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Abstract

We propose a new method to estimate a repeat-sales house price index. Our unbalanced panel
method employs an OLS panel regression to estimate the (log) house price as a function of time
fixed effects and house-specific fixed effects. Comparisons are made across three repeat-sales
methods using actual data, and using simulated data with both stationary and non-stationary
relative price innovations. The unbalanced panel method comprehensively utilises all sale
information on a house rather than splitting sales into distinct pairs. It is the simplest of the
methods to implement, and possesses superior properties to the other two methods under a
wide range of data generation processes.
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1. Introduction

Availability of a reliable house price index is vital for policy-makers, real estate and
financial markets participants, and researchers into housing, macroeconomic and regional issues.
House prices are volatile at both the micro and macro levels, and estimation of an index is
complicated by the fact that individual houses are sold infrequently and that the composition of
houses sold varies across time. These factors complicate the process of estimating a house price

index that represents the “true” path of house prices in a given area over time.

Several methods have been proposed for producing a house price index. These include
simple (mean and median) measures, hedonic pricing models, and repeat-sales methods. We
focus on repeat-sales methods and propose a new method to estimate a repeat-sales index: the
unbalanced panel method. This method utilises an OLS panel regression of log house price on a
set of time fixed effects and house-specific fixed effects. It has the advantage over prior methods
that it utilises all sale information on a house in a comprehensive manner rather than separating

out distinct pairs of sales as in prior methods.

We compare the unbalanced panel method with methods proposed by Bailey et al (1963)
and Case and Shiller (1987). We initially estimate house price indices using all three methods
using actual repeat-sales data, observing that the estimated indices are very similar to each other;
they are also similar to the related SPAR index proposed by Bourassa et al (2006). In order to
rank the alternative repeat-sales methods, we estimate indices using each method based on
simulated data with three different data generation processes (DGPs): serially uncorrelated,
mean-reverting and a random walk. The unbalanced panel method is generally superior (i.e. more
accurate over the whole period and within each period) to the other methods across a range of
simulated DGPs, except where relative house prices follow a (near) random walk; this result is
robust to changes in sales numbers and sample length. Furthermore, the unbalanced panel

method is by far the easiest of the three methods to implement.

Section 2 of the paper provides a brief survey of prior methods to estimating house price
indices. Section 3 describes the unbalanced panel method, before we compare the various

methods in Section 4. Conclusions follow in Section 5.

2. Prior Methods

A reliable house price index is required to measure housing market trends. A number of
methods have been employed to produce such an index. One set of methods uses simple

summary measures, such as the mean or median house sales price, to formulate an index. The



flaw of this approach is that there is no adjustment made for quality of houses sold; thus the
measure cannot distinguish whether there has been an actual change in house price level or

whether the change in observed prices is due to a different mix (quality) of houses sold.

A second set of methods is based on an hedonic regression equation. The premise is
that observed house characteristics can be accurately used to predict the house price. House sale
prices are regressed on a set of variables describing the characteristics of each house, and on a set
of time fixed effects. The time fixed effects are used to compile the house price index, while the
coefficients on the characteristic variables act like shadow prices, indicating the change in house
price for a marginal change in a characteristic. Major challenges in using the hedonic method
include specifying the correct functional form for the model, determining the correct set of

explanatory variables, and obtaining data to accurately represent all relevant characteristics.

A third approach is to use a repeat-sales method, first proposed by Bailey et al (1963).
The repeat-sales method uses data on properties that have been sold at least twice. The benefits
of using a repeat-sales method are that it uses repeat observations of single housing units; thus, it
controls for house characteristics more accurately than does the hedonic method which relies on
the quality of measurement of housing characteristics (McMillen and McDonald, 2004). The only
assumption is that the quality of individual houses remains constant over time (Case and Shiller,
1987). Reduced sample sizes and selection bias are two potential flaws of this method; the
repeat-sales method only uses observations of houses that have sold more than once, meaning

only a proportion of house sales are kept in the sample.

Bailey et al implement their repeat-sales method by using pooled ordinary least squares
(OLS) to regress the difference in log house price, between the second and first sale, on a set of
dummy variables; one for each time period in the sample except the first (base) period. Each
dummy variable takes the value zero, excluding the two dummies corresponding to a sale period,;
the second sale period dummy takes value +1, while the dummy corresponding to the first sale
period takes value -1. If the first sale period coincides with the base period, then there is no
dummy corresponding to the first sale. The estimated coefficients on the dummy variables can

be interpreted as the log house price index. Bailey et al estimate the following equation:
T
INHP, —InHP, = > In(L+r,)D, 1)
t=1

where HP, is the sale price of house 7in period #; £ and j represent the periods in which
the second and first sale occurred, respectively; 7, represents the rate of appreciation in the house

price in petiod #; and D, is the dummy variable for period 7 whete D, = 0V # £, ¢ k.



