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Abstract 
We propose a new method to estimate a repeat-sales house price index. Our unbalanced panel 
method employs an OLS panel regression to estimate the (log) house price as a function of time 
fixed effects and house-specific fixed effects. Comparisons are made across three repeat-sales 
methods using actual data, and using simulated data with both stationary and non-stationary 
relative price innovations. The unbalanced panel method comprehensively utilises all sale 
information on a house rather than splitting sales into distinct pairs. It is the simplest of the 
methods to implement, and possesses superior properties to the other two methods under a 
wide range of data generation processes. 
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1. Introduction 

Availability of a reliable house price index is vital for policy-makers, real estate and 

financial markets participants, and researchers into housing, macroeconomic and regional issues. 

House prices are volatile at both the micro and macro levels, and estimation of an index is 

complicated by the fact that individual houses are sold infrequently and that the composition of 

houses sold varies across time. These factors complicate the process of estimating a house price 

index that represents the “true” path of house prices in a given area over time.   

Several methods have been proposed for producing a house price index. These include 

simple (mean and median) measures, hedonic pricing models, and repeat-sales methods. We 

focus on repeat-sales methods and propose a new method to estimate a repeat-sales index: the 

unbalanced panel method. This method utilises an OLS panel regression of log house price on a 

set of time fixed effects and house-specific fixed effects. It has the advantage over prior methods 

that it utilises all sale information on a house in a comprehensive manner rather than separating 

out distinct pairs of sales as in prior methods.   

We compare the unbalanced panel method with methods proposed by Bailey et al (1963) 

and Case and Shiller (1987). We initially estimate house price indices using all three methods 

using actual repeat-sales data, observing that the estimated indices are very similar to each other; 

they are also similar to the related SPAR index proposed by Bourassa et al (2006). In order to 

rank the alternative repeat-sales methods, we estimate indices using each method based on 

simulated data with three different data generation processes (DGPs): serially uncorrelated, 

mean-reverting and a random walk. The unbalanced panel method is generally superior (i.e. more 

accurate over the whole period and within each period) to the other methods across a range of 

simulated DGPs, except where relative house prices follow a (near) random walk; this result is 

robust to changes in sales numbers and sample length. Furthermore, the unbalanced panel 

method is by far the easiest of the three methods to implement. 

Section 2 of the paper provides a brief survey of prior methods to estimating house price 

indices. Section 3 describes the unbalanced panel method, before we compare the various 

methods in Section 4. Conclusions follow in Section 5.  

2. Prior Methods 

A reliable house price index is required to measure housing market trends. A number of 

methods have been employed to produce such an index. One set of methods uses simple 

summary measures, such as the mean or median house sales price, to formulate an index.  The 
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flaw of this approach is that there is no adjustment made for quality of houses sold; thus the 

measure cannot distinguish whether there has been an actual change in house price level or 

whether the change in observed prices is due to a different mix (quality) of houses sold.  

A second set of methods is based on an hedonic regression equation.  The premise is 

that observed house characteristics can be accurately used to predict the house price. House sale 

prices are regressed on a set of variables describing the characteristics of each house, and on a set 

of time fixed effects. The time fixed effects are used to compile the house price index, while the 

coefficients on the characteristic variables act like shadow prices, indicating the change in house 

price for a marginal change in a characteristic. Major challenges in using the hedonic method 

include specifying the correct functional form for the model, determining the correct set of 

explanatory variables, and obtaining data to accurately represent all relevant characteristics.  

A third approach is to use a repeat-sales method, first proposed by Bailey et al (1963). 

The repeat-sales method uses data on properties that have been sold at least twice. The benefits 

of using a repeat-sales method are that it uses repeat observations of single housing units; thus, it 

controls for house characteristics more accurately than does the hedonic method which relies on 

the quality of measurement of housing characteristics (McMillen and McDonald, 2004). The only 

assumption is that the quality of individual houses remains constant over time (Case and Shiller, 

1987). Reduced sample sizes and selection bias are two potential flaws of this method; the 

repeat-sales method only uses observations of houses that have sold more than once, meaning 

only a proportion of house sales are kept in the sample. 

