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ABSTRACT

Brock, William A., "Distinguishing Random and Deterministic Systems"”

This paper discusses tests on time series for the presence of low
dimensional deterministic chaos. Empirical applications on U.S. business
cycle data are reviewed. Two tasks are necessary to test a time series
for (low dimensional) deterministic chaos: (1) dimension must be calculated
and shown to be low relative to comparable (psuedo) random numbers;

(2) Lyapunov exponents and other measures of local instability must be
calculated and show local instability relative to a useful standard. The
evidence for low dimensional deterministic chaos in U.S. postwar II GNP

data is weak (English). Brock: University of Wisconsin, Madison, Wisconsin.

Journal of Economic Literature Classification Numbers: 023, 211, 213,




DISTINGUISHING RANDOM AND DETERMINISTIC SYSTEMS

by

W. A. Brock

1. Introduction

Recently there has been a lot of interest in nonlinear deterministic eco-
nomic models that generate highly irregular trajectories (for example,
Benhabib and Day [1983], Dana and Malgrange [1986], Grandmont [1983], Day
[1982], Stutzer [1980], Day and Shafer [1983], Deneckere and Pelikan [1984],
Boldrin and Montrucchio [1985].) Intense exploration of low dimensional deter-
ministic dynamical systems models has been going on in physics and chemistry,
Swinney [1983], ecology and biology, May [1976], population dynamics Brillinger
et al [1980] and so on.

The literature cited above relies heavily on mathematical literature on
"chaos" and nonlinear dynamics. See Collet and Eckmann [1980], Guckenheimer
and Holmes [1983] and Grandmont's introduction to this volume for overviews
of the relevant mathematical literature and economic literature respectively.

The main reason for this recent explosion of interest in nonlinear dyna-
mics by the applied sciences is that the trajectories generated by some nonli-
near difference equations look completely random to the naked eye. A
particularly dramatic example was given by Sakai and Tokumaru [1980]. They

show that most trajectories of the difference equation x = F(xt), x given

t+1

where

(1) F(x) = x/a, xe[0,a], F(x) = (1-x)/(1-a), xe[a,l], 0 <a <1

generate the same autocorrelation coefficients as the first-order AR process



t+1 t+1? {“t}

Bunow and Weiss [1979] present chaotic first order difference equations that
generate spectra indistinguishable from that generated by a sequence of 1.1i.d.
random variables,

Brock and Chamberlain [1984] show that given any spectral measure G there
is a deterministic overlapping generations economy whose equilibrium
trajectory generates an empirical spectrum that approximates G, Hence linear
time series methods (spectral analysis and autocovariance functions) may not
be able to observationally distinguish between deterministic and random
systems., We come to the subject of this article.

The subject of this article is to discuss tests that are potentially
capable of distinguishing between certainty and uncertainty. We will argue
that such tests can be usefully applied to economic data.

This paper 1s organized as follows. Section 1 contains the introduction.
The second section gives tests for deterministic chaos that can be applied to
a time series of data. Section 3 reports applications of the tests to postwar
U.S. business cycle data and to the Wolfer sunspot series. 1In Sections 4, 5 we
attempt to relate and integrate the "new methods"™ of data analysis discussed
here with received practice in economics. It is a "first cut” and should be
treated as such., Section 6 is a short summary. Finally an expanded version

of this paper is available in Brock [1985].

2. Tests for Chaos

In order to demonstrate that an apparently random time series {at} is
actually deterministic chaos the researcher must show (1) the dimension is low

and (2) there is a positive Lyapunov exponent. To explain we need




Definition 2.1 (Takens [1983]). The time series of real numbers {at}eo )
t:

has a smoothly deterministic explanation if there exists a system (h,F,xo)

such that h: R® + R, F: R™ > R™ are smooth and

(2.1) a, = h(xt), x, = F(xt-l)’ t=1,2,...3 x  glven.

t

There is an analogue of this definition for continuous time systems but, for
space reasons, we concentrate on discrete time systems in this paper. The

following definition will be needed

Definition 2.2: An attractor A of the deterministic dynamical system F is a

compact set with a neighborhood U such that for almost every (in the sense
of Lebesque measure on Rn) initial condition xosU we have xt(xo) + A, t > o,
That is the limit set of {xt(xo)}:=1 is the attractor A. The basin of
attraction of an attractor 1is the closure of the set of initial conditions
whose trajectories approach the attractor as time tends to + ». A chaotic
attractor 1is one for which typical orbits on the attractor locally spread
apart exponentially. To put it another way typical orbits on the attractor

have a positive Lyapunov exponent.

Definition 2.3 (Guckenheimer and Holmes [1983, pp. 283-284]). Let F: R™ » R"

define a discrete dynamical system. Fix stn. Suppose that there are subspa-

(1) - ,(2) (n)
M=) N A

My > M, Peee My with the properties that

ces V in the tangent space at Fi(x) and numbers

(1
1

(1)

a) DF(V 141

) =V

b) dim v§3)= n+1-




c) 1im (1/N) gn ||D FN(V)II = u, for all veV(j) - V(j+l).
Nooo X h| o o
Then the u, are called the Lyapunov exponents of F. Lyapunov exponents are a

3

generalization to general attractors of eigenvalues of pﬁf at a fixed point X.

