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ABSTRACT 

An important question is how well competitive models approximate models 

of large finite economies. This paper studies that question for models of dif

ferentiated products. Both static and dynamic Nash equilibria are considered. 

In the class of models analyzed it is shown that static Nash equilibria always 

converge to competition as the number of firms increases. Dynamic Nash 

equilibria need not so converge. Easily checked necessary and sufficient con

ditions for their convergence to competition are, however, established. 



1. Introduction 

Much effort has gone into investigating whether competitive models closely 

approximate large finite economies. Ruffin [9] analyzed Cournot equilibria in 

large markets with identical firms and found conditions for the Cournot 

equilibrium to converge to the competitive equilibrium as the number of firms 

increases. Roberts [8] considered the same question in a general equilibrium 

context. More recently Novshek [7] has analyzed more general sequences of par

tial equilibrium Cournot markets for convergence to competitive equilibrium. 

Similar efforts have been made by Allen and Hellwig [1] for Bertrand price 

games. In all of these studies only static Nash equilibrium concepts were con

sidered. An example by Green [4], however, established that even in models 

where static Nash equilibria converge to competition, there may exist dynamic 

Nash equilibria which do not. He then considered how the addition of uncer

tainty and incomplete information to Cournot models might rule out such possibi

lities. Following a different line, Lambson [5] studied a class of full 

information Cournot models to derive conditions for convergence of dynamic Nash 

equilibria to competitive equilibria. 

This paper considers the question of convergence to marginal cost pricing 

in a model of differentiated products. Both static Nash equilibria and general 

subgame perfect dynamic Nash equilibria are considered. In section 2 the fra

mework for the analysis is constructed. It is shown in section 3 that in the 

class of models considered all sequences of static Nash equilibria converge to 

competition. Such is not the case for all sequences of dynamic Nash equilibria. 

Necessary and sufficient conditions for their convergence to competitive outcomes 

are derived in section 4. Section 5 contains some extensions and concluding 

remarks. 
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2. The Model 

Consumers and firms are assumed to inhabit a circle of circumference Z for 

a countably infinite number of periods indexed by t. Consumers are uniformly 

distributed on this product space. In each period every consumer has the 

demand function f[min;(P;+A(xi))] where xi is the distance (minimum arc 

length) of the consumer from the ; th firm, and A is a positive constant. Each 

consumer buys only from the firm for which the delivered price P.+A(X.) is , , 
lowest. There exists a finite price, k > 0, such that f(k) = 0. On the inter-

val [O,k], f(•) is continuously differentiable, oo > f(O) > O, and f'(•) < O. 

The N firms are located symmetrically on the circle and are assumed to 

simultaneously choose prices in each period. All firms have the same cost 

function, C(O), where Dis the level of output. The cost function is twice 

continuously differentiable on [O,oo), C(O) = 0, C'(•) ~ 0, and C"(•) ~ 0. Let 

PiN be the price chosen by the i th firm when there are N firms in the market. 

Let PN = (P1N, ••• ,PNN) and define PiN as PN with the ; th element removed. 

The demand curve faced by the ; th firm is 

+ 

(2.1) 
y y 

= f Nsf(P.N+A($))d$ + f Nsf(P.N+A($))d$ 
0 1 0 1 

where y + and y denote, respectively, the length of the interval serviced by 

firm ion each side of its location and are defined (for x = +, -) by 

(2.2) 

where Ii-ii is the arc length between firms i and i measured on the appropriate 

side of firm i and i is the firm for which [P1N-PiN+AIR-il]/2A is minimized. 

(~ depends on both i and N, which are suppressed for notational convenience.) If 
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yx = [k-PiN]/A firm i is a local monopolist on that side of its market. 

Otherwise firm i is in competition with firm i. In the first case firm i's 

marginal customer is indifferent between buying and not buying. In the second 

case the marginal consumer prefers to buy but is indifferent between patronizing 

firms i and i. If yx < O firm i is undercut and has zero sales. Firm i is then 

an undercutter. 

The specification of demand employed allows demand to be replicated with the 

firms. Whens< 1, s = 1, ands> 1 demand increases at a rate less than, equal 

to, and greater than, respectively, the rate of increase in the number of firms. 

