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ABSTRACT

Linear predictor definitions of causality are not adequate for
discrete data. The paper extends the Granger #nd Sims definitions by
using conditional independence instead of linear predictors. The ex-
tended definition of "y does not cause x" is that x is independent of
past y conditional on past x. This is stronger than the strict
exogeneity condition that y be independent of future x conditional on
current and past x. Under a weak regularity condition, however, if y
is independent of future x conditional on current and past x and

past y, then y does not cause x.




THE GENERAL EQUIVALENCE OF
GRANGER AND SIMS CAUSALITY

By

Gary Cham.berlain1
1. INTRODUCTION

Let [(xt, yt), t= ..., =1, 0, 1, ...] be a collection of random
variables on a common probability space -- a stochastic process. Granger
[6] defined "y does not cause x" as follows: the (minimum mean square

error) linear predictor of x based on x

t+1 g2 Fpopr c0vr Yeo Yege -e 18
identical to the linear predictor based on Xes X qs coe alone.2 Sims
[10] defined x to be strietly exogenous relative to y if the linear pre-

dictor of Ve based on ..., X710 Xp» X .o« is identical to the linear

t+1°
predictor based on Ko Xp g5 oo o Sims [10] showed that these two
definitions are equivalent.3 This is a beautiful result; we would like
to know whether it still holds if linear predictors are replaced by a more
géneral form of dependence.

In applying these ideas to longitudinal data on individuals, the
prevalence of qualitative variables argues for considering models based
on the entire conditional distribution instead of looking only at linear
predictors. Suppose that Yie is zero or omne, indicating,bfor example,
whether or not individual i was employed in period t. We observe
(xil’ Ti1s *+> Xypos yiT) for i=1, ..., N individuals, and we regard these

vectors as independent and identically distributed (i.i.d.) observations



from the joint distribution of (xl, Yis cevs Xps yT). Let t = 1 be the :

first period of the individual's (economic) life. Consider the following

specification for the conditional probability that Yie equals one:

P(yge = 1"‘11’ sees Xypo ) = Py, = 1|x11’ oo Xyps €4),

where c is a latent variable that represents ummeasured characteristics
of the individual; c is assumed to be constant over the sample period.
If ¢ is independent of the x's, then, dropping the i subscripts, we

have

P(yt = llxl, cees xT) I P(yt = llxl, cees X, u) dP(c < u)

P(yt = l‘xl, cees xt),

so that x is strictly exogenous. However, if P(c f_ulxl, cees xT) #
P(c < u), then in general P(c j_ulxl, cees xT) # P(c §_u|xl, cees xt);
a latent variable that is constant over time is generally related to all

of the xt's if it is related to any of them. In that case

P(yt = llxl, cees XT) = [ P(yt = 1|x1, vees X_, u) dP(c g_ulxl, cees X))

t T

# P(yt = llxl, cees xt).

Hence the failure of strict exogeneity indicates that the latent variable
is not independent of the measured x's. Is there an extension of Granger's
definition of "y does not cause x"' that will imply P(yt = 1|x1, cees xT) =
= 4
P(yt llxl, cees Xt)‘
In the Granger definition, instead of requiring that Ver egs =o-

not contribute to the linear predictor of X1 given ps X 35 coes we



shall require that x

e+l be conditionally independent of Ves Veys oo

DEFINITION 1: (G) -- x is independent of Yoo Tpgs +o conditional

t+1

on X_, X ... for all t.

t t-1°

In the Sims definition, instead of requiring that x ... DOt

t4+1° Fes2?

contribute to the linear predictor of Ve given X5 X «es, we shall

t-1’°
require that Ve be conditionally independent of X1 Xpyps cee o

DEFINITION 2: (S) -- ¥, is independent of x ... conditional

t+1® Fe42?

on X_, X ... for all t.

t t-1?