Bailey et al assume that the variance of the error term in their model is constant, i.e.
independent of the time between adjacent sales. Case and Shiller (1987) argue that the variance is
likely to be related to the length of time between two sales. They suppose that there exists a
random drift through time of house prices, due to unexplainable differences in the levels of
maintenance across houses, or random changes in neighbourhood quality. Hence, Case and
Shiller construct a weighted repeat-sales (WRS) index that accords houses sold after longer
periods of time less weight in index construction.' They assume the log price of house 7 at time #

is given by:
InHP,=C,+ H,+ N, 2

where C, is the log of the city-wide level of house prices at time # H,, is a random walk
term that represents the drift in house prices over time (£H, has zero mean and constant
variance g;’; H, is uncorrelated with C, and N,); and N,, is a sale specific, serially uncorrelated
random error term, with zero mean and constant variance g, for all .

The goal of Case and Shiller was to estimate the movement in C, the city-wide level of
house prices. The WRS method comprises three stages. The first stage is to estimate the Bailey et
al regression model of differenced log house prices on the set of time dummy variables. A vector
of regression residuals is obtained and a regression of the square of these residuals is run on a
constant and the time interval between sales as the second stage. The constant term of the
second stage regression is an estimate of 20,7, and the slope coefficient is an estimate of g,”. The
third stage is a weighted generalized least squares regression of the first stage equation after each
observation has been divided through by the square root of the fitted values from the second

stage regression.’

Jansen et al (2008) also implement a WRS model, constructed similarly to that of Case
and Shiller. As suggested by Abraham and Schaumann (1991), they include a quadratic time term
into their second stage regression to account for the possibility that the variance of the error
term may not necessarily increase linearly, but instead decrease as the period between sales

increases.

An alternative index to both the hedonic and repeat-sales indices, suggested by Bourassa
et al (2000), is a sale price appraisal ratio (SPAR) index. Like the repeat-sales index, the SPAR

index is based on matched pairs, but it is not restricted to properties that have sold at least twice.

! The Case-Shiller method (that undetlies the S&P/Case-Shiller Home Price Indexes) forms the basis for the
housing futures and options contracts on the Chicago Mercantile Exchange.

2 Goetzmann (1992) proposed an ex-post cortection to the Case and Shiller model (adding half the variance in the
house price growth rate associated with the diffusion of house prices over time) to take account of the log
transformation downwardly biasing the arithmetic mean. Wang and Zorn (1997) discuss the importance of
heteroskedasticity in relation to the purposes of index construction.



This reduces the sample selection bias and sample size issue from which a repeat-sales method
may suffer. The SPAR method uses the appraisal values (for property tax purposes) of each
property to estimate the base period sales prices. The use of an appraised value, rather than a
market value, for its base is however a potential drawback of the SPAR method since it relies on

the quality of the initial appraisal for its accuracy.’

3. Unbalanced Panel Method

Each of the existing repeat-sales methods relies on dual sales observations on the same
house. Frequently, it is the case that over any reasonable data period, some houses will be sold
more than twice. A focus only on neighbouring sales discards valuable information that can be
used to better control for house characteristics. For instance, a house that is sold three times is
treated by existing methods as two separate repeat sales rather than as a set of three sales. An
unbalanced panel estimation method incorporates all information from extra house sales

observations in a comprehensive manner.

Our unbalanced panel method utilises an OLS panel regression of log house price on a
set of time dummies plus a full set of individual house-specific fixed effects. This method, which
still requires that each property be sold at least twice, is simpler to compute than the other
indices since the dummy variables do not have to be formulated. It has the key advantage over
other repeat-sales methods that, in cases where a house has sold more than twice, each of these
sales is used in computing the control for the house characteristics (i.e. the house fixed effect).
Thus our method uses all available house sale information comprehensively when controlling for
house characteristics, unlike prior methods. We use clustered errors in our estimations, with
errors clustered by house to account for potential correlation across sale observations for the
same house. The estimated coefficients on the time dummies give the log house price index

values.
The model used to estimate the unbalanced panel is as follows:
INHP, =, + 1, + ¢, €)

where /#HP, is the log of the sale price of house / in quarter # a; represents the individual
house fixed-effect; z, represents the time fixed-effect (used to formulate the log house price

index); and ¢, is a residual. This residual represents the proportional deviation of the price of

} Quotable Value New Zealand’s national and regional house price indices are calculated using the SPAR method;
de Vries et al (2009) use the SPAR method to develop a house price index for the Netherlands.



house 7 from the broader region-wide index (constructed from y,) after controlling for the
average value of the house’s characteristics (). We return to the interpretation of ¢, in the
concluding section; section 4.2 analyses how different DGPs for ¢, affect the accuracy of the

unbalanced panel estimates relative to other repeat-sales indices.