Bailey et al implement their repeat-sales method by using pooled ordinary least squares 

(OLS) to regress the difference in log house price, between the second and first sale, on a set of 

dummy variables; one for each time period in the sample except the first (base) period.  Each 

dummy variable takes the value zero, excluding the two dummies corresponding to a sale period; 

the second sale period dummy takes value +1, while the dummy corresponding to the first sale 

period takes value -1. If the first sale period coincides with the base period, then there is no 

dummy corresponding to the first sale. The estimated coefficients on the dummy variables can 

be interpreted as the log house price index. Bailey et al estimate the following equation: 

∑
=

+=−
T

t
ttijik DrHPHP

1
)1ln(lnln   (1) 

where HPit is the sale price of house i in period t ; k and j represent the periods in which 

the second and first sale occurred, respectively; rt represents the rate of appreciation in the house 

price in period t ; and Dt is the dummy variable for period t, where Dt = 0 ∀ t ≠ j, t ≠k. 
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Bailey et al assume that the variance of the error term in their model is constant, i.e. 

independent of the time between adjacent sales. Case and Shiller (1987) argue that the variance is 

likely to be related to the length of time between two sales. They suppose that there exists a 

random drift through time of house prices, due to unexplainable differences in the levels of 

maintenance across houses, or random changes in neighbourhood quality. Hence, Case and 

Shiller construct a weighted repeat-sales (WRS) index that accords houses sold after longer 

periods of time less weight in index construction.1

lnHPit = Ct + Hit + Nit          (2)   

 They assume the log price of house i at time t 

is given by: 

where Ct is the log of the city-wide level of house prices at time t; Hit is a random walk 

term that represents the drift in house prices over time (ΔHit has zero mean and constant 

variance σh
2; Hit is uncorrelated with Ct and Nit); and Nit is a sale specific, serially uncorrelated 

random error term, with zero mean and constant variance σN
2 for all i. 

The goal of Case and Shiller was to estimate the movement in C, the city-wide level of 

house prices. The WRS method comprises three stages. The first stage is to estimate the Bailey et 

al regression model of differenced log house prices on the set of time dummy variables. A vector 

of regression residuals is obtained and a regression of the square of these residuals is run on a 

constant and the time interval between sales as the second stage. The constant term of the 

second stage regression is an estimate of 2σN
2, and the slope coefficient is an estimate of σh

2. The 

third stage is a weighted generalized least squares regression of the first stage equation after each 

observation has been divided through by the square root of the fitted values from the second 

stage regression.2

Jansen et al (2008) also implement a WRS model, constructed similarly to that of Case 

and Shiller. As suggested by Abraham and Schaumann (1991), they include a quadratic time term 

into their second stage regression to account for the possibility that the variance of the error 

term may not necessarily increase linearly, but instead decrease as the period between sales 

increases.  

 

An alternative index to both the hedonic and repeat-sales indices, suggested by Bourassa 

et al (2006), is a sale price appraisal ratio (SPAR) index. Like the repeat-sales index, the SPAR 

index is based on matched pairs, but it is not restricted to properties that have sold at least twice. 
                                                 

1 The Case-Shiller method (that underlies the S&P/Case-Shiller Home Price Indexes) forms the basis for the 
housing futures and options contracts on the Chicago Mercantile Exchange.  
2 Goetzmann (1992) proposed an ex-post correction to the Case and Shiller model (adding half the variance in the 
house price growth rate associated with the diffusion of house prices over time) to take account of the log 
transformation downwardly biasing the arithmetic mean. Wang and Zorn (1997) discuss the importance of 
heteroskedasticity in relation to the purposes of index construction. 
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This reduces the sample selection bias and sample size issue from which a repeat-sales method 

may suffer. The SPAR method uses the appraisal values (for property tax purposes) of each 

property to estimate the base period sales prices.  The use of an appraised value, rather than a 

market value, for its base is however a potential drawback of the SPAR method since it relies on 

the quality of the initial appraisal for its accuracy.3

 

 

3. Unbalanced Panel Method 

Each of the existing repeat-sales methods relies on dual sales observations on the same 

house. Frequently, it is the case that over any reasonable data period, some houses will be sold 

more than twice. A focus only on neighbouring sales discards valuable information that can be 

used to better control for house characteristics. For instance, a house that is sold three times is 

treated by existing methods as two separate repeat sales rather than as a set of three sales. An 

unbalanced panel estimation method incorporates all information from extra house sales 

observations in a comprehensive manner.  

Our unbalanced panel method utilises an OLS panel regression of log house price on a 

set of time dummies plus a full set of individual house-specific fixed effects. This method, which 

still requires that each property be sold at least twice, is simpler to compute than the other 

indices since the dummy variables do not have to be formulated. It has the key advantage over 

other repeat-sales methods that, in cases where a house has sold more than twice, each of these 

sales is used in computing the control for the house characteristics (i.e. the house fixed effect). 

Thus our method uses all available house sale information comprehensively when controlling for 

house characteristics, unlike prior methods. We use clustered errors in our estimations, with 

errors clustered by house to account for potential correlation across sale observations for the 

same house. The estimated coefficients on the time dummies give the log house price index 

values.  

The model used to estimate the unbalanced panel is as follows: 

ittiitHP εµα ++=ln          (3) 

where lnHPit is the log of the sale price of house i  in quarter t; αi represents the individual 

house fixed-effect; μt represents the time fixed-effect (used to formulate the log house price 

index); and εit  is a residual. This residual represents the proportional deviation of the price of 

                                                 
3 Quotable Value New Zealand’s national and regional house price indices are calculated using the SPAR method; 
de Vries et al (2009) use the SPAR method to develop a house price index for the Netherlands. 