Whens= O demand is independent of the number of firms. Given PN each firm is 

free to choose its output qiN' It is usually the case in what follows that 

qiN = DiN(PN) is the most profitable output. When a firm undercuts another, 

however, servicing the discontinuously longer interval may drive marginal cost 

too high. Then qiN < DiN(PN) may be more profitable. Firm i's current period 

profit can thus be written 

(2.3) n,.N(PN) = maxq D (P) [P.Nq.N - C(q.N)) 
iN~ iN N 1 1 1 

Firm i's strategy uiN is a sequence of functions {uiN(t)} which specify 

firm i's price in each period as a function of the previous choices by all 

firms. N(t-1) So uiN(1)€[0,k] and, fort> 1, uiN(t):[O,k] ➔ [O,k]. Let 

uN denote the strategy profile (u1N, ••• ,uNN). A sequence of price vectors 

{PN(t)} is called an outcome path. Let Q denote the set of possible outcome 

paths, i.e. each element of Q is an outcome path generated by some strategy pro

file as follows: 

PN(UN)(1) = [u,N(1), ••• ,uNN(1)) 

PN(uN)(t) = [u1N(t)(PN(uN)(1), •.. ,PN(uN)(t-1)), .•• , 

uNN(t)(PN(uN)(1), •.• ,PN(uN)(t-1))] 
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Let Ht be a history through time t, i.e. Ht e [PN(1}, ••. ,PN(t}]. 

will denote the strategy profile induced on the subgame following 

given two sequences Ht and Hu, 

-Define the payoff to firm i (when there are N firms} by 

(2.4) 

00 

where {ht} is the sequence of histories induced by uN. Then if E;N is firm 
t=1 

i's strategy set, uN is a Nash equilibrium iff ViN(uN) ~ ViN(uiN'uiN) for all 

uiN € EiN where uiN denotes the vector uN with the ; th element removed. uN is a 

subgame perfect Nash equilibrium iff it is a Nash equilibrium and for all t and 

all histories Ht' uN I is a Nash equilibrium. 
Ht 

The question examined here is 

whether subgame perfect Nash equilibria are approximately competitive when 

there are many firms. To investigate this sequences of markets differing in the 

number of firms will be studied. Formally, a market is a sextuple 

MN= (N, C, f, Z, ~. s). Sequences of markets {MN};=Z differing only in N will 

be studied in what follows. 

3. Non-Collusive Outcomes in Large Markets 

A Nash equilibrium will be called non-collusive if the equilibrium strate

gies are simple, i.e. if uiN(t) is independent of Ht_, for all i and t. 

Intuitively, this rules out the threats that make outcomes other than static 

Nash outcomes possible in each period, so a sequence of static Nash equilibria 

emerges as the non-collusive equilibrium. Formally, a static Nash price vector 

is a vector (P~) such that for each i 
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r -r 
(3.1) niN(PN) = maxpiN niN(PiN' PiN) 

The strategy profile (u~) where u~N(t) = P~N for all i is a non-collusive 

equilibrium. It follows immediately from the definitions that (u~) is a subgame 

perfect equilibrium. Clearly, (u~) will be the unique non-collusive equilibrium 

iff (P~) is the unique static Nash price vector. If other static Nash price 

vectors exist other non-collusive equilibria, including nonstationary ones, will 

exist because any outcome exhibiting a static Nash price vector in each period 

is a non-collusive equilibrium. Neither uniqueness nor symmetry of (P~) is 

assumed in what follows. (Of course, existence of a static Nash price vector is 

assumed. To see some sufficient, but not necesary, conditions for existence see 

Economides [3] and Novshek [6].) Issues of uniqueness and symmetry can be 

ignored because all sequences of static Nash price vectors are indistinguishable 

in the limit, as will be seen. Of interest in its own right is that in the 

limit price equals marginal cost for each firm, i.e. a version of the "classical 

limit theorem" holds in this model. The rest of this section is dedicated to 

the proof of that proposition. 

Theorem 3.1: There exists Pre[O,k] such that for any sequence of static Nash 
00 

price vectors {P~} and any e > o there exists Ne such that if N > Ne 

(3.2) I Pr - P~N I < e 00 , 
i = 1 , •.• , N, and 

i = 1, ••• ,N. 