4. Repeat-Sales House Price Index Comparison

4.1. Actual data

Initially, we compare the unbalanced panel (UP) method with other methods by
estimating repeat-sales indices using actual repeat-sales house price data for Waitakere City
(within the Auckland urban area of New Zealand). Subsequently, we use simulated data to test
the accuracy of the alternative methods. We choose two methods for calculating a repeat-sales
house price index to compare with our UP method: the Bailey et al (BMN) method, and the Case
and Shiller (CS) method. These two methods are described in Section 2. Additionally, we
compare these indices with the official SPAR index for Waitakere City. The Waitakere City
repeat-sales data, described in Grimes and Young (2010), is recorded quarterly from 199393 to
2009q3. The three estimated repeat-sales equations and the four house price indices (including
the official SPAR index) are reported in the Appendix 1 (Tables A1.1 and A1.2, respectively).

Figure 1 provides a comparison of the four indices, normalised to one in 2009q3.

The three repeat-sales methods track each other closely; the SPAR index is also very
similar, albeit with a slightly greater degree of variation from the other measures.* Thus, the
method proposed by Borassa et al does appear to provide a close approximation to a repeat-sales
index. By contrast, as demonstrated in Appendix 2, simple mean and median sale price indices

provide poor approximations, even after application of smoothing algorithms.

While the three repeat-sales price indices provide similar results in this case, we cannot

rank them because we do not know the true underlying DGP. Nor can we tell whether some

*The SPAR index is calculated using data on all sales in the city whereas the repeat-sales indices rely on a random
sample of houses (approximately 500 per quarter); one possible cause of deviation between the SPAR and repeat-

sales measures is different underlying data.



Figure 1: Comparison of House Price Indices
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repeat-sales methods out-perform others with alternative DGPs. In order to understand how the
three repeat-sales methods compare with each other in terms of accuracy, the next section uses
simulated data as a basis for estimating each of the three indices, enabling a ranking of these

methods against the true data properties.

4.2. Simulated data

Our approach compares the accuracy of the BMN, CS, and UP methods under different
DGP:s for ¢,.> We do so since different time series properties of the residuals may be better
handled by different repeat-sales methods. Before comparing the methods, a “true” underlying
index series is generated. Our index values, corresponding to the #,in (3), are chosen so as to
replicate the average of the repeat-sales indices estimated for the Waitakere City data, but the
results in no way hinge on these specific y, values; rather, it is the DGPs for ¢, that are crucial.

Having set the “true” index in this manner, we generate a set of 10,000 houses for a period of 65

* The Jansen et al method was also analysed, but its results were generally very similar to the CS method and so are
not reported.



quarters. We apply a unique fixed-effect, a, to each house, which is constant over time, but

> 2

varies across houses. These fixed-effects are uniformly distributed on (-0.1, 0.1) with mean zero.

Each house has a residual, ¢,, that can be represented as follows:

& = P+ Q)
where &, = ¢,and ¢, ~ N(0, o)

We specifically consider three types of DGP:

1. f =0, which implies that InF{P, — #, has serially uncorrelated residuals.

i. 0 <p <1, which implies that InFHP, — x, is mean-reverting (stationary), but auto-

correlated.
ii. f = 7, which implies that InHP, — #, follows a random walk.

For ii, we choose a range of {3 values, but only present results for 3 = 0.8 and 3 = 0.9.
Values of 3 < 0.8 produce results that are very similar to 3 = 0 and hence are not reported. For a
given 0%, we then form a house price series for each house according to (3) and (4), with 100

replications for each house for each of the four values of §.°

The Grimes and Young (2010) repeat-sales data has an average of approximately 3.25
sales per house over their 65 quarter period. This equates, in any quarter, to a probability of sale
of 0.05. To simulate this outcome, for each house we generate a series of 65 random numbers
uniformly distributed on (0, 1) and flag any value that is less than 0.05. The flagged values
represent the quarters in which a sale is deemed to occur; all other quarters have no sale for that

house.

We employ each of the three methods to estimate repeat-sales indices using each of the
100 “observed” series. For a given B and &, we therefore obtain 100 estimated indices for each
method. To compare the accuracy of each method, we compute two measures; one based on the
difference between the estimated indices and the true aggregate index values across the whole
time period, and one that analyses the coefficient of variation (COV) of each method for each

individual quarter.