 5 

house i from the broader region-wide index (constructed from μt) after controlling for the 

average value of the house’s characteristics (αi). We return to the interpretation of εit in the 

concluding section; section 4.2 analyses how different DGPs for εit affect the accuracy of the 

unbalanced panel estimates relative to other repeat-sales indices. 

 

4. Repeat-Sales House Price Index Comparison 

4.1. Actual data 

Initially, we compare the unbalanced panel (UP) method with other methods by 

estimating repeat-sales indices using actual repeat-sales house price data for Waitakere City 

(within the Auckland urban area of New Zealand). Subsequently, we use simulated data to test 

the accuracy of the alternative methods. We choose two methods for calculating a repeat-sales 

house price index to compare with our UP method: the Bailey et al (BMN) method, and the Case 

and Shiller (CS) method. These two methods are described in Section 2. Additionally, we 

compare these indices with the official SPAR index for Waitakere City. The Waitakere City 

repeat-sales data, described in Grimes and Young (2010), is recorded quarterly from 1993q3 to 

2009q3. The three estimated repeat-sales equations and the four house price indices (including 

the official SPAR index) are reported in the Appendix 1 (Tables A1.1 and A1.2, respectively). 

Figure 1 provides a comparison of the four indices, normalised to one in 2009q3.  

The three repeat-sales methods track each other closely; the SPAR index is also very 

similar, albeit with a slightly greater degree of variation from the other measures.4

While the three repeat-sales price indices provide similar results in this case, we cannot 

rank them because we do not know the true underlying DGP. Nor can we tell whether some  

 Thus, the 

method proposed by Borassa et al does appear to provide a close approximation to a repeat-sales 

index. By contrast, as demonstrated in Appendix 2, simple mean and median sale price indices 

provide poor approximations, even after application of smoothing algorithms. 

                                                 
4 The SPAR index is calculated using data on all sales in the city whereas the repeat-sales indices rely on a random 
sample of houses (approximately 500 per quarter); one possible cause of deviation between the SPAR and repeat-
sales measures is different underlying data. 
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Figure 1: Comparison of House Price Indices 

 

repeat-sales methods out-perform others with alternative DGPs. In order to understand how the 

three repeat-sales methods compare with each other in terms of accuracy, the next section uses 

simulated data as a basis for estimating each of the three indices, enabling a ranking of these 

methods against the true data properties. 

 

4.2. Simulated data 

Our approach compares the accuracy of the BMN, CS, and UP methods under different 

DGPs for εit.
5

                                                 
5 The Jansen et al method was also analysed, but its results were generally very similar to the CS method and so are 
not reported. 

 We do so since different time series properties of the residuals may be better 

handled by different repeat-sales methods. Before comparing the methods, a “true” underlying 

index series is generated. Our index values, corresponding to the μt in (3), are chosen so as to 

replicate the average of the repeat-sales indices estimated for the Waitakere City data, but the 

results in no way hinge on these specific μt values; rather, it is the DGPs for εit that are crucial. 

Having set the “true” index in this manner, we generate a set of 10,000 houses for a period of 65 
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quarters. We apply a unique fixed-effect, αi, to each house, which is constant over time, but 

varies across houses. These fixed-effects are uniformly distributed on (-0.1, 0.1) with mean zero.  

Each house has a residual, εit, that can be represented as follows: 

ititit φβεε += −1          (4) 

where εi0 = φi0 and φit ~ N(0, σ2) 

We specifically consider three types of DGP: 

i. β = 0, which implies that lnHPit – μt has serially uncorrelated residuals. 

ii. 0 < β < 1, which implies that lnHPit – μt is mean-reverting (stationary), but auto-

correlated. 

iii. β = 1, which implies that lnHPit – μt follows a random walk. 

For ii, we choose a range of β values, but only present results for β = 0.8 and β = 0.9. 

Values of β < 0.8 produce results that are very similar to β  = 0 and hence are not reported. For a 

given σ2, we then form a house price series for each house according to (3) and (4), with 100 

replications for each house for each of the four values of β.6

The Grimes and Young (2010) repeat-sales data has an average of approximately 3.25 

sales per house over their 65 quarter period. This equates, in any quarter, to a probability of sale 

of 0.05. To simulate this outcome, for each house we generate a series of 65 random numbers 

uniformly distributed on (0, 1) and flag any value that is less than 0.05. The flagged values 

represent the quarters in which a sale is deemed to occur; all other quarters have no sale for that 

house. 

  

We employ each of the three methods to estimate repeat-sales indices using each of the 

100 “observed” series. For a given β and σ2, we therefore obtain 100 estimated indices for each 

method. To compare the accuracy of each method, we compute two measures; one based on the 

difference between the estimated indices and the true aggregate index values across the whole 

time period, and one that analyses the coefficient of variation (COV) of each method for each 

individual quarter.  