We shall show that (G) implies (S). So in our example, we would

need to check whether x is independent of Yo oves ¥y conditional on

t+1

Xts +ee5 ¥7. The inference problem is simplest when x is also a binary

variable; x_ could indicate whether or not the individual was in a training

t

program in period t; or in a sample of married women, X, could indicate

whether or not there was a birth in period t. Then the joint distribution

of (x ceey X ) is given by a set of multinomial probabilities,

l, Yl, T’ yT

with each individual falling in one of 22T cells. The hypotheses (G)

and (S) specify that the cell probabilities are specified functions of
fewer than 22T - 1 parameters. Given a random sample of size N from such
a distribution, the asymptotic inference problem as N - « for fixed T is
straightforward.4

If T = 2, then (S) requires that

]
]
]

1),

1|x1

P(yl 0, X, = 0) P(yl = llx1 =0, X,

=0)

]
=
el

P(yl = l|x1 P(y1 = 1|xl =1, x, = 1).




It is simple to check that (G) imposes precisely the same restrictions;
but when T > 2, (G) imposes more restrictions than (S). We shall present
a counterexample to show that, in contrast to the linear predictor case,
(S) need not imply (G).Es The counterexample works for the following
reason: if a random variable is uncorrelated with each of two other
random variables, then it is uncorrelated with every linear combination
of them; but if it is independent of each of the other random variables,
it need not be independent of every function of them.

Thefe is a modification of the Sims definition which, given a regu-

larity condition, is equivalent to (G).

DEFINITION 3: (S') -- ¥, is independent of x ... conditional

t+1° Fe+2?

ON X 5 X g5 eoes Yo 15 Vi g voe o

In order to state the regularity condition, let F be the set of random

variables of the form z = 1 if (xs, Vs ...,—x , ys—j) €eB,z=0

s=]

otherwise, where s and j are arbitrary integers and B is a Borel set.

CONDITION (R): 1lim E(z|x_, X, 15 <5 Y o Y_ g5 =)

ko

= E(z‘xt, X, 1o cee)

for all zeF and all t.

Then (G) is equivalent to (S') if (R) holds. (S') is a tractable modifi-
cation of (S); they are equivalent in the linear predictor case if a

6
condition corresponding to (R) holds. Condition (R) requires that the

current effect of y's from the distant past vanishes; similar assumptions



are routine in the analysis of aggregate time-series data. In the longi-

tudinal example, (R) holds automatically since Y, is degenerate prior to

the "birth" of the individual. The important point here is that we are

not making any stationarity assumptions, and so we are free to assign X

and Ve degenerate distributions prior to some starting point for the process.
In our example, (G) and (S') imply precisely the same restrictions on

the multinomial cell probabilities. It makes no difference which version

we choose to test. Now suppose that t = 1 is not the starting point for

the process, so that we are missing some observations. Then it is

possible that we shall reject (G) or SS') simply because we have not included

enough lags. Furthermore, tests of (G) and (S') are no longer equivalent,

since the bias from truncating the lag distribution may be different in the

two cases.

Suppose that

ceey, O)= P(yt = llxt, ey ; c) (e>M);

P(y, = 1]..., K10 Xps Kpygo Xy
for example, it may be that children do not affect the woman's employment
status once they are in school, so that M corresponds to approximately

six years. If c is independent of the x's, then (S) holds and

P(yt=l|xl’ ey XT) =P(yt=llxt’ .'.’x )

t-M

implies testable restrictions if T > M + 1. Rejection of (S) implies
rejection of (G), whereas we may be unable to construct a valid direct
test of (G) (or (S')) due to bias from truncating the lag distributioms.

If the process started at t = - J < 0, then



P(x,,, = llxt, cees Xy Fis oeees yp) = Plx ;= llxt, ooy Xp)

does not, in genmeral, hold for any t, even if (G) holds and y depends on

only M lagged values of x.

