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Linear predictor definitions of causality are not adequate for 

discrete data. The paper extends the Granger and Sims definitions by 

using conditional independence instead of linear predictors. The ex­

tended definition of "y does not cause x" is that xis independent of 

pasty conditional on past x. This is stronger than the strict 

exogeneity condition that y be independent of future x conditional on 

current and past x. Under a weak regularity condition, however, if y 

is independent of future x conditional on current and past x and 

pasty, then y does not cause x. 
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1. INTRODUCTION 

Let [(xt, yt), t = ••• , -1, 0, 1, ••• ] be a collection of random 

variables on a common probability space -- a stochastic process. Granger 

[6] defined "y does not cause x" as follows: the (minimum mean square 

error) linear predictor of xt+l based on xt, xt-l' ••• , yt, yt-l' ••• is 

identical to the linear predictor based on xt, xt-l' ••• alone. 2 Sims 

[10] defined x to be strictly exogenous relative toy if the linear pre-

dictor of yt based on ••• , xt-l' xt, xt+l' ••• is identical to the linear 

predictor based on xt, xt-l' Sims [10] showed that these two 

3 
definitions are equivalent. This is a beautiful result; we would like 

to know whether it still holds if linear predictors are replaced by a more 

general form of dependence. 

In applying these ideas to longitudinal data on individuals, the 

prevalence of qualitative variables argues for considering models based 

on the entire conditional distribution instead of looking only at linear 

predictors. Suppose that yit is zero or one, indicating, for example, 

whether or not individual i was employed in period t. We observe 

(xil, Yil' ••• , xiT' yiT) for i=l, ••• , N individuals, and we regard these 

vectors as independent and identically distributed (i.i.d.) observations 
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from the joint distribution of (x1 , y1 , ••• , xT, yT). Lett= 1 be the 

first period of the individual's (economic) life. Consider the following 

specification for the conditional probability that yit equals one: 

where c is a latent variable that represents unmeasured characteristics 

of the individual; c is assumed to be constant over the sample period. 

If c is independent of the x's, then, dropping the i subscripts, we 

have 

so that xis strictly exogenous. However, if P(c ~ ulx1 , ••• , xT) I 

P(c ~ u), then in general P(c ~ ulx1 , ••• , xT) I P(c ~ ujx1 , ••• , xt); 

a latent variable that is constant over ti.me is generally related to all 

of the xt's if it is related to any of them. In that case 

Hence the failure of strict exogeneity indicates that the latent variable 

is not independent of the measured x's. Is there an extension of Granger's 

definition of "ydoes not cause x' that will imply P(yt = ljx1 , ••• , xT) = 

P(yt = ljxl, ••• , xt)? 

In the Granger definition, instead of requiring that Yt, yt-l' 

not contribute to the linear predictor of xt+l given xt, xt-l' ••• , we 
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shall require that xt+l be conditionally independent of yt, yt-l' •••• 

DEFINITION 1: (G) -- xt+l is independent of yt, yt-l' ••• conditional 

on xt, xt-l' ••• for all t. 

In the Sims definition, instead of requiring that xt+l' xt+2, ••• not 

contribute to the linear predictor of yt given xt, xt-l' ••• , we shall 

require that yt be conditionally independent of xt+l' xt+2, •••• 

DEFINITION 2: (S) -- yt is independent of xt+l' xt+Z' ••• conditional 

on xt, xt-l' ••• for all t. 

We shall show that (G) implies (S). So in our example, we would 

need to check whether xt+l is independent of yt, ••• , y1 conditional on 

xt, ••• , x1 • The inference problem is simplest when xis also a binary 

variable; xt could indicate whether or not the individual was in a training 

program in period t; or in a sample of married women, xt could indicate 

whether or not there was a birth in period t. Then the joint distribution 

of (x1 , y1 , ••• , xT, yT) is given by a set of multinomial probabilities, 

with each individual falling in one of 22T cells. The hypotheses (G) 

and (S) specify that the cell probabilities are specified functions of 

2T fewer than 2 - 1 parameters. Given a random sample of size N from such 

a distribution, the asymptotic inference problem as N ➔ 00 for fixed Tis 

4 
straightforward. 