To calculate the first measure, denote the true index value for quarter t as *
tI ; the 

estimated index value using estimation method k (k∈BMN, CS, UP) for sample j (j=1, …, 100) 

as jk
tI ; and the difference between them as jk

tD (= jk
tI - *

tI ). This measure concentrates on 

accuracy of the index over all observations, using the standard error of each difference series. 
                                                 

6 Thus house i has 100 “observed” series for each of β = 0, β = 0.8, β = 0.9, and β = 1, for each given σ2. 



 8 

Denote the standard error of difference series jk
tD  (over t=1, …, T) as jk

seD . We take the mean 

of jk
seD  over j=1, …, 100, denoted k

mseD ; a low value for k
mseD  indicates that the index 

construction method on average closely replicates the true index over the full sample period.  

Our second measure, k
tCOV , is defined as the ratio of the standard error across the 100 

estimated indices for method k in quarter t to *
tI . Smaller values of k

tCOV indicate smaller 

dispersion around the true index in quarter t for estimation method k. In addition, analysing 
k

tCOV over t enables us to observe how the dispersion of estimates changes for each k over 

time. 

Table 1 presents the results for k
mseD  for each method k, using two values for σ2: 0.01 

and 0.05. For β = 0, σ2 = 0.05 implies that approximately one-third of house sales deviate by at 

least 5% from their average value relative to the region-wide index, which seems intuitively 

broadly plausible. For β = 1, σ2 = 0.05 implies that one-third of relative house values change 

permanently by at least 5% per quarter, which intuitively appears to represent a considerable 

over-estimate of relative house price variability over time. In interpreting our results for β = 1, 

we therefore consider that the σ2 = 0.01 results are more realistic than those using σ2 = 0.05.    

The results for the simulation described above, which we denote as “Case 1”, are found 

in Panel A of Table 1. We observe that as σ2 increases, k
mseD increases for all methods. This result 

is expected, given that σ2 represents the variance of the innovation, φit. Also, as expected, when β 

increases from 0 to 1, k
mseD increases for all k and σ2

. 

A key result is that for β less than approximately 0.9, UP
mseD  is smaller than the other 

methods, implying that the UP method is a better index estimator over all observations for a 

DGP that does not follow a (near) unit root. Once β approaches one (i.e. a random walk), the CS 

method becomes superior. This latter result reflects the benefits of the weighted estimation 

procedures of the CS method in dealing with a unit root process relative to the BMN or UP 

methods. In the presence of a random walk, the UP method is the least accurate of the methods. 

Our second measure produces results consistent with those of our first measure. Figure 2 

depicts the Case 1 COV measures for all three methods when σ2=0.01; the four panels represent 

the four different β values.7 k
mseD As was the case with , the magnitudes of the COV measures 

across all methods increase as the value of β increases. Again, the UP method performs 

                                                 
7 For evidence when σ2=0.05, see Appendix 3. 
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Table 1: Repeat-Sales Indices Difference Measure

PANEL A:  Case 1 (Probability of Sale = 0.05; Number of Quarters = 65) 

s  

Method 
σ2 = 0.01 σ2 = 0.05 

β = 0 β = 0.8 β = 0.9 β = 1 β = 0 β = 0.8 β = 0.9 β = 1 

BMN 0.014503 0.020563 0.024982 0.037591 0.033832 0.047931 0.056363 0.080652 

CS 0.014497 0.019928 0.022731 0.026016 0.033837 0.046481 0.051871 0.053466 

UP 0.01265 0.019253 0.024618 0.04449 0.028815 0.043634 0.055824 0.100618 

PANEL B:  Case 2 (Probability of Sale = 0.025; Number of Quarters = 65) 

Method 
σ2 = 0.01 σ2 = 0.05 

β = 0 β = 0.8 β = 0.9 β = 1 β = 0 β = 0.8 β = 0.9 β = 1 

BMN 0.023704 0.034938 0.042959 0.06792 0.053416 0.078357 0.094728 0.155023 

CS 0.023711 0.034219 0.040476 0.043949 0.053425 0.077055 0.089081 0.103823 

UP 0.021452 0.032882 0.042493 0.074533 0.047985 0.074963 0.092841 0.169217 

PANEL C:  Case 3 (Probability of Sale = 0.05; Number of Quarters = 130) 

Method 
σ2 = 0.01 σ2 = 0.05 

β = 0 β = 0.8 β = 0.9 β = 1 β = 0 β = 0.8 β = 0.9 β = 1 

BMN 0.038209 0.054015 0.065574 0.11225 0.081587 0.118012 0.144223 0.242406 

CS 0.038231 0.052987 0.060776 0.070433 0.081582 0.115385 0.131638 0.166585 

UP 0.030946 0.046301 0.061279 0.162448 0.067595 0.101325 0.138193 0.371648 

PANEL D:  Case 4 (Probability of Sale = 0.025; Number of Quarters = 130) 