Proof: Note that P~N ➔ C'(O) for all i and N because otherwise the lowest 

r priced firm would make negative profits, contradicting the definition of PN. 
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It also follows that no firm is undercut on either side, i.e. for all i, j, and 

N, 

(3.4) 

This is because, since P~N ~ C'(O) for all i, positive profits can always be 

achieved by some PjN satisfying (3.4} while profits are zero if firm j is 

undercut. Two cases will be treated separately: (1) Either s, 1, or else 

s > 1 and C' ( oo) < k. ( 2) s > 1 and C' ( oo) ~ k. 

(1) It is shown in the appendix that all firms are in competition on both 

sides of their markets for all N greater than some N. The theorem is proved by 

using this result along with the first order conditions that hold for com

petitors in equilibrium, i.e. for all i 

(3.5) 

where Fis the antiderivative off. Since undercutting cannot occur in 

equilibrium, y- and y+ must approach zero as N grows large. Hence the last bracketed 

term in (3.5) approaches zero but the second bracketed term is bounded strictly 

away from zero, implying that the first bracketed term must approach zero, i.e. 

price approaches marginal cost for each i. In particular, renumber firms so 

that firm j charges the highest price for each N. Then for any€> 0 there 

exists N1 such that if N > N1 
€ € 

(3.6) 
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The monotonicity properties of C'(•) and DiN(•) guarantee that for each N 

there is a unique vector P:c (clearly symmetric) such that, for all i, 

(3.7) 

It ·11 b h th t {PMC} h l' . Pr w, es own a iN as a ,m,t 00 • First considers< 1. Since total 

demand is bounded by NsZf(O), average demand cannot exceed NsZf(O)/N which 

approaches zero in N. Hence ifs< 1 

(3.8) L . PMC ,m .N = 
N-t00 , 

C'(O). 

Now considers~ 1. Fors~ 1, P7~N+1 ~ P7~ because demand increases at least 

as quickly as the number of firms and the increased density of firms lowers 

transportation costs. Hence {P~~} is monotonically nondecreasing on a compact set 

and must have a well defined limit. 

N > N2 
€ 

(3.9) I r MC I p 00 - p iN < €/2 • 

So for€> O there exists N2 such that if 
€ 

r MC 
Assume, counterfactually, that PjN > P;N + 6 for some 6 > 0 and some sub-

sequence. Then C'[DjN(P~)] cannot exceed C'[DjN(P:c)] so 

(3.10) 

1 This contradicts (3.6) for€< 6 and N > Ne. So for any€> O there exists 
·3 3 
Ne such that if N > Ne then 

(3.11) 
r MC I P jN - Pi N I < e/2. 

r PMC f 11 . d h Now PiN ~ iN or a , an N, ot erwise the lowest priced firm will face posi-
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tive demand at price less than marginal cost. 

2 3 
(3.11) establish (3.2) for N€ > max[N€,N€]. 

r r 
So since PjN ~ PiN' (3.9) and 

Finally, 

(3.12) 

1 2 3 
so (3.2}, (3.6), and (3.12) establish (3.3) for N€ > max[N€,N€,N€]. 

(2) For this case {P~N} must approach k for all i, otherwise unbounded 

output would be sold by some firms; but C'(oo) ~ k, implying unbounded losses. 

If {oiN(P~)} is unbounded for every subsequence then C'(oo) = k (for if 

C'(oo) > k unbounded losses would occur in the limit, violating the definition of 

P~) and C(DiN(P~)) approaches k, proving the result. 

If {oiN(P~)} is bounded for some subsequence then this subsequence has a 

convergent subsequence with limit D. It will be shown that C(D) = k for any 

such subsequence. Clearly C'(D) > k can be ruled out by the definition of P~ 

since for large Na unilateral increase in price would increase profit. To see 

that C'(D) < k can be ruled out, note that 

(3.13) 

Consider a corresponding subsequence {P~N} such that P~N 

e 
subsequence, such that PiN converges to k, and such that 

to D + o where C'(D + o) < k. Then 

- -D D+o 

r 
> PiN for all Nin the 

e r 
DiN(PiN' PiN) converges 

(3.14) = [kD - /C'(D)dD] + [ko - L C'(D)dD] 
0 D 

-Since C'(D + o) < k, the last term in (3.14) is positive so the comparison of 

of (3.13) and (3.14) contradicts the definition of {P~}. QED 
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4. Self-Enforcing Collusion in Large Markets 

The multiperiod structure of the model introduces a dynamic element ignored 

in the last section. Specifically, by colluding firms may achieve outcomes 

yielding higher profits than are attained in a static Nash equilibrium. Such 

collusion may be possible despite the noncooperative nature of the model since 

firms may adopt strategies which effectively punish any firm that deviates from 

a collusive outcome. 

