yields

(3.30) C = argmin rLw(P

sa)l,
N aeC

N

the ‘closest empirical distribution’ estimate studied in Manski(1983).
In the most familiar application of (3.30), ¥ is the space of

measures on 2Z2xU that satisfy a given finite dimensional moment equation.
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Let it be known that for a given measurable function g:ZXU—>RJ,

(3.31) J‘g(z,u)szu =  fg(z,u)dw(P,c) = Jfglz,ualz,c)lidP = 0.

Select r(*) to be a guadratic form function

(3.32) rLw(R,;a)] Cfg(z,u)dw(Q,a)]1’AL fg(z,u)dyw(R,a)]

Lfg{zsun(z,a)2dR1’AL fg{zsualz,a)Idll,

where & is a chosen JxJ positive definite matrix. Then
(3.34) CN = argmin [fglz,un(z,;a)ldP _J’ALf fglzyuslz,a)ldP ]
a el N N

is a moment equation estimate of the form seen in Section 3.1.
MODELS WITH f SEPARABLE IN z: Now consider the class of models in which
(3.35) f(zyusc) = 2 - zolx(2z),uscl,

where x:Z2->X and 2o :XXUXC—>Z are given measurable functions. Let qu be

the probability measure of (x,u). Assume that the space ¥ within which
P is known to lie restricts P only through P . That is, for some
Zu zu xu

given space Y of probability measures on XxU, @_ «¥ 6 Q@ ¥ . For
xu zZu XU Xu

(@ ,a)eW xC, let 7(Q_ ,a) denote the probability measure of zolx,usal
xu xXu xu

when (x,u) 1s distributed qu. Then (3.26) implies that (qu,c) solves
(3.36) TIPs(P 4,c)] = P - 7v(P_ ,c) = 0.
Xu XU

Equation (3.36) defines an index problem of the kind discussed in
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Section 3.4, with the parameter (qu,c) indexing P.

In general,; minimum distance estimation is applicable to the problem
of estimating (qu,c). If the measures T(qu,a), (Gxu,a)ewxuxc are
absolutely continuous with respect to a common measure on 2, the maximum
likelihood method is applicable. 0Observe, that these analog estimation
procedures call for estimation of qu along with the parameter of
interest c. In special cases, the estimation problem may decompose in a
manner that makes it possible to estimate c without exp}icit

consideration of qu.




4. REGRESSION PROBLEMS

The estimation of regressions is a central theme of econometrics.

In common usage, the regression of y on x refers to the expected value
of some measurable function y:Z—->Y conditional on the realization of
some other measurable function x:2->X, considered as a function on the
space X where x lives. More generally,; a regression of z on x is some
property of the probability measure of z conditional on the realization
of x(z), again considered as a function on X.

In this section and the next, we apply the analogy principle to the
estimation of regression functions. A recurring theme is that alter-
native representations of a regression problem generate distinct analog
estimation methods. The relative usefulnesg of these methods varies
with the regression function under study, with the characteristics of
the population measure P, and with the nature of the parameter space B.

Section 4.1 formally defines regression problems and discusses the
identification of regression functions. Then Section 4.2 exposits a
familiar and widely used analog estimation method, the method of
moments. This approaach to estimation has the very attractive feature
that it avoids reference to conditional probability measures. It is
applicable if the regression is defined by a collection of moment
problems and the parameter space is sufficiently small. Section 4.3
describes the application of the method of moments to a leading moment
regression problem, that ﬁf conditional prediction. Section 4.4 gives
an example of a regression problem that is not a collection o% moment

problems.

Section 5 considers analog methods that explicitly cope with the fact
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that regressions are properties of conditional measures. Section 5.1
briefly discusses ‘naive’ analog estimation of regression problems in
which X is discrete. Section 5.2 applies the kernel density estimation
method of Section 3.2 to regression problems in which P is absolutely
continuous. Our main contribution is presented in Sections 5.3 and S.4.
There we introduce a novel representation of regression problems.
Applying the analogy principle to this representation yields an analog
estimation method that is applicable quite generally. This method is

termed ‘smallest neighborhood’ estimation.

4.1. THE ESTIMATION PROBLEM

MAINTAINED ASSUMPTIONS: Henceforth,; X is a measurable subset of a finite

dimensional real space, x:Z2->X is a measurable function, and Px is the

probability measure on X of the random variable x. The parameter space

B is a metric space of functions mapping X into some space 6. Thus, for
each aeB and feX, a(§)ed.

For measurable ACX and Qellud, let QIA be the probability measure @
conditioned on the event [xeAl. For ¢eX and Qellud,; let Gi¢ be @
conditioned on the event [x=¢(]J. Let NMIX denote the collection of
measures [Ql ¢, {eX,QeM]. Let S(*,*) be a given function mapping (Hixué)xe

into some vector space . In regression problems, (2.1) has the form
(4.1) T(P,b) = [S{PIit,b(E)2; teX] = O.

That is, for each (eX, b(¢) solves the equation SIPI¢,b(E)] = O.
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IDENTIFICATION: One would like to say that the regression function b is
identified relative to (P;B) if T(P;*) defined in (4.1) has a unique
zero on B. This statement is unexceptional if the space X is discrete
with Px(€)>0 for all ¢eX. On the other hand, if there exist an XoCX
such that Px(X°)=o’ then one must contend with the fact that knowledge
of P does not distinguish the collection of measures [Pl¢,¢eX] from any
other collection [(Qi ¢, ¢eX] such that QI¢{=P1¢, fteX-Xou. It follows that
if b solves (4.1), then any other ceB such that bi(x)=c(x), a.e. F’x must
also be said to solve (4,.,1). Hence, b cannot be identified relative to
such c.