To calculate the first measure, denote the true index value for quarter 7 as I: ; the

estimated index value using estimation method £ (€ BMN, CS, UP) for sample ; (/=1, ..., 100)
as 1 and the difference between them as DM (= 1-1."). This measure concentrates on

accuracy of the index over all observations, using the standard error of each difference series.

® Thus house 7 has 100 “observed” series for each of =0,8=0.8,8=0.9,and B = 1, for each given &



Denote the standard error of difference series D (over /=1, ..., T) as DJ*. We take the mean

of Dsj: over j=1, ..., 100, denoted an1se ; a low value for anqse indicates that the index

construction method on average closely replicates the true index over the full sample period.

Our second measure, COVtk , is defined as the ratio of the standard error across the 100

estimated indices for method £ in quarter #to |.". Smaller values of COV,"indicate smaller
dispersion around the true index in quarter # for estimation method 4. In addition, analysing
COV,* over 7enables us to observe how the dispersion of estimates changes for each £ over

time.
Table 1 presents the results for DX, for each method £, using two values for 6 0.01

and 0.05. For B = 0, 0 = 0.05 implies that approximately one-third of house sales deviate by at
least 5% from their average value relative to the region-wide index, which seems intuitively
broadly plausible. For = 1, 6° = 0.05 implies that one-third of relative house values change
permanently by at least 5% per quarter, which intuitively appears to represent a considerable
over-estimate of relative house price variability over time. In interpreting our results for 3 =1,

we therefore consider that the 6> = 0.01 results are more realistic than those using 6° = 0.05.

The results for the simulation described above, which we denote as “Case 17, are found

in Panel A of Table 1. We observe that as 6” increases, D, increases for all methods. This result

is expected, given that 6° represents the variance of the innovation, @, Also, as expected, when B

. K .
increases from 0 to 1, Dy, increases for all £and 0°

A key result is that for B less than approximately 0.9, Dy is smaller than the other

methods, implying that the UP method is a better index estimator over all observations for a
DGP that does not follow a (near) unit root. Once 3 approaches one (i.e. a random walk), the CS
method becomes superior. This latter result reflects the benefits of the weighted estimation
procedures of the CS method in dealing with a unit root process relative to the BMN or UP

methods. In the presence of a random walk, the UP method is the least accurate of the methods.

Our second measure produces results consistent with those of our first measure. Figure 2

depicts the Case 1 COV measures for all three methods when 6°=0.01; the four panels represent

k

the four different 3 values.” As was the case with D\, ,

the magnitudes of the COV measures

across all methods increase as the value of  increases. Again, the UP method performs

7 For evidence when 02=0.05, see Appendix 3.



Table 1: Repeat-Sales Indices Difference Measures

PANEL A: Case 1 (Probability of Sale = 0.05; Number of Quarters = 65)

@ = 0.01 @ =0.05
B=0 B=08 | £=09 B=1 B=0 B=08 | =09 | g=1
BMN | 0014503 | 0.020563 | 0.024982 | 0.037591 | 0.033832 | 0.047931 | 0.056363 | 0.080652
cs | 0014497 | 0019928 | 0.022731 | 0.026016 | 0.033837 | 0.046481 | 0.051871 | 0.053466
UP 001265 | 0.019253 | 0.024618 | 0.04449 | 0.028815 | 0.043634 | 0.055824 | 0.100618

Method

PANEL B: Case 2 (Probability of Sale = 0.025; Number of Quarters = 65)

62 =10.01 o2 =0.05

Method
g=0 g=08 | g=09 B=1 g=0 g=08 | g=09 B=1

BMN 0.023704 | 0.034938 | 0.042959 0.06792 | 0.053416 | 0.078357 | 0.094728 | 0.155023
cs 0.023711 | 0.034219 | 0.040476 | 0.043949 | 0.053425 | 0.077055 | 0.089081 | 0.103823
up 0.021452 | 0.032882 | 0.042493 | 0.074533 | 0.047985 | 0.074963 | 0.092841 | 0.169217

PANEL C: Case 3 (Probability of Sale = 0.05; Number of Quarters = 130)

02 =0.01 o2 =0.05

B=0 =038 =09 g=1 B=0 =038 =09 g=1

BMN 0.038209 | 0.054015 | 0.065574 | 0.11225 0.081587 | 0.118012 | 0.144223 | 0.242406
cs 0.038231 | 0.052987 | 0.060776 | 0.070433 | 0.081582 | 0.115385 | 0.131638 | 0.166585
up 0.030946 | 0.046301 | 0.061279 | 0.162448 | 0.067595 | 0.101325 | 0.138193 | 0.371648

