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ABSTRACT

Andersen (1970) considered the problem of inference on random effects
linear models from binary response panel data. He showed that inference is
possible if the disturbances for each panel member are known to be white
noise with the logistic distribution and if the observed explanatorj variables
vary over time. A conditional maximum likelihood estimator consistently
estimates the model parameters up to scale. The present note shows that
inference remains possible if the disturbances for each panel member are known
only to be time—-stationary with unbounded support and if the explanatory
variables vary enough over time. A conditional version of the maximum score
estimator (Manski, 1975, 1985) consistently estimates the model parameters up

to scale.




Andersen(1970) considered the problem of inference on random effects
linear models from binary response panel data. He showed that inference
is possible if the disturbances for each panel member are known to be
white noise with the lcgisiic distribution and if the observed
explanatory yariables véry over time. Nothing need be known about the
distribution of effects. Andersen proved that a conditional maximum
likelihood estimator consistently estimates the model parameters up to
scale. For a review of this and related results, see Chamberlain(1984).

The present note shows that inference remains possible if the
disturbances for each panel member are known only to be time—stationary
with unbounded support and if the explanatory variables vary enough over
time. The note proves that a conditional vérsian of the maximum score
estimator(ﬂansk;,1975,1955) consistently estimates the model parameters
up to scale.

Section 1 sets out assumptions and notation. Section 2 prnQés
identification under the assumptions. Section 3 develops a consistent

estimator.

1.Assumptions

It suffices to consider the case where two observations are available
for each person. Thus, let ((yt,xt,ut;t=0,1),cl be a random vector.
Here, Ye is the scalar response variable in period t, Xy is the

corresponding K-vector of observed explanatory variables, and u, is the

unobserved scalar disturbance. The random vatriable c is the unobserved

time invariant person—-specific effect. The random effects linear model

has the form




t

(1) Y = xtﬁ + c +u 0,1, =

t,

where ﬁeRK is a parameter. Define the binary indicator z, such that

zt=1 if yt20 and zt=0 otherwise. The binary response panel data problem

is to combine observations on (z t;t=0,1) with prior information so as

Tl

to learn about g.
To specify the prior information assumed in this paper, let F denote

the population distribution of [(yt,xt,u 3t=0,1),cl. Let u={uoc,ui1),

t

X=(Xoy4X1), Z=(Z20,21). Let Fc- denote the distribution of c conditional

Ix

on ¥ and let Fu denote the distribution of u conditional on (x,c).

Ixc

Following the literature, we impose no restrictions on Fc!x but do

presume prior infaormation about FLl In particular, we maintain

Ixc”

Assumption 1(Disturbances): (a) F = F , all (x,c).
u, Ixc uo Ixc

{b) The support of F is dense in R*, all (x,c).Hm

uo fxc

Part (a) of Assumption 1 says that u, is stationary, conditional on

t

(x,c). Equivalently, u, is stationary conditional on the identity of

t
the panel member. This restrict?on is critical to our analysis. Part
(b) is a regularity condition. Its purpose is to guarantee that for all
cy the event z,:#zo occurs with positive probability. We could
accomodate disturbances with bounded support if we were to assume that
the support of c is»bounded. Note that Assumption 1 places no
restriction on the form of serial dependence between uo and u,. Nor
does it restrict the manner in which Fulxc may vary with (x,c).

Let Il | be a norm on RK and let B+ = £/l denote the normalized

parameter ve;tor. We shall show in Section 2 that Assumption 1




identifies £¥ provided that the explanatory variables x_ vary

t

sufficiently over time. Let w = xXi1-%0o and let F" denote the

distribution of w. The following condition on F’w will suffice.

Assumption 2(Explanatory Variables): (a) The support of Fw is not

contained in any proper linear subspace of RK.

{b) There exists at least one k€[1,2,3,...,K]1 such that §k¢o and such
that, for almost every value of w = (NI’NZ""’wk—l’wk+1""’“K)’ the
scalar random variable W, has everywhere positive Lebesgue density

conditional on w. Without loss nf.generality, let k=K.=n

Assumption 2 has the same farm as Manski (1985), Assumption 2. Part (a)
is the familiar full-rank condition. It prevents a global failure of
identification. If Assumption 1 were sirengthened to be the white noise
logistic assumption of Andersen, Part (a) would suffice to identify f¥*.
In our semiparametric setting, Part (a) bounds £% but does not identify
it. Part (b) prevents a local failure of identification.. Part (b) is a
substantive restriction. It implies that wb has everywhere positive
density for all b such that bK#O.

Finally, we need to state the sampling assumption. This is

Assumption 3(Sampling): A sample of N independent realizations are drawn

from F. For each n=1,...,N, (z,  ,x

tn n;t=0,1) is observed.n

t
Actually, the assumption of random sampling from F is much stronger than
necessary. Versions of the consistency result’ of Section 3 can be proved

for sufficiently regular i.n.i.d. and dependent sampling processes.




2. Identification

Let E(z Iix) denote the expectation of the observable binary indicators

conditional on the observable explanatory variables. Assume that

E(zIx) is known for a set of x values

Assumptions 1 and 2 identify p*. The

Lemma 1: Let Assumption 1 hold. Then
X > %xoP 6 E(zi1Ix)
2) X1f = xof & E(zalx)

X1P < %P €& E(zilIx)

Proof: For all (x,c,t), E(z

t
»

Ply.1201Ix,c) = —i,p—c us Ixc"
®

Plyo20ix,c) = _iog-gF“°'xC'

having Fx—prubability one. Then

following Lemma is the key.

> E(zoIx)
= E{zolx)

< E(zolx).n

Ix,c) = P(thOIx,c). In general,

It follows from this and from Assumption 1 that for all c,

>
XiP s Xof & Plyi20ix,c) % Pl{yo20ix,c).