Let nN be the set of subgame perfect Nash equilibria in MN. For each i 

(given N) there exists a function ViN:nN➔R which assigns a discounted payoff 
A A 

stream to firm i. (ViN is ViN with the domain restricted to nN.) Let viN be 
A 

the image of nN in R. (A generic element of viN will be denoted by viN") Now 
A 

viN can be interpreted as the set of values of possible punishments that can be 

inflicted on firm i, discounted to the first period of the punishment path. Let 

vN a (viN)N and let vN denote a generic element of vN. The price vector P~ 

is a sustainable collusive price vector in MN if, for all i, P~N > C'[D;N(P~)] 
A 

and there exists vN e vN such that 

( 4. 1) 

* C ::C where niN(PN) e suppiNniN(PiN'PiN). A sequence of sustainable collusive price 

vectors is a sequence of price vectors {P~} such that P~N > C'[DiN(P~)] for all 

i, and for which there is a sequence {vN} such that vN e vN and (4.1) is 

satisfied for all N. A sequence of markets {MN} converges to competition if 

Lim[max. P:N - Pr]= O for all sequences of sustainable collusive price vectors. 
N-+00 1 1 oo 

Note that this definition implies that Lim [P:N - Pr]= O for all i because 
N--><X> 1 oo 

otherwise the lowest priced firm would have marginal cost higher than its price 

(for large N) and the definitions of {P~} would be contradicted. 
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Theorem 4.1: If O, s < 1 then {MNJ converges to competition. 

Proof: Let {P~J be any sequence of sustainable collusive price vectors. The 

sum of firms' outputs cannot exceed Nsf(O)Z. The highest priced firm, say j, 

will produce no more than average output, therefore 

(4.2) 

Hence, since profit cannot exceed revenue and price will not exceed k, 

(4.3) 

Renumber firms so j is the highest priced firm for all N. Then (4.3) implies 

(4.4) Lim n.N(PNC) = 0 
N-t00 J 

because s < 1. Since the left hand side of (4.1) is nonnegative, if (4.1) holds 

then 

(4.5) 

implying (since vjN ~Oby subgame perfection) 

(4.6) Lim v.N = O 
N-t00 J 

* C So for the highest priced firm every term in (4.1) but njN(PN) has been shown to 

approach zero. Assume, contrary to the theorem, that for some K > O 

(4.7) 

for a subsequence. It will be shown that this implies that x;N(P~) is bounded 

strictly away from zero for a subsequence. This will complete the proof since 

it will imply that (4.1) is not satisfied for large Nin the subsequence, 
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contradicting the hypothesis that {P~} is a sequence of sustainable collusive 

price vectors. 

* C First note that rrjN(PN} is always positive since by matching the lowest 

priced firm's price firm j can achieve positive sales at a price exceeding 

marginal cost. Let rN(o} be the set of firms on both sides of j satisfying 

C C 
lj-il < o. Then PjN ~ PiN + A(o} for all ierN(o}. (Otherwise the highest 

priced firm is undercut and rrjN(P~} = 0. Since rr;N(P~} > O this implies that 

(4.1) is violated.) Choose o such that A(o) < K/2. Then firm j can charge 

* By (4.7) and the choice PjN' 

there exists a subsequence of outputs such that profits given the price sub-

* sequence {PjN} are bounded strictly away from zero. (The reasoning is similar 

{ * C } . to that found in the proof of the lemma in the appendix.) Hence rrjN(PN} ,s 

bounded strictly away from zero for the subsequence. Q.E.D. 

Theorem 4.2: (a) Whens= 1 {MN} converges to competition if P: = C'(oo). 

( ) ·f r '( ) h h . * h h 'f * b By contrast, , P ¢ C oo tent ere exists~ < 1 sue tat, ~ > ~ 
00 

{MN} does not converge to competition. 

Proof of (a): Suppose P: = C'(oo) but {MN} does not converge to competition. 

