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- ABSTRACT

Thisvpapar summarizes from an econometric perspective recent work

by statisticians on adaptivagéstimation. It also presents new findings'

concerning -the adaptive“es;imability of honflinear regression models.




Introduction ' 2

The development of methods for efficient estimation of
structural parameters given specified prior distributional
information is an ongoing, central theme of econometric theory.
At the same time, one would generally like tc avoid estimators
whose good propertiss depend on the validity of sirong,
unsupporiable assumptions about the behavior of unobservables.
The two objectives of precise estimatior and unrestrictive
distributional specification must ultimately be in conflict.
One should not think, however, that a weakening of
diatributional assumptions always carries with it a leoss in
attainable precision.

In particular, consider a2 non-linear regression medel with

a free intercert parameter aad errors known to be independent

and identically distrituted (i.i.d.). In this paper, it will
be proved under standard regularity conditiocns that there
exists an estimator of the model's slope parameters whose com~
putation does not involve any knowledge of the true error den-
sity yet whose asymptotic distribution is identical to that of
the most efficient estimator that could be computed were the
true error density given. That is, knowledge of the error
density turns out to be irrelevant, asymptotically, to estima-
tion of the slope parameters.

The above and other important asymptotic results relating
attainable precision of estimation to prior distributional
information can be obtained as applications of recent work by
statisticians on adaptive estimation. An estimator may be
termed adaptive if its computation incorporates a data based
procedure for'learning unknown features of the error distribu-
tion and if such learning is asymptotically successful in the
sense that the asymptotic distribution of the estimator is that
of the most efficient estimator tha’ could be computed if the
distribution were known.

The literature exploring contexts in which adaptive estim-
ation is possible arnd proposing specific adaptive estimators is
now at least thiriy years old. It was apparently Stein (1956)
who first sought *o characterize the situaftions in which a

parameter is and is not adaptively estimable. The achievement
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of results allowing analysis of adaptive estimation in models
of econometric interest has occurred only recently, however, in
seminal work of Bickel (1982), who builds on earlier important
work of Stone (1975).

In Sections 1, 3, and 5, I summarize from an econometric
perspective ‘the statistical literature on adaptive estimation.
In Sections 2, 4, 6, and 7, I present my own findings concern-
ing the adaptive estimebility of non-linear regression and more

general non-linear models.

1. Adaptive Egtimaticn: An Informal Historical Perspective

The statistical literature on adeptive estimation is enor-
mously rewarding to study, both for the powsrful theorems it
offers and for the technical vi»tuosiiy it displays. The form-
al arguments in this literature tend to be rathar inftricate.
The ideas, on the other hand, are easy to understand and intui-
tive. An overview of those developments most relevant to our
applications will serve as a useful prelude to the more formal
analysis that follows. _

Stein (1956) originally posed the problem of adaptive
estimability as a non-parametric generslizaticn of the
classical gquestion cencerning the asymptotic relevance of
nuisance parameters. Let a sample of observations be drawn
randomly from a distribution known to be a member of a family
of distributions characterized by the finite parameter vector
(6%,n*)c0xH, where © <! and HS RE. Let 6% be the parameters
of interest and n* be the nuisance parameters. Let I(6%) be
the Fisher's information matrix associated with estimatica of
0% given knowledge of n* and let I(6%*,n%*) be the iuformation
matrix associated with joint estimation of (6*,n*). As is well
knowﬁ, standard regularity conditions imply that given n*, the
best attainable asymptotic variance for an asymptotically
normal estimator of 6% is I(8*)~l. If n* is unknown, the best
attainable precision is the upper left MxM sub-matrix of
I1(6*,n*)-l. The latter matrix exceeds the former one by a non-
negative definite matrix which is null if the upper right MxL
sub-matrix of I(6%*,n*) is null. That is, if and only if this
last condition holds is knowledge of n* asymptotically

irrelevant to estimation of 5%.



Now consider the more gensral situation in which the
distrivution generating the cbservations is knowr only to be a
member of a family of distributiona characterized by

(6*,f*)sRM x &, where ® is a function space. Then £f¥ is a

nuisance function. For example, in a non-linear regression
model with i.i.d. disturbances, f* might be the unknown error
density and @ the set of all symmetric density functions
centered on zero. 3tein reasoned that in this context, the
asymptotic variance of an estimate for 6% must be at least as
large as the best asymptctic variance that would be attairable
were f* known to lie in some finite parametric Family

(£ ,neH) & ®. This, we have noted, is the MxM upper left sub-
matrix of I(6%,n*)~l, where n® indexes the true density. Stein
observed that the above inequality must hold for every finite
dimensional subfamily of & containing f*. He then concluded
that given the prior restriciticn of f¥ to &, €% cannot be
estimated adaptively if there exists any finite parametric
family such that £* (£ neRY) € & and the upper right MxL sub-
matrix of I(6%*,n*) is non~null. This condition, which we shall
later state formally as Condition 5, is conceptueslly simple.
Unfortunately, Stein did not indicate how it might be checked
in practice. A verifiable form of the condition became
available only recently, in Bickel (1982). See also Begun,
Hall, Huang, and Wellner (1983).

Stein's paper does contain one immediately useful result.
Considering the classical problem of sstimating 6% in the
presence of the nuisance parameters n*, Stein observed that
there can exist situations in which knowledge of n* is
asymptotically relevant to estimation of 6% as a whole but
irrelevant to estimation of some sub-vector of 6%. Let
% = (B*,a*) where B*eRU, a*zRv, U +V =M. Given knowledge of
n*, the best attainable asymptotic variance for an estimate of
B* is the upper left UxU sut-matrix of I(8*,a*)~!. 1In the
absence of such knowledge, it is the corresponding sub-matrix
of I(B*,a* n*)"l. Stein found the necessary and sufficient
condition for these two UxJ mwatrices to be equal. This
condition, which we shall state later as Lemms 3.1, is less

stringent than the familiar condition for equality of



I(B*,a*)-! and the upper left MxM sub-matrix of I(B¥,a*,n*)-l.
Surprisingly, Stein's Lemma appears to have lay unnoticed until
Bickel (1982) put it to an important application.

Following the appearance of Stein's paper, approximately
fifteen years passed before a serious literature on adaptive
estimation began to develop. Then, in the early 1970's, a
number of authors reported positive findings for the simplest
regression problem, namely the location parameter problem in
which

y-68*=u (1)
where y, 6*, and u are scalar, u has density f*¥, and a random
sample of y values are odbserved. The most general result was
achieved by Beran (1974), who showed that if f* is known only
to be symmetric around zero, one can construct an estimator for
0% whose asymptotic variance equals the best that would be
. attainable were f* known. Thus, given symmetry of f*, 0% is
adaptively estimable.

Beran also considered the 'two-sample' problem in which

y-BM-a*=u (2)
where the arguments are all scalar, 9* = (B*,a*) and where w,
which i3 observed, is Bernoulli distributed, independent of u.
As before, u has unknown density f* and sampling is random.
For this problem, he found that the shift (or slope) parameter
B* can be adaptively estimated even when no prior restrictions
on f* beyond regularity are available.

Beran's proofs were constructive but his approach, which
involved the construction of adaptive rank estimates, does nct
lend itself to application to more complex estimation problems.
Soon after the appearance of Beran's paper, however, Stone
(1975) reported an alternative constructive proof that 2
location parameter can be estimated adaptively, given symmetry
of f*. Stone's approach is at once generalizable, easily

computable, and intuitively aprvealling.



Stone's construction has the following steps:

(1) Compute GN, any estimate for 9% which does not use

knowledge of f* and which is /N consistent whenever ¥ is &
symmetric density. For example, the sample median will do.

(2) Calculate the residuals LU SR LIRS £

(3) Use the residuals to form a non-parametric estimate
of the density f*. Stone chose a particular trimmed kernel
estimate. Details on this will be given later.

(4) Acting as if the density estimate is the true
density, take one Newton-Raphson type step from eN.

If the true density were used in Ster (4), the generated
estimate would, as is well known, be asymptotically equivalent
to the maximum likelihcod eatimate. For this reason, Stone
termed his procedure 'adaptive maximum likelihood'. Proof that
the first stage residuals can be used successfully to adapt to
the unknown density is decidedly non-trivial. In fact, given
that the poiniwise rate of convergeﬁce cf a non-parametric
density estimate is known to always be slower than ¥YN, one
might think that Stone's approach must fail. The Newton-
Raphson step, however, requires not an estimate of the
dersity per se but only of the information and of the sample
mean score at SN. These functions of the density can, it turns
out, be estimated well enough.

Technical differences aside, the adaptive maximum
likelihood procedure should seem familiar to econometricians.
The approximate generalized least squares methods ubiquitous in
econometrics have similar structures. The latter are simpler
in that the residuals, say from OLS, are used to estimate
(adapt to) a finite set of parameters defining the second
moments of a distribution, not to estimate a score. The
objective in most econometric work has been to attain

efficiency in the sense of the Gauss-Markov Theorem, not in the



more ambitious sense of the Cramer-Rao lower bound. The idea,
however, is clearly the same.