PANEL D: Case 4 (Probability of Sale = 0.025; Number of Quarters = 130)

02 =0.01 o2 =0.05

B=0 =038 =09 g=1 B=0 =038 =09 =1

BMN 0.056512 | 0.080833 | 0.107652 [ 0.195125 0.12542 | 0.186416 | 0.232108 | 0.456434
cs 0.056512 | 0.080214 | 0.104063 [ 0.119159 | 0.125428 | 0.184954 | 0.224413 | 0.296341
up 0.047686 | 0.071234 | 0.096335 0.25342 | 0.107345 | 0.163274 | 0.218331 | 0.576537

Method

Method

marginally better than the other methods for § values less than approximately 0.9. Once B3
reaches 0.9 (Figure 2 Panel C), the UP method loses its advantage over other methods and, in
the presence of a random walk (Figure 2 Panel D), becomes the least accurate house price index.

The CS method becomes the most accurate index when residuals follow a random walk.

The temporal behaviour of the COV measures for all methods is stable for stationary
series. There is some evidence that sample length has an effect when =1, with all measures
rising towards the end of the time period, suggesting the deviation of estimates around the mean

widens as time passes.

Further to Case 1 above, we test the robustness of the results against changes to two
parameters: the average probability of sale and the length of the sample period. Firstly, we test a
lower probability of sale for each house. The probability of sale is halved to 0.025 and we denote

this as Case 2. Intuitively, fewer sales may decrease any advantage of the UP method over the



Figure 2: Case 1 COV Measures (¢°=0.01)%
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other two methods since there will be fewer occurrences when more than two sales are observed

for a single house. Table 1 Panel B contains the DY

e Measures for each method £, while Figure

3 depicts the COV measures for Case 2.

Results for Case 2 parallel those for Case 1. The UP method remains the most accurate
method for B < 0.9, but surrenders this advantage once the DGP approaches a random walk,
with the CS method preferable in the presence of a random walk. The effect of reducing sales
numbers causes each method’s overall accuracy to drop. This result is expected since with a
probability of sale of 0.025, houses sell, on average, only 1.63 times over the 65 quarters, leading

to fewer sale observations per quarter from which to estimate an index.

The second adjustment is to double the sample length from 65 to 130 periods, whilst
keeping the probability of sale constant at 0.05 (Case 3). Comparable results (Table 1 Panel C
and Figure 4) are observed for Case 3 to those in the two previous cases; however, we observe a

greater drop in the overall accuracy of all methods with the longer sample length than for the

® For Figures 2 — 5, cases 1 — 4 are defined as in Table 1.
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Figure 3: Case 2 COV Measures (°=0.01)
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reduction in average sales. With a § of 0.9, the UP method now out-performs the other methods
(Figure 4), possibly due to the higher average number of sales per house and the UP method’s
ability to comprehensively consider all sales of a particular house, rather than splitting them into

distinct pairs. Once the DGP follows a random walk, the CS method is again superior.

Finally, we alter both parameters by halving the probability of sale and doubling the time
length to 130 periods (Case 4). Case 4 contains the same average number of sales per house as
Case 1, but over a longer sample length. According to values in Table 1 Panel D, estimates of all
methods are substantially less accurate than Case 1. A constant average number of sales per
house over a longer period of time effectively means there are fewer sales per quarter from
which to estimate the true house price index, leading to the drop in accuracy.” Similar to Case 3,
the COV measures in Figure 5 show that the UP method remains more accurate than the other
methods with 3=0.9, suggesting the UP method is better at estimating a house price index over

longer time periods provided the DGP is stationary.

Figure 5: Case 4 COV Measures (¢°=0.01)
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® For Case 1, there are approximately 500 sales observations per quarter; comparably, Case 4 only has around 250

sales observations per quarter.

12



In addition to the two measures used above (D, and CO1”), the potential for long-term

bias in the estimated indices (i.e. in the growth of house prices) is an important consideration.
Calculating the mean growth of the difference series (i.e. the last value less the first) for each
estimation method indicates virtually zero long-term bias in any of the methods; that is, mean

growth of all the difference series is approximately zero.

In-depth analysis of the properties of the different methods finds that the UP method is
superior to the BMN and CS methods when relative house prices follow a stationary DGP other
than one displaying a near unit root; the superiority of the UP method is magnified over longer
sample periods. If relative house price shocks are (near) permanent, i.e. the residuals follow a
(near) random walk, the CS method is superior due to its inherent ability to deal with

pronounced serial correlation.