If T = 2, then (S) requires that 
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It is simple to check that (G) imposes precisely the same restrictions; 

but when T > 2, (G) imposes more restrictions than (S). We shall present 

a counterexample to show that, in contrast to the linear predictor case, 
5 

(S) need not imply (G). The counterexample works for the following 

reason: if a random variable is uncorrelated with each of two other 

random variables, then it is uncorrelated with every linear combination 

of them; but if it is independent of each of the other random variables, 

it need not be independent of every function of them. 

There is a modification of the Sims definition which, given a regu­

larity condition, is equivalent to (G). 

DEFINITION 3: (S') -- yt is independent of xt+l' xt+2 , ••• conditional 

on xt, xt-1' ••• , Yt-1' Yt-2' ••• • 

In order to state the regularity condition, let F be the set of random 

variables of the form z = 1 if (x, y, ••• , x ., y .) e B, z = 0 
S S S-J S-J 

otherwise, wheres and j are arbitrary integers and Bis a Borel set. 

CONDITION (R): lim E(zlx, xt-l' ••• , y_k, y-k-l' ••• ) 
k-+co t 

= E(zlxt' xt-1' ••• ) 

for all zeF and all t. 

Then (G) is equivalent to (S') if (R) holds. (S') is a tractable modifi­

cation of (S); they are equivalent in the linear predictor case if a 

6 
condition corresponding to (R) holds. Condition (R) requires that the 

current effect of y's from the distant past vanishes; similar assumptions 
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are routine in the analysis of aggregate time-series data. In the longi­

tudinal example, (R) holds automatically since yt is degenerate prior to 

the "birth" of the individual. The important point here is that we are 

not making any stationarity assumptions, and so we are free to assign xt 

and yt degenerate distributions prior to some starting point for the process. 

In our example, (G) and (S') imply precisely the same restrictions on 

the multinomial cell probabilities. It makes no difference which version 

we choose to test. Now suppose that t = 1 is not the starting point for 

the process, so that we are missing some observations. Then it is 

possible that we shall reject (G) or (S') simply because we have not included 
I 

enough lags. Furthermore, tests of (G) and (S') are no longer equivalent, 

since the bias from truncating the lag distribution may be different in the 

two cases. 

Suppose that 

for example, it may be that children do not affect the woman's employment 

status once they are in school, so that M corresponds to approximately 

six years. If c is independent of the x's, then (S) holds and 

implies testable restrictions if T > M + 1. Rejection of (S) implies 

rejection of (G), whereas we may be unable to construct a valid direct 

test of (G) (or (S ')) due to bias from truncating the lag distributions. 

If the process started at t = - J _:: O, then 
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does not, in general, hold for any t, even if (G) holds and y depends on 

only M lagged values of x. 

An additional problem is to choose correct functional forms for 

the conditional distributions under the null hypothesis. Suppose that 

xis binary and let t = 1 be the starting point for the process. Then 

the multinomial distribution provides a completely general specification 

for P(xt+l = llxt, ••• , x1); but if xis continuous, then specifying the 

conditional distribution will require a restrictive functional form. It 

may be easier to justify functional form restrictions in either the 

Granger or the Si.ms version of the test. The functional form issue is 

important; if the regression function is not linear·, then the linear 

predictor form of (G) (or (S)) will generally fail to hold even though 

(G) holds. The past y's (or future x's) will help to correct for the 

error in approximating the regression function. 

If we impose no regularity conditions, then we require a stronger 

version of the Sims definition: yt must be independent of xt+l' xt+Z' 

conditional on xt, xt-l' ••• and conditional on any subset of Yt-l' Yt-Z' 

DEFINITION 4: (S") -- y is independent of x 1 , x 2 , ••• conditional t t+ t+ 

n X X Y for every Y and all t, where Yt is a subset of 0 t, t-1' ••• , t t 

yt-1' yt-2' •••• 

We shall show that (G) is equivalent to (S"). In the definition of (S"), 

it is sufficient that the conditional independence holds for Yt equal to 

the null set and all sets of the form Yt = [yt-l' ••• , Yt-k], k = 1 , 2 , ••• ; 
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but we shall present counterexamples to show that, in the absence of 

(R), (S) + (S') does not imply (G). 

Our proofs are simple applications of the following fundamental 

property of conditional expectation: 

E(y Ix) = E[E(y Ix, z) Ix]. 