For later use we need the Oseledec multiplicative ergodic theorem.

Theorem 2.1: (Oseledec [1968], Guckenheimer and Holmes [1983, p. 284],
Benettin et al [1976]). Let F be C1 and let DF be Holder continuous for some
exponent 6. Let F and its attractor A possess an ergodic invariant
(Guckenheimer and Holmes [1983, p. 280]) measure p. Then there is a p-
measurable set Al € A such that u(Al) = p(A) such that for all x e A

Lyapunov exponents exist.

1’

1)

Remark: Since dim V( = ntl-1 = n therefore, as pointed out by Bennettin
et. al [1976, p. 2339], if one chooses the vector v in (c) "at random”

one may expect to find u, = Hye

]

Example 2.1: The tent maps (l.1) have as invariant measure p(dx) = j(x)dx,

j(x) =1, xe[0,1]. The logistic map Xinp = 4xt(1-xt) has invariant measure

1
p(dx) = j(x)dx, j(x) = 1/(w(x(l—x))LQ). The largest Lyapunov exponent for
these maps 1is given by»

1
(2.2) =£ 2n|F' (x) |u(dx)
so that for the tent map F(x) = 2x, xte[0,1/2], F(x) = 2(1—x),xe[%~, 1],
we get A = &n2,

With this preparation we may explain the two tasks that the researcher

must do to test for deterministic chaos in time series data: (1) show that




the dimension of the time series is low, (2) show that the largest Lyapunov

exponent is positive.

Task I: Calculating Dimension of a Time Series

In order to motivate notions of dimension suppose that {at}°° 1 has a
t=

deterministic explanation by the system (h,F,xo) and look at the mhistory

starting at t:
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(2.3)  al = (agageeeag, ) = (B(xD),ee,hE H(x)) = T (x)).

Hence Jm: A € R™ > R™. In order to grasp what 1s coming look at examples

(1.1). Here A = [0,1] and j(x) =1 for the tent maps. Thus Jm: [0,1] » Rm,

xt is distributed according to u which is uniform on [0,1] so that the

dimension of Jm(A) {Jm(x), xeA} is one for any sensible notion of dimension.
This is so because Jm(A) 1s a one dimensional arc embedded in R" provided

that Jm is a smooth map. Furthermore Takens [1980] has shown that generically
J is 1-1 from A to Jm(A) if m > 2n+l. The same reasoning applies whatever

the dimensions of A. Calculate the dimension D of Jm(A) for all "embedding

dimensions” m and find lim Dm’

m+e
We now face the practical problem of calculating the dimension of Jm(A)
for each m from a finite data set {at}N 5 After much experimentation
t=

discussed in Brock [1985] the natural science community seems to have settled
on the Grassberger—-Procaccia [1983] correlation dimension a  as the most
useful dimension measure. It is defined for € > 0 by

(2.4) @ = lim n Cm(e)/zn €
>0




(2.5) ¢ (e) = #{(i,j)/lla';-a';ll <ey LLSN, 1<3< Nm}/ern

(2.6) N = N-(m-1).

Here #A denotes the cardinality of set A and %n is the natural logarithm.
Natural scientists (e.g. Swinney [1985] and references) comstruct

Grassberg-Procaccla dimension plots of 2n Cm(s) against 24n ¢ and attempt to

measure the slopes of &m of these G-P plots for each embedding dimension

m. After constructing these plots they look to see if &m levels off to some

a as m > o,

This procedure requires skill and judgment for two reasons. First since

n Cm(e) 0 for large € you must "estimate™ the slope of the G-P plot over a
range of ¢ of moderate to small size. Second Brock and Dechert [1985]
prove that if there is noise in the data of positive variance even if the
variance 1is small then for each embedding dimension m, a =m almost surely.
Therefore the slopes &m of the dimension plots must be estimated over e's
larger than the scale ¢ of any noise that is present in the data set.

In practice a range of e's over which the slope &m of the G-P plot appears
to be "stable" is chosen by "eyeballing”. The noise level ¢ is "estimated" by
hunting for an € small enough so that &m ~ m when &m is estimated over ¢ in

(0,e] (Ben-Mizrachi et. al [1984]). This procedure is applied to data in

Section 3 of this article.

Task II: Calculating the Largest Lyapunov Exponent

Calculation of the largest Lyapunov exponent A is based upon the formulae
(a-c) of Definition 2.3 and the Oseledec Theorem 2.1. We briefly explain the

Wolf et. al [1984] algorithm which we use in our empirical work.




For each embedding dimension we use the time series {at}N to form a

N ,
a time series {a?} ml of m—histories. Start the algorithm by locating the
t—-

nearest neighbor a? # ay to the initial m-history aj. Let d(l) [{aﬁ -aTl[.
1

1 1
1
(1) m
Note that d;"’ is the smallest Eositive distance ||at—a1|l. Select an evolu-

(1) - || (l)ld(l)

tion time q and set d, || and store g (q) =4 . This

t +q 1+q

ends the first iteration. We are now ready to enter the main program loop.