Method 
σ2 = 0.01 σ2 = 0.05 

β = 0 β = 0.8 β = 0.9 β = 1 β = 0 β = 0.8 β = 0.9 β = 1 

BMN 0.056512 0.080833 0.107652 0.195125 0.12542 0.186416 0.232108 0.456434 

CS 0.056512 0.080214 0.104063 0.119159 0.125428 0.184954 0.224413 0.296341 

UP 0.047686 0.071234 0.096335 0.25342 0.107345 0.163274 0.218331 0.576537 

 

marginally better than the other methods for β values less than approximately 0.9. Once β 

reaches 0.9 (Figure 2 Panel C), the UP method loses its advantage over other methods and, in 

the presence of a random walk (Figure 2 Panel D), becomes the least accurate house price index. 

The CS method becomes the most accurate index when residuals follow a random walk. 

 The temporal behaviour of the COV measures for all methods is stable for stationary 

series. There is some evidence that sample length has an effect when β=1, with all measures 

rising towards the end of the time period, suggesting the deviation of estimates around the mean 

widens as time passes. 

Further to Case 1 above, we test the robustness of the results against changes to two 

parameters: the average probability of sale and the length of the sample period. Firstly, we test a 

lower probability of sale for each house. The probability of sale is halved to 0.025 and we denote 

this as Case 2. Intuitively, fewer sales may decrease any advantage of the UP method over the  
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Figure 2: Case 1 COV Measures (σ2=0.01)8

 

 

 

other two methods since there will be fewer occurrences when more than two sales are observed 

for a single house. Table 1 Panel B contains the k
mseD  measures for each method k, while Figure 

3 depicts the COV measures for Case 2.  

Results for Case 2 parallel those for Case 1. The UP method remains the most accurate 

method for β < 0.9, but surrenders this advantage once the DGP approaches a random walk, 

with the CS method preferable in the presence of a random walk. The effect of reducing sales 

numbers causes each method’s overall accuracy to drop. This result is expected since with a 

probability of sale of 0.025, houses sell, on average, only 1.63 times over the 65 quarters, leading 

to fewer sale observations per quarter from which to estimate an index. 

The second adjustment is to double the sample length from 65 to 130 periods, whilst 

keeping the probability of sale constant at 0.05 (Case 3). Comparable results (Table 1 Panel C 

and Figure 4) are observed for Case 3 to those in the two previous cases; however, we observe a 

greater drop in the overall accuracy of all methods with the longer sample length than for the  

                                                 
8 For Figures 2 – 5, cases 1 – 4 are defined as in Table 1. 
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Figure 3: Case 2 COV Measures (σ2=0.01) 

 

 

Figure 4: Case 3 COV Measures (σ2=0.01) 
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reduction in average sales. With a β of 0.9, the UP method now out-performs the other methods 

(Figure 4), possibly due to the higher average number of sales per house and the UP method’s 

ability to comprehensively consider all sales of a particular house, rather than splitting them into 

distinct pairs. Once the DGP follows a random walk, the CS method is again superior. 

Finally, we alter both parameters by halving the probability of sale and doubling the time 

length to 130 periods (Case 4). Case 4 contains the same average number of sales per house as 

Case 1, but over a longer sample length. According to values in Table 1 Panel D, estimates of all 

methods are substantially less accurate than Case 1. A constant average number of sales per 

house over a longer period of time effectively means there are fewer sales per quarter from 

which to estimate the true house price index, leading to the drop in accuracy.9

 

 Similar to Case 3, 

the COV measures in Figure 5 show that the UP method remains more accurate than the other 

methods with β=0.9, suggesting the UP method is better at estimating a house price index over 

longer time periods provided the DGP is stationary. 

 

Figure 5: Case 4 COV Measures (σ2=0.01) 

                                                 
9 For Case 1, there are approximately 500 sales observations per quarter; comparably, Case 4 only has around 250 
sales observations per quarter. 



 13 

In addition to the two measures used above ( mseD and COVt), the potential for long-term 

bias in the estimated indices (i.e. in the growth of house prices) is an important consideration. 

Calculating the mean growth of the difference series (i.e. the last value less the first) for each 

estimation method indicates virtually zero long-term bias in any of the methods; that is, mean 

growth of all the difference series is approximately zero. 

In-depth analysis of the properties of the different methods finds that the UP method is 

superior to the BMN and CS methods when relative house prices follow a stationary DGP other 

than one displaying a near unit root; the superiority of the UP method is magnified over longer 

sample periods. If relative house price shocks are (near) permanent, i.e. the residuals follow a 

(near) random walk, the CS method is superior due to its inherent ability to deal with 

pronounced serial correlation. 