The literature copes in two ways with the inherent indeterminacy of a
regression function whose domain contain sets of probability zero. One
approach relies on the specification of the parameter space to exclude
functions fhat differ only on sets of Px—probability Zzero. Assume that
for all distinct aeB, ceB and for all Qell, there exists some X,CX, which
may depend on (asc,Q), such that QX(X1)>O and até)#c(¢), ¢teXy,. Then the
parameter space contains only functions that differ on some set of
positive probability. Hence, identification of b may be defined in the
traditional manner.

The other approach is used in problems where one does not have
sufficient prior information to restrict the parameter space as above.
Then it is conventional to weaken the definition of identification. In
particular, b is said to be identified relative to (P,B) if, for ce&B,
[S{(PIx,c(x)2=0, a.e. Px] = c(x)=b(x), a.e. Px' See, for example, the

Stone(1977) treatment of nonparametric regression.

AN ALTERNATIVE FORMULATION: It is worth noting that the indeterminacy of

regression functions can be rephrased as a sampling problem rather than



as a failure of identification.

To do thisy; let us not take P as the primitive probability concept
for the analysis of regression. Rather, let us begin by positing the
existence of the collection of measures (Pl¢{,{eX) and of the marginal
measure Px. Then it is unambiguous to say that b is identified relative
to C(PI¢, éeX) Bl if the solution to (4.1) is unique.

In this formulation of the regression problem,; P is defined as the
mixture of (Pl¢,¢{eX) with respect to the mixing measure Px' That is,
for measurable ACZ, P(A) = IP(Alx)dPx, where P(Al*) is assumed a
measurable function on X. The indeterminacy of regressions is now a
consequence of the fact that we can sample only from the mixture P; not

from each of the measures (Pif,¢teX).

4.2. METHOD OF MOMENT ESTIMATION OF MOMENT REGRESSIONS

With few exceptions,; the regression problems that have been studied
to date are members of the subclass of moment regressions. These are
problems in which b solves either a collection of>moment optimization
problems or a collection of moment equations. In the former case,
S(%*,%) has the form
(4.2) SIPIE,b(E)T = b(¢) — argmin fhi(z,a)dPli¢,

0e9

where hi1ZX6—>R?*., In the latter,

(4.3) SIPIE,b(E)] = fglz,b(&)IdPI¢,

where 9:2X6—>RJ. In both cases, eCRK and B is some subset of the




Cartesian product space (x9,feX).

REPRESENTATION OF OPTIMIZATION REGRESSIONS BY OPTIMIZATIONS IN (b,P):
Regression problems of the moment optimization type have representations
which avoid reference to the collection of conditional measures Pl¢, teX.
Assume that S(*,%*) has the form (4.2). Let w:X=>[0,®») be any measurable
function such that wi(x)>0 a.e. Px' Then b solves (4.1) a.e. Px if and
only if b also solves the problem
(4.4) b - argmgn J'w(x)tj‘h{z,a(x)}dPlidPx =

ae

b - argmin fwi{x(z)Xhlz,ai{x(z)21dP = 0.
aeB

Thus, a collection of moment optimization problems,; each relating b(é§)
to Pl¢ for a given ¢£eX, can be representéd by a single such problem
relating b to P. Note that if B is a finite dimensional space of
functions, this representation is a finite dimensional moment
optimization problem of the type described in Section 3.1.

Application of the analogy principle to (4.4) yields the estimate
(4.9) BN = argmin Iw(x(z)}htz,a{x(z)}JdPN.

aeB

The attractivenss of this method of moments estimate depends critically
on the parameter space. If B is finite dimensional, the discussion of
Section 3.1 implies that given regularity conditions, estimates of the
form BN are very appealling. Indeed, they dominate practice.

On the other hand, method of moments estimation of moment regressions
breaks down if the parameter space is too large. This is most easily
seen in the extreme case in which B is unrestricted; that is B=(x0, fteX).

Let PNx be the empirical measure of x. Let XN denote the support of
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PNx‘ For each feXN, let BN(é) be the subset of © on which fh(z,*)dPNle

is minimized. For each tEX—XN, let BN(&)=6. Then the analog estimate

BN is the set of functions (XBN(f),£EX).' Except in the special case

where Px(£)>0, BN(e) does not generally converge to b(¢). Hence,_BN
does not generally converge to b.

It should be understood that when B is unrestricted, the failure of
the method of moments to be consistent does not derive from an absence
of identification; the unconditional moment problem (4.4) inherits the
identification properties of the original regression problem (4.1). It
is rather that as N->o, Iw{x(z)}htz,*(x(z)}dPN does not converge as a
function on B to Sfwi{x(z2)Xhlz,*{x(z)21dP.

At present,; we can offer no general characterization of the behavior
of method of moments estimation in regression problems where B is not
finite dimensional but is a proper subset of (xX8,f{&X). Results have,
however, been obtained in specific settings. We shall cite some

findings in Section 4.3, where we consider the class of conditional

prediction problems.

REPRESENTATION OF EQUATION REGRESSIONS BY EQUATIONS IN (b,P): The fore-
going discussion of moment optimization regressions applies to some, but
not all, moment equation regressions. Assume that S(*,*) ha; the form
(4.3) and let v:X->RJXJ be any measurable function such that vix),

written as a JxJ matrix, is non-singular a.e. Px' If b solves (4.1)

a.e. Px, then b also solves the problem
(4.6) !v(x)[fg(z,b(x)}dPlx]dPx =  JSvi{x(z2))glz,b{x(z)31dP = O.