Ideally, in order to start the second iteration we would like to find a

m m

m m
new m—history a, mear a 1+q a,

whose angle e(a
2 1+q t 1

zero. In this way we mimic the definition 2.3(c) of Lyapunov exponent as clo-

+q l+q) is close to

sely as possible with a" -a1 playing the role of v. Definition 2.3(b) shows

that except for hairline cases 1lim(1/N) ZnIiD F (v)ll—ul, the largest Lyapunov
(1)_ (2)

exponent, because the set V has full Lebesque measure.

Motivated by this strategy we choose tz to minimize the penalty function

m 2™ m a™ m
(2.7)  plag t 21+’ Feitq 1+q = |laga) 14q ]+ wletay g’ Pevg a1+q)I
subject to the nondegeneracy requirement a? + aT+q. Here w 1s a penalty weight}
on the deviation |6| from zero. Store

- 4(2),.(2)  (2) _ a2
(2.8)  gyla) = 4;77/4)77, 47" = 'la aluglls 477 = llag S+ al4aql I+

This ends iteration two. Continue in this manner.

For iteration k store

k
(2.9) g (1) = dék)/dik) () = ||a 2k 1+(k- 1)q‘| d(k) = |la} tk+q- 1+kqII

where tk minimizes




p(am-ém am _am )
t “1+(k-1)q’ 1t 1+(k-1)q

subject to an Continue until k=K where K solves

t

#am
1+(k-1)q°

N }. Set

m

N

max {k|l+kq

~

(2.10) A

MR

R SRR ORIy
1

k= .
Brock and Dechert [1985] locate sufficient conditions on the system (h,F,xo)
that deterministically explains the data under the null hypothesis of a deter-
ministic explanation that enables them to prove that an idealized form of the
above algorithm converges to the largest Lyapunov exponent A for almost all
starting vectors. See the Wolf, et. al paper for a discussion of numerical

experience with this algorithm.

3. Empirical Application of These Ideas

Empirical calculation of the Grassberger—Procaccia [1983] correlation dimen-
sion o and the largest Lyapunov exponent A is the procedure typically used in
natural science to test for the presence of chaos in time series data (Swinney
[1985], Wolf et al [1984]). Economists must deal with time series much shorter
than the 10,000-30,000 observations typically used in natural science work and,
furthermore, economic time serles are probably noisier. The problem is espe-
cially acute in business cycle analysis.

Brock and Sayers [1985] test for nonlinearities in quarterly data on U.S.
real gnp and U.S. real gross private domestic investment by (a) calculating the
Grassberger-Procaccia [1983] correlation dimension and estimating the largest
Lyapunov exponent for various embedding dimensions; (b) calculating measures of
asymmetry such as, Blatt [1978], and measures of skewness and kurtosis. For

lack of space, we only describe some of the results for U.S. quarterly data




from 1947:1 to 1985:1 (1972 = 100), and for Wolfer's sunspot numbers
1749-1924,
Let X, = real GNP at quarter t and Y, = real gross private investment

at quarter t. The data was detrended by the following OLS regressions:

(3.1) log x, = 2.681 + .003671t + ex,

(3.2) log y, = 1.851 + .003765t + ey,

In view of the well known result that autoregressive models of order two (AR(2)

fit detrended U.S. real GNP well we fit two AR(2) models:

- - 2=
(3.3a) ex, =1.36 ex , -.42 ex,_, * 8x,, R .933
(3.3D) o, = .0l67, o, = .0043, o_ /o, = 3.88, sk_ = -.244, sk, = -.086,

k= 2,19, k. = 4,05.
ex §x

= - 2 _
(3.4a) ey, = 1.12 ey 1 .31 ey, , t 8y, R” = .760
(3.4b) Oy = ,051, 66y = ,025, oey/c6y = 2,03, skey = -,46, Skay = -,57,

k =2.78, k. = 5.14,
ey 8y

Have Typs sk, , kA denote standard deviation of A, skewness of A, kurtosis of
A. Standard errors are not reported because the second coefficient changes a
lot when we fit AR(3) and AR(4) to this data.

For {ext}, {eyt}, {Sxt}, {Gyt} we calculated, for embedding dimension d,

1 d d d
(3.5) c(e) ':';d-é-#{(isj)”lai‘ajll<€}, c*x(e) = %1-3 #{(id)li#j,“ai—ajH(e}
(3.6) a(e) = 2n C(e)/1lne, a*(e) = 1n C*(e)/1ne,
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)

(3.7) SC(e )

(1nC(ek) - lnC(ek_l))/(lnsk - lnsk_1

Kk’ Ck-1

(3.8) SC*(e ) = (InC*(e, ) = 1nC*(e, _;))/(lne, - lnme )

K’ k-1 k-1

and estimated the largest Lyapunov exponent A. Here nﬁ = nz—nd, ISI denotes

the cardinality of set S; n, = n—-(d-1) is the number of d-histories

d

ad = (ai,...,a ) constructed from the sample of length n, and 1 < 1,j < 0,

t+d-1

Three difficulties emerged. First a standard of comparison was needed so
that meaning could be attached to a "large" or "small" dimension or Lyapunov
exponent. The same measures of dimension and Lyapunov exponent were calcu-
lated for normal psuedo random numbers of the same mean and standard deviation
for each serles,

Second, the utility of the measure a(e) (suppressing obvious subscripts

for ease in typing) is based on "the power law conjecture".
(3.9) C(e) = K(e)ea(e), ale) + a,K(e) > K, € » 0.
so that

(3.10) 1n C(e)/1lne = 1n K(e)/1lne + ale) » a, € + O.