Then there exists K > 0 such that 

(4.8) 

for a subsequence of sustainable collusive price vectors {P~}, where firms are 

renumbered so that j is the highest priced firm in MN. In any period the sum of 

firms' outputs cannot exceed Nf(O)Z. Since the highest priced firm will not pro

duce more than average output 
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(4.9) 

Since price is less thank and costs are nonnegative 

(4.10) 

Rewrite (4.1) as 

(4.11) 

Since vjN ~ O, (4.10) implies the right hand side of (4.11) is bounded 

above. So if {n;N(P~)} is unbounded in N (4.11) will imply that {P~} is not a 

sequence of sustainable collusive price vectors, establishing the contradiction 

that proves the theorem. Rewrite (4.8) as 

(4.12) 

Remember that, by previous reasoning, 

(4.13) 

for all iefN(6) so from (4.12), (4.13) and the hypothesis of the theorem 

(4.14) P~N + A(6) > P: + K = C'(oo) + K 

* If firm j charges PjN = C'(oo) + K - 2A(6) it will undercut all firms in rN(6) 

(for the subsequence) and earn at least K-2A(6) per unit profit. So since no 

* consumer within 6 of firm j will buy less than f(PjN+A(6)), 

(4.15) 

* Choose o so K > 2Ao and f(PjN+ A(o)) > O. Then the right hand side of (4.15) is 

* C unbounded in N, so njN(PN) is unbounded and the result established. 
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Proof of (b): If pr~ C'(oo) then pr< C'(oo) by Theorem 3.1. Consider the 
00 00 

punishment whereby all firms choose static Nash equilibrium prices in all 

periods subsequent to a deviation. (It is immediate that this is a subgame per

fect punishment.) The theorem will be proved if it can be shown that there 

exists~*< 1 and a sequence of collusive price vectors {P~} such that (4.1) is 

satisfied for all i and N, i.e. 

(4.16) 

and such that, for some K > O, all i, and all N > N, 

(4.17) C r 
piN - piN > K. 

(Firms are in competition for N > N. See the appendix.) Choose E: > O so 

(4.18) r PiN for all i and all N > N 

implies that {max.P~N} is eventually bounded strictly above by C'(oo). Since , , 
firms are in competition, aniN/aPiN = O and aniN/aPJN > o for neighboring R when 

r r 
evaluated at PN for N > N. Hence small price increases from PiN by all firms 

increase the profit of all firms by an amount that can be shown to be bounded 

away from zero independently of i. Hence there exists {P~N} satisfying (4.17) 

-
and (4.18) such that for N > N the right hand side of (4.16) is bounded away 

from zero independently of i. Now if max 1n7N(P~) is bounded then the left hand 

side of (4.16) is bounded above independently of i and N. This would imply that 

* ~ can be chosen sufficiently close to one that (4.16) will hold for all i and 

N, and the theorem would be proved. Since {max;P~N} is eventually bounded 

strictly above by C'(oo) the output stream associated with {n7N(P~)} must be 

bounded for each firm or else average cost would approach C'(oo) but price would 
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C * C } not exceed (maxiPiN) and infinite losses would result. So {niN(PN) is bounded 

above independently of i. Q.E.O. 

Theorem 4.3 Ifs> 1 then {MN} converges to competition. 

Proof: If C'(oo) > k then Pr= k and, since no price exceeding k is possible, 
00 

convergence to competition is trivial. If C'(oo) < k then manipulate (4.1) to 

write 

(4.19) 

Since viN > O, the right hand side is bounded above independently of i. Once 

again, renumber firms in each MN so that j is the highest priced firm. The sum 

of firms' outputs cannot exceed Nsf(O)Z. That the highest priced firm will pro

duce no more than average output implies 

(4.20) 

Hence 

( 4. 21) 

Let {P~} be any sequence of sustainable collusive price vectors that does not 

converge to competition. Then for a subsequence (since Theorem 3.1 implies 

pr = C' (oo) in this case), 
00 

(4.22) C 
PjN-C'(oo)>K 

for some K > 0. Following reasoning that is now familiar, choose 6 such 

that A(6) < K/2. Then by charging P;N = P~N - 2A(6} for the subsequence, 

firm j undercuts all firms in rN(6} and guarantees profits of at least 
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(4.23) 

The first inequality follows because all consumers within 6 of firm j will buy 

* at least f(PjN+A(6)) and because average cost cannot exceed C'(oo). 