5. Conclusions

We introduce a new method for calculating a house price index using a repeat-sales
approach. This new method is much simpler to compute than previously documented methods.
Aside from being less demanding to compute, it is also more accurate under a wide range of

condjitions.

Simulations using data from differing DGPs (with relative house price innovations) are
used to deduce which of the three repeat-sales methods is most accurate. Different DGPs may
result in some methods being preferred to others in specific cases. This pattern is observed
across the two prior methods, with the BMN and CS methods producing broadly equivalent
results when house characteristics are stationary, but with the CS method out-performing BMN
when innovations to relative prices follow a non-stationary process. This result is expected given

that the CS method was specifically designed to improve on BMN in such circumstances.

Comparing the two prior methods to the UP method, we find that the UP method out-
performs the BMN and CS methods for stationary DGPs other than those that exhibit a near
random walk.. Once residuals approach a random walk, the CS method is most accurate and the
UP method becomes the least accurate. These results are robust to changes in sales numbers and
time length. Additionally, we consider the potential for long-term bias in each method and find

virtually no bias for any of the methods.

For a given sample of house sales, a researcher cannot know the true time series

properties of the value of an individual house relative to the regional index (i.e. of ¢,). It is

13



unlikely that ¢, actually follows a random walk (8=1) since that would imply that an individual

house price could rise or fall indefinitely relative to its regional index. However some degree of

persistence (3>0) is likely; for instance, maintenance of a house may only be carried out

infrequently. In that case, the rise in value of a particular house may lag behind local area

increases for a period and then be restored to the broader regional value when the house is again

fully maintained. Thus some degree of mean reversion in ¢, is plausible. It is then an empirical
matter whether the resulting $ is greater than or less than 0.9 which we find to be the

approximate cut-off value favouring the UP relative to the CS method.

In practice, the three repeat-sales methods produce very similar results to one another
(and similar results to a SPAR index) when using actual data. Undoubtedly, however, the UP
method is computationally the simplest of the methods to implement and so represents a new,

simpler and accurate method for those wishing to estimate a mix-adjusted housing index.
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Appendix 1: House Price Index Results

Table Al.1: Regression Results for House Price Indices

Quarter BMN Index CS Index UP Index
199344 0.0612 0.0579 0.0639
(0.0156) (0.0160) (0.0145)
199441 0.100 0.0995 0.100
(0.0149) (0.0151) (0.0141)
199442 0.143 0.142 0.138
(0.0144) (0.01406) (0.0136)
199493 0.223 0.226 0.221
(0.0151) (0.0152) (0.0144)
199494 0.242 0.248 0.247
(0.0145) (0.01406) (0.0140)
19951 0.282 0.285 0.280
(0.0149) (0.0150) (0.0142)
199592 0.294 0.297 0.293
(0.0144) (0.0144) (0.0140)
199593 0.371 0.370 0.368
(0.0141) (0.0142) (0.0136)
1995g4 0.452 0.453 0.455
(0.0140) (0.0141) (0.0136)
199641 0.560 0.564 0.555
(0.0134) (0.0135) (0.0129)
199642 0.585 0.588 0.586
(0.0145) (0.01406) (0.0144)
199643 0.548 0.548 0.546
(0.01406) (0.0147) (0.01406)
199644 0.574 0.574 0.579
(0.0146) (0.0148) (0.0145)
199741 0.628 0.630 0.630
(0.0138) (0.0139) (0.0135)
199742 0.644 0.646 0.642
(0.0139) (0.0141) (0.0138)
199793 0.635 0.642 0.637
(0.0141) (0.0143) (0.0141)
1997q4 0.649 0.651 0.645
(0.0145) (0.0147) (0.01406)
199841 0.589 0.593 0.592
(0.0152) (0.0153) (0.0155)
199892 0.551 0.552 0.553
(0.0157) (0.0158) (0.0158)
199893 0.530 0.532 0.530
(0.01406) (0.0147) (0.0147)
199894 0.548 0.553 0.551
(0.01406) (0.0148) (0.0147)
199941 0.569 0.572 0.572
(0.0144) (0.0145) (0.0143)
199942 0.563 0.568 0.567
(0.0146) (0.0147) (0.01406)
199943 0.575 0.578 0.575
(0.0145) (0.01406) (0.01406)
199944 0.568 0.571 0.568
(0.0144) (0.0145) (0.0143)
2000g1 0.559 0.562 0.562
(0.01406) (0.0147) (0.0148)
2000q2 0.519 0.521 0.526
(0.0154) (0.0155) (0.0158)
200043 0.506 0.509 0.518
(0.0159) (0.0160) (0.0164)
200044 0.536 0.539 0.540
(0.0148) (0.0149) (0.0151)
200141 0.528 0.531 0.534
(0.0149) (0.0150) (0.0152)
200142 0.510 0.515 0.516
(0.0153) (0.0154) (0.0156)
200143 0.519 0.522 0.518
(0.0147) (0.0148) (0.0152)
200144 0.526 0.528 0.535
(0.0144) (0.0145) (0.0145)
200291 0.586 0.588 0.596
(0.0138) (0.0139) (0.0139)
2002492 0.592 0.595 0.601
(0.0138) (0.0139) (0.0139)
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200243 0.618 0.620 0.629
(0.0137) (0.0138) (0.0137)