Equivalently, for all c,

v

Xaf Xof & E(zilx,c)

2

< <

The result now follows immediately.

Lemma 1 relates the parameter £ to
(2) as

we > 0 8 Ef(z,—-zolx%)

(2°) we =0 & Ef(zi—-zolx)

we < 0 8 E{zi—-zolx)

E{zolx,c).

2.E.D.

the observable (z,x). Rewriting

A
o



-

we see that Assumption 1 implies the same form of relationship as was
shown in Manski (1985), equation (1) to follow fromra linear median
regfessinn assumption on cross—section data. This makes it natural to
ask whether the present panel data problem has a median regression
interpretation. In fact it does.

Let M{zy—zolx,Z17¥2z0) denote the médian of zi1—2Zo conditional on x and
on the event z;#zo. I am grateful to Jim Powell for help in showing

that Lemma 1 has the following Corollary.

Corollary: Let Assumption 1 hold. Then

(3) M(zi—zolx,217#20) = sgn(wg).n

Pruof:‘The distribution of z:—-zo conditiunal on x and on the event z:#zo
is Bernoulli with
P(zi-2o=1Ix,21#20) = P(z21=1,20=01x)/P(z1#20o Ix)
P(zi—zo=—11IxX4,21¥20) = P(z21=0,20=11Ix)/P(z3¥z20c Ix).
It follows.that
M{zi—zolx,21#20) = sgnlP(zi1=1,2o=01x)—-P{(z,=0,z0o=11x)1.
But

P(z1=1,z0=01x)

P(=z 1=1 Ix) - P(=z 1=1 ,Zo'—'l 1)

P(z,=0,20=1 Ix)

P{zo=11x) - P{(zi,=1,z0=11x).
Hence,

M(zs—zolx,217¥20) = sgnlP(z,=1Ix)-P(zo=11x)1.
By Lemma 1,

sgnlP{(z,=11Ix)-P(zo=11Ix)]1 = sgn{wp).

@.E.D.




Now consider bGRK, b#f. Lemma 1 distinguishes b from £ if there
exists a set of w values having positive Fw-prubability such that (2°)
does not hold when b is substituted for f.. In this case, we say that £

is identified relative to b. Formally, let

(4) W EwERK= sgn{wb) ¥ sgn{wf)l.

Then £ is identified relative to b if

{3) R(b) = [f dF > O.
W w
b
Clearly the scale of £ is not identified. Under Assumption 2, the

normalized parameter £% is identified. This was shown in Manski (1985),

Lemma 2 and is restated below.

Lemma 2Z2: Let Assumption 2 hold. Then R(b) > O for all bERK such that

b/7iibll # f*.n




J.Consistent Estimation

Our development of a consistent estimator for £# follows closely the
approach yielding the maximum score estimator. The main idea is to find
a function of (z,x,b) whose expectation over (z,x) is maximized uniquely
at £+*. We then propose maximization of the sample analog of this

expectation. Lemma 3 provides the desired function.

Lemma 3: Let Assumptions 1 and 2 hold. Define
{6) H(b) = ELlsgn{wb){z,-zo)1.

Then H(P*) > H(b) for all b_€RK such that b/ibll # £*. %

Proaof: For all bERK,

Hi{g*)-H(b) = E[{Sgn(wﬁ)—sgn(ﬂb)}(21—zo)] = 2!4sgn(wﬁ)E[(zx—zo)lw]de.

"
Given Assumptionhl, Lemma 1 implies that for all W,
sgn{WL)EL(z1—20) IWwl = !E[(z;—zo)lw]1.
Therefore,

H(E*)-H(b) = 2 I‘E[(z;—zc)lw]’dF“ 2 0.
wb

Under Assumptions 1 and 2, E[(z1-zo) Iwl # O for almost all w. It now
follows from Lemma 2 that H(£#*)-H(b) > O whenever b/libil # g%,

2.E.D.

Now consider estimating £+% by maximizing the sample analog of H({*),
namely the sample average function
N .

Elsgn(wnb)(z;n—zon).

1
{(7) H. (b)) = -—
N N n

Observe that the behavior of HN(*) is unaffected by removing




8

P

observations having z:=z.. .Cpmparison of (7) with Manski (1985),
equation (3) shows that the eétimatnr maximizing HN(*) is maximum score
applied to the Dbservatinns having z;#zo.: Thus, we have derived a
conditional maximum score estimator. The conditioning event z,#¥zo is
the same as that used by Andersen to form his conditional maximum
likelihood estimator.

Consistency of the proposed estimator follaows from Lemma 3, from the
fact that HN(*) behaves like H(¥) as the sample size increases, and from
the fact that H(#) is smooth as a function of b. The consistency
theorem stated below imposes Assumptions 1-3 plus the minor requirement
that the parameter space B be bounded away from bK=0' Proof of the

theorem parallels the proof of- Manski (1983), Theorem 1, where

consistency of the maximum score estimator is shown.

Theorem: Let Assumptions 1, 2, and 3 hold. Let there exist a known 1>0
such that iﬁKl/uﬁﬂ 2 1. Define B = [bERK: ibli=1 n !bKIin. Let N->w®,
Then the estimator maximizing the criterion function Hy (*) over B is

strongly consistéat for E*.n

Proof: By construction, B is co%pact and £#€B. Lemma 3 implies that an
B, H{(¥) has its unique maximum at £%. Manski(1985) Lemma 4 shows that
as N-—>®, HN(*) converges to H(*) uniformly on B, almost surely. By
Ménski(l?BS) Lemma S5, H is continuous on B. These properties imply

strong consistency.

&.E.D.
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