An additional problem is to choose correct functional forms for
the conditional distributions under the null hypothesis. Suppose that
x 1s binary and let t = 1 be the sﬁarting point for the process. Then
the multinomial distribution provides a completely general specification
for P(xt+1 = 1|xt, cees xl); but if x is continuous, then specifying the
conditional distribution will require a restrictive functional form. It
may be easier to justify functional form restrictions in either the
Granger or the Sims version of the test. The functional form issue is
important; if the regression function is not linear, then the linear
predictor form of (G) (or (S)) will generally fail to hold even though
(G) holds. The past y's (or future x's) will help to correct for the
error in approximating the regression function.

If we impose no regularity conditions, then we require a stronger
version of the Sims definition: Ve must be independent of Xiy1r Fepo? *o°

conditional on Xes X g5 oo and conditional on any subset of Veo1? Yeop? =00 -

DEFINITION 4: (S") -- y, is independent of x ... conditional

t+1° Fe42°

on X.5 X g5 coe» Yt for every Yt and all t, where Yt is a subset of
Te-1? Tg-22 =

We shall show that (G) is equivalent to (S"). In the definition of (s",
it is sufficient that the conditional independence holds for Yt equal to

the null set and all sets of the form Yt = [yt_l, cees yt-k]’ k=1,2, ...3



but we shall present counterexamples to show that, in the absence of
(R), (8) + (S') does not imply (G).
Our proofs are simple applications of the following fundamental

property of conditional expectation:
E(y]x) = E[E(ylx, z)lx].

All of our results and proofs continue to hold as stated when x_ and Ve

t
are vectors of finite dimension.
The conditional independence property can be weakened by considering

regression functions:

DEFINITION 5: (GR) - E(xt+1|xt, X, 10 vees Vo Ypogo eed)

= E(x ced)

|xt, x

t+l t-1’

for all t.

DEFINITION 6: (S.) -- E(yt|..., X 1> Xps Xppqs oe)
= E(ytlxt, X 15 eee)

for all t.

The Granger version states that x is "mean independent" of current and

t+1
past y conditional on current and past x. The Sims version states that Ve
is mean independent of future x conditional on current and past x. We shall
use counterexamples.to show that there are no equivalencies in the

regression case. The counterexamples work because mean independence is not

a symmetric relationship. If x is uncorrelated with y, then y is uncorrelated



with x; if x is independent of y, then y is independent of x; but if

E(x|y) = E(x), it need not be true that E(y|x) = E(y).‘




2. THE MAIN RESULTS

THEOREM 1: (G) implies (S).

PROOF: This is a special case of Theorem 4, which is proved below.

'

THEOREM 2: (S) does not imply (G).

PROOF: Consider the following counterexample: let Y15 Yy be independent
Bernoulli random variables with P(yt =1) = P(yt =-1) =1/2, t = 1,2,

Let x Then A is independent of X4 and v, is independent of Xqe

3 - Y1

Let all of the other random variables be degenerate (equal to zero, say).

Then (S) holds but x4 is clearly not independent of Y10 Y, conditional on
xz’ x1, L N L]
Q.E.D.

For a stationary counterexample, we can let Ve be i.i.d. for

t= ..., -1,0,1, ... with P(yt=l) = P(yt=-1) = 1/2. Then set X = Ve 1Yene

One can check that Ve is independent of ..., x ..., so that

t-1° *e2 410
(S) holds. One can also check that the x, are independent of each other;
hence (G) requires that P(xt+l = llxt, K12 voes Yyo yt-l) = 1/2, which
clearly does not hold. For a stationary, nondeterministic counterexample,
we can set x, = yt;lyt_2 + U, where the u,_ are independent of each other
and of all of the Vo

The proof of Theorem 3 will require two auxiliary definitions and a

lemma. Let k be some positive integer.

. "y - - s ;
DEFINITION 7: (Gk) b4 is independent of Ves Teogs =00 Yy

t+l -k+1

7
conditional on s X3 eoes Yogos Ve pogs oo for all t.
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DEFINITION 8: (Sé) - Y, is independent of x ceey X condi-

t+1° Fe+2? t+k

tional on Xes X 39 cees Yo go Yegs =oo for all t.
8
LEMMA: (Gé) is equivalent to (Sé).