200244 0.659 0.663 0.663
(0.0133) (0.0134) (0.0132)

200341 0.704 0.707 0.711
(0.0132) (0.0134) (0.0131)

200342 0.746 0.749 0.750
(0.0129) (0.0131) (0.0127)

200343 0.825 0.826 0.832
(0.0129) (0.0131) (0.0126)

200344 0.881 0.885 0.889
(0.0127) (0.0129) (0.0124)

200441 0.913 0.915 0.922
(0.0131) (0.0132) (0.0130)

200442 0.929 0.934 0.935
(0.0132) (0.0133) (0.0130)

200443 0.958 0.961 0.959
(0.0136) (0.01306) (0.01306)

200444 0.991 0.993 0.994
(0.0134) (0.0135) (0.0135)

200541 1.017 1.018 1.024
(0.0131) (0.0132) (0.0129)

200542 1.045 1.046 1.058
(0.0134) (0.0135) (0.0134)

200543 1.078 1.079 1.086
(0.0131) (0.0132) (0.0129)

200544 1.101 1.106 1.112
(0.0136) (0.0136) (0.0135)

200641 1.105 1.108 1.112
(0.0136) (0.0137) (0.0136)

200642 1.116 1.119 1.131
(0.0138) (0.0138) (0.0138)

200643 1.126 1.129 1.135
(0.0135) (0.0135) (0.0135)

200644 1.160 1.163 1.169
(0.0133) (0.0134) (0.0133)

200741 1.208 1.210 1.229
(0.0130) (0.0131) (0.0122)

200742 1.250 1.254 1.261
(0.0130) (0.0131) (0.0122)

200743 1.259 1.260 1.275
(0.0129) (0.0131) (0.0121)

200744 1.258 1.261 1.271
(0.0130) (0.0132) (0.0121)

200841 1.245 1.248 1.255
(0.0131) (0.0134) (0.0122)

200842 1.190 1.194 1.195
(0.0133) (0.0136) (0.0125)

200843 1.155 1.158 1.158
(0.0134) (0.01306) (0.0125)

200844 1.137 1.143 1.139
(0.0136) (0.0140) (0.0127)

200941 1.133 1.138 1.145
(0.0131) (0.0135) (0.0122)

200942 1.162 1.165 1.169
(0.0131) (0.0135) (0.0122)

200943 1.182 1.186 1.197
(0.0131) (0.0135) (0.0122)

Observations 10516 10516 16245

R-squared 0.893 0.877 0.922

Number of houses 5729 5729 5729
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Table Al.2: House Price Indices

