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ABSTRACT 

Brock, William A., "Distinguishing Random and Deterministic Systems" 

This paper discusses tests on time series for the presence of low 

dimensional deterministic chaos. Empirical applications on U.S. business 

cycle data are reviewed. Two tasks are necessary to test a time series 

for (low dimensional) deterministic chaos: (1) dimension must be calculated 

and shown to be low relative to comparable (psuedo) random numbers; 

(2) Lyapunov exponents and other measures of local instability must be 

calculated and show local instability relative to a useful standard. The 

evidence for low dimensional deterministic chaos in U.S. postwar II GNP 

data is weak (English). Brock: University of Wisconsin, Madison, Wisconsin. 

Journal of Economic Literature Classification Numbers: 023, 211, 213. 



DISTINGUISHING RANDOM AND DETERMINISTIC SYSTEMS 

by 

W. A. Brock 

1. Introduction 

Recently there has been a lot of interest in nonlinear deterministic eco­

nomic models that generate highly irregular trajectories (for example, 

Benhabib and Day [1983], Dana and Malgrange [1986], Grandmont [1983], Day 

(1982], Stutzer (1980], Day and Shafer (1983], Deneckere and Pelikan (1984], 

Boldrin and Montrucchio (1985].) Intense exploration of low dimensional deter­

ministic dynamical systems models has been going on in physics and chemistry, 

Swinney (1983], ecology and biology, May (1976], population dynamics Brillinger 

et al (1980] and so on. 

The literature cited above relies heavily on mathematical literature on 

"chaos" and nonlinear dynamics. See Collet and Eckmann (1980], Guckenheimer 

and Holmes [1983] and Grandmont's introduction to this volume for overviews 

of the relevant mathematical literature and economic literature respectively. 

The main reason for this recent explosion of interest in nonlinear dyna­

mics by the applied sciences is that the trajectories generated by some nonli­

near difference equations look completely random to the naked eye. A 

particularly dramatic example was given by Sakai and Tokumaru (1980]. They 

show that most trajectories of the difference equation xt+l = F(xt), x0 given 

where 

(1) F(x) _ x/a, XE[O,a], F(x) _ (1-x)/(1-a), XE[a,1], 0 <a< 1 

generate the same autocorrelation coefficients as the first-order AR process 
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Bunow and Weiss [1979] present chaotic first order difference equations that 

generate spectra indistinguishable from that generated by a sequence of i.i.d. 

random variables. 

Brock and Chamberlain [1984] show that given any spectral measure G there 

is a deterministic overlapping generations economy whose equilibrium 

trajectory generates an empirical spectrum that approximates G. Hence linear 

time series methods (spectral analysis and autocovariance functions) may not 

be able to observationally distinguish between deterministic and random 

systems. We come to the subject of this article. 

The subject of this article is to discuss tests that are potentially 

capable of distinguishing between certainty and uncertainty. We will argue 

that such tests can be usefully applied to economic data. 

This paper is organized as follows. Section 1 contains the introduction. 

The second section gives tests for deterministic chaos that can be applied to 

a time series of data. Section 3 reports applications of the tests to postwar 

U.S. business cycle data and to the Wolfer sunspot series. In Sections 4, 5 we 

attempt to relate and integrate the "new methods" of data analysis discussed 

here with received practice in economics. It is a "first cut" and should be 

treated as such. Section 6 is a short summary. Finally an expanded version 

of this paper is available in Brock [1985]. 

2. Tests for Chaos 

In order to demonstrate that an apparently random time series {at} is 

actually deterministic chaos the researcher must show (1) the dimension is low 

and (2) there is a positive Lyapunov exponent. To explain we need 
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Definition 2.1 (Takens [1983]). The time series of real numbers {at}m 
t=l 

has a smoothly deterministic explanation if there exists a system (h,F,x) 
0 

n n n such that h: R + R, F: R + R are smooth and 

(2.1) 

There is an analogue of this definition for continuous time systems but, for 

space reasons, we concentrate on discrete time systems in this paper. The 

following definition will be needed 

Definition 2.2: An attractor A of the deterministic dynamical system Fis a 

compact set with a neighborhood U such that for almost every (in the sense 

n of Lebesque measure on R) initial condition x EU we have x (x) + A, t + m. 
0 t 0 

That is the limit set of {x (x )}= is the attractor A. The basin of 
t o t=l 

attraction of an attractor is the closure of the set of initial conditions 

whose trajectories approach the attractor as time tends to + m. A chaotic 

attractor is one for which typical orbits on the attractor locally spread 

apart exponentially. To put it another way typical orbits on the attractor 

have a positive Lyapunov exponent. 

Definition 2. 3 (Guckenheimer and Holmes [1983, pp. 283-284]). Let F: Rn+ Rn 

define a discrete dynamical system. n 
Fix XER • Suppose that there are subspa-

ces v?) :::>v?) :::> ••• :::> Vin) in the tangent space at F\x) and numbers 

µl :> µ2 :> ••• ;;, µn with the properties that 

a) 

b) 

DF(V(j)) 
i 

= /j) 
i+l 

dim V(j)= n+l-j 
i 
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c) lim (1/N) !n IID FN(v)I I 
X N+.., 

= µj for all veV(j) - V(j+l)_ 
0 0 

Then the µj are called the Lyapunov exponents of F. Lyapunov exponents are a 

generalization to general attractors of eigenvalues of D..F at a fixed point x . 
.x 

For later use we need the Oseledec multiplicative ergodic theorem. 