PROOF: All of the equalities in our proofs hold with probability onme.

The proofs are based on induction and
E(z|6;) = E[E(z|G,))|6,],

where z is an integrable random variable and Gl’ GZ are o-fields (information
sets) with Gl c GZ'
1. We shall show first that (Gi) implies (Sﬁ). Let B. and B be

Borel sets and let D = 1 if V. € B, D = 0 otherwise; Ds =1 if X € Bs’

D_ = 0 otherwise. Let Nt = O(Xt, x .+.) be the

t-l’ LA ] yt_l’ yt_z,
o-field generated by these variables. C(Clearly (Gi) implies (Si); also

(GL) implies (G&) if j < k. (This is based on the following result: let
G., j=1, ..., 4 be 0-fields; then Gl is independent of G2 conditional on

J
0(63 Y G4) if and only if

(2.1) P(A |0(G, VU Gy U Gy)) = P(a;]0(Gy U G,))

for all A

1 € G1 (Chow and Teicher [2], Theorem 1.i, p. 217); (2.1) holds
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if Gl is independent of O(G2 U G3) conditional on G,, for then both sides
of the equality in (2.1) are equal to P(A1|GA).) So (G;) implies
]
(Sl).
Now we shall assume that (Gﬂ) implies (Si) for some j€[1, ..., k-1],

' 1y ' =
and we shall show that (Gk) and (Sj) imply (Sj+l). Let Nt .

?

U(Nt U c(xt+1 Xt+j))°

(2.2)  E@D, [N, ) = E@IND E@, N, O

j+1 t,]

(by (6},1) and (8)));

E(DD; ... D th) = E[(D; ... DJ.)E(DDJ,

j+1 Vg P 1N

= E(Dth) E(D; ... Dj+1INt)

(by (2.2) and the fact that E(DINt) is measurable Nt). Hence (G}) and (Si)
imply (S§+l)’ and so our result follows by induction.
2. We shall complete the proof by showing that (Sé) implies (Gé).

Let D=1 if x € B, D = 0 otherwise; DS =1 if Ve € B Ds = (0 otherwise.

t+l s?

= ' A ] $
Let Mt,k U(xt, X 10 oo Yoo Teokel? S I (Sk) implies that X1

is independent of Ykl conditional on M We shall base our induction

t,k’
on the assumption that X is independent of yt-j’ cees Ve pal conditional
on Mt,k for some je[l, ..., k-1].
' = Ug
(2.3)  E(@D,_,[M_ ;) = EIDEID, , |o(M, 5 Y olx 1 0)]] M 4]

= E(Dj-llMt,j) E(DlMt,k)
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(by (Sj) and the induction assumption);

E(DDj_l Dk—llMt,k) = E[(Dj Dk-l)E(DDj-llMt )M ]

»J7 e,k

= E(DlMt,k) E(Dj_l Dk_lIMt’k)

(by (2.3)). So x is independent of Ve—gs1? Y conditional

t+1 t=3° °°°? Ye-ktl

on Mt > and our result follows by induction.
9

Q.E.D.

THEOREM 3: (G) is equivalent to (S') if (R) holds.

PROOF: (S') is equivalent to (Si) holding for all ke[l,2, ...], since the

€ Bys veen X t+1° Fe42°

(Chow and Teicher [2], Theorem 1.iii, p. 217). By the Lemma, (Si) holding

ces)

sets [xt € Bk] form a m-system generating o(x

+1

for all k is equivalent to (Gi) holding for all k. (G) implies that (GL
holds for all k. So we only need to show that (Gé) holding for all k implies (G).