Have the subscript "«" on any symbol denotes the limit as n, or ng goes to

infinity. With a time series of length 10,000, 1n C (e)/1ne may

d,nd

approximate 1n C w(e)/lne even for small ¢ but a time series of length

d,
100-200 is a different matter. For example let p = min {llag-ajll > 0,

1<3< nd} > 0, be the smallest positive distance. For e < p, (e) =

c
d,nd

llnd, ST (e) = - ln(nd)/lne + 0, € + 0. Note also that the slope estimator
*d
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- n
SC4 ) =0 for ¢ < p. This is true even if {at}t=1is a

,nd(ek’sk—l Kk’ k-1

sequence of random numbers for which the theoretical value of o and SC is d.
Hence a and SC are poor estimators of the underlying dimension especially
for small data sets.

Since a*, SC* give values much closer to the theoretical value of d for
random numbers therefore we calculated the measures o*, SC* as well. These
measures attempt to remove the distortion in a possible power law caused by
the fact Cd’nd(e) = 1/nd on [0, p).

There is the further problem of how to report the results of dimension
calculations for the small data sets used in business cycle analysis. That is
to say what constitutes a "confidence interval” and "rejection region” under
a given null hypothesis for an "estimator™ where we know very little about the
sampling distribution and where generating an empirical distribution under
various null hypotheses is expensive? We shall handle this problem as we have
seen it handled in the natural sclence literature that we have seen to date.
That is to try to report our findings in such a way that the reader may make
her own judgment as to the significance or stability of any estimate. Due to
lack of space we can only report the highlights of the results of Brock and
Sayers [1985] here.

Third, even less is known about the small sample properties of our esti-
mate of the largest Lyapunov exponent. Hence we calculated a measure of
cumulative spreading between initially close trajectories for (a) our data
set, (b) random numbers of the same mean and variance as our data set, and (c)

1/2.

a time series generated by the tent map (1.1) with a
In a nutshell our results Iindicate the following: there is not enough

information in the 1947:1-1985:1 data set for the Grassberger—Procaccia type
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dimension measures to reject the null hypothesis that detrended real GNP and
real GPDI are generated by an AR(2) process as estimated in (3.3) and (3.4).
To put it another way we need more data to establish that U.S. real GNP and
real GPDI are generated (in the main) by a low dimension chaotic deterministic
dynamical system.

It may be helpful to future researchers in this area to describe the chain
of thought that lead us to this conclusion. First we calculated measures of
dimension for {ext}, {eyt} and got evidence of low dimension as revealed in
the tables below.

Second, our colleague Don Hester suggested that AR(2) models like (3.3)
and (3.4) might generate a low dimension estimate if they fit the data well.
Although a theorem of Brock and Dechert [1985] assures us that the dimension
of an infinite data set generated by (3.3) or (3.4) must be infinity a data
set of length 153 may be a long way from infinity especilally if the rate of
convergence of dimension estimates is slow.

It is easy to prove that if, say, {ext} has a smoothly deterministic

explanation
ex, = h(zt), z, = F(zt—l)’ z given,
then
8x, = h(F*(z,_,)) = 1.36 h(F(z,_,)) + .42 h(z _,) = M(z_,).

Hence the dimension of {Gxt} should be the same as the dimension of {ext} if
{ext} has a deterministic explanation. 1In fact Table 1 below shows evidence
that the dimension of {Sxt} is slightly (?) smaller than the "large"

dimension of a sequence {Sxt} of the same length of normal psuedo random numbers
with the same mean and variance. This is evidence against the chaotic low

dimensional deterministic dynamical system hypothesis.
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Third, faced with this mixed evidence we generated sequences {Ext},
{gyt} of normal psuedo random numbers with the same mean and varlance as
{Sxt}, {Gyt} and generated two simulated AR(2) time series {éxt}, {éyt} of
the same length as {ext}, {eyt} using the fitted values of the AR(2) models
in (3.3) and (3.4). Grassberger—Procaccia measures of dimension were
calculated for {éxt} and {éyt} and compared with those calculated for {ext}
and {eyt}. There appears to be no significant difference to the naked eye.
See the table for real GNP. A qualitatively similar result holds for real
GPDI (Brock and Sayers [1985]).

Fourth, the same battery of tests were applied to the Wolfer sunspot series
(Anderson [1971] and Priestley [1981]) which displays asymmetries in that the
average gradient of rise from trough to peak is greater than the average gra-
dient of fall from peak to trough across "cycles" (Priestley [1981, 882]).
Furthermore, an AR(2) model fits the sunspot series quite well although a
better fit is obtained with a bilinear model according to the Akaike criterion
(Priestley [1981, p. 884]). The story is similar to that of real GNP and real
GDPI. See Tables 2, 3.