So a collection of moment equations, each relating b(¢) to Pi¢ for a
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given ¢eX, implies a moment equation relating b to P.

Solutions to (4.6), however, do not necessarily solve the regression
problem defined by (4.3). That is, there may exist aeB, a#b such that
Jvix(z)rglzy,ai{x(z)21dP = O even though fglz,a(x)IJdPIx#0 on a set of
positive Px-measure. If sos then solution of (4.6) does not identify b.
Application of the analogy principle to (4.6) can be an attractive -
estimation method, but only if, for the given specification of (g,B,I)

and chaosen v(*), one can verify that (4.6) identifies b.

4.3. CONDITIONAL PREDICTION PROBLEMS

Perhaps the most familiar class of moment regression problems are the
conditional prediction problems. Here; one observes a realization of
x(z) and wishes to make an optimal point prediction of the realization
of some other random variable y(z) conditional on the realization of
x(2). An optimal prediction is one that minimizes expected loss with
respect to a specified loss function. In general, the best predictor of
y given the event x=¢ is some function of the probability measure of vy
conditional on x=¢. The transformation from this measure to the best
predictor depends on the loss function.

Let y:1Z2—=2>Y(R* be a given measurable function and let 8CR* be a given 3
space of feasible predictor values. Let L:R*—>[0,2] be a specified loss

function, that is some measurable function such that
(4.7) 0Xvdw = O0=L(O)L(v)<L(w) and L(O)LL(=-Vv)<L(-w).

A conditional prediction problem is a collection of moment optimizations
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in which h(#*,%) of equation (4.2) has the form
(4.8) h(z,e) = LLy(z)-al.

A best predictor of y éonditional on x=¢{ solves the problem
(4.9) b(¢) - argmin fLLy(z)-8ldPit = O.

=T=4C]
METHOD OF MOMENT ESTIMATION: In problems where the parameter space is
finite dimensional, the dominant approach to estimation of the best
predictor function b is the method of moments. Applying (4.4) with
w(*)=1, one observes that b(¢) solves the conditional prediction problem
(4.9) a.e. Px if and only if b solves the unconditional prediction
problem
(4.10) b - argmin JfLLy(z)—a{x(z)>JdP = O.

aeB
Then one estimates b by

(4.11) B = argmin SLCy(z)-ai{x(z)3>1dP, .
N aeB N

For example, under the absolute loss function L(y-e)=ly-al, BN is the
least absolute deviations estimate of b. Under the square loss function
Liy-a)=(y—-a)2, BN is the least squares estimate.

It is important to understand the substantive distinction between the
prediction problems (4.9) and (4.10). In (4.9),; the event [x=¢t1 has
been observed. The problem is to minimize over ®we® the exhectation of
LLy(2)-8] with respect to the measure Pl¢. In (4.10), a realization of
x will be drawn,; following which a prediction of y will be made. The

problem is to minimize over aeB the expectation of LIy(z)—-ai{x(z)2}] with

respect to the measure P. The fact that the same function b solves both
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problemé is a simple but remarkable consequence of the linearity of the

expectation operator.

ESTIMATION WHEN THE PARAMETER SPACE IS LARGE: To what extent does the
estimate (4.11) remain attractive when the parameter space is not finite
dimensional? One class of problems admitting positive results is
isotonic regression. Here, X is a space endowed with a known partial
ordering and B is the space of functions that are monotone in this
partial ordering. The simplest case is that in which X=R*j; then B is
the space of increasing functions on the real line. See, for example,
Barlow et al.(1972) and Sager and Thisted(1982).

A second class that has received attentioﬁ are the binary response
problems. Here, y is distributed Bernoulli conditional on x. Manski
and Thompson(1986) consider various specifications for the loss function
and for the parameter space.

They find that (4.11) is consistent for b if L is the log loss
functién L(y-8)=-logll-ly-el] and B is the space of functions that are
increasing in an index xfB, where # is a parameter vector. This
specification of B generalizes that of isotonic regression; with @
unknowp, the ordering on X is not known. It turn; out that BN is the
maximum likelihood estimate studied by Cosslett(1983).

They also study estimation when B is the space of functions c:X—->R?
satisfying the ’single-crossing’ condition c(x)2>2Y & xR>0; where Yel0,11]
is known and f is again an unknown parameter. Here, BN is consistent
for b if an absolute loss function is imposed but not otherwise.
Whatever loss function is imposed, (4.11) reduces to some version of

maximum score estimation(Manski,1985).



4.4. PREDICTION BY MINIMIZATION OF QUANTILE LOSS

The literature on best prediction has focu;;ed exclusively on
optimality defined by minimization of the expectation of the loss
function. There is, however, no compelling reason why one might not
wish to minimize some other location parameter of the loss distribution,
say some quantile, a trimmed mean, or the mode. For a decision theoretic
analysis of some alternative decision rules,; see Manski(1986).

In general, conditional prediction problems minimizing location
parameters other than the expectation are not moment problems. As an
examples; we shall consider predictors minimizing quantile loss.

Let the loss function have the form L(y-e)=ly-al. Let «xe(0,1). Given
a realization of x(2), suppose that one predicts y(z) by minimizing the
a—quantile of the conditional distribution of ly(z)-el. For simplicity,
assume that the probability measure of y conditional on the event [x=¢]
has no mass points. Then the best predictor of y conditional on ¢
solves the problem

(4.12) b(g) - argmin Cn: P{ly(z)-ailn |£} = «l] =
(=14 %)

b(¢) - argmin [n: P{e-ndy(z)<{a+n ¢} = «1 = O.
=140
The first equality in (4.12) shows that the best predictor b(¢) has a
pleasing interpre;ation in terms of conditional confidence intervals for
y. That is, the best predictor of y given ¢ is the center of the
smallest confidence interval for y that has coverage probability «.