Let D =1 if X,

+1 € B, D = 0 otherwise; DS = 1 if Vg € B,D =0

S S

otherwise. Let Jt = c(xt, X «+.). We need to show that for any

t-1°
je[0,1, ...],

(2.4) E(DD, ... DjIJt) = E(DIJt) E(Dg «-- Dlet)
| for all t. If (Gl'c) holds for all k, then

)

L

(2.5) E(DD ... Dlet,k) = E(DIMt,k) E(D, ... D,

for all k > j. Taking the limit as k - « in (2.5) and applying (R) gives

(2.4).
Q.E.D.
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Recall that Mt = o(x,, x

.k g1 00 Ve Yeoge1r +00)

[eo]
and set M = N M _.
t,° o K

DEFINITION 9: (G') -- x is independent of Yeo Yeops oo+ conditional

t+l

on Mt’w.

COROLLARY 1l: (G') is equivalent to (S').

PROOF: Repeat the proof of Theorem 3 up to (2.5) with Mt « Feplacing Jt
b L]

i oM D)
Since Mt 0 Mt,l ..., we have

b

lim E(z(M_ ) = E(z|M_ )
- Zlt,k 2| t o

for any integrable random variable z. (Reversed martingale; see Doob [3],

Theorem 4.3, p. 331.) Taking the limit as k > ® in (2.5) gives the result.

Q.E.D.
We shall say that the [xt, yt] process is mixing from the left if

lim E(z|x

k>

-k? Y_k, X_k_l, y_k_l, ...) = E(z)

9
for zeF.” So (R) requires that the process be mixing from the left condi-

tional on X, X ... for all t.

<o

t-1’°

Let T= N O(X_k, Y_xo ¥p1s Yk-1° «..) be the left tail o-field of
k=0

the [x,y] process. T is degenerate if it contains only sets with probability
measure zero or onej; an equivalent characterization is that a random variable
z is measurable with respect to | only if z equals a constant with probability

one. A standard regularity condition requires that T be degenerate -- see
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Rozanov [9], p. 178. Since

lim E(z‘x_k, y—k’ X-k—l’ y—k—l’ ces) = E(ZlT) s

koo

the process is mixing from the left when T is degenerate. It may seem
plausible that (R) also holds when T is degenerate, but this is false.

For a counterexample, let Xy be independent of X with P(x1=l) = P(xl=-l) =1/2,
and let X have a uniform distribution on (0,1]; let X, = 0 for t # 0 or 1.

We can express X, in terms of its nonterminating dyadic expansion:

0 k
Xy = Zk;l dk(xo)/Z , where each dk(xo) is 0 or 1. Let Yy = xl[de(xo)—l]
for k > 1 and Yy = 0 for k < 1. Then Y15 Y_gs «-- is a sequence of i.i.d.

random variables, and Kolmogorov's zero-one law implies that T is degenerate.

But x; = y_k/[de(xo) - 1] for any k > 1, and so

lim E(xlixo, y_k) = x;.

koo

Since E(xl‘xo) = 0, we see that (R) does not hold.

2,1 An Equivalence Without Regularity Conditions

The following equivalence does not require (R):
THEOREM 4: (G) is equivalent to (S").

PROOF: The proof follows that of the Lemma quite closely.
1. We shall show first that (G) implies (S"). Let Jé =
o(xt, Xp_qs <00 Yoo Tpos «+.), Where [tl, tss ...] is some, possibly

1 2
finite, subset of [t-1, t-2, ...]. Let (Sﬁ) be the following property:
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"y, 1
(Sk)‘ P(yt € B, X 1€ Bl’ cees xt+keBk‘Jt)

- 1 ]
=Py, ¢ BIJt)P(xt+l € Byy eeey X € BkIJt)

for all Jé and all t. (S") is equivalent to (Sﬁ) holding for k = 1,2, ....

Let D = 1 if Ve € B, D = 0 otherwise; DS =1 if Xirs € Bs’ DS = 0 otherwise.