Theorem 2.1: (Oseledec [1968], Guckenheimer and Holmes [1983, p. 284], 

Benettin et al [1976]). Let F be c1 and let DF be Holder continuous for some 

exponent e. Let F and its attractor A possess an ergodic invariant 

(Guckenheimer and Holmes [1983, p. 280]) measureµ. Then there is aµ­

measurable set A1 CA such that µ(A 1) = µ(A) such that for all x e A1, 

Lyapunov exponents exist. 

Remark: Since dim V(l) = n+l-1 = n therefore, as pointed out by Bennettin 

et. al [1976, p. 2339], if one chooses the vector v in (c) "at random" 

one may expect to find µj = µ1• 

Example 2.1: The tent maps (1.1) have as invariant measure µ(dx) = j(x)dx, 

j(x) = 1, xe[O,l]. The logistic map xt+l = 4xt(l-xt) has invariant measure 

µ(dx) = j(x)dx, j(x) = 1/(~(x(l-x))1/2). The largest Lyapunov exponent for 

these maps is given by 

(2.2) 
1 

A= f !nlF'(x}lµ(dx) 
0 

so that for the tent map F(x) = 2x, xtd0,1/2], F(x) 

we get ),, = R.n2. 

1 = 2(1-x),xe[2 , l], 

With this preparation we may explain the two tasks that the researcher 

must do to test for deterministic chaos in time series data: ( 1) show that 
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the dimension of the time series is low, (2) show that the largest Lyapunov 

exponent is positive. 

Task I: Calculating Dimension of a Time Series 

In order to motivate notions of dimension suppose that {at}= has a 
t=l 

deterministic explanation by the system (h,F,x) and look at the in-history 
0 

starting at t: 

(2.3) 

Hence J •. A C Rn + Rm. I d t h t i i 1 k t 1 nor er o grasp w a s com ng oo a examp es 
m 

(1.1). Here A= [0,1] and j(x) = 1 for the tent maps. Thus J: 
m 

m [0,1] + R , 

xt is distributed according toµ which is uniform on [0,1] so that the 

dimension of J (A)= {J (x), xeA} is _one for any sensible notion of dimension. m m 

This is so because J (A) is a one dimensional arc embedded in Rm provided 
m 

that J is a smooth map. Furthermore Takens [1980] has shown that generically 
m 

J is 1-1 from A to J (A) if m ) 2n+l. The same reasoning applies whatever 
m m 

the dimensions of A. Calculate the di mens ion D of J (A) for all "embedding m m 

dimensions" m and find lim D. 
m m+= 

We now face the practical problem of calculating the dimension of J (A) 
m 

for each m from a finite data set {at}N • After much experimentation 
t=l 

discussed in Brock [1985] the natural science community seems to have settled 

on the Grassberger-Procaccia [1983] correlation dimension a as the most 
m 

useful dimension measure. It is defined fore> 0 by 

(2.4) a - lim tn C (e)/tn E 
m e+O m 



(2.5) 

(2.6) N - N-(m-1). 
m 
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Here #A denotes the cardinality of set A and !n is the natural logarithm. 

Natural scientists (e.g. Swinney (1985] and references) construct 

Grassberg-Procaccia dimension plots of tn C (s) against tn sand attempt to 
m 

measure the slopes of & of these G-P plots for each embedding dimension 
m 

m. After constructing these plots they look to see if & levels off to some 
m 

& as m + 00 • 

This procedure requires skill and judgment for two reasons. First since 

tn C (s) = 0 for large s you must "estimate" the slope of the G-P plot over a 
m 

range of s of moderate to small size. Second Brock and Dechert [1985] 

prove that if there is noise in the data of positive variance even if the 

variance is small then for each embedding dimension m, am= m almost surely. 

Therefore the slopes & of the dimension plots must be estimated over s's 
m 

larger than the scale_£ of any noise that is present in the data set. 

In practice a range of s's over which the slope & of the G-P plot appears 
m 

to be "stable" is chosen by "eyeballing". The noise level € is "estimated" by 

hunting for ans small enough so that & ~ m when & is estimated overs in 
- m m 

(0,_£] (Ben-Mizrachi et. al [1984]). This procedure is applied to data in 

Section 3 of this article. 

Task II: Calculating the Largest Lyapunov Exponent 

Calculation of the largest Lyapunov exponent Xis based upon the formulae 

(a-c) of Definition 2.3 and the Oseledec Theorem 2.1. We briefly explain the 

Wolf et. al [1984] algorithm which we use in our empirical work. 
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For each embedding dimension we use the time series {at}N to form a 
t=l 

m Nm 
a time series { at} of m-his tories. Start the algorithm by locating the 

t=l 
m m m (1) 11 m ml I nearest neighbor at t- a1 to the initial m-history a1• Let d1 = at -a1 • 

1 1 
Note that d~l) is the smallest positive distance I la~-a~I I• Select an evolu-

(1) m m II (1) (1) tion time q and set d2 = l lat + -a1+ and store g1 (q) = d2 /d1 • This 
1 q q 

ends the first iteration. We are now ready to enter the main program loop. 