Equation (4.12) is not a moment problem. Let N(a, ¢{,8) denote the
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a—quantile of ly(z)-el conditional on ¢. For a given predictor value

aeR*, N{ax,;{,n) solves the moment equation
(4.13) JSlle-n(xsé,a)ly(z){a+nN(x,s tsa)ldPI{ = «.

But b(¢) minimizes N(x, £,%) on © and does not itself solve a moment

problem.

ANALOG ESTIMATION: Analog estimation of b(¢) has been studied in the
setting where one can sample directly from PIl¢. In particular, see
Andrews et al.(1972), who discuss analog estimation of the closely
related ‘shorth’, or mean of the shortest interval containing a fraction
« of the probability mass of vy.

We are concerned with estimation in the setting where one saﬁples
from P, not from PI¢. In particular, it is of interest to learn whether
the regression problem (4.12) can be represented in a manmner that avoids
reference to the conditional measures Pl{,feX. This question isvbeing
investigated by the author in work in progress.

One finding obtained thus far ié that such a representation does exist
if a homoskedasticity condition holds. Specifically,; it suffices that
Nlxyé sb(¢)] be the same for all ¢eX. In this case, application of the
analogy principle to a suitable representation of (4.12) yields an
estimator that has recently drawn attention for its robustness
properties. This is the ‘least median of squares’ method proposed by

Rousseuw(1984).
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S. ANALOG ESTIMATION OF GENERAL REGRESSIONS

We now.appiy the analogy principle to representations of regression
problems that refer explicitly to the conditional measures Pl¢, éeX.
The approaches to be developed here are less convenient than is method
of moment estimation. On the other hand, they apply much more generally.
We have seen that method of moments estimation of a moment regression is
not consistent if the earameter space is too large or, in the case of
moment equation regressions, if the derived moment equation does not
identify b. Regression preblems which are not collections of moment
problems may have no representations that avoid reference to Pl¢, ¢eX.

The methods presented below are directed toward such problems.

S.1. “NAIVE’ ANALOG ESTIMATION OF REGRESSIONS WITH DISCRETE X

We begin with so-called ‘naive’ analog estimation. Naive estimation
applies the analogy principle to our basic representation of a
regression problem, equation (4.1). The sample analog of Pi¢ is the
empirical conditional measure PNiﬁ. Hence,; the analogy principle

suggests that to estimate b, one might use

(5.1) BN = [ceB: CS(PNlé,C(t)} = 0, ¢eX1,

provided that BN is non-empty. Otherwise, one might seek to minimize

the distance of ES{PNl&,*(&)}, ¢teX] from zero, in some sense.
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This application of the analogy principle works if X is a discrete

set and Px(£)>0 for all ¢eX. Here, N—Do implies that for each ¢teX, Ple

converges to PIl¢{ almost surely. So for each ¢teX, S[PNlé,*(&)J behaves
well as an approximation to SCPI¢,%(¢)], provided only that S(*,%) is
smooth. If X is finite, the convergence of PNlé to Pi¢ is uniform on X.
In this case, we can make the stronger statement that ESCPNle,*(e)},£€X$
behaves well as an approximation to [S{PI{,*(£)2, (eX].

More generally, howevers; naive analog estimation does not work. The
empirical measure of x, P s puts all its mass on its finite support

Nx

I1¢ is arbitrary. For ¢eX_, PNIE is well-defined but

X, CX. For £€XN, P N

N

does not converge to Pl1¢ unless Px(£)>0. Hence, wherever Px(£)=0,

N

S[PNlt,*(e)J behaves poorly as an approximation to SCPI¢,*(¢)1].

S.2. KERNEL ESTIMATION OF REGRESSIONS WITH ABSOLUTELY CONTINUQOUS P

The failure of naive analog estimation when X is not discrete has
fostered a widespread presumption tha% the analogy principle camnmot be
applied to general regression problems. The recent literature on
nonparametric estimation of regressions has contributed to this view.
Available nonparametric regression methods are in large part outgrowths
of earlier work on nonparametric estimation of density functions. As
indicated earlier, nonparametric density methods give the appearance of
being divorced from the analogy principle.

In Section 3.2, we demonstrated that the density estimation problem
can be represented in a manner that allows the analogy principle to
work. Here, we use this representation to obtain an analog estimate of

regressions that works when P has a Lebesgue density.

Assume that P is absolutely continuous with respect to Lebesgue

-]

-

-
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measure H. Then Pl¢ is completely characterized by the conditional

density ¢F(*’P'£)' So an alternative representation of (4.1) is
(5.2) ES{¢H(*,PI£),b(£)}, texl = 0,

where the domain of S{*,b(¢{)} is now a space of density functions rather
than a space of probability measures.

For each ¢teX, the conditional density QH(*,Plt) can be written as the
ratio of the density of P evaluated at realizations of z satisfying
[x(2z)=¢] to the density of Px evaluated at ¢, that is

1fx(z)=¢1] @H(f,P)

(5.3) QH(*sPIG) = .
Qp(f’Px)

We showed in Section 3.2 that QH(*,P) and @H(*,Px) are the same as
QH(*,PQU(P)GJ and wH[*,Px@d(PX)GJ, where o(*) and G were defined in
equation (3.12). Hence, the regression problem (5.2) is equivalent to

the problem,

1fx(2)=¢1] ¢H(*,P€U(P)GJ
(S5.4) [ S ’ b(é)l, teX } = 0.
¢ C¢,P Bo(P_)G] >
H X X

The analogy principle may be applied to the representation (S5.4).