(G) implies (S"). Assume that (S!') holds for some ke[1l,2, ...]. Let J' =
1 k t,k
)).

o(Jé U o(x ooy X

t+1° t+k

(2.6) E(ODy,; |7} ) = EIDEID, 4 |oCJ] U oty 1] Jf ]

By 17,0 ECOITD

(by (G) and (S81));

E(D; ... D, [J{) = E[(D; ... D) E(DDk+llJé,k)|Jé]

E(|J}) E(D, ... Dyyq 1D

(by (2.6)). Hence (G) and (Sﬂ) imply (S£+l)’ and our result follows by

induction.
2. We shall complete the proof by showing that (S") implies (G). Let

D=1 if Xy € B, D = 0 otherwise; Ds =1 if Veog € B , D = 0 otherwise.

S S

Let—Jt =‘G(xt,'x ...). For any ke[0,1, ...], (8") implies that x

t-1’

is independent of Yek conditional on Jt; in fact, only (S) is needed for

t+1

this result. We shall base our induction on the assumption that X1 is

independent of Teoy? conditional on Jt for some je[l, ..., k].

cees Ve p

Let Jt = c(xt, Xp_1s o0es Veogs =oe» yt—k)'




16

(2.7) E(DDj_1|J§) = E[DE[Dj_1|c(J§ Uo(x

e 11731 = E@,, [T8) EO[ID)

(by (S") and the induction assumption);

E(D, ; .- D 7)) E[(D;... D) E(DD, ;[T |].]

E(D[J) E(D _y .- D170

(by (2.7)). So x is independent of Vemg+1? conditional on

t+1 e Tk

Jt’ and induction shows that x is independent of Ve covs Ve condi-

t+1
tional on Jt' Then our result follows since this holds for any ke[0,1, ...l.

Q.E.D.

It is clear from our proof that an apparently weaker version of (S")

will imply (G): it is sufficient to assume that Ve is independent of X1

Xiyos ooo conditional on X X s

Y% = [yt-l’ cees yt-k] for some ke[1l,2, ...]. However, in the absence of

eees Y¥ for every Yt and all t, where

(R), we cannot further weaken (S"). Consider the following counterexample:
Ve =Yg for all t,
X =Yg ¥, = 0 for t # 1.

Then (S') holds since the distribution of Ve conditional on any non-null
subset of previous y's is degenerate; but (G) clearly does not hold. Note
that (S) does not hold.

There remains the possibility that (S) + (S') implies (G); but consider

the following counterexample:
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Vg2 +ees Yop_ are independent for some k > 3 with
P(yS =1) = P(ys =-1)=1/2 (s =0, ..., 2k - 1)

Yokt+s = Vs for s = 0, ..., 2k-1 and for all t;

%or = NiYor-10 X T 0 for t # 2k.

Then (S') holds since the distribution of A conditional on Yook is

degenerate. Also (S) holds since ¥y is independent of Zop and Yor-1 is

independent of x Clearly (G) does not hold. Furthermore, ¥, is in-

2k’

dependent of x . conditional on X, X

t+1° Fes20 0o t-12 *00 Ve ot Yok
for all t. So it appears that no further simplification of (S") is possible.

2.2 The Linear Predictor Case
We shall conclude this section by relating our results to the linear

predictor case.

COROLLARY 2: If the joint distribution of [xs, Voo coes ¥gpo ys—k] is
multivariate normal for all integers s and k, then (G), (S), and (S") are

equivalent.

PROOF: In the proof that (S") implies (G), only (S) is needed to show

that x is independent of Yek conditional on Jt for ke[0,1,...]. By

t+1

joint normality, the pair-wise independence implies that x 1 is independent

t+
of O(yt, Ye1» ...) conditional on Jt' Hence (S) implies (G). By Theorem
4, (G) implies (S"). Clearly (S") implies (S).

Q.E.D.
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Assume that X, and Ve have finite variance for all t. Consider the

Hilbert space of random variables generated by the linear manifold spanned

by the variables [(x ), t = ..., -1,0,1, ...], closed with respect to

t* Tt
convergence in mean square. We include also a constant (1) in the space.
The inner product is <zq52,> = E(zlzz). Then the linear predictor of a
random variable based on a set of random variables is the projection of the
random variable on the closed linear subspace generated by the set of random
variables and 1.