Stone presented the adaptive maximum likelihood estimator
entirely in the context of the location parameter problem.
Proof that a version of the estimator is adaptive in more
general regression problems is due to Bickel (1982). 1In a
paper that must be considered s breakthrough of the first
order, Bickel has done the following, all in the context of
models with i.i.d. disturbances and random sampling.

First, he has shown that if the likelihood is a convex
functional of the unknown error density f%*, and if that density
is a priori restricted to a convex family & of densities, then
Stein's recesssry condition for adaptive estimation is
equivalent to another condition far easier to verify or
contradict. Essentially, Stein's necessary condition is
equivalent to the requirement that the one Newton-Raphson step
estimate computed using any fe@ be conasistent end
asymptotically normal whatever density f¥ed actually is. The
formal statement of Bickel's condition will be given later, as
Condition 3.

Assume now that one faces a suitably convex estimation
problem for which Condition B is satisfied. Bickel's second
major contribution was to prove that a modified version of
Stone's procedure successfully yields an adaptive estimate if a
certain verifiable condition is satisfied. This result, which
will be presented here as Lemma 5.4, offers a prescription for
the constructive proof of the existence of adaptive estimates.

Going further, Bickel applied his result to prove the
existence of adaptive estimates in some important multi-
parameter contexts. Of clear econometric interest are his
applications to linear mcdels. Consider the problem of
estimating 6% in the single equation model

y-x'6*=q (3)




where y, ucR and x,e*eRK. Bickel proved that if f* is known
only to be symmetric centered on zero, then, subject to
standard regularity conditions on the distribution of x, 8* can
be estimated adaptively by an adaptive maximum likelihcod
procedure. If the model contains an intercept, so that we may
write

y - wep* -a*=u o (4)

with w,ﬁ*eRK-1; a*cR; 6* = (B*,a*); x = (w,1); then the slope
parameters B* can be estimated adaptively when u is known only
to be i.i.d. These findings are major generalizations c¢f the
Beran (1974) results for the models (1) and (2). The adaptive
maximum likelihood estimates are, moreover, easily computable.
Viewed as a whole, Bickel's work converts what had been a
set of isolated, specific results on adaptive estimation into a
coherent field of 3tudy with broad application. On an
gesthetic level, I find particularly appealling the
relationship uncovered between the behavior of quasi-cne Newton

Raphson step estimates and the properties of adaptive maximum
likelihood estimates. When quasi-one step estimates are v/N-

consistent, Stone's procedure remairs Y¥-consistent even if a
fixed, incorrect density estimate is used to perform the
Newton-Raphson step. Given this, it makes sense that the use
of a sequence of density estimates converging to the true
density should yield an asymptotically efficient estimate. On
the other hand, in an estimation problem where quasi-one step
estimates are inconsistent, Stone's procedure based on a fixed
density estimate is inconsistent. In this case, we might hope
that use of a convergent sequence of density estimates would
yield a consistert estimate but achievement of asymptotic

efficiency would seem unlikely.




2. Non-Linear Regression Models: A Summary of Findings

In this paper, I shall extend Bickel's treatment of linear
models to analyze the adaptive estimability of non-linear
models of the general form

g(y,x,6%) = u (5)
vhere yeY C RJ and xX < RK are observable, ueRJ is
unobservable, the J-vector of functions g is specified up to
the value of 6%6 < RM and a reduced form function y =
g1 (u,x,0) exists for each xX, 6c0. Maintained regularity
conditions include the assumption that for each xeX, the
conditional distribution of u has differentiable density f;(-)
with finite, positive definite information. The conditionel
densities f; are assumed non-informative regarding 6*. The
function g(y,x,0) should be measureable in (y,x) for all 9 and,
for each x, should be jointly continuously differentiable over
(y,e) €Y x0. Certain integrability'conditions will also be
imposed on g.

The Bickel theorems apply when the sample (yu,xn),
n=1,....N is drawn by a serially independent, exogenous
sampling process. That is, the sample size N and the
realizations (xn, n=1,...,N) are not per se informative
regarding either 8* or the densities (f¥, xeX). The likelihood
of observing y conditional on x is the pcpulation conditional
density, namely

Mylx,0%,e%) = [3(y,x,0%)] £2[e(y,x,0%)] (6)

2g(y,x,0%)
where J(y,x,0%) = det[-——ssr———ﬁ.

(yn,n=1,...,N) conditional on (xn, n=1...,N) is the product

The likelihood of

over n=1,...,N of the likelihoods of T, conditional on x .
These sampling assumptions are conventional in cross-sectional

applications.
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Some regularity must be imposed on the exogenous process
generating realizations of x. Let I be the set of probability
distr{butions on RK having non-singular variance. We shall
assume that the empirical distribution of x converges almost
surely at rate /N to some G*I'. This is satisfied if, for
example, the realizations of x are randomly drawn from G¥.

An important sub-family of non-linear models are those
that can be written in the non-linear regression form

y - h(x,0%) = u (7
where h is a J-vector of functions. The structure (7) is
considerably simpler than (5). In particular, J(y,x,0) =1

identically and the basic likelihood expression (6) reduces to
% *
Mylx,0%,7) = £ [y- n(x,3%)]. (8)

A further specialization of the non-linear regression family

are the models with free intercept

y - h(w,8%) -a* = (9)
where ﬁ*eRU, a*tRJ, % = (B*,c*), x = (w,1), and h(=,0%*) =

h(w,8*) + a*. Here the basic likelihood expression is
» * .
h(ylxsﬁ*s a*s fx) = fx[Y' h(wvﬁ*) - CL*]- (10)

The distinctions between the likelihood expressioms (6), (8)
and (10) will be seen later to have importaﬁt implications for
the possibility of adaptive estimation.

Working in the above setting we can obtain general results
on attainable precision of estimation. In Section 3, we state
formally the Stein-Bickel necessary conditions for adaptive
estimation. Then, in Section 4, we show that non-linear
regression problems satisfy Condition B in two important
settings. First, Condition B is satisfied for the entire
parameter vector if the disturbances are known to be

symmetrically distributed conditioral on x (Proposition 4.1).
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Second, Condition B is satiafied for the slope parameters of a
model with free intercept if the disturbances are known to be
i.i.d. (Proposition 4.2).

These results are very encouraging but it should not be
thought that Condition B remains satisfied under arbitrarily
weak distributional assumptions. TFor instance, if the
disturbances are known to have densities that are close (in the
gsense of the weak topology) to symmetric but not necessarily
symmetric, conditional om x, then Condition B is not satisfied
(Proposition 4.3). If the model has a free intercept but the
disturbances are not known to be i.i.d., then Condition B does
not hold for the slope parameters unless the symmetry
restriction holds (Proposition 4.4). In these cases then,
adaptive estimation cannot be possible.

Condition B also fails when one moves from non~lineer
regression to models of form (5)-(6) in which the Jacobian of
the transformation from y to u has a more ccmpiex form.
Consider the simple location-scale parameter model B8¥*y + a* =
u, where all the expressicns are scalar and where y is known to
ve symmetric with mean zero and variance one. Here the
Jacobian is still relatively simple yet Condition B for joint
estimation of (B*,a*) is not satisfied (Proposition 4.5).

Following Section 4, we seek to verify the existence of
adaptive estimates in those situations where Condition B is
satisfied. The Stone-Bickel construction of adaptive maximum
likelihood estimates is outlined in Section 5. While the
adaptive maximum likelihood method should have general
applicability, the central lemma on the convergence of the non-
parametric estimate of the score function has thus far been
proved only in the one-dimensional case. For this reason, our
applications of the method, given ir Section 6, are confined to
single equation models.

In Section 6, we exterd Bickel's proofs for linear models

with i.i.d. disturbances %o non-linear regression models with
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x and u possibly interdependent. We prove that if the
disturbances are known to be distributed symmetric around zero
conditional on x, and if the space X can bte partitioned into a
finite system of subsets within each of which f: is known to be
invariant, then the Stone-Bickel estimator is adaptive for the
entire parameter vector (Theorem 6.1 and Corollary). We then
prove that the Stone-Bickel estimator is adaptive for the slope
parameters if the model has a free intercept and the
disturbances are known to be i.i.d. (Theorem 6.2).

The conciuding Section 7 raises questions that are either
being addressed in ongoing research or need to be addressed.
Section 7.1 briefly describes the elegant new results of Begun
et al. (1983) placing bounds on attainable precision when
adaptation is not possible. Section 7.2 lists a rumber of
important econometric problems which cannot be treated using
. the theory summarized in this paper. In Section 3, we consider
the small sample behavior of adaptive maximum likelihood

estimates and present some suggestive Monte Carlo findings.