All of our results and proofs continue to hold as stated when xt and yt 

are vectors of finite dimension. 

The conditional independence property can be weakened by considering 

regression functions: 

DEFINITION 5: (GR) -- E(xt+llxt, xt-l' ••• , Yt, Yt-l' ••• ) 

= E(xt+llxt, xt-1' ••• ) 

for all t. 

DEFINITION 6: (SR) -- E(yt1 ••• , xt-l' xt, xt+l' ••• ) 

= E(yt!xt, xt-1' ••• ) 

for all t. 

The Granger version states that xt+l is "mean independent" of current and 

pasty conditional on current and past x. The Sims version states that yt 

is mean independent of future x conditional on current and past x. We shall 

use counterexamples.to show that there are.no equivalencies in the 

regression case. The counterexamples work because mean independence is not 

a symmetric relationship. If xis uncorrelated with y, then y is uncorrelated 
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with x; if x is independent of y, then y is independent of x; but if 

E(xly) = E(x), it need not be true that E(ylx) = E(y). 
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2. 'IRE MAIN RES UL TS 

'IHEOREM 1: (G) implies (S). 

PROOF: This is a special case of Theorem 4, which is proved below. 

'IHEOREM 2: (S) does not imply (G). 

PROOF: Consider the following counterexample: let y1 , y2 be independent 

Bernoulli random variables with P(yt = 1) = P(yt = -1) = 1/2, t = 1,2. 

Let x3 = y1y2• Then y1 is independent of x3 and y2 is independent of x3 • 

Let all of the other random variables be degenerate (equal to zero, say). 

Then (S) holds but x3 is clearly not independent of y1 , y2 conditional on 

Q.E.D. 

For a stationary counterexample, we can let yt be i.i.d. for 

t = ••• , -1,0,1, ••• with P(yt=l) = P(yt=-1) = 1/2. Then set xt = yt-lyt_2• 

One can check that yt is independent of ••• , xt-l' xt, xt+l' ••• , so that 

(S) holds. One can also check that the xt are independent of each other; 

hence (G) requires that P(xt+l = llxt, xt-l' ••• , yt, yt_1) = 1/2, which 

clearly does not hold. For a stationary, nondeterministic counterexample, 

we can set x = yt 1y 2 + ut, where the u are independent of each other 
t - t- t 

and of all of the Yt• 

The proof of Theorem 3 will require two auxiliary definitions and a 

lemma. Let k be some positive integer. 

DEFINITION 7: 

conditional on 

(Gk) - - xt+l is independent of yt, yt-l' ••• , 
7 

xt, xt-1' ••• , yt-k' yt-k-1' ••• for all t. 

yt-k+l 
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DEFINITION 8: (S') -- y is independent of x d · k t xt+l' t+2' ••• , xt+k con i-

tional on xt, xt-l' ••• , yt-l' yt_2, 

8 
LEMMA: (Gk) is equivalent to (Sk). 

for all t. 

PROOF: All of the equalities in our proofs hold with probability one. 

The proofs are based on induction and 

where z is an integrable random variable and G1 , G2 are a-fields (information 

sets) with G1 C G2• 

1. We shall show first that (Gk) implies (Sk). Let B·. and B be 
s 

Borel sets and let D = 1 if yt e B, D = 0 otherwise; Ds = 1 if xt+s e Bs, 

D8 = O otherwise. Let Nt = a(xt, xt-l' ••• , yt-l' yt_2, ••• ) be the 

a-field generated by these variables. Clearly (G1) implies (Si); also 

(Gk) implies (Gj) if j ~ k. (This is based on the following result: let 

Gj, j=l, ••• , 4 be a-fields; then G1 is independent of G2 conditional on 

a(G3 U G4) if and only if 

(2.1) 

for all A1 E G1 (Chow and Teicher [ 2], Theorem 1. i, p. 217); (2 .1) holds 
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if G1 is independent of cr(G2 U G3) conditional on G4 , for then both sides 

of the equality in (2 .1) are equal to P (Ai_ I G4).) So (Gk) implies 

<sp. 
Now we shall assume that (Gk) implies 

and we shall show that (Gk) and (Sj) imply 

cr(Nt U cr(xt+l, ••• , xt+j)). 