We can always construct a multivariate normal process [x%, y%] with

the same means and covariances as the [x ] process. 1If the linear

t* Yt

predictor of Ve based on all x is identical to the linear predictor based

% % * {1
On X.5 X, 15 «ees then vE is independent of XE 10 Xfos oo conditional
on xt, xt-l’ «ss o Then Corollary 2 implies that xt+l is independent of

y%, yt_l, «.. conditional on xt, xi_l, «es » Hence the linear predictor

of x based on x_, i g9 oo Veo Tpgs ooe is identical to the linear

t+1 t

predictor based on X5 X In a similar fashion we can establish

t—l, cee o

the converse: if the linear predictor of x based on current and lagged

t+1
x and y is identical to the linear predictor based on current and lagged x,
then Corollary 2 implies that the linear predictor of Ve based on all x is
identical to the iinear predictor based on current and lagged x.

So Corollary 2 implies the original Sims result on the equivalence of
the linear predictor versions of (G) and (S). We have the additiomnal

result that the linear predictor version of (G) or (S) implies the linear

predictor version of (S").
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Now consider the linear predictor version of (S'). Let

H(1, Koo X g5 +o0s Yy yj—l’ ...) denote the closed linear subspace

spanned by those variables; let E*(z!l, Rgs X5 coos yj, yj—l’ ees)
denote the projection of z on the closed linear subspace. Let FL be the

set of random variables that are contained in H(1, X s Ygs =oes xs-j’ ys—j)

for some integers s and j.

CONDITION (R ): 11{_)12 E*(z[xp, X g5 cees Yoy Y g o00) = EX(zlx, x4, .el)

for all zeFL and all t.

By considering a multivariate normal process with the same means and
covariances as the [xt, yt] process, we can show that the linear predictor
version of (Gﬁ) is equivalent to the linear predictor version of (Sé).
Then an argument similar to that used in the proof of Theorem 3 shows that

the linear predictor version of (G) is equivalent to the linear predictor

\

version of (S') if (RL) holds.

Suppose that we transform the random variables so that E(xt) = E(yt) =0

o]

for all t. Let Ti = k:B H(x_k, Y o> ¥ope1 Yope1e «..). In the terminology

10

of Rozanov [9], the [x ] process is linearly regular if Ti = 0. This

e e
condition is similar to (RL), but in fact does not imply (RL)‘ For a
counterexample, let X, be i.i.d. with mean zero and variance one for t < 0;
let x, = 0 for t > 0. Lety_ = Z;;é x_s for t > 1;y__ =0 for t < 1.
Then the projection of Xy on H(x_l, X_gs ees Y g0 Y p1° ...) equals Xq
for any k > 1, since Xg = Y = (x_l + ...+ X-kﬁl)' The projection of X

on H(x_l, X_5s ...) is 0; hence (RL) does not hold. Since Vgl ~ Yk =

X_), We have H(x_k, Vo> Fope1s Yp-1° ces) = H(y_k, X 10 X_p 10 eee)e If

we use {xo, Xq5 ...] as an orthonormal basis, then the coordinates of a
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point in H(y_k, X 30 X g1 ...) form a square-summable sequence whose first
’ (=]

k elements are equal. Hence TL = kQO H(y_k, X 1o X 1 15 «..) = 0, and the

counterexample is complete.
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3. REGRESSION

Our causality definitions have used conditional independence instead
of zero partial correlation. The conditional independence property can be
weakened by using the regression function versions (GR) and (SR). The follow-
ing example will show that neither of these definitions implies the other.

Let u, be i.i.d. for all t with P(ut >0) = 1. Let Ve be i.i.d.,
independent of the u's, with P(vt =1) = P(vt = -1) = 1/2. Set

X T U Ve 1> Ve T U Then with probability one

E(xt+l!xt, X 15 tees yt’/yt-l’ ced)

= E(utvtlut) = utE(Vt) = 0.
Hence (GR) holds; but

E(ytlc-u, Xt_l, Xt, Xt+l, oo.)