Fifth, the same procedure was applied to the Lyapunov exponent calculations.
Look at Table 3 which contains calculations for Wolfer's sunspot numbers. We
calculated iq from (2.10) for q=1,2,...,9 as well as the mean g and the

standard deviation o of {g (0} Notice that if {a .} is a sequence of

K
k=1"
i.i.d. random numbers then from (2.9) and (2.10) ln(dgk)/dik))/q >0, q+ =,

~

Hence Xq > 0, ¢ » » in this case. But, in contrast, if there is deterministic

chaos present in the data we should see a tendency of g (q) to grow with q.

This 1s so because EKq) is a measure of spreading of nearby trajectories.




14

Look at Table 3 where three typical runs with psuedo random numbers were
done in order to get a perspective. Notice the absence of any tendency of
g(q) to grow with q and the tendency of ;q to fall with q for each of the
three runs. Now turn to the same calculations with the sunspot numbers. If
there are instabilities i.e., deterministic chaos present in the sunspot data
we should see a tendency of g(q) to grow with q and ié should not fall with q.

Our own naked eye sees little difference from the three runs of random numbers.

Conclusion: dimension tests and Lyapunov exponent calculations have a
hard time rejecting a linear model where there is a lot of variation of the
data "within the regression plane” relative to the variation of the data "around
the regression plane," when the data set is small. Brock and Dechert [1985]
formalize this empirical finding into a theorem. Our findings reported above
should not be construed as negative to the attempt to find evidence of signifi-
cant nonlinearities in economic data.

This is so for several reasons. First we used aggregate data. Hence many
nonlinearities at the microlevel may have been "washed out™., Second the data
set 1947:1-1985:1 1is a period where severity of recessions has fallen (Zarnowitz
and Moore [1984, pp. 12-15]) and growth cycles (Moore and Zarnowitz [1984,

Table 8]) look quite symmetric throughout this period. Therefore our results
square with DeLong and Summers [1984] who find little evidence of significant
skewness of growth rates of GNP and industrial production for the postwar
period. The failure to find large kurtosls agrees with Blanchard and Watson
[1984]. This does not contradict Blatt because he looks at different series
over different periods for example pig iron production data from Burns and

Mitchell (Blatt [1981, p. 231)]).
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Third, longer data sets may enable us to reject an AR(2) model in favor of
a model with significant nonlinearities for U.S. GNP and U.S. GPDI. In any
event, DeLong and Summers [i984] agree with Neftci [1984] that there is evi-
dence of asymmetry in the postwar U.S. unemployment rate even though they
disagree elsewhere. Hence that series and well known "cyclic" cattle and
hog sales series may be a good place to look for significant nonlinearities |
in economic time series. At the risk of repetition we make a few more remarks

about Lyapunov exponent calculations.

Lyapunov Exponents

Due to lack of space we report Lyapunov exponent calculations for the
sunspot series only since there seems to be more consensus that asymmetries and
hence, nonlinearities, are present in that series (Priestley [1981, p. 882] and
references). See Brock and Sayers [1985] for more extensive calculations and
for calculations for U.S. real GNP and real U.S. gross private domestic invest—
ment.

In interpreting the table the reader 1is cautioned that at the time of this
writing we have little knowledge of the sampling distribution of these estima-
tes. Nevertheless we think the reader will agree that there 1is little evidence
of a tendency of'g to grow with q —— a tendency that indicates the presence of
systematic local spreading of trajectories in the data rather than psuedo random
nolse. Notice from the table that psuedo random noise generates a positive
Lyapunov exponent. In contrast to the situation depicted in table 3 we ran the
same algorithm on data generated by the tent map F(x) = 2x, xe[0,1/2],

F(x) = 2-2x, xe[1/2,1] and got d2/d1 = 21 oﬁt to the third or fourth decimal
place as well as iq ~ 1n 2. Even if nolse was added E& rose with q.

Obviously much more work must be done to reject the null hypothesis of
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the presence of nonlinear chaos in sunspot data. See Brock and Sayers [1985]

for a far more extensive discussion.

4, Panel Data

The methods discussed above can be adapted to test whether a panel
Ty

t=0’
set the stage for what follows let us discuss the simplest problem first.

{ait} i=1,2,...,1 has a low dimensional deterministic explanation. To

Definition 1 We say that the panel {ait} has a deterministic explanation 1if
there exists a dynamical system (h,F) where h:Rn+R,F:Rn+Rn and a distribution

of initial conditions {xio} such that

(1) a;, = h(xit),

(2) = F(xit), t=0,1,...,Ti-1.

Xi, 4l

Obviously for this definition to imply restrictions on the data the
dimension n must be small relative to Ti' Also note that testing a panel
for a low dimensional deterministic explanation is somewhat analogous to
looking for low dimensional nonlinear "factors"™ or testing for the presence
of a low dimensional or nonlinear unobservable index (cf. Sargent and Sims
[1977] for linear unobservable index models).