For example, let (4.1) and (5.2) have the form
(5.3) [b(g)—fy(z)dP1¢, teX] = Cb(f)—fy(z){QH(z,Plt)}dz, ¢eXl = O

and let B = (x0,¢eX). Then b is the mean reéression of y on x. For

each ¢(e&X, the analog estimate of b(¢) is, by (3.14),



I/G(PN) J y(z) 1Ix(z)=¢] EIg{(z-zN)/c(PN))dPN] dz
1/a(PNx) Ig[(e-xN)/o<PNx)]dPNx

where zZy and Xy are distributed PN and PNx respectively. Equation (5.6)
is a kernel regression estimate. See Prakasa Rao(1983), p.239-240.

If P is not absolutely continuous; one should not expect analog
estimates derived from (5.4) to be well-behaved. In particular, if F’x
"has mass points and c(PN) measures the distance of PN from a continuous

measure,; then c(PNx) does not converge to zero as N—->o. So the local

averaging on which kernel estimation is predicated goes askew.

S.3. SMALLEST NEIGHBORHOOD ESTIMATION OF GENERAL REGRESSIONS

So far,; we have given a variety of analog estimates for regression
functions, each appropriate to a different class of problems. In each
case,; the key to successful application of the analogy principle was
selection of a suitable representation of the estimation problem. Thus,
we transformed moment regressions into moment problems. We maintained
the original regression form (4.1) for problems with discrete X. And we
represented problems with absolutely continuous P as ones with smoothed
densities.

Here, we introduce a new representation of regression problems that
yields an appealing, generally applicable analog estimate. In short, we
replace probability measures conditioning on events of probability zero
by ones that condition on neighborhoods having vanishingly small

positive probability. This done, application of the analogy principle
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works whether or not X is discrete and whether or not P is absolutely
continucus. We term the resulting analog method “smallest neighborhood’

estimation.

REPRESENTATION OF THE REGRESSION PROBLEM: Let p(*,%) be a metric
generating the usual topology on the space X. Let m(*) be a strictly
increasing function mapping [O,®) into [O,®) with m(0)=0 and m(d)>d for

d>0. For ¢teX and d2>0, define

(S5.7) X(¢,d)

Cé’eXsplE,§’)<Ldl,

(5.8) d(&,F’x) inf d: chxu,d)vo,

and

(5.9) A(f,Px) Xte,m{d(&,Px)}J.

Thus, X(¢,d) is the closed ball of radius d centered at ¢ and d(é,Px) is

the infimum of d such that X(¢,d) has positive probability under Px'

The set A(e,Px) is the closed ball of radius m(d(&,Px)} centered at ¢.
Now consider the regression problem (4.1) with CPIA(&,PX),GEX]

replacing (Plé¢, ¢eX). That is, let b solve
(5.10) ES(PIA(&,PX),b(t)}, Xl = O.
We shall show that the estimation problems defined by (4.1) and (5.10)

are equivalent.

To see this, let XSCX be the support of Px' That is,




(S.11) X C¢eXs P [X(£,d)1>0, wd>01.

It follows from (5.7) through (35.9) that
(S.12) £EXS = df&,Px)=O = m{d(é,Px)}=0 = A(t,Px)=Cé} =3 PIA(&,PX)=PI£,

Hence, EPIA(&,PX),taxs] = [Plt,éexs].
It remains to consider eaX—XS. In general, PlA(&,Px) need not equal
Pi1¢ for such ¢. But X—XS has probability zero under Px' See Chung;

(1974), p.31. So the behavior of PlA(f,Px),tex—Xs is immaterial.

SMALLEST NEIGHBORHOOD ESTIMATES: A smallest neighborhood estimate of b
is obtained by applying the analogy principle to (5.10). Thus, the

estimate is

(5.13) BN = ([ceB: S{PNIA(é,PNX),c(é)} = 0, ¢teX],

provided that BN'is non—-empty. Otherwise,; one minimizes the distance of

[S{PNIA(t,P x),*(&)}, teXl] from zero, in some sense.

N
The expression PNlA(f,PNX) appears forbidding but actually has a

simple interpretation. By (5.8),

(S.14) d(¢,P ) = min PO, 7)),
Nx £ eX
N
where XNCX is the finite support of PNx' Thus, d(&,PNX) is the distance

from ¢ to its nearest neighbor among the sample observations of x. And

X[t,d(&,PNx)] is the smallest neighborhood of ¢ having positive



empirical probability.

If teX then d(&,PNx)=O. Hence, by (5.12), PNIA(t,PNX)‘= P 1és as

N’ N
in naive analog estimation. If tiXN, then m{d(a,PNx)}~z d(&,PNx) > 0.
So A(G,PNX) is the neighborhood XE&,d(&,PNX)] ‘blown up’ to radius
m{d(e,PNx)}. In this case, PNlA(ﬁ,PNx) is the empirical probability

measure of z conditioned on the event that x is within distance

m{d(t,PNx)} of ¢.

COMPARISON WITH THE NEAREST NEIGHBOR AND HISTOGRAM METHODS: Smallest
neighborhood estimation is reminiscent of but distinct from the nearest
neighbor and histogram methods. All three methods impose a metric on X
and estimate Pl ¢ by the empirical measure of 2z conditioned on the event
that x is within some neighborhood of ¢. They differ in the way this
neighborhood is determined. '

In nearest neighbor estimation, a positive integer k, dependent on
the sample size N, is chosen by the analyst. Let de(é) be the distance
from ¢ to its kth nearest neighbor among the N observations of x. Then
Plt is estimated by Plete,de(t}J. Thus, the number of observations
used to estimate Pl¢ is predetermined and the neighborhood of ¢ that
contains these observations is random.