(S!) for some j€[l, 
J 

(Sj+l). Let Nt,j = 

(2.2) E(DD.+llN .) = E(DINt) E(D.+llNt .) 
J t ,J J ,J 

• •• , k-1], 

(by (2.2) and the fact that E(DjNt) is measurable Nt). Hence (Gk) and (Sj) 

imply (Sj+l), and so our result follows by induction. 

2. We shall complete the proof by showing that (Sk) implies (Gk). 

Let D = 1 i_f xt+l e B, D = 0 otherwise; D = 1 if y e B, D = 0 otherwise. s t-s s s 

Let ii\ k = cr(xt, xt-l' ••• , y t-k' y t-k-l' ••• ) • (Sk) implies that xt+l , 
is independent of yt-k+l conditional on Mt k. We shall base our induction , 

on the assumption that xt+l is independent of yt-j' ••• , yt-k+l conditional 

on Mt k for some je [1, , . . . ' k-1] • 
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(by (S!) and the induction assumption); 
J 

E(DD. l ••• Dk 1IM k) = E[(D .••• Dk l)E(DD. 1IM .) IM kl J- - t, J - J- t,J t, 

(by (2.3)). So xt+l is independent of yt-j+l' yt-j' ••• , yt-k+l conditional 

on Mt k' and our result follows by induction. , 

Q.E.D. 

THEOREM 3: (G) is equivalent to (S') if (R) holds. 

PROOF: (S') is equivalent to (Sk) holding for all ke[l,2, ••• ], since the 

sets [xt+l e B1 , ••. , xt+k e Bk] form a TT-system generating cr(xt+l' xt+2 , .•• ) 

(Chow and Teicher [2], Theorem 1.iii, p. 217). By the Lemma, (Sk) holding 

for all k is equivalent to (Gk) holding for all k. (G) implies that (G{) 

holds for all k. So we only need to show that (Gk) holding for all k implies (G). 

Let D = 1 if x +le B, D = 0 otherwise; D = 1 if y e B , D = 0 
t s t-s s s 

otherwise. Let Jt = cr(xt, xt-l' ••• ). We need to show that for any 

je[0,1, ••• ], 

for all t. If (Gk) holds for all k, then 

(2 .5) 

for all k > j. Taking the limit ask ➔ 00 in (2.5) and applying (R) gives 

(2 .4). 

Q.E.D. 
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Recall that Mt k = cr(xt, xt-l' ••• , Yt-k' Yt-k-l' ••• ) , 
00 

and set Mt 00 = n M k. 
' k=O t, 

DEFINITION 9: (G') -- xt+l is independent of yt' yt-l' ••• conditional 

on Mt 00 • 

' 

COROLLARY 1: (G') is equivalent to (S'). 

PROOF: Repeat the proof of Theorem 3 up to (2.5) with Mt 00 replacing Jt. 
' 

Since M :::) M :::) 
t,O t,1 ... , we have 

for any integrable random variable z. (Reversed martingale; see Doob [3], 

Theorem 4.3, p. 331.) Taking the limit ask+ 00 in (2.5) gives the result. 

Q.E.D. 

We shall say that the [xt, yt] process is mixing from the left if 

lim E(zjx_k, y-k' x-k-l' y-k-l' ••• ) = E(z) 
k➔oo 

9 
for z·eF. So (R) requires that the process be mixing from the le£ t condi-

tional on xt, xt-l' ••• for all t. 
00 

Let T = n cr(x_k, y-k' x-k-l' y-k-l' ••• ) be the left tail cr-field of 
k=O 

the [x,y] process. Tis degenerate if it contains only sets with probability 

measure zero or one; an equivalent characterization is that a random variable 

z is measurable with respect to T only if z equals a constant with probability 

one. A standard regularity condition requires that T be degenerate -- see 
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Rozanov [9], p. 178. Since 

lim E(zlx_k, y-k' x-k-l' y-k-l' ••• ) = E(zjT), 
k~ 

the process is mixing from the left when Tis degenerate. It may seem 

plausible that (R) also holds when Tis degenerate, but this is false. 

For a counterexample·, let x1 be independent of x0 with P (x1 =1) = P (x1 =-1) = 1/2, 

and let x0 have a uniform distribution on (0,1]; let xt = 0 for t ,;. 0 or 1. 