L The Stein-Bickel Necessary Conditions for the Existence
of Adaptive Estimates

We present the Stein-Bickel necessary conditions in a form
appropriate for our applications but not necessarily in the
most general manner possible. In all that follows, we maintain
the regularity and sampling assumptions imposed in Section 2
when the non-linear model (5)-(6) was introduced. Moreover, we
restrict attention to problems in which the classical bound on
precision of estimation would be attainable
asymptotically if the set of densities ¢* = (f:,xsx) were
known. That is, we assume that for all 6%=0 and G¥*eT,
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1 1
1(e%) = (g 00y (11)

dlogr (y]x,0%,£%) dlogh (ylx,6%,£%)
= * *
It 55 55 Aylx,0%, t%)dy]de
is finite, non-singular and that, given knowledge of ¢*, there

such that, as M=,

A
exists a computable estimator eN

L
/F (g 0%) > F0,166M) ). (12)

Minimal regularity conditions guararteeing the existence of‘gN
are given in LeCam (1969).

Consider next the familiar situation in which ¢* is not
given but is known to be a member of a parametric family
[(fi,xEX), neH] where H is a subset of a finite dimensional
real space, where each ﬂ; is differentiable in u and where, for
each value of u, fl(u) is differentiable in i at n=n¥*. Here n*
~ indexes the true set of conditional densities. We can then
write the true conditional density of y as k(ylx,e*,n*) and
consider joint estimation of (8*,n*). As is well known, the
classical bound on the precision of an estimate for 0%

continues to equal I(6%*)~! if and only if

Adlogh dlog\ - ’
E( 26 a.n' ]9=9*’ n=n* = 0. (13)

Otherwise, the presence of the nuisance parameters n¥* lowers

the precision with which 6% can be estimated.

It is much less well appreciated that in the presence of
nuisance parameters, the bound on the precision of an estimate
for a given sub-vector of 8% can continue to equal the relevant
sub-matrix of I(0*)-! even though condition (13) is not
satisfied. This was shown in Stein (1956).

Let 0% = (B*,a%), BsRU, a*sRV, U+V = M. TFor ve(B,x,n) and
5e(B,x,n), define
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1
2(8108?‘ a_f.g.\.)y‘y*’ s (14)

Ir n" is known, the smallest possible asymptotic variance for
an asymptotically normal estimate of B* is the UxU upper left
sub-matrix of the inverted information matrix

-1 '
I1(a*,z%)"l = *s ?a . (15)
Aﬁa aa
If n* is not known, the smallest possible asymptotic variance
for an estimate of B* is the UxU upper left sub-matrix of

Aﬁﬂ Aﬁa ‘311’-1

IE*a®amt = | A A A . (16)

aa an

B0 M

let IU denote the UxU identity matrix. Stein proved the

following matrix algebraic lemma:

Lemma 3.1: The UxU upper left sub-matrix of I(B*,a*,n*)
equals that of I(8*,a®*)~l if and only if

[1y2 - agpiz] 2: - 0. (17)
Proof: See Stein (1956).

Condition (17) is less stringent than (13), which requires that
Aﬁﬂ = A = 0.

Now consider the situation in vhich ¢* is known only to
belong to a class & qf sets of densities containing the
parametric family [(i’;, xX), neH]. Clearly, a subvector 8% of
8% can be estimated no more precisely in this case than in the
case where ¢* is known to be in the parametric subset of @.
This simple observation is the essence of the Stein (1956)
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necessary condition for adaptive estimation of g*. Paraphrased
for our applications, Stein's condition is

Condition S: Let ¢® be known to lie in &, a specified class of
sets of densities on ‘RJ. If there exists some

(6*,6*,G*) e©@ x @ xI' and some finite dimensional subfamily of
® such that I(8%,a*,;n*)”" exists but (17) is mot satisfied,
then B* is not adaptively estimable.

Condition S is conceptually simple but difficult to check.
To obtain a practical version of the condition, Bickel ( 1982‘)
restricted attention to problems in which & is a convex family
of densities and the sampling distribution of the data.is a
convex functional on &®. The former condition is satisfied if,
for example, & is the space of all censities or of all
. symmetric densities centered on zero. In our applications, the
structure of the basic iikelihdéd;expression (6) implies that ‘
the latter condition is alﬁays met. Simply’o“serve that for
all (y,x,8)e Y x X x0, all pairs of densities (£°,£') and all
nelo,1], ’

Aylx,0,(net + (1-9)£9)] (18)

= |3(y,x,8)|*[nfl (g(3,x,8)) + (1-)2%(g(y,x,8))]
= nea(zlx,0,2') + (1n)en(zlx,0,1°).

Consider now any ¢*® = (f;,n-:x)ed» and ¢ = (fx,zex)eib.
Letting

£y =nf, + (1n)f2, | (19)
convexity of & implies that ‘
[(£),x=x)nef0,1]k2. (20)

Bickel obtained his condition by applying Condition S
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informally to the parametric family defined in {20). Formally,
this makes sense only if the densities fi are differentiable in
n at the boundary point n* = 0. To guarantee this, we can
extend the family (20) and apply Condition S only when there

exist{s an N, < O such that

[(£)X) melng,1]]e2. (20")

This allows us to formally derive the following version of

Bickel's necessary condition for adaptive estimation.

Condition B: Let ¢* be known to lie in d, a specified convex
class of sets of densities on nJ. Where it exists, define the
expected score function
(21)
alogk(ylx,e*,f;)
s[ (6%,0%),(6%,0),6%] = [ 55 A(ylx,0%,7 )ayde*

A necessary condition for adaptive estimation of 3% is that

whenever S exists and (20') holds fcr some Tig < 0

%gT'I(e*)-l S[(G*,¢*),(6*,¢),G*] = 0. (22)

Proof: When ¢* and ¢ are such that (20') holds for some g <
o, fl is differentiable inn at n®* = O and Condition S can be
applied.
To interpret (17) in this case, observe that by (18),
dlogh (y]x,0%,n*) k(ylx,e*,fx)
on B K(ylx,e*,f:) -1 (23)

The adding-up condition for probabilities implies that

1
E(%g'&)eﬁ* = 0. (24)

Together, (23) and (24) imply that
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A
| = sle%e®),(8%,0),0%]. (25)
A

Next observe that premultiplication of both sides of (17)
by an arbitrary non-singular UxU matrix B yields the equivalent

relationship

A
.o -1 Bn | . '
[B: B, Ay A, 0. (17"

Since ggv-is the UxM matrix [Iﬂ: O], a further equivalent

statement is

- -1
o8 | B Phaahi Agn .
367 A =0 (1)
c' D an

where C' and D ere arbitrary VxU and VxV matrices. Choose

= - =13 )=l = - -1 = -l 'p=1
B (ABB AﬁaAmABa) , C BABaAaa, and D = A” + C'B™C.
Then (17") becomes

2. 1(3%,a%)! iﬁ' - 0. (17°*")
an :
Combining this with (25) yields Condition B.
' Q.E.D.

An important special case is that in which 3% = 0%. Here,
%%r = I, the presence of I1(6*)=! in (22) becomes irrelevant
and (22) reduces to S[(6%,0%),(¢*,0),6%] = 0. Observe that
this is the condition that should be satisfied for consistent,
quasi-maximum likelihood estimation of 6%. See Huber (1967).
More directly relevant to us is the fact that (22) is necessary
and sufficient for consistent estimation of B* by a quasi-one
step procedure. That is, assume that an initial consistent

estimate of 6% has been obtained and now take one Newton-

Raphson step under the assumpticn that the disturbances are
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generated by ¢%* when they really are by ¢. Under standard
regularity conditions, the resulting estimate remains
consistent for B*, although not necessarily for a*, if and only
if (22) is satisfied.

4. Applications
4.1 Non-Linear Regression Models

Bickel (1982) verified that Condition B is satisfied for
estimation of 8% in the single equation linear model when the
disturbances are known to be i.i.d. and symmetric around zero.
He also showed that Cordition B is satisfied for estimation of
the siope parameters B* in the cingle equation linear model
with free intercept when the disturbances are only known to be
i.i.d. Proposition 4.1 extends the former result to the J-
equation non-linear regression model when the disturbances are
known to be symmetric around zero, conditional on x.
Proposition 4.2 extends the latter finding to the J-equation
non-linear model with i.i.d. disturbances. In what follows,
the information of a density f is denoted by the JzJ matrix

1 3f(u) af(u)
i(e) =f E) auu au"1

Where it exists, the expected score for a density f° computed

du. . (26

under a possibly different density fl is denoted by the Jxi
vector

3f° (u)

o 1 (u)du , (27)

(£ 8) = | 7

Proposition 4.1: Let F° be the space of all symmetric J-

variate densities centered on zero, with finite non-singular
information. Let® = (F%)X. Then model (7) satisfies

Condition B for estimation of 8%.

Proof: As defined, ® is convex. For a model of form (7) and

B* = 0% condition (22) reduces to
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. dh(x,0%)

* 4% * R = [ - A 2 glf® * =
S[(e » )v(e :¢)v G ] J 20 S\fx,fx)dc' 0 (28)
3h oh,
where 39 is the MxJ matrix of terms 35 For each xeX, the

m
af*
restriction of f* and f to F° implies that %; 5——-f is anti-

symmetric so s(f;,fx) = 0. Hence, (28) is satlsfied. Q.E.D.