In histogram estimation, a neighborhood radius §(N)>0, dependent on N,
is chosen by the analyst. Then Pl¢{ is estimated by PNIXEG,S(N)]. Here,
the number of observations within the selected neighborhood of ¢ is
random.

In smallest neighborhood estimation,; m:[0,2)—->mi{0,=) ié chosen by the
analyst. When m(*) is evaluated at the rando@ distance d(¢(,P,, ) from ¢

Nx

to its nearest neighbor, a random neighborhood A(¢,P x) results. The

N
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number of observations within A(&,PNX) is random but always positive.
It would be of interest to know whether the nearest neighbor and

histogram methods can be derived as analog estimates. 11 have not yet

found representations of the regression problem that yield these

methods.

k*N_SMALLEST NEIGHBORHOOD ESTIMATION: Smallest neighborhood estimation
has one irritating feature not shared by the nearest neighbor and histo-
gram methods, Fix {eX. We pointed out earlier that if one or more
sample observations of x have the value ¢, then the smallest neighbor-
hood estimate of Pl¢ is the naive estimate Ple. This is desirable if
PX(€)>O but not if Px(e)=0.

The equivalence of smallest neighborhood and naive estimates on EEXN
is immaterial if one is concerned only with pointwise consistency. If
PX(£)=O, then with probability one, no observation of x equals ¢.

Hence, BN(e) can still be a consistent estimate of b(¢). See Section
S.4., On the other hand, this property of smallest neighborhood
estimation implies that unless Px hag finite support Xs’ BN(*) cannot,
in general,; be uniformly consistent for b(#*) on Xs.

The problem noted here can be fixed by generalizing smallest neighbor-
hood estimation to ‘kth—smallest neighborhoéd estimation’, as follows.
Fix an integer k>1. As earlier, let de(e) be the distance from ¢ to
its kth—nearest neighbor among the N observations of x. Let ANk(e) =
X[&,m{de(é)}]. Now let PlANk(E) define the kth—smallest neighborhood
estimate of PI¢.

A kth—smallest neighborhood estimate of Pl§ reduces to the naive

estimate only if k or more sample observations of x have the value ¢.

With probability one, there exists no esxs with Px(&)=0 such that more
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than one observation of x has the value ¢. Hence, with probability one,
kth—smallest neighborhood estimation with k>2 does not misbehave
anywhere on Xs'

I have not been able to find a representation of Pi¢ for which
PiéNk(t) is the sample analog. The integer k refers to a number of
sample observations. For k>2, the distance to the kth—nearest neighbor
of ¢ is not determined by the empirical measure PNx alone. Hence, this
distance has no obvious counterpart in the population, which is
characterized only by P.

The case k=1, which yields smallest neighborhood estimation, is
special. The distance to the nearest neighbor is the same as the
distance to the smallest neighborhood having positive empirical

probability. The latter distance is determined fully by P

Nx

S.4. CONSISTENCY OF SMALLEST NEIGHBORHOOD ESTIMATES OF MEAN REGRESSIONS

To investigate the properties of smallest neighborhood estimation in
a comprehensive way would require us to disgress too much from the theme
of this paper. We shall therefore restrict attention to a central
asymptotic question, the pointwise weak consistency of the smallest
neighborhood estimate of a mean regression.

In what follows, a theorem gives conditions that are sufficient for
consistency. Then a set of iemmas show that these conditions can be
satisfied if m(*) is selected appropriately, provided only that P be

minimally reqgular. Proofs are in an Appendix.
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Consistency Theorem: Let y:Z2—>YCR* be a given measurable function such
that bké’)EIy(z)dPlé’ exists for all ¢’eX. Fix ¢eX. Let N(&,PNX) be
the number of sample observations of z for which x(z)eA(t,PNx). Assume
that the following conditions hold:

[1al ¢’=>¢ 3 b(E’)=>b(¢).

[i1b]l 3de>0 and A>0 s.t. Var(yix=¢’) £ N for é’eX(fydo).‘

1c]l As N—>o, d(t,PNx)~>O in probability.

[1d] As N->o, N(é,PNx)—>m in probability.

Then as N->o, fy(z)dPNIA(t,PNx) —> b(¢) in probability.mn

The four conditions of this theorem are unsurprising. Smallest
neighborhood estimates, like histogram and nearest neighbor estimates,
approximate the conditional mean b(¢) by local averages. For such local
averages to be consistent, the population must be sufficiently regular.
Conditions (1al and [(1b] suffice. That is,; it is enocugh that b(*) be
continuous at ¢ and that, for ¢’ near ¢, the variances of the measures
P1 ¢’ be bounded.

Given these regqlarity conditions on P, the local average converges
if Conditions [Clcl and [1d] hold. That iss as N->o, the neighborhood of
¢ on which the average is taken should shrink toward ¢ and, at the same

time, the average should be computed on increasingly many observations.

SELECTION OF m(*): There is, of course; a tension between Conditions

Licl and [1dl. To make the consistency theorem operational,; we need to

show that it is possible to seleﬁt m(*) so that both L1lcl and [1d] hold.
To do this, we work with the distribution G,(*) of the distance of

¢

the random variable x to the point éeX. That is, for d>0, define

(4
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(5.13) Gé(d) = PXCX(ﬁ,d)J,
where X(¢,d) was defined in (5.7). By the Lebesgue decomposition
theorem, the probability measure on [O,®) generated by G& can be
decomposed uniquely into the sum of a discrete measure, a singular
continuous measure,; and a measure that is absolutely continuous with
respect to Lebesgue measure. See Chung(1974), p.12. Let gt(*) denote

the density of the absolutely continuous component.