We can express x0 in terms of its nonterminating dyadic expansion: 

00 k 
x0 = Ek.=l dk(x0)/2 , where each dk(x0) is O or 1. Let y_k = x1 [2dk(x0)-1] 

fork~ 1 and y_k = 0 fork< 1. Then y_1 , y_2, ••• is a sequence of i.i.d. 

random variables, and Kolmogorov's zero-one law implies that Tis degenerate. 

Since E(x1 jx0) = O, we see that (R) does not hold. 

2.1 An Equivalence Without Regularity Conditions 

The following equivalence does not require (R): 

THEOREM 4: (G) is equivalent t9 (S") • 

PROOF: The proof follows that of the L.emma. quite closely. 

1. We shall show first that (G) implies (S") • Let Jf = 

cr(xt, xt-1' ••• , 

finite,subset of 

y , y , ••• ), where [t1 , t 2 , ••• ] is some, possibly 
tl t2 

[t-1, t-2, ••• ]. Let (Sk) be the following property: 
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for all J~ and all t. (S") is equivalent to (Sk) holding fork= 1,2, •••• 

Let D = 1 if yt e B, D = 0 otherwise; Ds = 1 if xt+s e Bs, Ds = 0 otherwise. 

(G) implies (s1). Assume that (Sk) holds for some ke[l,2, ••• ]. 

cr(J~ u cr(xt+l' ••• , xt+k)). 

(2. 6) 

(by (G) and (Sk)); 

Let J' = t,k 

(by (2.6)). Hence (G) and (Sk) imply (Sk+l), and our result follows by 

induction. 

2. We shall complete the proof by showing that (S") implies (G). Let 

D = 1 if xt+l e B, D = 0 otherwise; D = 1 if y e B , D = 0 otherwise. s t-s s s 

Let-Jt =, cr(xt, xt-l' ••• ) • For any ke [0,1, ••• ] , (S") implies that xt+l 

is independent of yt-k conditional on Jt; in fact, only (S) is needed for 

this result. We shall base our induction on the assumption that xt+l is 

independent of yt-j' ••• , yt-k conditional on Jt for some je[l, ... , k]. 

Let Jt = cr(xt, xt-1' ..• , yt-j' ..• , yt-k). 
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(2.7) 

(by (S") and the induction assUI!lPtion); 

E(DD. l ••• DkjJ) = E[(D ..•• Dk) E(DD. 1 11*) jJ] 
J- t J J- t t 

(by (2.7)). So xt+l is independent of yt-j+l' ••• , yt-k conditional on 

Jt, and induction shows that xt+l is independent of yt, ••• , yt-k condi­

tional on Jt. Then our result follows since this holds for any ke[0,1, ••• }. 

Q.E.D. 

It is clear from our proof that an apparently weaker version of (S") 

will imply (G): it is sufficient to assume that yt is independent of xt+l' 

xt+2 , ••• conditional on xt, xt-l' ••• , Yt for every Y~ and all t, where 

Y! = [yt-l' ••• , yt-k] for some k.e[l,2, ••• ]. However, in the absence of 

(R), we cannot further weaken (S"). Consider the following counterexample: 

yt = y0 for all t, 

Then (S') holds since the distribution of yt conditional on any non-null 

subset of previous y's is degenerate; but (G) clearly does not hold. Note 

that (S) does not hold. 

There remains the possibility that (S) + (S') implies (G); but consider 

the following counterexample: 
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y0, ••• , y2k-l are independent for some k > 3 with 

P(y = 1) = P(y = -1) = 1/2 (s = 0, ••• , 2k - 1); s s 

Y2kt+s = y for s = O, ••• , 2k-1 and for all t; 
s 

Then (S') holds since the distribution of yt conditional on yt-2k is 

degenerate. Also (S) holds since yk is independent of x2k and y2k-l is 

independent of x2k. Clearly (G) does not hold. Furthermore, yt is in-

dependent of xt+l' xt+2 , ••• conditional on xt, xt-l' ••• , yt-l' ••• , yt-k+2 

for all t. So it appears that no further simplification of (S") is possible. 

2.2 The Linear Predictor Case 

We shall conclude this section by relating our results to the linear 

predictor case. 