 

5. Conclusions 

We introduce a new method for calculating a house price index using a repeat-sales 

approach. This new method is much simpler to compute than previously documented methods. 

Aside from being less demanding to compute, it is also more accurate under a wide range of 

conditions.  

Simulations using data from differing DGPs (with relative house price innovations) are 

used to deduce which of the three repeat-sales methods is most accurate. Different DGPs may 

result in some methods being preferred to others in specific cases. This pattern is observed 

across the two prior methods, with the BMN and CS methods producing broadly equivalent 

results when house characteristics are stationary, but with the CS method out-performing BMN 

when innovations to relative prices follow a non-stationary process. This result is expected given 

that the CS method was specifically designed to improve on BMN in such circumstances. 

Comparing the two prior methods to the UP method, we find that the UP method out-

performs the BMN and CS methods for stationary DGPs other than those that exhibit a near 

random walk.. Once residuals approach a random walk, the CS method is most accurate and the 

UP method becomes the least accurate. These results are robust to changes in sales numbers and 

time length. Additionally, we consider the potential for long-term bias in each method and find 

virtually no bias for any of the methods.  

For a given sample of house sales, a researcher cannot know the true time series 

properties of the value of an individual house relative to the regional index (i.e. of εit). It is 
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unlikely that εit actually follows a random walk (β=1) since that would imply that an individual 

house price could rise or fall indefinitely relative to its regional index. However some degree of 

persistence (β>0) is likely; for instance, maintenance of a house may only be carried out 

infrequently. In that case, the rise in value of a particular house may lag behind local area 

increases for a period and then be restored to the broader regional value when the house is again 

fully maintained. Thus some degree of mean reversion in εit is plausible. It is then an empirical 

matter whether the resulting β is greater than or less than 0.9 which we find to be the 

approximate cut-off value favouring the UP relative to the CS method. 

In practice, the three repeat-sales methods produce very similar results to one another 

(and similar results to a SPAR index) when using actual data. Undoubtedly, however, the UP 

method is computationally the simplest of the methods to implement and so represents a new, 

simpler and accurate method for those wishing to estimate a mix-adjusted housing index.  
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Appendix 1: House Price Index Results 

Quarter 

Table A1.1: Regression Results for House Price Indices 
BMN Index CS Index UP Index 

1993q4 0.0612 0.0579 0.0639 
 (0.0156) (0.0160) (0.0145) 

1994q1 0.100 0.0995 0.100 
 (0.0149) (0.0151) (0.0141) 

1994q2 0.143 0.142 0.138 
 (0.0144) (0.0146) (0.0136) 

1994q3 0.223 0.226 0.221 
 (0.0151) (0.0152) (0.0144) 

1994q4 0.242 0.248 0.247 
 (0.0145) (0.0146) (0.0140) 

1995q1 0.282 0.285 0.280 
 (0.0149) (0.0150) (0.0142) 

1995q2 0.294 0.297 0.293 
 (0.0144) (0.0144) (0.0140) 

1995q3 0.371 0.370 0.368 
 (0.0141) (0.0142) (0.0136) 

1995q4 0.452 0.453 0.455 
 (0.0140) (0.0141) (0.0136) 

1996q1 0.560 0.564 0.555 
 (0.0134) (0.0135) (0.0129) 

1996q2 0.585 0.588 0.586 
 (0.0145) (0.0146) (0.0144) 

1996q3 0.548 0.548 0.546 
 (0.0146) (0.0147) (0.0146) 

1996q4 0.574 0.574 0.579 
 (0.0146) (0.0148) (0.0145) 

1997q1 0.628 0.630 0.630 
 (0.0138) (0.0139) (0.0135) 

1997q2 0.644 0.646 0.642 
 (0.0139) (0.0141) (0.0138) 

1997q3 0.635 0.642 0.637 
 (0.0141) (0.0143) (0.0141) 

1997q4 0.649 0.651 0.645 
 (0.0145) (0.0147) (0.0146) 

1998q1 0.589 0.593 0.592 
 (0.0152) (0.0153) (0.0155) 

1998q2 0.551 0.552 0.553 
 (0.0157) (0.0158) (0.0158) 

1998q3 0.530 0.532 0.530 
 (0.0146) (0.0147) (0.0147) 

1998q4 0.548 0.553 0.551 
 (0.0146) (0.0148) (0.0147) 

1999q1 0.569 0.572 0.572 
 (0.0144) (0.0145) (0.0143) 

1999q2 0.563 0.568 0.567 
 (0.0146) (0.0147) (0.0146) 

1999q3 0.575 0.578 0.575 
 (0.0145) (0.0146) (0.0146) 

1999q4 0.568 0.571 0.568 
 (0.0144) (0.0145) (0.0143) 