Proposition 4.2: Let F° be the space of all J-variate

densities with finite non-singular information and zero mean.
let @ = [(£)%, £:¥°]. Then model (9) satisfies Condition B for

estimation of B¥*.

Proof: & is convex. Rather than verify condition (22)

directly, it is simpler to verify the equivalent condition

(1,0 - a5 48] s[(e%,0%),(8%,0),6%] = o. (22')
To do this, observe that for a model of form (9) with i.i.d.
disturbances

- 2R L (e (29)

-l = =1

Am 1(%) (30)
and

E[ah(w B*)]
s[(e*,0%),(e%,0),6%] = - P s(£*,1).  (31)

7
Inspection of (29), (30) and (31) reveals that (22') is
satisfied for all densities f* and f for which s{f*,f) exists.

Q.E.D.

In Proposition 4.2, the restriction of f* to densities
with mean zero was imposed only to identify a®* and can be

replaced by an alternative location parameter restriction.
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This aside, it appears that the distributional assumptions of
Propositions 4.1 and 4.2 are close to the minimum necessary for
satisfaction of Condition B. In particular, we can prove that
adaptive estimation of 6% becomes impossible if Proposition
4.1's restriction of (f;,xsx) to symmetric densities is relaxed
even locally, so as to allow neighbors of such densities. Ve
can also show that Proposition 4.2 does not generalize to cases
in which u is dependent on x. These negative results are

contained in Propositions 4.3 and 4.4.

Proposition 4.3: For given 6e(0,1), let o - [(1n)ef + nez:

£eF°, ze(F°-F°), 0< 1 < 5] be the space of 5-neighbors of
s\ X
).

symmetric densities on RJ, centered on zero. Letd = (F
Then model (7) does not satisfy Condition B for estimation of
e*.

Proof: It is easy to show that & is convex. To contradict
condition B, it suffices to consider the special case in which
the disturbances are truly i.i.d. symmetric. Let £*:F° be the
common true density and consider (fx}xsx) = [(1-n)f* + nz]X
for sorme ze(F° - F°), 0 <n < &. Then the condition (22) for
8%* reduces to

[12RER)aex]( (1n)a(e*,£%) + 0 s(£%,2)] = o. (32)
The assumed non-singularity of I(6%*) for all G*eI' implies
* *
that Qéiggg—l-¢ O for at least some x. Hence,fggéifi—l as* # 0

for at least some G*%I'. For all f¥*, s(f*,f*) = 0. On the
other hand, there clearly exist non-symmetric z for which
s(f*,z) # 0. Hence, (32) does not always hold as Condition B
would require.

Q-EOD'o

Proposition 4.4: Letd = (F’)X. Then model (9) dces not




21
satisfy Condition B for estimation of B*.

Proof: It suffices to consider the two-sample model (2) where
y-B*w - a® = u and w=1 with probability y, w=O otherwise. Let
(f:,f?) be the true conditional densities for w=0,1 and

consider any alternative pair (fo’f1) in®. In this context,

Ay = e i(£}) (33)

A = (=r)ei(£F) + yei(£]) (34)
and

s[(e%,0%),(e%,6),5%] = (35)

0 1
= - [1] (1-Y)S(f:,fo) - [1] Ys(f?,f1)'
The condition (22') therefore reduces to

vei(£}) ,
(T )+ 1(£F) + v i(5F) [Goy)sleg,£) + ys(eh 2] (56)
o

It is immediate that (36) is not satisfied for all choices of
(f:,ff), (fo,f1) and y. TFor example, if s(fT,f1) = O and
s(f:,fo) # 0, condition (36) fails for all ye(o,1).

Q-E-Do

4.2 Linear Systems Models

Consider the J-equation simultaneous systems model

b(e®)y + a(@*)x = u (37)
where b ~ (JxJ), a~ (JxK) and prior restrictions on the
structural parameters are expressed by making throse parameters
functions of a lower-dimension parameter vector ©*. Assuming
b(6*) non-singular, we can write the equivalent reduced form

model
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7 - [-p(6®)-! a(e*)] x = v(o*)-lu. (37")
Prior knowledge that the structural disturbances u have
conditional densities in a class & implies that the reduced
form disturbances b(8%*)~lu have conditional densities in some
class 3(9%).

When 3(0*) is invariant over 6%z0, the reduced form
disturbances are uninformative regarding ©* and the problem of
adeptive estimation of simultaneous systems models becomes
identical to that of adaptive estimation of ncn-linear
regression models. This holds in particular if & is specified
as in Propesitions 4.1 and 4.2. In both of these cases,

3(6*) =3 for all 0% and the simultaneous systeums origin of the
regression (37') intrcduces n~ new issues.

When & (6%) does vary with 6%, the reduced form model (37')
cannot be analyzed using the tools of this paper. On the other
hand, the structural model (37) can, in principle, be checked
directly for satisfaction of Condition B. This will not be

pursued here.

4.3 Joint Estimation of Location and Scale

Consider for a moment the general non-linear model defined
in (5)-{(6). The expected score function S has the relatively
complex form

s[(6*,6%),(6%,0),6*] (38)

ar* g(y,x,0%)] £ [g(y,x,0%)]
- a8y, x,0%) “x ’ X 4
[[13(y,x,0%) |28 =3 f:Lg(?,x,eqp)]dde*

2]3(y,x,0%)
i R |

Note that in the special case of a non-linear regression

aldl _ 4. .
% 0 and the first

£, lely,x,9%) ]ay ac*

problem, the second term disappears as
dh

i ifie = a—ﬁ-:——_
term simplifies as |J| =1 and 5 = 39°
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Given the complexity of the expression (38), a general
characterization of the situations in which Condition B is and
is not satisfied appears difficult to achieve. On the other
hand, some insight emerges from consideratior of what is,
perhaps, the simplest model that is of form (5) but not (7).
This is the single equation model

bty + a* = u (39)
where the location parameter a* and scale parameter bd* > O are
to be jointly estimated. A natural choice for & is the set Fo°
of standardized symmetric densities, defined to be the space of
symmetric densities centered on zero, with variance one and
finite non-singular information. TFor this specification we can
prove
Proposition 4.5: Letd = F°%.  The model (39) does not satisfy

Condition B for estimation of (t*,a*).

Proof: As defined, ® is convex.

For model (39), |J| = v*, agil =1, alal | 3g _ o8 _

da 95‘6’yiaa .
Therefore, condition (22) for joint adaptive estimation of

(b*,a*) has the two components

08 - Ju 2L By au - ra(ene) < 1 0 (40)
g% = b*s(f*,f) = 0 (41)

where we have, in (40), used the fact that 8%y = u - a*. For
£eF°°, condition (41) is always satisfied and condition (40)

reduces %o

1=-fu “;(lu) ;:l(ll)ﬁ du. (42)

Clearly, (42) is not satisfied for all f¥%, £2c¥°%,  For example,

N
take f*(u) = %-exp (- %g) where y and 6 are such that
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fff§u)du =1 and [u?f*(u) du = 1. Then f*F°°, af:ﬁu) f*}u) =

- g—-and condition (42) becomes & = [u*f(ujdu. The restriction

of £ to Fss, however, does not ccnstrain the fourth moment of f
to any constant value. Hence, (42) is not always satisfied as
required for Condition B to hold.

Q.E.D.

Observe that the question of joint adaptive estimation of
(b*,a*) in model (39) is logically distinct from the question
of adaptive estimation of a*/b* in the transformed model

y + a¥/p* = u' (39")
where u' = u/b¥. Restriction of the density of u to F°
implies that the density of u' is in a subset of Fs, namely
those symmetric densities having finite variance. It follows
from Prcposition 4.1 that Condition B is satisfied for a¥*/b*.
Thus, we have here another instance in which the entire
parameter vector 6%* cannot be adaptively estimated but an
interesting function of 6% can be.

Wwriting (39) as (39') points to an important re-
interpretation of Proposition 4.5. This is

Corollary: Let® = (FS)X. Then model (7) does not satisfy
Condition B for joint estimation of 8* and the standard error

of the regression.

Proof: Model (39') is a special case of model (7) and the
space of finite variance symmetric densities is a subset of Fo.
In this special csse, 0% = a*/b%* and 1/b* is the standard error
of the regression. By Proposition 4.5, Condition B is not
satisfied for (b*,a*). Hence, Condition B is not satisfied for
the one-to-one transformation (a%*/t*,1/v*).

Q.E.D.
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9. The Stone-Bickel Construction of Adaptive Maximum
Likelihood Estimates

When Condition B is satisfied, one may attempt to confirm
that adaptive estimation is possible and to construct adaptive
estimates. The Stone-Bickel work on adaptive maximum
likelihood (AML) estimates meets both these objectives. We
shall summarize the AML approach as developed by Stome (1975)
and Bickel (1982) and shall simultaneously lay the groundwork

for our applications to non-linear regression models.