Furthermore, testing for a low dimensional deterministic explanation has
little to do with testing for strange attractors when we are working with
panel data rather than time series data. In the case of time series data one
needs the presence of a dynamical system with a nondegenerate invariant measure

in order to make headway. This forces one to consider attractors that are not

points or periodic m—cycles. In the case of panel data we can posit a non-
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degenerate distribution of initial conditions. Nevertheless the methods of
Takens [1980], [1983], Ben-Mizrachi et al [1984], Scheinkman [1985], and

their references for calculating various notions of “dimension" may be applied
to testing panel data for a low dimensional deterministic explanation. Like-
wise the methods discussed in section 3 may be used to calculate measures of
local expansion or contraction of trajectories in panel data.

Before we get into details we want to point out the relevance of the panel
data problem to economic time series data. We believe that there is a consen-
sus (cf. Zarnowitz [1984] and his references) that most economic time series
are "blatantly nonstationary" (Brillinger and Hatanaka [1969, p. 133]) but that
in certain cases the nonstationarity is of a slowly altering nature. In these
cases one could use judgment or tests for nonstationarity to split the time
series into panels where one hopes that approximate stationarity of the
underlying dynamics holds within each "panel”. The panel data analysis to be
presented below may be useful in such cases.

The idea of our test 1s simple. If x is low dimensional, for example

one dimensional, then the image of the domain of F under the map Hm(-):
3 H (0 = ((x), hEFG)),...,h(F (X))

is no more than one dimensional no matter how large is N. That iIs to say if
xeR" then for all m = 1,2,... we must have dim Hm(Rn) < dim R" for any sen-
sible notion of dimension if h,F are smooth. Smoothness 1s needed to prevent

"space filling curve” type pathology.

3. (a, ,a,,,a,,)
i~ i0?“11°%1272°"°"

I
The set {a?} must lie on the image of an n dimensional manifold lying in

- 2 _
Examine the sequences a} S P (aio’ail)’ a

m dimensional space. This will be revealed by calculating the dimension of
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{am}i=1. However, this may require a lot of data. A method of forming the
inputs into the dimension calculation at each "embedding dimension m" that is
less wasteful of the panel data is to use not only (aio""’aim) but also
(ail""’ai,m+1)""’(ait’""ai,m+t) for tS_Ti for each i. Turn now to a more

realistic problem involving panel data.

The case where (h,F) may depend upon i

Clearly we must restrict the dependence of h and F upon 1 or we could
manufacture a deterministic explanation for any panel. To keep things specific
suppose that only F can depend upon i and F depends upon i through the one

dimensional parameter o That is to say F = F(x,a).

1.
Definition 2 We say that {ait} has a one dimensional characteristic
deterministic explanation if everything is as in Definition 1 with F(xit)
replaced by F(xit,ai).

We may apply exactly the same reasoning as above to test for a one dimen-
sional characteristic deterministic explanation of {ait}' That 1s to say the
map:

H (x,0) = (b(x), h(F(x,a),...,h(F"(x,a)))

sends R® x R into Rm+1. Indeed one could probably generalize Takens [1980]

to even show that Hm is 1-1 for m large enough. In this case reconstruction of
the underlying dynamics may be possible. We must leave this to future

research. In any event a low dimension of {a?} that saturates with m indicates
a low dimensional set of characteristics and a low dimensional dynamical system

drives the data.
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5. Tests for Deterministic Explanations of Business Cycles.

We doubt that anyone believes that business cycles are generéted by a low

dimensional deterministic dynamical system. What is at issue 1is whether there

is evidence consistent with the hypothesis that a low dimensional nonlinear
deterministic dynamical system explains a "substantial" portion of the variance
in a collection of macroeconomic time series. Let us expand upon this point.
Most modern macro-money-finance models, especially the recursive setups used
by rational expectationists, imply the existence of a low dimensional "state"
varlable, call it x, such that if {ait} is a collection of economic time seriles

we must have

(1) = hi(xt), all i,t.

3t

Lucas [1975] and Michener [1984] are examples. The state variable X, is

typlcally generated by a stochastically stable process x = F(xt,v ). Such

t+l t+1

models are usually "log linearized"” by the rational expectationists. Then
linear time series methods are used to test hypotheses suggested by rational
expectations theory. Sargent [1981] is typical.

If one 1s persuaded by the evidence for nonlinearity in economic and finan-
cial time series discussed by Blatt [1981], Neftci [1984], Hinich and Patterson
[1985], Zarnowitz [1984], et al. then it is natural to believe that the basically
(locally) log linear theories discussed above are missing important elements of
the business cycle. As Zarnowitz [1984] points out, the leading rational expec-
tations models emphasized exogenous instability rather than endogenous instabi-
lity as stressed by the older literature and Keynesian models. Indeed one may
look upon efforts such as Benhabib and Day [1982], Day [1982], Day and Shafer

[1985] and Grandmont [1983] as attempts to formalize the earlier literature.
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For the purposes of our discussion here one may view a major part of
Grandmont's [1983] work as an attempt to show that his model is potentially
capable, like the rational expectations models of Lucas [1975] are capable, of
generating high pairwise coherences between relevant macroeconomic time series
at the relevant business cycle frequencies (Sargent [1979, p. 256]). For a
contrary view see Sim's comments [1984] on Grandmont's [1983] paper.