* * C inequality is from (4.22) and the choices of 6 and PjN" Now njN(PN) 

less than niN(P;N' P~N) by definition, so (4.21) and (4.23) imply 

(4.24} 

The last 

cannot be 

The right hand side of (4.24} is unbounded for small 6. Since the right hand 

side of (4.19} is bounded, (4.24} implies that (4.19) cannot hold for all N in 

the subsequence, contradicting the definition of {P~}. Q.E.D. 

5. Concluding Remarks 

This paper has investigated the extent to which a class of large dynamic 

markets for differentiated products are characterized by approximately marginal 

cost pricing. In section 3 it was shown that all static Nash equilibria con

verge to competition, just as is true for the Cournot markets considered by 

Ruffin [8]. In section 3 it was shown that convergence to competition is 

avoidable when dynamic subgame perfect Nash equilibria are considered if and 

only if the limiting static Nash price is less than the supremum of marginal 

cost and demand is replicated at precisely the same rate as the number of firms. 

It is interesting to note that, despite the difference in the models, this 

result is exactly analagous to the result derived for symmetric Cournot models 

by Lambson [5]. 

These results should extend with only minor modifications to more general 

models. For example, more general downward-sloping demand functions which pre-
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serve the boundedness of revenue should pose no problem. The linear specifica

tion of A simplified the exposition in two ways: it allowed an explicit 

solution of ay:/aPiN and it implied that an undercutter would capture the under

cut firm's entire market. (D'Aspremont, Gabszewicz and Thisse [2] pointed out 

that the second property needn't hold if A(•) is a convex function.) Neither of 

these convenient properties is indispensable in proving the theorems, however, 

and extending the results to convex A should be a straightforward exercise • 

• 
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Appendix 

Lemma: If either s, 1, or else s > 1 and C"(oo) < k, then there exists N 

such that for all N >Nall firms are in competition on both sides of their 

markets. 

r r r Proof: Renumber firms so Pj~ PiN for each N and all i. If PjN < k - € for 

for some€> O and all N then all firms will be in competition for all N larger 

than some N. To see that PjN < k - € for all N and some€> O assume otherwise. 

Then there is a subsequence such that for any 6 > 0 and all N exceeding some 

(A.1) r 
k - PjN < 6 

Let rN(6) be the set of firms on both sides of j satisfying lj-il < 6. By (3.4) 

(A.2) 

for i€f(6). By (A.1) and (A.2) 

(A.3) r 
PiN > k - 6 - A(6) 

Now PJ.N < Pr - A(6) will undercut i€f(6) so, by (A.3), if 
iN 

firm j charges 

(A.4) P~ • k - 6 - 2A(6) 
J 

it will undercut all i€fN(6) for N > N0 and be able to service at least an 

interval of length 2o. This contradicts the definition of PjN as follows: 

Given P~ firm j will sell to an interval no greater than Z/N, so since profit 

cannot exceed revenue and no consumer serviced by firm j will buy more than 
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(A.5) 

r r 
Ifs~ 1 then njN(PN) approaches zero for the subsequence (since PjN approaches 

e k). But choose 6 so Pj > C'(O) +~for some~> 0. Then (for N > N6) if firm j 

e e e e 
charges Pj and chooses output qjN so qjN > u for some u > O, C'(qjN) ~ C'(O)+~, 

e and qjN doesn't exceed demand (which is bounded strictly away from zero 

for N > N6 ), then 

(A. 6) [P~ - (C'(O) + ~)Ju 
J 

so njN(P~, P~N) is bounded strictly away from zero for N > N6 • Then (A.5) and 

(A.6) imply that {7rjN(P~,P~N)/njN(P~)} is unbounded for a subsequence, contra-

r e 
dieting the definition of PN. Ifs> 1 and C'(oo) < k choose 6 so Pj > C'(oo). 

Then (for N > N6 ) if firm j charges P~ and satisfies demand, since average cost 

cannot exceed C'(oo) and each serviced consumer within 6 of firm j will buy at 

least 

(A. 7) 

f(P~ + A(6)), 
J 

[P~ - C'(oo)]Nsf(P~ + A(6))26 
J J 

{ e -r r} Then (A.5) and (A.7) imply that njN(Pj, PjN)/njN(PN) is unbounded for a sub-

r sequence, contradicting the optimality of PjN' Q.E.O. 
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