COROLLARY 2: If the joint distribution of [x, y, ••• , x k' y k] is s s s- s-

multivariate normal for all integers sand k, then (G), (S), and (S") are 

equivalent. 

PROOF: In the proof that (S") implies (G), only (S) is needed to show 

that xt+l is independent of yt-k conditional on Jt for ke[0,1, ••• ]. By 

joint normality, the pair-wise independence implies that xt+l is independent 

of cr(yt, yt-l' ••• ) conditional on Jt. Hence (S) implies (G). By Theorem 

4, (G) implies (S") • Clearly (S") implies (S). 

Q.E.D. 
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Assume that xt and yt have finite variance for all t. Consider the 

Hilbert space of random variables generated by the linear manifold spanned 

by the variables [(xt, yt), t = ••• , -1,0,l, ••• ], closed with respect to 

convergence in mean square. We include also a constant (1) in the space. 

The inner product is <z1 ,z2> = E(z1z2). Then the linear predictor of a 

random variable based on a set of random variables is the projection of the 

random variable on the closed linear subspace generated by the set of random 

variables and 1. 

We can always construct a multivariate normal process [xt, yt] with 

the same means and covariances as the [xt, yt] process. If the linear 

predictor of yt based on all xis identical to the linear predictor based 

on xt, xt-l' ••• , then y~ is independent of x~+l' x~+2 , ••• conditional 

on x~, x~_1 , Then Corollary 2 implies that x~+l is independent of 

* y* d ·t· 1 * * yt, t-l' ••• con i iona on xt, xt-l' •••• Hence the linear predictor 

of xt+l based on xt, xt-l' ••• , yt, yt-l' ••• is identical to the linear 

predictor based on xt, xt-l' In a similar fashion we can establish 

the converse: if the linear predictor of xt+l based on current and lagged 

x and y is identical to the linear predictor based on current and lagged x, 

then Corollary 2 implies that the linear predictor of yt based on all xis 

identical to the linear predictor based on current and lagged x. 

So Corollary 2 implies the original Sims result on the equivalence of 

the linear predictor versions of (G) and (S). We have the additional 

result that the linear predictor version of (G) or (S) implies the linear 

predictor version of (S"). 
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Now consider the linear predictor version of (S'). Let 

H(l, x, x 1 , ••• , y., y. 1 , ••• ) denote the closed linear subspace 
s s- J J-

spanned by those variables; let E*(zll, x, x 1 , ... , y., y. 1 , ... ) s s- J J-

denote the projection of z on the closed linear subspace. Let FL be the 

set of random variables that are contained in H(l, 

for some integers sand j. 

x , Ys, ••• , x j, y . ) 
S S- S-J 

CONDITION(~): lim E*(z[xt, xt-l' ••• , y-k' y-k-l' ••• ) = E*(zlxt, xt-l' ••• ) 
k~ 

for all zeFL and all t. 

By considering a multivariate normal process with the same means and 

covariances as the [xt, yt] process, we can show that the linear predictor 

version of (Gk) is equivalent to the linear predictor version of (Sk). 

Then an argument similar to that used in the proof of Theorem 3 shows that 

the linear predictor version of (G) is equivalent to the linear predictor 

version of (S') if(~) holds. 

Suppose that we transform the random variables so that E(xt) = E(yt) = 0 
00 

for all t. In the terminology 

. 10 
of Rozanov [9], the [xt, yt] process is linearly regular if TL= O. This 

condition is similar to (~), but in fact does not imply (~). For a 

counterexample, let xt be i.i.d. with mean zero and variance one fort~ O; 

let xt = 0 fort> O. 
t-1 

Let y_t = rj=O x_j fort 2:_ 1; y_t = O fort< 1. 

Then the projection of x0 on H(x_1 , x_2, ••• , y-k' y-k-l' ••• ) equals x0 

for any k > 1, since x0 = y_k - (x_1 + ••• + x-k+l). The projection of x0 

on H(x_1 , x_2, ••• ) is O; hence(~) does not hold. Since y-k-l - Y_k = 

x_k, we have H(x_k' y-k' x-k-l' y-k-l' ••• ) = H(y_k' x_k, x-k-l' ••• ). If 

we use [x0, x1 , ••• ] as an orthonormal basis, then the coordinates of a 



20 

point in H (y -k' x _k, x-k-l' ••• ) form a square-swmnable sequence whose first 
00 

k elements are equal. Hence TL= n H(y_k, x_k, x-k-l' ••• ) = O, and the 
k=O 

counterexample is Ce>mplete. 