Ideally, in order to start the second iteration we would like to find a 

m m m m m m 
new m-history at near a1+ whose angle e (at -a1+ , at + -a1+ ) is close to 

2 q 2 q 1 q q 
zero. In this way we mimic the definition 2.3(c) of Lyapunov exponent as clo-

m m 
sely as possible with at -a1 playing the role of v. Definition 2.3(b) shows 

1 N 
that except for hairline cases lim(l/N) .tnl IDxF (v) 11=µ 1, the largest Lyapunov 

exponent, because the set V(l)_v( 2) has full Lebesque measure. 
0 0 

Motivated by this strategy we choose ½ to minimize the penalty function 

(2. 7) p(a~-a~+q' a~ +q-a~+q) = I la~-a~+qll + wle(a;-a~+, a~+ -a~+ )I 1 q 1 q q 

bj th d i m ... m su ect to e non egeneracy requ rement at~ al+q• Here w is a penalty weight) 

on the deviation lei from zero. Store 

(2.8) I la~+ -a~+2 I I• 2 q q 

This ends iteration two. Continue in this manner. 

For iteration k store 

(2.9) g_, (q) = d2(k) /dl(k), dl(k) l l m m l l d(k) 
-K - a~-al+(k-l)q ' 2 - I la~ +q-a~+kq 11, 

where~ minimizes 
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( m m m m ) 
p at-al+(k-l)q' at +q-al+(k-l)q 

~k-1 

m m 
subject to at* al+(k-l)q" Continue until k=K where K solves 

max {kll+kq < N }. Set m 

(2.10) X - .!_ ~ [tn(d2(k)/d1(k))/q] 
q K k=l 

Brock and Dechert [1985] locate sufficient conditions on the system (h,F,x) 
0 

that deterministically explains the data under the null hypothesis of a deter-

ministic explanation that enables them to prove that an idealized form of the 

above algorithm converges to the largest Lyapunov exponent X for almost all 

starting vectors. See the Wolf, et. al paper for a discussion of numerical 

experience with this algorithm. 

3. Empirical Application of These Ideas 

Empirical calculation of the Grassberger-Procaccia [1983] correlation dimen­

sion a and the largest Lyapunov exponent Xis the procedure typically used in 

natural science to test for the presence of chaos in time series data (Swinney 

[1985], Wolf et al [1984]). Economists must deal with time series much shorter 

than the 10,000-30,000 observations typically used in natural science work and, 

furthermore, economic time series are probably noisier. The problem is espe­

cially acute in business cycle analysis. 

Brock and Sayers [1985] test for nonlinearities in quarterly data on U.S. 

real gnp and U.S. real gross private domestic investment by (a) calculating the 

Grassberger-Procaccia [1983] correlation dimension and estimating the largest 

Lyapunov exponent for various embedding dimensions; (b) calculating measures of 

asymmetry such as, Blatt [1978], and measures of skewness and kurtosis. For 

lack of space, we only describe some of the results for U.S. quarterly data 
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from 1947:1 to 1985:1 (1972 = 100), and for Wolfer's sunspot numbers 

1749-1924. 

Let xt = real GNP at quarter t and yt = real gross private investment 

at quarter t. The data was detrended by the following OLS regressions: 

(3.1) 

(3.2) 

log xt = 2.681 + .003671t + ext 

log y t = 1. 851 + .003765 t + ey t" 

In view of the well known result that autoregressive models of order two (AR(2) 

fit detrended U.S. real GNP well we fit two AR(2) models: 

(3.3a) 

(3.3b) 

(3.4a) 

(3.4b) 

ex = 1.36 
t 

-.42 2 
ext_2 + oxt' R = .933 

aex = .0167, aex = .0043, aex/aex = 3.88, skex = -.244, skex = -.086, 

kex = 2.19, kex = 4.05. 

ey t = 1.12 

a = .051, ey 

ey t-1 -.31 

aey = .025, 

k = 2.78, ey 

2 
ey t-2 + ey t' R = • 760 

aey/cr0Y = 2.03, skey = -.46, skey = -.57, 

key = 5.14. 

Have crA, skA' kA denote standard deviation of A, skewness of A, kurtosis of 

A. Standard errors are not reported because the second coefficient changes a 

lot when we fit AR(3) and AR(4) to this data. 

For {ext}, {eyt}, {ext}, {eyt} we calculated, for embedding dimension d, 

(3.5) 

(3.6) a(e) - in C(e)/lne, a*(e) _ ln C*(e)/lne, 
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(3. 7) 

(3.8) 

and estimated the largest Lyapunov exponent x. Herena= n~-nd, Isl denotes 

the cardinality of set S; nd = n-(d-1) is the number of d-histories 

d d 
a = (at' ••• ,at+d-l) constructed from the sample of length n, and 1 < i,j <: nd. 

Three difficulties emerged. First a standard of comparison was needed so 

that meaning could be attached to a "large" or "small" dimension or Lyapunov 

exponent. The same measures of dimension and Lyapunov exponent were calcu­

lated for normal psuedo random numbers of the same mean and standard deviation 

for each series. 