How might one test for such a possibility in macro data? To put it another
way how might one test for the presence of a low dimensional state variable
governed by chaotic dynamics that drives a cross section of time series macro
data? Let us adapt the approach to panel data developed in section 4.

Suppose {xt} in (1) follows

(2) X, = F(xt-l)’ X, given

where F is chaotic. Of course the methods of sections 2 and 3 can be applied to
each time series {hi(xt)}c’° 0 to test for a deterministic explanation but this
t=

"wastes" the restrictions implied by a low dimensional state variable. Besides,
a single macroeconomic time series is too short for reliable dimension calcula-

tions. A test 1s contained in the following proposition.

Proposition  Suppose that {ait} has a deterministic explanation with a common

low dimensional state variable. That is there exist smooth maps h R" » R,

12

i=1,2,...,1 and F: R" > Rm, x, € R" such that

0

(3) aj, = hi(xt)’ x = F(xt), x, glven

t+1

Then, except for hairline cases we must have: There 1Is 1, such that there is

N such that for n > N, t < s
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n n
(4) aj, ~ag implies 3y tentr 34, sttt

for all j=1,2,...,1I; and t = 0,1,2,...

Proof: Adapt Takens [1980].
Notice that this test is similar to the Guckenheimer [1982] test except that

close n—histories, a,, ~ a,_ for some i implies that the "future,” {

1t ~ 34s aj,s+n+1}t>0

must unfold exactly like the "past™ for all of the I time series =1,2,...,1.
This is perfect predictability with a vengeance and it is likely that any set of
macroeconomic time series will vigorously reject this hypothesis.lj

However it does suggest a setup that captures the spirit of (4), but not
the letter, that is more relevant to the real world of nolsy economic time
series. The idea is to rephrase (4) in terms related to Granger causality
tests (Granger and Newbold [1977, pp. 224-226] and their uses in macroecono-
mics.

To explain let
(5) W (8) = {(t,s)|t < s and there is i such that ||aj, - a] || < &}.

Then there must be N such that for n > N and § small and for each j over

predicts a and no other information such as

wn(s)’ a j,stntt

jt* 24, téntr

helps predict a I.e. test that other series such

{aj,s+n+r—k}k>1 j,s+ntt’

as the "natural" serles { is not Granger causally prior to

aj,s+n+t—k}k>1’

l/We say this for two reasons, ome practical, one theoretical. The
practical matter 1Is that trying to measure the activities of several tens
of millions of human beings is bound to create noisy data. People are more
complicated than particles. The theoretical proposition is that frictionless
markets must generate locally unpredictable price changes else systematic
profit opportunities exist. See Sims [1984] for a recent formalization
of this argument.
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over Wn(S). That is to say, given a the incremental predic-

23, sttt 3, thotr?

tive content over W_(8) for a is nil for all other information
n j,stnt+t

including the natural information {aj,s+n+1—k}k>1'

Put this way it seems that all we have to do now is apply ordinary least
squares regresslon analysis as in econometrics textbooks (e.g. Johnston
[1984]) and casuality tests as in, for example, Litterman and Weiss [1985].
There are two méjor problems that are not resolved in this paper that must be
resolved before our "test" can be applied. First the requirement that
(t,s) ¢ Wn(G) makes t,s random variables which may cause "sample selection”
bias. Second if the true data {Z;t} satisfies (4) but the observer sees the

noisy data a; . = it + it

sum up we have an errors in variables problem with "sample selection” bias. It

€ than we have an errors in variables problem. To

is well known (e.g., Johnston [1984, p. 428]) that OLS estimates of aj,Bj
are inconsistent in the face of errors in variables. Furthermore the

estimates of a that you get out of various approaches to fix the errors in

383
variables problems may depend dramatically on the assumptions you make about
the error structure. For an enlightening discussion and application see
Goldberger [1984].

This is as far as we can go on applying and adapting the dimension analy-
sis methods explicated in this paper to business cycle analysis. The only

point that we want to make 1s that dimension analysis suggests interesting

approaches to business cycle analysis that dovetall neatly with recelved

methods.
5. Summary

In this paper we briefly reviewed methods devised by the natural sciences

to test for the presence of low dimensional nonlinear chaos in time series




23

data. The tests consist of two parts. First calculate some notion of dimension
and show that it is small. Second calculate an estimate of the largest
Lyapunov exponent and show that it is positive.

In this paper we amended and adapted these tests to maximize the information
available in the short data sets available in business cycle analysis. Our fin-
dings indicate that there is not enough information available in U.S. real
GNP, real gross private domestic investment, and Wolfer's sunspot series for
the two part test discussed here to reject the null hypothesis that the series
under scrutiny were generated by an AR(2) process.

The final section of the paper indicates how to extend the methods reported
here to the case of panel data and a cross section of time series. Exploitation
of this extra information should enable sharper tests for nonlinear chaos.

Finally a more extensive discussion of these methods is available in
Brock [1985] and a more extensive discussion of empirical applications to
business cycles and labor statistics is in Brock and Sayers [1985] and
Sayers [1985]. Scheinkman's [1985] paper in this volume applies these methods
to the stock market.