5.1 General Approach

Consider first the idealized situation in which (¢¥*,G*) is
known but 6% is not. Given the sample (yn,xn), n=1,...,N, let

ense be an estimate for 6%* known to satisfy the condition

/'ﬁ(eN- o*) = op(1). (43)

Recalling equation (11), let I(GN) be the information matrix

evaluated as if GN were the true parameter vector. Define the

sample mean score function
, ¥ alogk(ynlxn,eN’f;n)
*) = — =
Sy(0y:0*) = § n2=1 B . (44)

Now construct the estimate

3N =0y + I8 sy(6..0%), (45)
which is a modified form of the familiar one Newton-Raphson
step estimate. The modification is thatls\H uses I(ON) to
approximate I(0%*) while the usual one step estimate uses minus
the sample mean of 321og\(y|x,eN,f;)/aeae'. In all that
follows we assume that the estimation problem is sufficiently

N .
regular so that QN satisfies
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L
/Ry 0%) > JUO0,1(e%) ). (46)

In the random sampling context in particular, the asymptotic
efficiency property (46) is known to hold given minimal smooth-
ness restrictions. See LeCam (1969) and Bickel (1982). Here,
we shall simply assume (46) directly.

Now return to the situation of interest, in which it is
known only that (0%,0%,6%) ¢ @ x ® x I'. Assume that there
exists a computable initial estimate 8. that satisfies (43).
Let I, and S, be computable estimates of I(eN) and SN(GN,¢*)

N N
respectively. Then construct the estimate for 0%

6y = 0y * Iy Sy (4m)

where I is a generalized inverse of I,.. Given (46), the sub-
N 33 N

estimate EN = ae'lgN will be adaptive for B* if and only if

08 -5 - -1 =
5o YN IgSy - T80 Sy(8,,0%)] op(1). (48)

The question is whether computable estimates eN’IN and S}‘Y
satisfying (43) and (48) exist.

5.2 Estimation of the Density

Stone (1975) answered this question in the affirmative in
the case of the location parameter model (1) with symmetric
disturbances. In this setting, suitable initial estimates GN
are readily available and the problem of estimating I(GN) and
SN(QN,¢*) reduces to one of appropriate estimation of the
unknown f* and its score function %;-%Et. To accomplish this,
Stone used residuals to form a kernel estimate for f* and,
after some trimming, formed a score function estimate from
this. The procedure is as follows.

For n = 1,...N, compute the residuals
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-9 (49)

Define uN to be a random variable having the empirical

distribution of the residuals. That is, Prob(uN= unN) =-%.

Let vabe a random variable distributed normal with mean zero
and variance c%, where c% is a positive parameter selected by
the analyst. Now define the random variable

(‘;N = uN + VN. (50)

Then the distribution of CN is a smoothed version of that of
uN, with c% controlling the degree of smcothing. In
particular, CN has the infinitely differentiable density
N 11 u-u
fy(w) = }_:_ 'ﬁ[a—d)(
n=1 N
where ¢ is the standard normal density. BRecall that f* is

nl
oy )] (51)

known to te symmetric. The estimat> fN is not generally

symmetric but the derived estimate
s 1
£y () = 5 [5(w) + £5(-u)] (52)

is.
Stone used f§ as his estimate for f*. He proposed a

family of trimmed score function estimates, the simplest of

which is
s
afy (u)
r2 (u) = 1 il if Jul < ® (53%a)
N s du N
£y (w

r; (u) =0 otherwise. (531)
Here bN is a positive parameter selected by the analyst to
control the degree of trimming. Using f§ and r§, Stone

proposed estimates IN and S.. His estimates are consideradly

N
more burdensome to compute than the ones later introduced by
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Bickel, in a more general setting. For this reason, details
will not be given here. The important point is that Stone
proved his estimate'gN to be adaptive for the location
parameter 6%, provided that the degree of smoothing in f§ and
trimming in r§ are reduced at appropriate rates as the sample
size increases. Neither Stone nor Bickel discusses how the
smoothing and trimming parameters should be set in the context
of a given data sample. We shall return to this problem in
Section 7.

Vhile Stone's approach would seem generalizable well
beyond the location parameter problem, his dense, specific
presentation makes it difficult to see beyond his paper's
confines. Happily, Bickel (1982) has succeeded in doing so.
To appreciate Bickel's contribution, observe that in any AML
problem, the question of appropriate estimation of the unknown
density can ve decomposed into three components. These are

(1) Wnat properties should an estimate of the density
have in order that it be possible to construc: estimates IN and
Sy that satisfy (48)? .

(2) 1In the idealized situation where the disturbaaces
ﬁ1,...,uN are observed, can a density estimate with the
appropriate properties be formed?

(3) If the answer to question 2 is positive but only

residuals Uygseeesll associated with a SN satisfying (43) are

observed, can a dengﬁty estimate with the appropriate
properties still be formed?

Working in the context of single equation linear models
with i.i.d. disturbances, Bickel found the following.

First, appropriate estimation of I(eN) and SN(GN,¢*)
requires suitably convergent estimation of the score function
%; %51 but not of the density f* per'se. Let Uy be an estimate

for the score function. Then O should satisfy the mean square




convergence condition

b
Mlay®) - ey T2 s> o (54)

as N > ». Rather than derive (54) here, we shall show in
Section 6 that it remains the relevant condition in the more
general context of single equation non-linear regression
models.

Second, if Uy .. oug are observed, a modified version of

Stone's score function estimate satisfies (54). In particular,

define
=1 ity
£2*(u) = FL—dl (55)
N n=1 N oy N
and
, y  afgw)
q§ku) = oy o if lu] < S £y(w) > ¢y (561a)
N
afy(u)
and | o | < deﬁ(u)
Q§(u) =0 otherwise. (56b)
Here bN’ Cy and dN are positive parameters chosen by the

analys: to control trimming. Bickel proved

Lemma 5.1: Let Uygeeesll be a random sample from a univariate

N
density f* having finite information. Then the score function
estimate q§ defined in (56) converges in mean square as

specified in (54) provided that bﬁ >e, >0, d >, 0

N-lec;g > 0 and gyd > 0 as ¥ » =.

> %

Proof: See Bickel (1982), Section 6.1 for the lengthy and
delicate proof. Related results are given in Stome (1975),

Section 3.



30

When f* is known to be symmetric, it is desirable that the
score function estimate be anti-symmetric. The estimate ay is

not generally anti-symmetric but the derived estimate
*s Vs *
qy () = 5 [af(u) - qf(-u)] (57)

is. The following Corollary to Lemma 5.1 is & simple

application of the Cauchy—Schwarz inequality.

Corollary: If % ¢ Fs, Lemma 5.1 continues to be satisfied
s ) »
when Iy replaces aye

Now turn to the third question. Observe that Lemma 5.1
and its Corollary are general results, not dependent cn the
model in which the disturbances appear. On the other hand,
extension of the Lemma to scecre function estimation based on
residuals requires counsideration of the model generating the
residuals. For n=1,...,N let

Ungy = Yn " XQ Oy ' (58)
be the single equation linear model residuals. Defirne fN as in
(51) and define qy as in (56), but with fy replacing ff . In
this context, Bickel proved that Lemma 5.1 continues to be
satisfied when dy replaces q§. The argument that linear model
residusls can replace disturbances in the estimaticun of the
score function relies on two very useful ideas of LeCam and on
a theorem of Hajek and Sidak. We shall need to extend the
argument to non-linear models and so shall present it in some
detail.

LeCam (1960) introduced the concept of 'contiguity' of two
sequences of probability measures. In the present setting, the
sequence Pﬁ, N=1,... ® of N dimensional densities of the
residuals (unN’ n=1,...,N) is said to be contigucus to the
sequence PN’ N=1,...» of N dimensional densities of the

disturbances (un, n=1,...,N) if, as N » =,
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{ PN(u1N""’uNN)du1N’""duNN >0 (59a)
N
for every measureable sequence of events ANC: RN, N=1,...» such
that
£ PN(u1"°"uN) du1,...duN-+ 0. (59p)
N

To see the relevance of contiguity to the present problem,

choose any € > O and let
(60)

a5 = [y, ,---,uN)eRN:f[qﬁ(u) - ?*—1@» df;(l“)]z *(u)du > €]

By Lemma 5.1, {A;} is a sequence satisfying (59bv). If {Pﬁ} is

contiguous to {PN}, then the sequence {A;} also satisfies

(59a), implying that Iy does converge in mean square. Thus,
the problem of extending Lemma 5.1 to estimation Ly residuals

is solved if it can be shown that {Pﬁ}

is contiguous to {PN}.
The result enabling demonstration of contiguity is due to

Hajek and Sidak (1967). Let Z, n=t1,...» be a sequence of
univariate random variables such that the joint density of Z,»
n=1,...,§ is
N
t o - .
Qp =T f(zn unN) (61)
- n=1
Here f is a fixed demnsity with O < i(f) < » and Bogr 21,00, N
are a set of location parameters. Let ;ﬁ = N-1 XpnN and define
N
= 0 £z - ng)- (62)
- n=1
Hajek and Sidak proved

Lemma 5.2: Assume that as N » =,

kY
. Max . (unN uN) >0 (63)




32

and

N
n=1

where 0 < p < =. Then {Qy} is contiguous to {Qy} .
Proof: See Hajek and Sidak (1967), Section VI.2.1.