Second, the utility of the measure a(e) (suppressing obvious subscripts 

for ease in typing) is based on "the power law conjecture". 

(3.9) C(e) = K(e)ea(e), a(e) + a,K(e) + K, e + O. 

so that 

(3.10) ln C(e)/lne = ln K(e)/lne + a(e) + a, e + O. 

Have the subscript "00 " on any symbol denotes the limit as nd or na goes to 

infinity. With a time series of length 10,000, ln Cd (e)/lne may 
,nd 

approximate ln Cd (e)/lne even for small e but a time series of length ,oo 
100-200 is a different matter. For example let .e_ = min { llaf-a~I I > O, 

1 < j < nd} > O, be the smallest positive distance. For E ( .e_, Cd (e) = 
,nd 

1/nd, ad,nd(e) = - ln(nd)/lns + O, s + O. Note also that the slope estimator 
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SCd n (sk,ek_1) = 0 for ek, ek-l < R· This is true even if {at}~=lis a 
' d 

sequence of random numbers for which the theoretical value of a and SC is d. 

Hence a and SC are poor estimators of the underlying dimension especially 

for small data sets. 

Since a*, SC* give values much closer to the theoretical value of d for 

random numbers therefore we calculated the measures a*, SC* as well. These 

measures attempt to remove the distortion in a possible power law caused by 

the fact Cd (s) = 1/nd on [O, R)• 
,nd 

There is the further problem of how to report the results of dimension 

calculations for the small data sets used in business cycle analysis. That is 

to say what constitutes a .. confidence interval" and "rejection region" under 

a given null hypothesis for an "estimator" where we know very little about the 

sampling distribution and where generating an empirical distribution under 

various null hypotheses is expensive? We shall handle this problem as we have 

seen it handled in the natural science literature that we have seen to date. 

That is to try to report our findings in such a way that the reader may make 

her own judgment as to the significance or stability of any estimate. Due to 

lack of space we can only report the highlights of the results of Brock and 

Sayers [1985] here. 

Third, even less is known about the small sample properties of our esti­

mate of the largest Lyapunov exponent. Hence we calculated a measure of 

cumulative spreading between initially close trajectories for (a) our data 

set, (b) random numbers of the same mean and variance as our data set, and (c) 

a time series generated by the tent map (1.1) with a = 1/2. 

In a nutshell our results indicate the following: there is not enough 

information in the 1947:1-1985:1 data set for the Grassberger-Procaccia type 
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dimension measures to reject the null hypothesis that detrended real GNP and 

real GPDI are generated by an AR(2) process as estimated in (3.3) and (3.4). 

To put it another way we need more data to establish that U.S. real GNP and 

real GPDI are generated (in the main) by a low dimension chaotic deterministic 

dynamical system. 

It may be helpful to future researchers in this area to describe the chain 

of thought that lead us to this conclusion. First we calculated measures of 

dimension for {ext}, {eyt} and got evidence of low dimension as revealed in 

the tables below. 

Second, our colleague Don Hester suggested that AR(2) models like (3.3) 

and (3.4) might generate a low dimension estimate if they fit the data well. 

Although a theorem of Brock and Dechert [1985] assures us that the dimension 

of an infinite data set generated by (3.3) or (3.4) must be infinity a data 

set of length 153 may be a long way from infinity especially if the rate of 

convergence of dimension estimates is slow. 

It is easy to prove that if, say, {ext} has a smoothly deterministic 

explanation 

F(z 1), z given, 
t- 0 

then 

Hence the dimension of {oxt} should be the same as the dimension of {ext} if 

{ext} has a deterministic explanation. In fact Table 1 below shows evidence 

that the dimension of { oxt} is slightly (?) smaller than the "large" 

dimension of a sequence {ext} of the same length of normal psuedo random numbers 

with the same mean and variance. This is evidence against the chaotic low 

dimensional deterministic dynamical system hypothesis. 
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Third, faced with this mixed evidence we generated sequences {&xt}, 

{&yt} of normal psuedo random numbers with the same mean and variance as 

{oxt}, {oyt} and generated two simulated AR(2) time series {ext}, {eyt} of 

the same length as {ext}, {eyt} using the fitted values of the AR(2) models 

in (3.3) and (3.4). Grassberger-Procaccia measures of dimension were 

calculated for {ext} and {eyt} and compared with those calculated for {ext} 

and {eyt}. There appears to be no significant difference to the naked eye. 

See the table for real GNP. A qualitatively similar result holds for real 

GPDI (Brock and Sayers [1985]). 

Fourth, the same battery of tests were applied to the liolfer sunspot series 

(Anderson [1971] and Priestley [1981]) which displays asymmetries in that the 

average gradient of rise from trough to peak is greater than the average gra­

dient of fall from peak to trough across "cycles" (Priestley [1981, 882]). 

Furthermore, an AR(2) model fits the sunspot series quite well although a 
. 

better fit is obtained with a bilinear model according to the Akaike criterion 

(Priestley [1981, p. 884]). The story is similar to that of real GNP and real 

GDPI. See Tables 2, 3. 

Fifth, the same procedure was applied to the Lyapunov exponent calculations. 