= E(u, |‘11:"1:) = vl =y
E(ytlxt, xt_l,’...) = E(yt).

So (GR) does not imply (SR).
Now let XS U s Yy T UV With probability omne
E(ytl..., X, 10 Fpr Xegpo eed)

= E(utvtlut) =u, E(vt) = 0.

Hence (SR) holds; but
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E(xt+l]xt, X 1o 0o Yoo Yeps eee)

= EQulugvy) = Juve | ==,

E(x eee) = E(x_,.).

t+l!xt’ Xe-1? t+1

So (SR) does not imply (GR). Furthermore, we have

E(ytl..., R 10 Xps Xpyqs ooes ytl, ytz, ees) =0,
where [tl, tss ...] is any subset of [t-1, t-2, ...]. So (Sg) does not
imply (GR). It appears that there are no interesting equivalencies in

the regression case.

4. CONCLUSION

If Ve is a binary variable, then the regression function for y, con-

ditional on X X5

of Ve based on X, X

... is generally not identical to the linear predictor
£-1? e So even if y is independent of future x
conditional on current and past x, it will generally not be true that x is
strictly exogenous in the linear predictor sense; the future x's will help
to correct for the error in approximating the nonlinear regression function.

Suppose, for example, that t=1 is the starting point for the process and

that

E(yzlxl, Xos x3) = BO + lel + 82x2 + B3xlx2 .
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The linear predictor version of (G) or (S) requires zero partial correlation

between XX, and X4 given Xy and X,e This will be true if the joint dis- ‘
tribution of (Xl’XZ’XB) is multivariate normal or, more generally, if the

regression function for X, conditional on X5 Xy is linear. I would not

expect it to be true if x_ is a binary variable. For then the regression

t

function is
E(xylxp,x)) = vy + V%) + Yo%, + Yaxyx,

and Y3 is generally not zero.

So we have considered extensions of the Granger and Sims definitions
that use conditional independence instead of linear predictors. The ex-
tended Granger definition of "y does not cause x" is stronger than the
condition that y be independent of future x conditional on current and
past x; so noncausality is stronger than strict exogeneity. Under a weak
regularity condition, however, if y is independent of future x conditional

on current and past x and past y, then y does not cause x.
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FOOTNOTES

lI am grateful to. John Geweke, Kenneth Judd, James Kuelbs, Linda
Rothschild, Charles Wilson, Arnold Zellner, and especially Christopher
Sims for helpful discussions. Financial support was provided by the
National Science Foundation (Grants No. S0C-7925959 and No. SES-8016383).

2Granger's initial definition was in terms of the regression func-
tion. He then specialized it to the linear predictor form. Granger
also allowed for conditioning on information in addition to the current
and past values of x and y. It is straightforward to modify our results
to incorporate such additional conditioning.

3His proof assumes that the process is covariance stationary with
no linearly deterministic component; also the process has an autoregressive
representation. Hosoya [7] showed that these conditions are not necessary.

4See Rao [8], section 6b.

oA Co-Editor has informed me of a paper by Florens and Mouchart [4]
which contains results similar to (G) implies (S) and (S) does not imply
(G). Their paper relates the Granger definition to the concept of transi-
tivity in sequential analysis.

6Thé linear predictor version of (S') has been used by Geweke, Meese,
and Dent [5]. Under assumptions similar to those used by Sims [10],
they show that the linear predictor version of (S') is equivalent to the
linear predictor version of (G).

7This definition is related to Granger's [6] definition of causality
lag.

8I am indebted to Christopher Sims for the observation that (G') and
(Sk) are equivalent in the linear predictor case.

9Mixing is defined for stationary processes in Billingsley [1], p. 12.

10A stationary process is linearly regular if it does not have a deter-

ministic component; see Rozanov [9], Chapter II, section 2. Sims [10]
assumes that the process is linearly regular.
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