A 1list of references that I have found useful in my literature search
as well as references to other studies that I have found is in the reference

section.
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Table 1
Dimension Calculations for Detrended U.S. Real GNP
U.S. Real GNP

1947:1-1985:1

ex , n=134 th, n =134

% * * *
€ Syp 99 Yo SC SC € Sy 9% % 8Cyo  SCy0
.9, 9582 5.96 6.02 2.11 1.97 .9 7246 B8.61 8.72  1.54 1.56
.92 7674 4.03 3.9 2.45 2.65 .92 6166 5.07 5.14  1.59 1.63
.90 5936 3.50 3.55 3.17 3.26 .9 5216 3.91 3.97 2,19 2.25
.95 4248 3.42  3.48 3,35 3.46  .9; 4144 3.48 3.5 3.3 3.25
.97 2990 3.40 3.48  3.41 3,59 .97 2982 3.41 3.48  2.62  2.75
.95 2090 3.40 3.50 3.14 3.39 .95 2266 3.27 3.3 232 2.49
.97 1502 3.36 3.48 2.87 3.19 .9, 1774 3.14 3.23  3.54 3.88
.99 1112 3.30 3.44 3.13 3.65 .9 1224 3.19 3.32 2,91 3.32
.97, 800 3.28 3.47 2.38 2.95 .9,, 902 3.15 3.32 2,61 3.13
910 622 3,19 3.41 910 686 3.10 3.30

§x,, =132 Ext, n=132

% * * *
€ S0 % % SC SCy € Sy 9 9 SCy 5%
.9, 5636 11.00 10.87 6.03 6.21 .9, 4966 11.91 12.10  6.93 7.22
.92 2992 8.50 8.54 6.02 7.30 .93 2392 9.42 9.66  8.16 8.95
.9, 1590 7.67 8.12 7.16 7.26 .9, 1012 9.00 9.42  9.05 11,65
.99 750 7.54 7.90 6.68 8.98  .9% 390 9.02 9.98  7.13 15.20
97 372 7.36 8.12 425 7.76 .90 184 8.64 11.02  2.46 12.19
95 238 6.84 8.06 2.55 7.13 .95 142 7.6l 11.79 69 w
90 182 6.23 7.93 2.49 17.39 .9 132 - = 0 e
.95 140 5.76  9.11 .56 w 9y 132 — = 0 o
97, 132 5.14 m 0 o 97, 132 — = 0 =
90 132 462 w 0 o 90 132 - . 0w

Embedding dimension d = 20, n=132, 134, S, = #{(1,3)||]aj-a]ll<e}
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Table 2
Dimension Calculations for Wolfer Sunspot Numbers

Wolfer Sunspot Numbers: 1749-1924
From Anderson [1971]

X, , nd=157 Gxt, nd=155

* * * %
S)0 @0 % SCy SCy e Sy % %y 5C €y
2627 21.25 21.77 2.98 3.21 .9, 1543 26.06 27.00 5.00 5.74
1919 12,12 12.49 2,93 4.52 .9 551 11.94 16.37 4.79 6.16
1409 9.05 9.83 2,98 2.16 .9 313 10.30 12.97 5.37 8.72
1029 7.54 7.91 4.6l 5.75 .9 197  9.12 11.91 4.39 12.58
633 6.95 7.48 3.18 4.51 .97 179  7.75 12.04 .91 5.3l
453 6.32 6,99 2.81 4.72 .95 159  6.80 10.92 1.13 17.01
337 5.82 6.66 2.00 4.17 .90 155  5.98 11.79 .24
273 5.34 6.35 1.18 3.07 .9
241  4.88 5.99 .77  2.89
223 4.47  5.62

= —_ = -— 2.—_ = =

e 25,78 X 1.336 X 1 .65 X, 99 R .802, n = 174, n, 155, 157M
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Lyapunov Exponents and Other Instability Measures for Wolfer's

100
50
45
35
25
24
21
18
16

>

1.01
.64
W47
.36
.28
.29
.19
.17
.17

WOoONOTULEWN -

>

2

.89
.68
<47
.33
.24
.19
.18
.15
.15

Table 3

Sunpot Numbers

Sunspot numbers

100
50
45
35
25
24
21
18
16

>

.64
.57
.38
.35
.28
.21
.25
.15
.16

3.22
8.22
5.96
7.78
8.52
6.45
7.93
4.31
5.78

5.67
22.81
7.67
8.68
10.71
8.20
5.45
2.55
4.54

3 runs on random numbers to
compare with sunspot numbers

A3
1.01
.57
.49
.35
.30
.25
.23
.21
.16

&1

4.06
5.88
5.84
6.13
5.79
10.66
5.95
5.50
7.07

&y

4.51
6.32
6.07
6.49
5.21
4.19
6.79
17.87
4.88

&3

3.95
4.67
8.07
6.55
6.09
7.53
8.16
7.42
8.94

gl

4.26
6.80
6.01
4.92
3.89
12.52
8.62
4.37
6.16

O'g2
10.57
6.64
6.22
10.90
5.02
2.95
9.49
60.42
2.88

°g3
3.77
5.49
10.31
6.01
4.35
9.05
8.24
6.12
13.12
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