Look at Table 3 which contains calculations for Wolfer's sunspot numbers. We 
A 

calculated A from (2.10) for q=l,2, ••• ,9 as well as the mean g and the 
q 

standard deviation ag of {8k(q)}~=l• Notice that if {at} is a sequence of 

i.i.d. random numbers then from (2.9) and (2.10) ln(d~k)/dik))/q + O, q + m. 

Hence A + O, q +min this case. But, in contrast, if there is deterministic q 

chaos present in the data we should see a tendency of g (q) to grow with q. 

This is so because g(q) is a measure of spreading of nearby trajectories. 
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Look at Table 3 where three typical runs with psuedo random numbers were 

done in order to get a perspective. Notice the absence of any tendency of 

g(q) to grow with q and the tendency of A to fall with q for each of the 
q 

three runs. Now turn to the same calculations with the sunspot numbers. If 

there are instabilities i.e., deterministic chaos present in the sunspot data 

we should see a tendency of g(q) to grow with q and X should not fall with q. 
q 

Our own naked eye sees little difference from the three runs of random numbers. 

Conclusion: dimension tests and Lyapunov exponent calculations have a 

hard time rejecting a linear model where there is a lot of variation of the 

data "within the regression plane'" relative to the variation of the data "around 

the regression plane," when the data set is small. Brock and Dechert [1985] 

formalize this empirical finding into a theorem. Our findings reported above 

should not be construed as negative to the attempt to find evidence of signifi­

cant nonlinearities in economic data. 

This is so for several reasons. First we used aggregate data. Hence many 

nonlinearities at the microlevel may have been "washed out". Second the data 

set 1947:1-1985:1 is a period where severity of recessions has fallen (Zarnowitz 

and Moore [1984, pp. 12-15]) and growth cycles (Moore and Zarnowitz [1984, 

Table 8]) look quite symmetric throughout this period. Therefore our results 

square with DeLong and Summers [1984] who find little evidence of significant 

skewness of growth rates of GNP and industrial production for the postwar 

period. The failure to find large kurtosis agrees with Blanchard and Watson 

[1984]. This does not contradict Blatt because he looks at different series 

over different periods for example pig iron production data from Burns and 

Mitchell (Blatt [1981, p. 231)]). 
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Third, longer data sets may enable us to reject an AR(2) model in favor of 

a model with significant nonlinearities for U.S. GNP and U.S. GPDI. In any 

event, DeLong and Summers [1984] agree with Neftci [1984] that there is evi­

dence of asymmetry in the postwar U.S. unemployment rate even though they 

disagree elsewhere. Hence that series and well known "cyclic" cattle and 

hog sales series may be a good place to look for significant nonlinear! ties 

in economic time series. At the risk of repetition we make a few more remarks 

about Lyapunov exponent calculations. 

Lyapunov Exponents 

Due to lack of space we report Lyapunov exponent calculations for the 

sunspot series only since there seems to be more consensus that asymmetries and 

hence, nonlinearities, are present in that series (Priestley [1981, p. 882] and 

references). See Brock and Sayers [1985] for more extensive calculations and 

for calculations for U.S. real GNP and real U.S. gross private domestic invest-

ment. 

In interpreting the table the reader is cautioned that at the time of this 

writing we have little knowledge of the sampling distribution of these estima­

tes. Nevertheless we think the reader will agree that there is little evidence 

of a tendency of g to grow with q -- a tendency that indicates the presence of 

systematic local spreading of trajectories in the data rather than psuedo random 

noise. Notice from the table that psuedo random noise generates a positive 

Lyapunov exponent. In contrast to the situation depicted in table 3 we ran the 

same algorithm on data generated by the tent map F(x) = 2x, xs[0,1/2], 

F(x) = 2-2x, x£[1/2,1] and got d2/d1 = 2q out to the third or fourth decimal 
A 

place as well as X ~ ln 2. Even if noise was added g rose with q. 
q q 

Obviously much more work must be done to reject the null hypothesis of 
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the presence of nonlinear chaos in sunspot data. See Brock and Sayers [1985] 

for a far more extensive discussion. 

4. Panel Data 

The methods discussed above can be adapted to test whether a panel 

Ti 
{ait}t=O' i=l,2, ••• ,I has a low dimensional deterministic explanation. To 

set the stage for what follows let us discuss the simplest problem first. 

Definition 1 We say that the panel {ait} has a deterministic explanation if 

n n n there exists a dynamical system (h,F) where h:R +R,F:R +R and a distribution 

of initial conditions {xi0 } such that 

(2) 

Obviously for this definition to imply restrictions on the data the 

dimension n must be small relative to Ti. Also note that testing a panel 

for a low dimensional deterministic explanation is somewhat analogous to 

looking for low dimensional nonlinear "factors" or testing for the presence 

of a low dimensional or nonlinear unobservable index (cf. Sargent and Sims 

[1977] for linear unobservable index models). 