To apply Lemma 5.2 to the problem at hand, we select the
initial estimate SN in a manner suggested by LeCam. Let 5& be
eny computable estimate satisfying (43). Recalling that e*eRM,

define the lattice of coordinates in RM

(65)
M . . -
Ry = [F1/2(i,,000,8)): 4= = =,000=1,0,1, 0000, k=1, .. H]
Now choose eN to be a point in R§ closest in Euclidean distance
to §ﬁ. Clearly 8, satisfies (43), hence is a legitimate

initial estimate. The estimate GN has a technical advantage

over §ﬁ, as follows.

YN-consistency implies that for every A > O there exists a
8(A) > O such that '

lim Prob[lé'N - 9% < N-l/25(A)] > 1A (66a)
N+«
lim Prob[leN- ¥ < ¥-L/25(A\)] > 1 - . (66b)
N+

Here |*| is the Euclidean norm. Consider the sets

e“m? [o:l6-8%] < N-1/25(7)] (67a)

- M
O = Oy N Rye (67b)

By (66), any proposition that holds uniformly for all § in 6&“

(respectively 0, ,) must hold asymptotically with propbability at

AN
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least 1-A for 5& (respectively eN). Now O, , is uncountable but

AN
ekN is a finite subset whose cardinality depends on A but does
not vary with N. It is thus often easy to prove propositions
uniformly over O This opens a convenient approach to

AN’

proving propositions concerning the random variable GW' That

is, prove that for each N and A > O, the proposition holds for
all & in @kN°
holds in probability, asymptotically, for SN.

Then let A » O to prove that the proposition

With the above as preliminaries, Bickel proved that the
answer to Question 3 is affirmative for single equation linear
models. Our Lemma 5.3 extends this result to single equation

non-linear regression models.

Lemma 5.3: For a single equation model of form (7) with i.i.d.
disturbances, Lemma 5.1 continues to be satisfied when qy

mmw%q}

Proof: For 9¢0 and n=t1,...,» define the residuals
u,(8) = 7, - h(x_,8). (68)

Let A = 6-9%. Then the relationship tetween un(e) and the

disturbance u = u (8%) is
n n

un(e) =u -hA (69)
. ah(xn,ei)
where h_ =5 and e; is intermediate between 0% and 9.

Observe that in the notation of equation (61), f=f%, z = un(e),

=.' — =.—' -.-. = _1 [l M-"
By = oA and by = heA, where hy = N Y h . This sets the
stage for application of Lemma 5.2.

Fix A > 0. By the definition of 9,y in (67), a'A < N7
§(\)2 for all 9ed, - By this and the Cauchy-Schwarz

inequality,



Max [ 1Max (unN - E&)z]
0e0 n=1,...,N
AN

<502 Max [ Mex N1(h- )G - )] (70)

n=1,...,N
esOXN

N
Max [ ] (b o= by

n=1
GSGKN
2 r 1 N ° :. i .—
<8\ Max (W 2_ (b - h)' (b - bl (T1)
0ed n=1
AN
Now let N » ». Recall that by assumption, the empirical

dh(x,0%)
36
has finite, positive definite variance under G*. It follows

distribution of x has almost sure limit G* and that

from this and from the fixed cardinality, convergent
AN" N=1 g oo e®@ that the

r.h.s. of (70) has limit zero, almost surely in x and the

construction of the sequence of sets 0

r.h.s. of (71) has finite, positive limit, almost surely in x.

- 8eSe
Also note that py = hﬁA > O. Lemma 5.2 then implies that
given any sequence of values QKN € @xn , N=1,...,», the

sequence of densities of the ;esiduals [un(SXN)’ n=1,...,N] is
contiguous to the sequence of densities of the disturbances
(un,n=1,...,N), almost surely in x. Therefore, Lemma 5.1
extends to the sequence of score function estimates constructed
using the sequence of sets of residuals [un(ekN)’ n=1,...,N],
N=1, =,

Since GN € ehN with asymptotic probability at least 1-A,
we can conclude that for ally > O,

La Prot{J (a,(w) - ey 480 y2 pr(w)aw < ] > 10.(72)

Letting A » O proves that (54) is satisfied.
QQE.DO



The following Corollary is an immediate consequence of

Lemma 5.3 and of the Corollary to Lemma 5.1.

Corollary 1: If f*st, Lemma 5.3 continues to be satisfied
s
when Ay replaces Qe

A simple extension of Lemma 5.3 is to models involving a

finite number of unknown conditional densities.

Corollary 2: Let there exist A < » unknown densities f;,
a=1,...,A. Assume that X partitions into A known, mutually

exclusive subsets X, a=1,...,A such that G*(Xa) > 0,

A

Yy 6*(X.) =1 and xeX_-» f* = f*. Let N(a) be that subset of
ot a a x a »

observations n={,...,N for which xnaXa and let qN(a) be the
score function estimate constructed using the residuals in

N(a). For a single equation model of form (7), q converges
: bo + . & 1o = s 3.8 o
in mean square to Fmc YA e F°, qy(,) converges as

well.

. a.s'
Proof: Since c*(xa) >0, N+ o => N(a) » o. Lemma 5.3 and

. s
Corollary 1 can therefore be applied to qN(a) and qN(a)
respectively.
Q-E-Do

Corollary 2 will be used in Section 6 to demonstrate that
adaptive estimation remains possible in the presence of at
least some forms of interdependence between u and x. On the

other hand, it is clear that we cannot adapt if the set of
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conditional densities is too rich. For example, consider the
case in which x has a limiting continuous distribution and
there is no prior information relating the conditional
densities f;, xX to one azother. 1In this setting, the only
observations whose residuals can yield information on f; are
those for which x = x but N(x) does not go to infinity with N.
It would be of considerable interest to determine how rich the
set of conditional densities can be and convergent score
function estimation in the sense of (54) still remain

possible.

A second important open question concerns the
generalizability of the Stone-Bickel approach to problems of
mdltivariate score function estimation. A natural idea would
be to convolute the residuals of a multivariate regression with
a multivariate normal random varieble, leading to multivariate
versions of fN and Qe To prove that this works in the manner
of Lemma 5.3, lhowever, requires appropriate multivariate
generalizations of both Lemma 5.1 ana Lemma 5.2. These non-

trivial tasks are not attempted here.

5.3 A Sufficient Condition for Successful Adaptation

Return to the gereral AML problem of finding estimates
Iy and S that satisfy (48). Bickel (1982) shows that if L3Sy
is constructed in a certain manner, this problem reduces to one
of verifying a simpler condition. Bickel presents his
sufficient condition in great generality. TFor cur
applications, a less abstract presentation is adequate and may
have advantages in clarity.

For given T < N, 1let A be the scere function estimate
constructed using 6, and the residuals unT(eT)’ n=t,...,T. Let
X(le,eN,qT) denote a computable estimate for

blogx(y!x,eN,f;)/ae. Now define
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N
1
n=T+1
The unusual feature in this construction of SNT is the

splitting of the sample into two parts. All the observations
are used to form the initial estimate GN. Then the first T
observations are used to estimate the score functions and the
last N-T to determine the step taken frem GN. Splitting the
sample in this way is very convenient technically because it
allows ones to condition on q, as a predetermined function when

examining the behavior of S 0f course, maintenance of

desirable asymptotic properﬁ?es requires that T grow with N in
an appropriate manner. It is easy to see that 4y remains &

convergent score function estimate in the sense of (54) as long
as T> ® as N+ . Comparison of (73) with (48) indicates that

SNT can serve as a successful estimate for SN(GN,¢*) only

-]
if Hﬁi-+ 1 as N » ». Together these two requirements imply
that we should select T so that
T+, T/N> O as N» =, (74)

Note that asymptot{c theory gives no guidance on the choice of
T for a given data sample. In fact, one should rot infer that
sample splitting is necessary to successful AML estimation.
Stone's estimator for a location parameter does not split the
sample nor does it discretize the initial estimate, at the cost
of a more difficult proof of adaptation.

Bickel proved

Lemma 5.4: Let 6y ¢ Rg be an estimate satisfying (43). Let

GN = GN + Iﬁ SNT where SNT is constructed in the manner of (73)

and (74). Then a sufficient condition for (48) to hold is that

as N+ o,
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/ﬁ'ggw Ig [ (rlx0 e M (vlx.0y, £8)ay]de® = o (1) (75)

and

| ' dlogh (y]x,0,,f%)
QET I[I!Iﬁ l(YlI,GN,qT) - I(QN)-I N’ 'x

12
20 86 12 (76)

K(VIX,BN,f:)dy]dG* = op(?).

Proof: Bickel (1982) Theorem 3.1 proves the Lemma for the case
B* = 0% yhile his Theorem 3.2 extends it to the case where B¥
is a sub-vector. Both of these Theorems impose the condition
that the 1.h.s. expression of (75) actually equal zero.
However, it is sufficient that the expression be op(1). Bickel
implicitly uses this weaker condition in his precof of

adaptatioa for his Example 3.