2000q1 0.559 0.562 0.562 
 (0.0146) (0.0147) (0.0148) 

2000q2 0.519 0.521 0.526 
 (0.0154) (0.0155) (0.0158) 

2000q3 0.506 0.509 0.518 
 (0.0159) (0.0160) (0.0164) 

2000q4 0.536 0.539 0.540 
 (0.0148) (0.0149) (0.0151) 

2001q1 0.528 0.531 0.534 
 (0.0149) (0.0150) (0.0152) 

2001q2 0.510 0.515 0.516 
 (0.0153) (0.0154) (0.0156) 

2001q3 0.519 0.522 0.518 
 (0.0147) (0.0148) (0.0152) 

2001q4 0.526 0.528 0.535 
 (0.0144) (0.0145) (0.0145) 

2002q1 0.586 0.588 0.596 
 (0.0138) (0.0139) (0.0139) 

2002q2 0.592 0.595 0.601 
 (0.0138) (0.0139) (0.0139) 
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2002q3 0.618 0.620 0.629 
 (0.0137) (0.0138) (0.0137) 

2002q4 0.659 0.663 0.663 
 (0.0133) (0.0134) (0.0132) 

2003q1 0.704 0.707 0.711 
 (0.0132) (0.0134) (0.0131) 

2003q2 0.746 0.749 0.750 
 (0.0129) (0.0131) (0.0127) 

2003q3 0.825 0.826 0.832 
 (0.0129) (0.0131) (0.0126) 

2003q4 0.881 0.885 0.889 
 (0.0127) (0.0129) (0.0124) 

2004q1 0.913 0.915 0.922 
 (0.0131) (0.0132) (0.0130) 

2004q2 0.929 0.934 0.935 
 (0.0132) (0.0133) (0.0130) 

2004q3 0.958 0.961 0.959 
 (0.0136) (0.0136) (0.0136) 

2004q4 0.991 0.993 0.994 
 (0.0134) (0.0135) (0.0135) 

2005q1 1.017 1.018 1.024 
 (0.0131) (0.0132) (0.0129) 

2005q2 1.045 1.046 1.058 
 (0.0134) (0.0135) (0.0134) 

2005q3 1.078 1.079 1.086 
 (0.0131) (0.0132) (0.0129) 

2005q4 1.101 1.106 1.112 
 (0.0136) (0.0136) (0.0135) 

2006q1 1.105 1.108 1.112 
 (0.0136) (0.0137) (0.0136) 

2006q2 1.116 1.119 1.131 
 (0.0138) (0.0138) (0.0138) 

2006q3 1.126 1.129 1.135 
 (0.0135) (0.0135) (0.0135) 

2006q4 1.160 1.163 1.169 
 (0.0133) (0.0134) (0.0133) 

2007q1 1.208 1.210 1.229 
 (0.0130) (0.0131) (0.0122) 

2007q2 1.250 1.254 1.261 
 (0.0130) (0.0131) (0.0122) 

2007q3 1.259 1.260 1.275 
 (0.0129) (0.0131) (0.0121) 

2007q4 1.258 1.261 1.271 
 (0.0130) (0.0132) (0.0121) 

2008q1 1.245 1.248 1.255 
 (0.0131) (0.0134) (0.0122) 

2008q2 1.190 1.194 1.195 
 (0.0133) (0.0136) (0.0125) 

2008q3 1.155 1.158 1.158 
 (0.0134) (0.0136) (0.0125) 

2008q4 1.137 1.143 1.139 
 (0.0136) (0.0140) (0.0127) 

2009q1 1.133 1.138 1.145 
 (0.0131) (0.0135) (0.0122) 

2009q2 1.162 1.165 1.169 
 (0.0131) (0.0135) (0.0122) 

2009q3 1.182 1.186 1.197 
 (0.0131) (0.0135) (0.0122) 

Observations 10516 10516 16245 
R-squared 0.893 0.877 0.922 

Number of houses 5729 5729 5729 
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Quarter 