Furthermore, testing for a low dimensional deterministic explanation has 

little to do with testing for strange attractors when we are working with 

panel data rather than time series data. In the case of time series data one 

needs the presence of a dynamical system with a nondegenerate invariant measure 

in order to make headway. This forces one to consider attractors that are not 

points or periodic m-cycles. In the case of panel data we can posit a non-
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degenerate distribution of initial conditions. Nevertheless the methods of 

Takens [1980], [1983], Ben-Mizrachi et al [1984], Scheinkman [1985], and 

their references for calculating various notions of "dimension" may be applied 

to testing panel data for a low dimensional deterministic explanation. Like­

wise the methods discussed in section 3 may be used to calculate measures of 

local expansion or contraction of trajectories in panel data. 

Before we get into details we want to point out the relevance of the panel 

data problem to economic time series data. We believe that there is a consen­

sus (cf. Zarnowitz [1984] and his references) that most economic time series 

are "blatantly nonstationary" (Brillinger and Hatanaka [1969, p. 133]) but that 

in certain cases the nonstationarity is of a slowly altering nature. In these 

cases one could use judgment or tests for nonstationarity to split the time 

series into panels where one hopes that approximate stationarity of the 

underlying dynamics holds within each "panel". The panel data analysis to be 

presented below may be useful in such cases. 

The idea of our test is simple. If xis low dimensional, for example 

one dimensional, then the image of the domain of Funder the map H (•): 
m 

- (3) H (x) = (h(x), h(F(x)), ••• ,h(FN(x))) 
m 

is no more than one dimensional no matter how large is N. That is to say if 

n · n n 
xER then for all m = 1,2, ••• we must have dim H (R) ~ dim R for any sen­

m 

sible notion of dimension if h,F are smooth. Smoothness is needed to prevent 

"space filling curve" type pathology. 

1 - 2 
Examine the sequences ai = aio' ai -

The set {ami} 1 must lie on the image of an n dimensional manifold lying in 
i=l 

m dimensional space. This will be revealed by calculating the dimension of 
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{am}i=l" However, this may require a lot of data. A method of forming the 

inputs into the dimension calculation at each "embedding dimension m" that is 

less wasteful of the panel data is to use not only (ai0 , ••• ,aim) but also 

(ai1, ••• ,ai,m+l), ••• ,(ait'"""'ai,m+t) for ti Ti for each i. 

realistic problem involving panel data. 

The case where (h,F) may depend upon i 

Turn now to a more 

Clearly we must restrict the dependence of hand F upon i or we could 

manufacture a deterministic explanation for any panel. To keep things specific 

suppose that only F can depend upon i and F depends upon i through the one 

dimensional parameter ai. That is to say F = F(x,a). 

Definition 2 We say that {ait} has a one dimensional characteristic 

deterministic explanation if everything is as in Definition 1 with F(xit) 

replaced by F(xit'ai). 

We may apply exactly the same reasoning as above to test for a one dimen­

sional characteristic deterministic explanation of {ait}. That is to say the 

map: 

H (x,a) = (h(x), h(F(x,a), ••• ,h(Fm(x,a))) 
m 

n m+l 
sends R x R into R • Indeed one could probably generalize Takens [1980] 

to even show that H is 1-1 form large enough. In this case reconstruction of 
m 

the underlying dynamics may be possible. We must leave this to future 

research. In any event a low dimension of {a;} that saturates with m indicates 

a low dimensional set of characteristics and a low dimensional dynamical system 

drives the data. 
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5. Tests for Deterministic Explanations of Business Cycles. 

We doubt that anyone believes that business cycles are generated by a low 

dimensional deterministic dynamical system. What is at issue is whether there 

is evidence consistent with the hypothesis that a low dimensional nonlinear 

deterministic dynamical system explains a "substantial" portion of the variance 

in a collection of macroeconomic time series. Let us expand upon this point. 

Most modern macro-money-finance models, especially the recursive setups used 

by rational expectationists, imply the existence of a low dimensional "state" 

variable, call it x, such that if {a1t} is a collection of economic time series 

we must have 

Lucas [1975] and Michener [1984] are examples. The state variable xt is 

typically generated by a stochastically stable process xt+l = F(xt,vt+l). Such 

models are usually "log linearized" by the rational expecta tionis ts. Then 

linear time series methods are used to test hypotheses suggested by rational 

expectations theory. Sargent [ 1981] is typical. 

If one is persuaded by the evidence for nonlinearity in economic and finan­

cial time series discussed by Blatt [1981], Neftci [1984], Hinich and Patterson 

[1985], Zarnowitz [1984], et al. then it is natural to believe that the basically 

(locally) log linear theories discussed above are missing important elements of 

the business cycle. As Zarnowitz [1984] points out, the leading rational expec­

tations models emphasized exogenous instability rather than endogenous instabi­

lity as stressed by the older literature and Keynesian models. Indeed one may 

look upon efforts such as Benhabib and Day [1982], Day [1982], Day and Shafer 

[1985] and Grandmont [1983] as attempts to formalize the earlier literature. 
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For the purposes of our discussion here one may view a major part of 

Grandmont's (1983] work as an attempt to show that his model is potentially 

capable, like the rational expectations models of Lucas (1975] are capable, of 

generating high pairwise coherences between relevant macroeconomic time series 

at the relevant business cycle frequencies (Sargent (1979, p. 256]). For a 

contrary view see Sim's comments (1984] on Grandmont's (1983] paper. 