With this as background, we have the following:
Lemma 1: Assume that &exs. Let N—->=o. Then d(e,PNx)—>0 in probébility.m

Lemma 2: Assume that Px(e)>0. Let N=>o, Then N(¢,P x)—ém almost surely.#

N

d.

Lemma 3: Assume that for some d;>0, G (d1)=Ig£(6)d6. Moreover,
o)

3
glggf(a)gga for &§<d.s where 0<g.:<ge<e@. Let m(*) be differentiable with
with derivative m,(%) satisfying the condition m,(§)—>o as §->0. Then

N(¢,P x)—)c in probability.u

N
Lemma 1 states that'Condition L1cl holds if ¢ is in the support of Px'
Lemma 2 says that Condition [1d] holds if Px places positive mass at ¢.
These simple results require no conditions on m(*) beyond the maintained
assumptions that m(0)=0 and that m(d)>d.
Lemma 3 addresses a much more subtle question. Can m(*) be chosen so
that Condition E;d] is satisfied when Px places 7ero mass at (7 We

obtain a positive answer provided only that G,(%) is well-behaved in a

¢
neighborhood of zero. In particular, it suffices that in a neighborhood
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of zero, the density ge(*) of the absolutely continuous component of

G,.(#) be bounded away from zero and infinity. The Lemma also assumes

¢
that G,(*) has no singular continuous component in a neighborhood of

¢
zero but this condition is inessential.

We find that Condition [1d] is satisfied if m(*) is a function whose
derivative m (8)—>o as §—>0. This property is essential. .It can be
shown that if mi:(8§) stays bounded as §—>0, then N(t,PNx) stays bounded
with positive probability.

One class of functions m(*) that work are the power functions

(5.16) m(d) = d + x.d%=,

for O<a;<® and O<am<l. Here, m:(&) = 1 + aiomd®= 1,

Given that all m(*) of the form (5.16) vield consistent estimates,
one would like guidance on the selection of the constants (xisx=). More
generally, one would like a criterion for selection of m(*) from the
space of all functions that satisfy the assumptions of Lemma 3. This
question, which will not be pursued here, resembles questions that arise
in nearest neighbor and histogram estimation. There, the analyst must
decide how to increase the number of neighbors or shrink the window
width as N—>o. Here, the problem of selecting a function whose argument
is the sample size is replaced by one of selecting a function whose

argument is the distance to the nearest neighbor.:

P 4
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APPENDIX: PROOFS OF RESULTS ON SMALLEST NEIGHBORHOOD ESTIMATION

Procof of Theorem: For each N, let I(¢,N) index the N(f,PNx) observations

of z for which x(z)eA(¢,P ). ~In gerneral,

Nx
1

(A1) b, (&) = Iy(z)dPNlA(t,P ) =

N Nx z y(z.).

N(e’PNX) IEI(eyN)

Hence, conditional on the sample size and on the realizations of x, the

mean énd variance of bN(&) are, provided that the relevant terms exist,
1

(A2) ECbN(e)IPNxJ = ;:;j;;:: iE?(&,R§x.)

and

1

(A3) Var[bN(é)lPNx] = z Var(y‘x=xi),

&2 3 -
N(&,PNX) il (¢,4N)
where x.=x(z.).
i i

Condition [1al implies that given any n>0, there exists dﬂ>0 such that

(A&4) xiEX(f,dq) = lb(xi)-b(&)l < 1.

Recall that A(é,PN ) XCé¢ym{d(¢,P )Y1l. Hence,
X Nx

-1
(AD) EﬁbN(€)lPNx,d(€;PNx)<m (dﬂ)] € [b(&H=-n,b(E)+n]l.

Condition [1bl implies that the variances Var(ylx=xi), iel(¢4N) are

bounded by A, provided that A(f,PNx) C X(¢sdea). Hence,
_1 A
(A6) Varlb (t)tP yd(£,P, I<m “(do)]l (<
N = :
N X Nx NCE,P. )

Nx
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Now let O<6<min£m—1(dn),m (da)]l and let 0<KJ<o@. Consider the mean

and variance of bN(e) conditional on the sample size and on the event
that the empirical measure of x is a member of the set of measures

(A7) C(&,J) . = [Qx:d(thx)<6 n N(&ny)>J].

It follows from (AS) that for all fegsible § and J,

(AB) ENSJ = E[bN(i)lPNxeC(E,J)J € [b(&H-msb(E)+nd.
It follows from (AS) and (A&) that R
(A9) VNGJ' = Var[bN(£)|PNst(8,J)]

- var -1 ‘
= Var[é[bN(ﬁ)lPNx,d(t,PNx)<m (81 PNXEC(S,J)

P

+

-1 b
E[Var[bN(i)|PNx,d(£,PNX)<m (81 PNxEC(a’J)J

£ an + N/J.
Chebychev’s inequality and (A9) imply that for any >0,
(AL10) ProbCle(t)-ENSJI<V|PNXEC(8,J)] > 1—VN83/V* 2 1-(an®2+X/J)/v™
Hence, by (A8),

(Al1l) ProbEle(ﬁ)—b(&)I<ﬂ+leNXEC(5,J)] > 1 - (anB2+N/T)/v=,

Finally, remove the conditioning on C(é§,J). In general,



(Aala) Prob[le(é)—b(f)!<ﬂ+v3 =
Prob[le(t)-b(£)1<n+v )PNXEC(S,J)J x ProbEPNXEC(S,J)]

+ Probfle(é)-b(t)l<ﬂ+v ,P gC(&,T)1 x ProbEPNxﬁC(S,J)].