In the next section, we shall verify Lemma 5.4 in two non-
linear regression settings. Before doing this, we should
clarify the content of conditions (75) and (76). Condition
(75) is essentially equivalent to Condition B, the necessary
condition for successful adaptation introduced in Section 3.
Condition (76) more or less requires consistent estimation of
the information matrix I(6*) and mean square convergent
estimation of the score function dlogh /8. This eiplains our
focus in Section 5.2 on the problem of mean square convergent

estimation of the score function associated with the density

£*.

6. Applications to Non-Linear Regression Models

We are now in position to extend Bickel's findings for
linear models with i.i.d. disturbances to non-linear models and
to models allowing some interdependence between u and x.

Theorem 6.1 and its Corollary prove that AML estimates do




39

successfully adapt in the context studied in Proposition 4.1.
Theorem 6.2 proves adaptation in the context of Proposition
4020

Theorem 6.1: Let y-h(x,0%) = u with yeR!. letd =
[(f)x, feF%).  Let oy € R% be an estimate satisfying (43). Let
IN be a consistent estimate for I(6%) and Syp be constructed in
the manner of (73) and (74) using
dh(x,0,)
s N s
2(ylx.8y,ap ) = = —55— ap [7-8(x,08p)]. (17)

~ = a - - . *.
Then QN N INSNT is adaptive for 6

Proof: Both here and in Theorem 6.2, a menu of suitable
initial estimates GN exists. For example, discretized versions
of the least squares estimates of Jennrich (1969) and White
(1980) will do. There also exist a number of satisfactory ways

to define IN' In the present settiﬁg,

I{e%) = (78)
ah(x,0%) ah(x,0%*) 1 ar*(u), Nt

One consistent estimate for I(6%*) is

I = Qp iy (79)
where

o - s g bh(xn,eN) ah(xn,SN) (80)

N FT o R 26

1 ? s 2
iv = w7 ap (u )% (81)
NONT oy T oN

By consistency of GN and by the weak law of large numbers, QN
converges in probability to the first bracketted integral in
(78). By contiguity of {Pﬁ} to {PN}, by Lemma 5.3 and by the
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weak law of large numbers, iN converges in probability to the
second integral, that is to i{f#).

Now consider conditions (75) and (76). With & defined in
(77) and with g* = 6%, the l.h.s. of (75) becomes
_ dh(x,8) s
/N I [f- ———56———dG*] [qu (w) £*(u)du] .

By symmetry of f* and by anti-symmetry of q;, the second
bracketted integral is identically zero. By consistency of GN

and I, and by non-singularity of 1(6*), the leading term is

OP(/ﬁ). Hence, condition (75) is satisfied.
Given that IN and I(ON) both converge to I(6%*), the 1l.h.s.
of (76) can be written as

dn(x,9,,)
(1o —g 2800 [[(af () - rrey 526 (wan]

+ op(1).

The first brarketted integrai has a finite probability limit.
By Lemma 5.3, the second integral is op(1). Hence condition
(76) is satisfied.

By Lemma 5.4, §, is adaptive for 9%.

I
Q.E.D.

Corollary: Let y-h(x,9%) = u with yeRl. Assume that X

partitions into A <« known, mutually exclusive subsets Xa’
A

a=1,...,A such that G*(X ) > 0 and | G*(X)) = 1. ILet
a=1

A X
o= 1[(£) % ££7%]. Let Oy € R¥ be an estimate satisfying
e=1 :

(43). Let IN be a consisient estimate for I{9%*) and let SNT be

constructed in the manner of (73) and (74) using
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o bh(x,eN)
M8 ang () = - 5 Gpa(g) TR(x:0 )] (82)

. s
Here a(x) denotes the subset X, containing x and qg is the
anti-symmetric score funcition estimate introduced in Lemma

5.3,Corollary 2. Then.'é'N = GN + s adaptive for 6%.

- .
Iy Sy 2
Proof: TFor each a=1,...,A, define Q. and iy as in (80) and
(81) but using only the sub-sample N(a). The argument in the

proof of Theorem 6.1 that is consistent for I(6%*) implies

% ix
in the setting of this Corollary that QNaiN
I(e*lxa). Let ¥ = |N(a)| and T, = ?(a)|. Then

o is consistent for

a a

= ———— i )
Iy= L —F Yaira (83)

a=1
is consistent for I(9%).
With £ defined in (82) and with B* = 6%, the l.h.s. of
(75) bvecomes

- __ & oh(x,8 ) .
N Iy a§1[jxa - "‘6@‘"“dG*][qua(u)fZ(u)du].

By the argument of the proof to Theorem 6.1, this oxpression is
identically zero. Likewise, the 1.h.s. of (76) can be written
as the sum of 4 terms, each of which is op(1). Hence, (75) and
(76) are satisfied. By Lemme 5.4,'5N is adaptive for 0%.
Q.E.D.

Thecrem 6.2: Let y - h(x,0%) = y - h(w,p*) - a® = u with yeRl.
Let 3 = [(£)%, feF*]. Let 9N5R§ be an estimate satisfying
(43). Let Iy be the estimate defined in (79), (80), and (81).
Let S, be constructed in the manner of (73) and (74) using

NT
dh(x,0 )
L(ylx,8.0,) = - —55— a,ly - Blx,0)] (84)
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Then EN =8 o8

- o . rS %
N + 367 IN SNT is adaptive for g8%*.

Proof: Condition (76) is satisfied by the same argument as
used in the proof of Theorem 6.1. With & defined in (84), the
1.h.s. of (75) becomes

dh(x,0.)
/ﬁ.%%T i 9 /- ——7§rlLdG*] [qu(u)f*(u)du].

In contrast to the situation in Theorem 6.1, the second
branketted integral is not identically zero. It is, however,
o (1). This follows from Lemma 5.3 and from the fact that
Par*(u) B
[ === du = 0.
du

To determine the limiting behavior of the leading

expression, recall first that iﬁ > i(f*)“l. Next define

. ah(xyeN) aTl(W,BN) ;
hN(x) B 36 - B = hN(W) . (85)
1 !

Using this notation, define
N e .

~ 1‘ ~ ~ ' -
O = 55 L Byglv) Byle) (86)
n=T+1
B -l T R (w) | (a7)
E, = == h (w 87)
N N-T n=T+1 N''n
Vy = Q- By By o (88)

Ve can now write
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3h(x,9. )
__ﬁ - _ N
YN 55 35 dG¥]
Vs -7 - [ h(w)ac*
= N N N N
= /¥ [1,_,:0] o L
Ty TR N -

- Vo /(Y - f Byl

The variable'VE has a non-singular probability limit. The

expression /ﬁ'[i& - f‘EN(w)dG*] is OP(1) by the Central Limit
Theorem. Hence, the l.h.s. of (75) is op(1) as required. By
Lemma 5.4, BN 1s adaptive.

Q.E.D.

7. Some Questions

We have earlier called attenticn to a number of specific
unresolved issues that deserve attention. Do Theoremsg 6.1 and
6.2 extend to multivariate regression models? Does the
Corollary to Theorem 6.1 extend to other forms of
interdependence between u and x? In a given sample, how should
one select the parameters T, GT, bT’ cT, and dT in constructing
the score function estimate qT? Can we characterize the
situations in which a non-linear systems model of form (5)
satisfies Condition B? In this concluding section, we attempt
to organize in a coherent manner some more general open

questions.

7.1 Attainable Precision When Adaptive Estimates Do
Not Exist

Many researchers are iritially surprised to learn that

adaptive estimates exist in'settings as general as those
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considered in Theorems 6.1 and 6.2. It remains the case,
nevertheless, that adaptation is not pocssible in "most"
estimation problems. It is then natural %o ask how well ons
can do.

An important part of an answer has recently been achieved
in a paper by Begun, Hall, Huang, and Wellner (1983). Working
in the random sampling context, these authors consider the
infinite dimensional problem of joint estimation of (0%,f¥*).
Using projection arguments on Hilbert spaces, they derive the
appropriate infinite dimensional generalization of the
classical bound on precision of estimation. A special case is
that in which d3log\ /38 is orthogonal to the sccre for ¥, a
functional derivative dlogh/2f. This is a necessary condition
for adaptation. When the scores are not orthogonal, the
authors' bound for estimation of 6% differs from the classical
bound given knowledge of f¥*. Thus, lack of knowledge of ¥
causes a guantifiable loss in at*ainable precision of
estimation of 9%,

An appealling feature of the Begun et al. work is thet its
treatment of the finite dimensional parameter 6% and the
functional parameter f¥* is entirely symmetric. Consider any
estimate 8y such that /N(GN- 6%*) has a limiting distribution.

Tke authors show that asymptotically,

/Moy - 0%) &z + W (89)

where Zy ~J0(0,I3!) , Iz* is the bound on precision, and W is

an independent random variable. Analogously, consider any
[ J

estimate F of the distribution function F* = /  £*(u)du such

-0
that /ﬁ(Fn - F*) has a limiting stochastic process. The
authors show that asymptotically,
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/N (Fy - F*) $r, +ow (90)

where [, is a Gaussian stochastic process and w is an
independent process. The results (89) and (90) are non-
parametric generalizations of the Hajek (1972) convolution
theorem characterizing limiting distributicns in parametric
models.

