

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

UNIVERSITY OF WISCONSINMADISON

SOCIAL SYSTEMS RESEARCH INSTITUTE

Social Systems Research Institute

University of Wisconsin

THE GENERAL EQUIVALENCE OF GRANGER AND SIMS CAUSALITY

Gary Chamberlain

8120

June 1981

THE GENERAL EQUIVALENCE OF GRANGER AND SIMS CAUSALITY
by
Gary Chamberlain ${ }^{1}$
University of Wisconsin-Madison and

National Bureau of Economic Research

ABSTRACT

Linear predictor definitions of causality are not adequate for discrete data. The paper extends the Granger and Sims definitions by using conditional independence instead of linear predictors. The extended definition of " y does not cause x " is that x is independent of past y conditional on past x. This is stronger than the strict exogeneity condition that y be independent of future x conditional on current and past x. Under a weak regularity condition, however, if y is independent of future x conditional on current and past x and past y, then y does not cause x.

THE GENERAL EQUIVALENCE OF GRANGER AND SIMS CAUSALITY

By
Gary Chamberlain ${ }^{1}$

1. INTRODUCTION

Let $\left[\left(x_{t}, y_{t}\right), t=\ldots,-1,0,1, \ldots\right]$ be a collection of random variables on a common probability space -- a stochastic process. Granger [6] defined " y does not cause x " as follows: the (minimum mean square error) linear predictor of x_{t+1} based on $x_{t}, x_{t-1}, \ldots, y_{t}, y_{t-1}, \ldots$ is identical to the linear predictor based on x_{t}, x_{t-1}, \ldots alone. ${ }^{2}$ Sims [10] defined x to be strictly exogenous relative to y if the linear predictor of y_{t} based on $\ldots, x_{t-1}, x_{t}, x_{t+1}, \ldots$ is identical to the linear predictor based on x_{t}, x_{t-1}, \ldots. Sims [10] showed that these two definitions are equivalent. ${ }^{3}$ This is a beautiful result; we would like to know whether it still holds if linear predictors are replaced by a more general form of dependence.

In applying these ideas to longitudinal data on individuals, the prevalence of qualitative variables argues for considering models based on the entire conditional distribution instead of looking only at linear predictors. Suppose that $y_{i t}$ is zero or one, indicating, for example, whether or not individual i was employed in period t. We observe $\left(x_{i 1}, y_{i 1}, \ldots, x_{i T}, y_{i T}\right.$) for $i=1, \ldots, N$ individuals, and we regard these vectors as independent and identically distributed (i.i.d.) observations
from the joint distribution of ($x_{1}, y_{1}, \ldots, x_{T}, y_{T}$). Let $t=1$ be the first period of the individual's (economic) life. Consider the following specification for the conditional probability that $y_{i t}$ equals one:

$$
P\left(y_{i t}=1 \mid x_{i 1}, \ldots, x_{i T}, c_{i}\right)=P\left(y_{i t}=1 \mid x_{i 1}, \ldots, x_{i t}, c_{i}\right)
$$

where c is a latent variable that represents unmeasured characteristics of the individual; c is assumed to be constant over the sample period.

If c is independent of the x 's, then, dropping the i subscripts, we have

$$
\begin{aligned}
P\left(y_{t}=1 \mid x_{1}, \ldots, x_{T}\right) & =\int P\left(y_{t}=1 \mid x_{1}, \ldots, x_{t}, u\right) d P(c \leq u) \\
& =P\left(y_{t}=1 \mid x_{1}, \ldots, x_{t}\right)
\end{aligned}
$$

so that x is strictly exogenous. However, if $P\left(c \leq u \mid x_{1}, \ldots, x_{T}\right) \neq$ $P(c \leq u)$, then in general $P\left(c \leq u \mid x_{1}, \ldots, x_{T}\right) \neq P\left(c \leq u \mid x_{1}, \ldots, x_{t}\right)$; a latent variable that is constant over time is generally related to all of the x_{t}^{\prime} 's if it is related to any of them. In that case

$$
\begin{aligned}
P\left(y_{t}=1 \mid x_{1}, \ldots, x_{T}\right) & =\int P\left(y_{t}=1 \mid x_{1}, \ldots, x_{t}, u\right) d P\left(c \leq u \mid x_{1}, \ldots, x_{T}\right) \\
& \neq P\left(y_{t}=1 \mid x_{1}, \ldots, x_{t}\right) .
\end{aligned}
$$

Hence the failure of strict exogeneity indicates that the latent variable is not independent of the measured x 's. Is there an extension of Granger's definition of " y does not cause x " that will imply $P\left(y_{t}=1 \mid x_{1}, \ldots, x_{T}\right)=$ $P\left(y_{t}=1 \mid x_{1}, \ldots, x_{t}\right)$?