Nx

Conditions [1cl] and [1d] imply that as N—wo,
(A13) ProbCPNxeC(a,J)J -> 1.
This and (Al12) imply that

(Al4) liminf Prob[le(t)-b(é)l<n+vl > 1 = (an@+X/J)/v=E,
N—>o

Now let 1—->0 and J->o. By (Al4), Prchle(é)—b(f)l<v3 -> 1 for

every v>0. \

R.E.D.

Proof of Lemma 1: d(t,PNx) is the distance from ¢ to its nearest
neighbor among the N observations of x. By (3.13) and the assumption of

random sampling,

(A1S) Probld(¢,Py <81 = 1 - [1-6,(&)1"

N ¢

for &>0. By (5.11), éEXS =3 Gé(a)>0 for all 6>0. Hence, for all &§>0,

ProblCd(¢,P x)g&] => 1 as N—>o,

N
R.E.D.




Proof of Lemma 2: By the strong law of large numbers, PNx(e)—>Px(e)>O
almost surely. Let 0<n<Px(€). Then with probability one, there exists
a finite No such that N>No = PNX(£)>ﬂ. But PNX(£)>ﬂ = d(é,PNx)=0 =3

ACE,P x)={E} = N(&,PNX)=NPNX(£)>Nﬂ.

N
@.E.D.

Proof of Lemma 3: Let J be any positive integer. The Lemma states that

as N=>w, ProbIN(¢,P x)<J)—>0. But

N

J-1
(A16) ProbEN(é,PNx)<J] = jEOProbEN(é,PNx)=j].

By construction, N(¢,P x)_'>_1 always. Hence, it suffices to show that as

N
N—>o, Prob;N(t,PNx)=j]—>0 for each positive integer j.

For any d>0,

(A17)  ProbINC¢,Py )=
= ProbIN(¢,Py )= N d(¢P 1<d] + ProbIN(¢,P )=j N d(¢,P )>d]
< ProbINCE,P )=j N d(§,P 1<d] + Probld(¢,P )>dI.

By assumption, ge(*)>0 in a neighborhood of zero. So &exs. Hence, by

Lemma 1, Probld(¢{,P x))d]-—>0. Therefore; we need only to show that

N
Prob(N(f,PNx =5 N d(¢,P

some de<m l(d.) and show that ProbIN(E,P )=5 N d(¢,P

Nx)gd]—>0. In particular, it suffices to choose

Ny ) Sd=1—>0.

By (5.14), d(&,PNx) is the first order statistic in a random sample

of size N from Gt' Also, N({;,PNx =j if and only if the jth order
statistic is less than or equal to mtd(e,PNx)J and the (j+1)St is

A



A=-5

greater than m{d(¢,P_ )]. By assumption, the mass of G, in the interval

Nx ¢
{0,801 derives entirely from the absolutely continuous component of G&'
It follows that
(AL1B8) Prob[N(f,PNx)=j n d(t,PNx)gda] = ’
de (N-1)} 1 N=
= I N g, (&) : [Getm(S)]-Ge(S)]J [1-6,Im(s)1] b ds
o) (j=1) L(N=j)!
de Nt I N-
< ;g8 [G£Cm(s>J]J [1-6,Im(8) 1] I ds.
O (j=1)L(N=-j)!
Thus, it suffices to show that as N—o,
d= Nt j=1 (N=3) »
(A19) S g (&) [Getm<a>3]3 [1-6,tm(8)1] 3’de - o.
0 (j=1) LIN=j) !
th

The integrand in (Al19) is closely related to the density of the j
order statistic of a random sample of N observations drawn from the

distribution function Gttm(*)]. To see this, first observe that strict

monotenicity of m(*) implies that G,[m(*)] is a legitimate distribution

3

function. Differentiability of m(%) implies that the absolutely

continuous component of G,Im(*)] has density gﬁtm(*)]ml(*). Hence, the

¢

density of the absolutely continuous component of the distribution of

the jth order statistic from Gétm(*)l is (see Lehmann, 1983, p.353)

(A20) (%) =
Pesn N

! 1
g, Im(*)1 my (%) G, Em(*>1]7 1-G . [m(*) ]
¢ (j—l)!(N-j)![ ¢ I ]

(N=3)

It follows that (A19) is equivalent to the condition




(A1) S o, (&)

dé —> O.
g Im(8)1 my (&)

By assumption, 0<g.<g,(d8)<g= for &<d=. Hence, (A21l) is equivalent

¢

d= 1
(Aza)  J e, (&) dé — O.
o) J M. (S8) :

Also by assumption, m,(8)—>o as §—>0. Hence, given any {>0, there

exists a §,>0 such that 8§48, 3 m.(8§)>{. Let d==§

¢ ¢ and let {>1. Then

1

de 1
(A23) S 0, (&) dé
o my (&)
8, 1 de 1
= e, (&) d§ + [ o, (&) dé
o | &iN me (&) 5, ¢ iN m. (S)
1 8, de
< = fY9, (&) dS§ + [0, (&) dS.
¢ 0 ¢ jN P ¢ jN

As N—->o, the jth order statistic of Getm(*>3 approaches zero with

probability one. Hence, for all {>0,

&
(R24) S~ ¢ (&) dé6 = 1
(o)

¢ N
and
de
(A2S) J o, . (&) d&§ - O.
s &N

It follows that the left hand side of (A23) is asymptotically bounded
above by 1/{. Letting {(->o completes the proof.

@.E.D.

to

x4
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