How might one test for such a possibility in macro data? To put it another 

way how might one test for the presence of a low dimensional state variable 

governed by chaotic dynamics that drives a cross section of time series macro 

data? Let us adapt the approach to panel data developed in section 4. 

Suppose {xt} in (1) follows 

where Fis chaotic. Of course the methods of sections 2 and 3 can be applied to 

each time series {h1(xt)}~ to test for a deterministic explanation but this 
t=O 

"wastes" the restrictions implied by a low dimensional state variable. Besides, 

a single macroeconomic time series is too short for reliable dimension calcula­

tions. A test is contained in the following proposition. 

Proposition Suppose that {ait} has a deterministic explanation with a common 

low dimensional state variable. That is there exist smooth maps hi: m R + R, 

i 1 2 I d F Rm Rm x0 ~ Rm such that =, , ..• , an : + , ~ 

Then, except for hairline cases we must have: There is i, such that there is 

N such that for n > N, t < s 
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(4) implies a ~ a j , t+n+-r j , s+n+-r ' 

for all j=l,2, ••• ,I; and -r = 0,1,2, ••• 

Proof: Adapt Takens [1980]. 

Notice that this test is similar to the Guckenheimer [1982] test except that 

close n-histories, ait ~ ais for~ i implies that the "future," {aj,s+n+-r} 00 

must unfold exactly like the "past" for all of the I time series j=l, 2, ••• , I. 

This is perfect predictability with a vengeance and it is likely that any set of 

1/ 
macroeconomic time series will vigorously reject this hypothesis.-

However it does suggest a setup that captures the spirit of (4), but not 

the letter, that is more relevant to the real world of noisy economic time 

series. The idea is to rephrase (4) in terms related to Granger causality 

tests (Granger and Newbold [1977, pp. 224-226] and their uses in macroecono­

mics. 

To explain let 

Then there must be N such that for n) N and o small and for each j over 

Wn(o), ajt' aj,t+n+-r predicts aj,s+n+-r and no other information such as 

{aj,s+n+,-k}k)l helps predict aj,s+n+-r· I.e. test that other series such 

as the "natural" series { aj, s+n+-r-k}k)l' is not Granger causally prior to 

1/ - We say this for two reasons, one practical, one theoretical. The 
practical matter is that trying to measure the activities of several tens 
of millions of human beings is bound to create noisy data. People are more 
complicated than particles. The theoretical proposition is that frictionless 
markets must generate locally unpredictable price changes else systematic 
profit opportunities exist. See Sims [1984] for a recent formalization 
of this argument. 
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aj,s+n+T over Wn(o). That is to say, given aj,t+n+.' the incremental predic­

tive content over W (o) for aj +n+ is nil for all other information n ,s T 

including the natural information {aj,s+n+.-k}k)l" 

Put this way it seems that all we have to do now is apply ordinary least 

squares regression analysis as in econometrics textbooks (e.g. Johnston 

[1984]) and casuality tests as in, for example, Litterman and Weiss [1985]. 

There are two major problems that are not resolved in this paper that must be 

resolved before our "test" can be applied. First the requirement that 

(t,s) e: W' (o) makes t,s random variables which may cause "sample selection" 
n 

bias. Second if the true data {ait} satisfies (4) but the observer sees the 

noisy data ait = ait + e:it than we have an errors in variables problem. To 

sum up we have an errors in variables problem with "sample selection" bias. It 

is well known (e.g., Johnston [1984, p. 428]) that OLS estimates of aj,Sj 

are inconsistent in the face of errors in variables. Furthermore the 

estimates of aj,Sj that you get out of various approaches to fix the errors in 

variables problems may depend dramatically on the assumptions you make about 

the error structure. For an enlightening discussion and application see 

Goldberger [1984]. 

This is as far as we can go on applying and adapting the dimension analy­

sis methods explicated in this paper to business cycle analysis. The only 

point that we want to make is that dimension analysis suggests interesting 

approaches to business cycle analysis that dovetail neatly with received 

methods. 

S. Summary 

In this paper we briefly reviewed methods devised by the natural sciences 

to test for the presence of low dimensional nonlinear chaos in time series 
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data. The tests consist of two parts. First calculate some notion of dimension 

and show that it is small. Second calculate an estimate of the largest 

Lyapunov exponent and show that it is positive. 

In this paper we amended and adapted these tests to maximize the information 

available in the short data sets available in business cycle analysis. Our fin­

dings indicate that there is not enough information available in U.S. real 

GNP, real gross private domestic investment, and Wolfer's sunspot series for 

the two part test discussed here to reject the null hypothesis that the series 

under scrutiny were generated by an AR(2) process. 

The final section of the paper indicates how to extend the methods reported 

here to the case of panel data and a cross section of time series. Exploitation 

of this extra information should enable sharper tests for nonlinear chaos. 

Finally a more extensive discussion of these methods is available in 

Brock [1985] and a more extensive discussion of empirical applications to 

business cycles and labor statistics is in Brock and Sayers [1985] and 

Sayers [1985]. Scheinkman's [1985] paper in this volume applies these methods 

to the stock market. 