( 
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3. REGRESSION 

Our causality definitions have used conditional independence instead 

of zero partial correlation. The conditional independence property can be 

weakened by using the regression function versions (GR) and (SR). The follow­

ing example will show that neither of these definitions implies the other. 

Let ut be i.i.d. for all t with P(ut > O) = 1. Let vt be i.i.d., 

independent of the u's, with P(vt = 1) = P(vt = -1) = 1/2. Set 

xt = ut-lvt-l' yt = ut. Then with probability one 

Hence (GR) holds; but 

E(ytj ••• , xt-1' xt, xt+l' ••• ) 

= E(utlutvt) = lutvtl = yt, 

So (GR) does not imply (SR). 

Now let xt = ut-l' yt = utvt. With probability one 

Hence (SR) holds; but 
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So (SR) does not imply (GR). Furthermore, we have 

where [t1 , t 2 , ••• ] is any subset of [t-1, t-2, ••• ]. So (SR) does not 

imply (GR). It appears that there are no interesting equivalencies in 

the regression case. 

4. CONCLUSION 

If Yt is a binary variable, then the regression function for yt con­

ditional on xt, xt-l' ••• is generally not identical to the linear predictor 

of yt based on xt, xt-l' •••• So even if y is independent of future x 

conditional on current and past x, it will generally not be true that xis 

strictly exogenous in the linear predictor sense; the future x's will help 

to correct for the error in approximating the nonlinear regression function. 

Suppose, for example, that t=l is the starting point for the process and 

that 
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The linear predictor version of (G) or (S) requires zero partial correlation 

between x1x2 and x3 given x1 and x2 • This will be true if the joint dis­

tribution of (x1 ,x2 ,x3) is multivariate normal or, more generally, if the 

regression function for x3 conditional on x1 , x2 is linear. I would not 

expect it to be true if xt is a binary variable. For then the regression 

function is 

and y3 is generally not zero. 

So we have considered extensions of the Granger and Sims definitions 

that use conditional independence instead of linear predictors. The ex­

tended Granger definition of "y does not cause x" is stronger than the 

condition that y be independent of future x conditional on current and 

past x; so noncausality is stronger than strict exogeneity. Under a weak 

regularity condition, however, if y is independent of future x conditional 

on current and past x and pasty, then y does not cause x. 
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FOOTNOTES 

1 I am grateful to.John Geweke, Kenneth Judd, James Kuelbs, Linda 
Rothschild, Charles Wilson, Arnold Zellner, and especially Christopher 
Sims for helpful discussions. Financial support was provided by the 
National Science Foundation (Grants No. SOC-7925959 and No. SES-8016383). 

2Granger's initial definition was in terms of the regression func­
tion. He then specialized it to the linear predictor form. Granger 
also allowed for conditioning on information in addition to the current 
and past values of x and y. It is straightforward to modify our results 
to incorporate such additional conditioning. 

3His proof assumes that the process is covariance stationary with 
no linearly deterministic component; also the process has an autoregressive 
representation. Hosoya [7] showed that these conditions are not necessary. 

4see Rao [8], section 6b. 

5A Co-Editor has informed me of a paper by Florens and Mouchart [4] 
which contains results similar to (G) implies (S) and (S) does not imply 
(G). Their paper relates the Granger definition to the concept of transi­
tivity in sequential analysis. 

6The linear predictor version of (S') has been used by Geweke, Meese, 
and Dent [5]. Under assumptions similar to those used by Sims [10], 
they show that the linear predictor version of (S') is equivalent to the 
linear predictor version of (G). 

7This definition is related to Granger's [6] definition of causality 
lag. 

81 am indebted to Christopher Sims for the observation that (Gk) and 
(Sk) are equivalent in the linear predictor case. 

9Mixing is defined for stationary processes in Billingsley [1], p. 12. 

lOA · · 1 · 1 1 · f · d h d stationary process 1.s 1.near y regu ar 1. 1.t oes not ave a eter-
ministic component; see Rozanov [9], Chapter II, section 2. Sims [10] 
assumes that the process is linearly regular. 
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