Beguwi. et al. do not attempt to construct an estimator
that achieves the best asymptotic distributions Z, and C,.
Nor do they verify that their bounds are sharp. They do,
however, offer an intriguing conjecture. They speculate, that
when adaptation is not possible, the nonparametric mazimum
likelihood estimator is asymptotically efficient under weak

regularity conditions.

7.2 Attainable Precision in Other Settings

The analytical framework assumed in this paper is general
enough to treat many important econometric problems bdbut
certainly nct all. For one reason or another, various classes
of problems do not satisfy the assumptions imposed in Sections
1 and 2. The following is a partial list.

(i) Models with serially dependent observations - The
sample likelihcod does not decompose into the product of the
likelihcods of Yy conditional on X .

(ii) Discrete Dependent Variable Models - For most such
models, it is nct known whether YN consistent initial
estimates exist. TFor quantal response models there are
consistent, distribution frese estimators but rztes of
convergence have not been established.

(iii) Endogenous Sampling Problems - The likelihood under
stratified endogenous sampling processes (e.g. truncated

sampling, choice-based sampling) is nct a coavex functional of
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the density f*. Moreover, the sample distribution of x is
informative regarding 9% and f*.

(iv) Models in which f¥* is informative for 6* - In such
problems as Poisson regression, the linear probability model,
and exponential family models, the distribution of disturbances
is functionally dependent on 6*.

Among these four classes of problems, I see no fundamental
reason why the arguments of Stein-Stone-Bickel should not
extend to class {(i). Applications to problems of class (ii)
hinge on the resolution of the initial estimate question. '
Problems of classes (iii) and (iv) are not treatable in

Bickel's setup tut may be using the Begun et al. approach.

7.3 Beyond First Order Efficiency

To close this paper, it is appropriate that we recall the
- sense in which adaptive estimation i3 a desirable objective.
In the presence of a nuisance density function, an adaptive
estimate achieves the first order asymptotic efficiency of the
best estimate that would be computable were the density kmowa.
In its present state, the literature on adaptive estimation
makes no claims beyond first order efficiency. . Indeed, the AML
estimator is based on a first-order approximation to the
likelihood function of a correctly specified model. To the
best of my knowledge, there are not now available any
theoretical results on the exact distributions, higher order
asymptotic properties, or behavior in misspecified models of
AML estimates.

In discussions of adaptive estimation, I have occasionally
heard more than the usual concern expressed about the
limitations of first order asymptotic theory. Satisfactory
density estimation, it is feared, requires inordinately large

data samples. In small samples, the reasoning goes, adaptive
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eétimates are likely to be inferior to conventional ones such
as ordinary least squares.

I believe that this concern is unfounded. While it is
true that nonparametric density estimates converge slowly
pointwise, the AML method requires only estimation of the
information and of the sample mean score associated with the
unknown density. These estimation problems have more in common
with the problem of nonparametric estimation of a mean than
with that of pointwise ncnparametric estimation of a demsity.
Moreover, the smoothing and trimming performed in constructing
the score function estimate A prevents outlying residuals from

being overly influential and constrains the size of the step

taken from the initial /N-consistent estimate.

A potentially troublesome aspect of AML estimation is the
need for the analyst te select the parameters T, Oms bT’ Cops
and dT. Successful adaptation imposes restrictions only on the
rates at which these parameters change with the sample size.
By its nature first order asymptotic theory can provide no
guidance on the parameter settings appropriate for a given
.sample. The development of a second order theory of adaptive
estimation might conceivably yield implications but I see no
early prospect of a breakthrough in second order theory.

I have recently begun a series of Monte Carlo experiments
designed to reveal the exact distributions of some AML
estimates and of certain alternative non-parametric estimates.
When these experiments are completed, I plan to report them in
a separate paper. For now, I have a few early, suggestive
findings to report, as follows.

Consider the model y =a + Bx + u with with a=1, B=-1, x
distributed uniform on [-1,1] and u i.i.d. with density *
having mean zero and variance cne. In the experiments, five
alternative densities were used to draw the realizations of u.

These include 1) normal, 2) contaminated normal, being the
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convolution .9 QQ(O, %J + .1Cai(0,9); 3) log-normal; 4) Type
I extreme value, and 5) exponential.

Given each density, a randcm sample of observations (y,x)
was drawn. I shall report findings for N=25 and for N=100.
Ordinary least squares provided the initial estimate GN. The
restriction of SN to the lattice R% is ignored here. I chose
the parameter values T, o, b, ¢, and 4 in a manner that seemed
subjectively reasonable. In particular, for N=25, I set T=10,
0=.08, b=4.0, ¢=.004 and d=30.0. For N=100, I set T=30, ¢=.06,
b=5.0, ¢=.002 and d=36.0. These settings are consistent with
the reqﬁirements of Lemma 5.3 and Lemma 5.4. In a second set
of experiments, I did not split the sample as Bickel calls for.
Instead, I set T=N and re-used all the observations to compute

the step from 6 The values of o, b, ¢, and d were not

altered. In al§ the experiments, the score function estiuate
Qp was used to compute the AML estimate. By Theorem 6.2, the
estimate for 8 is adaptive but that for a need not be.

Bach experiment consisted of 400 independent r2plications
in which a sample was drawn and the AML estimates were
computed. Table 7.1 presents the results on precision of
estimation, as measured by the root mean square errors of the
estimates over the 400 replications. The columns labelled
"Scale" refer to estimates of the standard error of u. The
estimate used in each case is the square root of the sample
variance of the residuals. ,

Inspection of the Table reveals scme clear patterns, as
follows.

1. The OLS and AML estimates of a do not differ at all in
precision. '

2. In the case of normal disturbances, the OLS estimates
of B slightly outperform the AML ones. The difference in
precision is always less than 6 percent for N=25 and less than
4.5 percent for N=100. Since OLS is the maximum likelihood
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estimate here, these results are consistent with the
theoretical prediction that the AML estimates should approach
the MLE in precision as N+ «.

3. When the true distribution is contaminated normal, log
normal, or expcnential, the AML estimates outperform the OLS
ones. The difference in precision between the OLS and split
sample (SAML) adaptive estimates is marginal. On the other
hand, the re-used sample (RAML) estimates perform sirikingly
better than OLS. For N=25, the RAML estimates have root mean
square errors, 11, 17, and 4 percent lower than the
corresponding OLS ones. For N=100, the RAML root mean square
errors are 28, 35, and 18 percent lower than those for OLS.
These findings strongly suggest that sample splitting is
unnecessary and moreover, not to be recommended in small
samples.

4. In the case of extreme value disturbances, the OLS
estimates of B slightly outperform the AML ones. The pattern
is very similar to that observed unéer normality. This
suggests that OLS may be close to efficient when the
distribution of u is extreme value. In fact, examination
reveals that for small disturbances, the extreme value
likelihood equations are approximated to first order by the OLS
normal equations.

5. The OLS and RAML estimates of the scale parameter do
not differ at all in their precisions. The SAML estimates are
noticeably less precise. This is presumably due to the fact
that the SAML estimates are based on sub-samples of size
N-T=15, 70 rather than on the full samples.

Overall, the experimerts indicate that RAML estimates of B
can range from slightly less precise to substantially more
precise than OLS ones. This conclusion holds for samples as
small as N=25 but is more pronounced in samples of size N=100.
For estimation of @ and the scale parameter, RAML and OLS have

more or less identical precisions. These preliminary results
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are encouraging, particularly, in light of the fact that we

have not attempted to optimize the settings for ¢, b, ¢ and 4.

TABLE 7.

1 Monte Carlo Experiments

Distribution Estimator Root Mean Square Errors of Estimates

Normal 0LS
SAML
RAML

Contaminated 0Ls
Normal SAML
RAML

Log Normal QLS
SAML
RAML

Extreme Value 0LS
SAML
RAML

Exponential oLS
SAML
RAML

Abbreviations: SAML=
RAML=

Alpha

N=25

.1919
.1915
. 1931

-1901
.1896

.1822
.1896

.2098
.2120
2124

.2109
2136
.2127

split

Beta

N=100 N=25 ©N=100

.0972  .3579
0973  .3624
L0977 3793

.0998 .3239
1022 .3216
.0999 .2898

.0925 .3361
.0929 .3299
.0910 .2790

.0947 3599
.0964 .3623
.0950 .3757

1003  .3590
.1008 .3679
.0997 .3451

sample AML

reused sample AML

.1842
.1864
.1922

1611
1242

1753
.1669

1143

.1762
1762
1792

- 1740
<1707

Scale

N=25

.1432
.1843
- 1455

4519
.5323
<4472

4193
.483GC
<4157

<1957
.2379
.1961

.2676

N=100

.0703
.0835
.0707

. 2402
<2791
.2405

2715
. 3065
2716

.1040
1241
.1036

1327
.1590
.1318
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