A list of references that I have found useful in my literature search 

as well as references to other studies that I have found is in the reference 

section. 
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thank W. Dechert, Don Hester, C. Sayers, and J. Scheinkman. James Ramsey 
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Table 1 

Dimension Calculations for Detrended U.S. Real GNP 

U.S. Real GNP 

1947:1-1985:1 

* sc20 * 520 * a20 a20 sc20 e: a20 a20 

5.96 6.02 2.11 1.97 .92 7246 8.61 8.72 
4.03 3.99 2.45 2.65 .93 6166 5.07 5.14 
3.50 3.55 3.17 3.26 .94 5216 3.91 3.97 
3.42 3.48 3.35 3.46 .95 4144 3.48 3.54 
3.40 3.48 3.41 3.59 .96 2982 3.41 3.48 
3.40 3.50 3.14 3.39 .97 2266 3.27 3.36 
3.36 3.48 2.87 3.19 .98 1774 3.14 3.23 
3.30 3.44 3.13 3.65 .99 1224 3.19 3.32 
3.28 3.47 2.38 2.95 •910 902 3.15 3.32 
3.19 3.41 .9 686 3.10 3.30 

ext' n=132 &xt' 

* sc20 * 520 * a20 a20 sc20 e: a20 a20 

11.00 10.87 6.03 6.21 .92 4966 11.91 12.10 
8.50 8.54 6.02 7.30 .93 2392 9.42 9.66 
7.67 8.12 7.16 7.24 .94 1012 9.00 9.42 
7.54 7.90 6.68 8.98 .95 390 9.02 9.98 
7.36 8.12 4.25 7.76 .96 184 8.64 11.02 
6.84 8.06 2.55 7 .13 .97 142 7.61 11. 79 
6.23 7.93 2.49 17.39 .98 132 OD 

5.76 9.11 .56 OD .99 132 OD 

5.14 OD 0 OD 

•910 132 OD 

4.62 OD 0 OD .9 132 OD 

sc20 

1.54 
1.59 
2.19 
3.13 
2.62 
2.32 
3.54 
2.91 
2.61 

n=132 

sc20 

6.93 
8.16 
9.05 
7.13 
2.46 

.69 
0 
0 
0 
0 

Embedding dimension d = 20, nd=l32, 134, s20 = D{(i,j)I I la~-a1ll<e:} 

* sc20 

1.56 
1.63 
2.25 
3.25 
2.75 
2.49 
3.88 
3.32 
3.13 

* sc20 

7.22 
8.95 

11.65 
15.20 
12.19 

OD 

OD 

OD 

OD 

OD 
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Table 2 

Dimension Calculations for Wolfer Sunspot Numbers 

Wolfer Sunspot Numbers: 1749-1924 
From Anderson [1971] 

xt, nd=157 oxt' nd=155 

* sc20 * 820 * sc20 a20 a20 sc20 e: a20 azo 

21.25 21. 77 2.98 3.21 .92 1543 26.06 27.00 5.00 
12.12 12.49 2.93 4.52 .93 551 11.94 16.37 4.79 
9.05 9.83 2.98 2.16 .94 313 10.30 12.97 5.37 
7.54 7.91 4.61 5.75 .95 197 9.12 11.91 4.39 
6.95 7.48 3.18 4.51 .96 179 7.75 12.04 .91 
6.32 6.99 2.81 4.72 .97 159 6.80 10.92 1.13 
5.82 6.66 2.00 4.17 .98 155 5.98 11. 79 .24 
5.34 6.35 1.18 3.07 .9 
4.88 5.99 • 77 2.89 
4.47 5.62 

* sc20 

5.74 
6.16 
8. 72 

12.58 
5.31 

17.01 
co 

s - s 
t ' ' 

X = t 1.336 X l - .65 X 2, t- t-
R2 = .802, n = 174, nd = 155, 157 
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Table 3 

Lyapunov Exponents and Other Instability Measures for Wolfer's 
Sunpot Numbers 

q 

1 
2 
3 
4 
5 
6 
7 
8 
9 

" " K Al A.2 

100 1.01 .89 
50 .64 .68 
45 .47 .47 
35 .36 .33 
25 .28 .24 
24 .29 .19 
21 .19 .18 
18 .17 .15 
16 .17 .15 

Sunspot numbers 

" K A g a g 

100 .64 3.22 5.67 
50 .57 8.22 22.81 
45 .38 5.96 7.67 
35 .35 7.78 8.68 
25 .28 8.52 10. 71 
24 .21 6.45 8.20 
21 .25 7.93 5.45 
18 .15 4.31 2.55 
16 .16 5.78 4.54 

3 runs on random numbers to 
compare with sunspot numbers 

" 
A3 gl g2 g3 

1.01 4.06 4.51 3.95 
.57 5.88 6.32 4.67 
.49 5.84 6.07 8.07 
.35 6.13 6.49 6.55 
.30 5.79 5.21 6.09 
.25 10.66 4.19 7.53 
.23 5.95 6.79 8.16 
.21 5.50 17.87 7.42 
.16 7.07 4.88 8.94 

agl 

4.26 
6.80 
6.01 
4.92 
3.89 

12.52 
8.62 
4.37 
6.16 

ag2 ag3 

10.57 3.11 
6.64 5.49 
6.22 10.31 

10.90 6.01 
5.02 4.35 
2.95 9.05 
9.49 8.24 

60.42 6.12 
2.88 13.12 
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