Table A1.2: House Price Indices 

BMN Index CS Index UP Index SPAR Index 

1993q3 0.3067 0.3054 0.3021 0.2990 
1993q4 0.3260 0.3236 0.3220 0.3154 
1994q1 0.3389 0.3374 0.3339 0.3278 
1994q2 0.3538 0.3520 0.3468 0.3470 
1994q3 0.3833 0.3829 0.3768 0.3678 
1994q4 0.3906 0.3914 0.3867 0.3892 
1995q1 0.4066 0.4062 0.3997 0.3950 
1995q2 0.4115 0.4111 0.4049 0.4023 
1995q3 0.4444 0.4422 0.4365 0.4318 
1995q4 0.4819 0.4805 0.4762 0.4689 
1996q1 0.5369 0.5369 0.5262 0.5114 
1996q2 0.5505 0.5499 0.5428 0.5328 
1996q3 0.5305 0.5283 0.5215 0.5293 
1996q4 0.5444 0.5423 0.5390 0.5383 
1997q1 0.5746 0.5735 0.5672 0.5524 
1997q2 0.5839 0.5827 0.5741 0.5603 
1997q3 0.5787 0.5804 0.5712 0.5584 
1997q4 0.5868 0.5857 0.5758 0.5517 
1998q1 0.5527 0.5527 0.5461 0.5424 
1998q2 0.5321 0.5305 0.5252 0.5137 
1998q3 0.5210 0.5200 0.5132 0.5050 
1998q4 0.5305 0.5310 0.5241 0.5210 
1999q1 0.5417 0.5412 0.5353 0.5248 
1999q2 0.5385 0.5390 0.5326 0.5236 
1999q3 0.5450 0.5444 0.5369 0.5280 
1999q4 0.5412 0.5406 0.5331 0.5261 
2000q1 0.5363 0.5358 0.5299 0.5223 
2000q2 0.5153 0.5143 0.5112 0.5047 
2000q3 0.5086 0.5081 0.5071 0.5053 
2000q4 0.5241 0.5236 0.5184 0.5079 
2001q1 0.5200 0.5194 0.5153 0.5101 
2001q2 0.5107 0.5112 0.5061 0.5044 
2001q3 0.5153 0.5148 0.5071 0.5111 
2001q4 0.5189 0.5179 0.5158 0.5268 
2002q1 0.5510 0.5499 0.5483 0.5389 
2002q2 0.5543 0.5538 0.5510 0.5504 
2002q3 0.5689 0.5678 0.5667 0.5581 
2002q4 0.5927 0.5927 0.5863 0.5783 
2003q1 0.6200 0.6194 0.6151 0.6029 
2003q2 0.6466 0.6460 0.6395 0.6166 
2003q3 0.6998 0.6977 0.6942 0.6844 
2003q4 0.7401 0.7401 0.7349 0.7199 
2004q1 0.7641 0.7626 0.7596 0.7503 
2004q2 0.7765 0.7772 0.7695 0.7686 
2004q3 0.7993 0.7985 0.7882 0.7865 
2004q4 0.8261 0.8245 0.8163 0.8029 
2005q1 0.8479 0.8454 0.8411 0.8321 
2005q2 0.8720 0.8694 0.8702 0.8547 
2005q3 0.9012 0.8985 0.8949 0.8817 
2005q4 0.9222 0.9231 0.9185 0.9041 
2006q1 0.9259 0.9250 0.9185 0.9233 
2006q2 0.9361 0.9352 0.9361 0.9245 
2006q3 0.9455 0.9446 0.9399 0.9410 
2006q4 0.9782 0.9773 0.9724 0.9741 
2007q1 1.0263 1.0243 1.0325 1.0216 
2007q2 1.0704 1.0704 1.0661 1.0540 
2007q3 1.0800 1.0768 1.0811 1.0626 
2007q4 1.0790 1.0779 1.0768 1.0677 
2008q1 1.0650 1.0640 1.0597 1.0562 
2008q2 1.0080 1.0080 0.9980 1.0072 
2008q3 0.9734 0.9724 0.9618 0.9748 
2008q4 0.9560 0.9579 0.9436 0.9618 
2009q1 0.9522 0.9531 0.9493 0.9626 
2009q2 0.9802 0.9792 0.9724 0.9705 
2009q3 1.0000 1.0000 1.0000 1.0000 
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Appendix 2: Mean and Median Sales Price Comparison 

We compare the raw mean and median sales prices in Waitakere City, with the CS and 

UP indices over the same time period. The raw series contain significant quarter to quarter 

fluctuation. To smooth the series, HP filters are applied with two different smoothing 

parameters, 1600 (often used to extract cycles from quarterly data) and 100. All series are 

normalised to one in 2009q3 and the trends from 1993q3 to 2009q3 are plotted, along with the 

CS and UP indices. The mean sales price series are seen in Figure A2.1, and the median sales 

price series in Figure A2.2. The mean and median price trends broadly follow the CS and UP 

indices; however, they fluctuate much more on a quarterly basis and are generally lower than the 

CS and UP indices. This latter feature implies that the raw (mean and median) series overstate 

house price appreciation over the full time period. The HP filtered series with smoothing 

parameter 100 are the closer of the two HP filtered series to the CS and UP indices. 

 

 

Figure A2.1: Comparison Plot of Mean Sales Price, CS and UP Indices 

 

.  
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Figure A2.2: Comparison Plot of Median Sales Price to CS and UP Indices 
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Appendix 3: COV Measures for σ2=0.05 

 

Figure A3.1: Case 1 COV Measures 

 

Figure A3.2: Case 2 COV Measures 
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Figure A3.3: Case 3 COV Measures 

 

Figure A3.4: Case 4 COV Measures 
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