Quarter BMN Index CS Index UP Index SPAR Index
199343 0.3067 0.3054 0.3021 0.2990
199344 0.3260 0.3236 0.3220 0.3154
199441 0.3389 0.3374 0.3339 0.3278
199442 0.3538 0.3520 0.3468 0.3470
199443 0.3833 0.3829 0.3768 0.3678
199444 0.3906 0.3914 0.3867 0.3892
199541 0.4066 0.4062 0.3997 0.3950
199542 0.4115 0.4111 0.4049 0.4023
199543 0.4444 0.4422 0.4365 0.4318
199544 0.4819 0.4805 0.4762 0.4689
199641 0.5369 0.5369 0.5262 0.5114
199642 0.5505 0.5499 0.5428 0.5328
199643 0.5305 0.5283 0.5215 0.5293
199644 0.5444 0.5423 0.5390 0.5383
199741 0.5746 0.5735 0.5672 0.5524
199742 0.5839 0.5827 0.5741 0.5603
199743 0.5787 0.5804 0.5712 0.5584
199744 0.5868 0.5857 0.5758 0.5517
199841 0.5527 0.5527 0.5461 0.5424
199842 0.5321 0.5305 0.5252 0.5137
199843 0.5210 0.5200 0.5132 0.5050
199844 0.5305 0.5310 0.5241 0.5210
199941 0.5417 0.5412 0.5353 0.5248
199942 0.5385 0.5390 0.5326 0.5236
199943 0.5450 0.5444 0.5369 0.5280
199944 0.5412 0.5406 0.5331 0.5261
200041 0.5363 0.5358 0.5299 0.5223
2000g2 0.5153 0.5143 0.5112 0.5047
200043 0.5086 0.5081 0.5071 0.5053
200044 0.5241 0.5236 0.5184 0.5079
200141 0.5200 0.5194 0.5153 0.5101
200142 0.5107 0.5112 0.5061 0.5044
200143 0.5153 0.5148 0.5071 0.5111
200144 0.5189 0.5179 0.5158 0.5268
2002q1 0.5510 0.5499 0.5483 0.5389
200292 0.5543 0.5538 0.5510 0.5504
200293 0.5689 0.5678 0.5667 0.5581
2002q4 0.5927 0.5927 0.5863 0.5783
200341 0.6200 0.6194 0.6151 0.6029
200342 0.6466 0.6460 0.6395 0.6166
200343 0.6998 0.6977 0.6942 0.6844
2003¢4 0.7401 0.7401 0.7349 0.7199
200441 0.7641 0.7626 0.7596 0.7503
200442 0.7765 0.7772 0.7695 0.7686
200443 0.7993 0.7985 0.7882 0.7865
200494 0.8261 0.8245 0.8163 0.8029
2005¢1 0.8479 0.8454 0.8411 0.8321
2005492 0.8720 0.8694 0.8702 0.8547
200593 0.9012 0.8985 0.8949 0.8817
2005¢4 0.9222 0.9231 0.9185 0.9041
200641 0.9259 0.9250 0.9185 0.9233
200642 0.9361 0.9352 0.9361 0.9245
2006493 0.9455 0.9446 0.9399 0.9410
200644 0.9782 0.9773 0.9724 0.9741
200741 1.0263 1.0243 1.0325 1.0216
200792 1.0704 1.0704 1.0661 1.0540
200793 1.0800 1.0768 1.0811 1.0626
200794 1.0790 1.0779 1.0768 1.0677
200841 1.0650 1.0640 1.0597 1.0562
200842 1.0080 1.0080 0.9980 1.0072
200893 0.9734 0.9724 0.9618 0.9748
200844 0.9560 0.9579 0.9436 0.9618
200941 0.9522 0.9531 0.9493 0.9626
200942 0.9802 0.9792 0.9724 0.9705
200943 1.0000 1.0000 1.0000 1.0000
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Appendix 2: Mean and Median Sales Price Comparison

We compare the raw mean and median sales prices in Waitakere City, with the CS and
UP indices over the same time period. The raw series contain significant quarter to quarter
fluctuation. To smooth the series, HP filters are applied with two different smoothing
parameters, 1600 (often used to extract cycles from quarterly data) and 100. All series are
normalised to one in 2009q3 and the trends from 1993q3 to 20093 are plotted, along with the
CS and UP indices. The mean sales price series are seen in Figure A2.1, and the median sales
price series in Figure A2.2. The mean and median price trends broadly follow the CS and UP
indices; however, they fluctuate much more on a quarterly basis and are generally lower than the
CS and UP indices. This latter feature implies that the raw (mean and median) series overstate
house price appreciation over the full time period. The HP filtered series with smoothing

parameter 100 are the closer of the two HP filtered series to the CS and UP indices.

Figure A2.1: Compatrison Plot of Mean Sales Price, CS and UP Indices
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Figure A2.2: Comparison Plot of Median Sales Price to CS and UP Indices
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Appendix 3: COV Measures for 6°=0.05

COEFFICIENT OF VARIATION (COV)

COEFFICIENT OF VARIATION (COV)

Figure A3.1: Case 1 COV Measures
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Figure A3.2: Case 2 COV Measures

Panel A:p=0

012 7
010
008
006
0.04 —
0.02 5

Panel B: p=0.8

012 7
010 —
008
006 4
0.04 —
002 =

Panel C: p=0.9

012 4
010 —
008

0.08 P o o I U ¥ o, W R g

0.04
Panel D: B =1

0oz -
012 W
010 —
0o — - P P
006 — -

0.04 —
0.0z =

0 5 10 15 20 25 an 35 40 45 50 55 60 65

QUARTER
BN cs === P =

21



COEFFICIENT OF VARIATION (COV)
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Figure A3.3: Case 3 COV Measures
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Figure A3.4: Case 4 COV Measures
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