In the Granger definition, instead of requiring that y_{t}, y_{t-1}, \ldots not contribute to the linear predictor of x_{t+1} given x_{t}, x_{t-1}, \ldots, we
shall require that x_{t+1} be conditionally independent of y_{t}, y_{t-1}, \ldots.

DEFINITION 1: (G) $--x_{t+1}$ is independent of y_{t}, y_{t-1}, \ldots conditional on x_{t}, x_{t-1}, \ldots for all t.

In the Sims definition, instead of requiring that x_{t+1}, x_{t+2}, \ldots not contribute to the linear predictor of y_{t} given x_{t}, x_{t-1}, \ldots, we shall require that y_{t} be conditionally independent of x_{t+1}, x_{t+2}, \ldots.

DEFINITION 2: (S) $-y_{t}$ is independent of x_{t+1}, x_{t+2}, \ldots conditional on x_{t}, x_{t-1}, \ldots for all t.

We shall show that (G) implies (S). So in our example, we would need to check whether x_{t+1} is independent of y_{t}, \ldots, y_{1} conditional on x_{t}, ..., x_{1}. The inference problem is simplest when x is also a binary variable; x_{t} could indicate whether or not the individual was in a training program in period t; or in a sample of married women, x_{t} could indicate whether or not there was a birth in period t. Then the joint distribution of ($x_{1}, y_{1}, \ldots, x_{T}, y_{T}$) is given by a set of multinomial probabilities, with each individual falling in one of $2^{2 T}$ cells. The hypotheses (G) and (S) specify that the cell probabilities are specified functions of fewer than $2^{2 T}-1$ parameters. Given a random sample of size N from such a distribution, the asymptotic inference problem as $\mathrm{N} \rightarrow \infty$ for fixed T is straightforward. ${ }^{4}$

If $T=2$, then (S) requires that

$$
\begin{aligned}
& P\left(y_{1}=1 \mid x_{1}=0, x_{2}=0\right)=P\left(y_{1}=1 \mid x_{1}=0, x_{2}=1\right), \\
& P\left(y_{1}=1 \mid x_{1}=1, x_{2}=0\right)=P\left(y_{1}=1 \mid x_{1}=1, x_{2}=1\right) .
\end{aligned}
$$

It is simple to check that (G) imposes precisely the same restrictions; but when $T>2$, (G) imposes more restrictions than (S). We shall present a counterexample to show that, in contrast to the linear predictor case, (S) need not imply (G). The counterexample works for the following reason: if a random variable is uncorrelated with each of two other random variables, then it is uncorrelated with every linear combination of them; but if it is independent of each of the other random variables, it need not be independent of every function of them.

There is a modification of the Sims definition which, given a regularity condition, is equivalent to (G).

DEFINITION 3: $\left(S^{\prime}\right)-y_{t}$ is independent of x_{t+1}, x_{t+2}, \ldots conditional on $x_{t}, x_{t-1}, \cdots, y_{t-1}, y_{t-2}, \cdots$.

In order to state the regularity condition, let F be the set of random variables of the form $z=1$ if $\left(x_{s}, y_{s}, \ldots, x_{s-j}, y_{s-j}\right) \in B, z=0$ otherwise, where s and j are arbitrary integers and B is a Borel set.

$$
\begin{gathered}
\operatorname{CONDITION}(R): \lim _{k \rightarrow \infty} E\left(z \mid x_{t}, x_{t-1}, \ldots, y_{-k}, y_{-k-1}, \ldots\right) \\
=E\left(\left.z\right|_{t}, x_{t-1}, \ldots\right)
\end{gathered}
$$

for all $z \in F$ and all t.

Then (G) is equivalent to (S^{\prime}) if (R) holds. ($S^{\text {P }}$) is a tractable modification of (S); they are equivalent in the linear predictor case if a condition corresponding to (R) holds. ${ }^{6}$ Condition (R) requires that the current effect of y^{\prime} s from the distant past vanishes; similar assumptions
are routine in the analysis of aggregate time-series data. In the longitudinal example, (R) holds automatically since y_{t} is degenerate prior to the "birth" of the individual. The important point here is that we are not making any stationarity assumptions, and so we are free to assign x_{t} and y_{t} degenerate distributions prior to some starting point for the process. In our example, (G) and (S^{\prime}) imply precisely the same restrictions on the multinomial cell probabilities. It makes no difference which version we choose to test. Now suppose that $t=1$ is not the starting point for the process, so that we are missing some observations. Then it is possible that we shall reject (G) or (S^{\prime}) simply because we have not included enough lags. Furthermore, tests of (G) and (S') are no longer equivalent, since the bias from truncating the lag distribution may be different in the two cases.

Suppose that

$$
P\left(y_{t}=1 \mid \ldots, x_{t-1}, x_{t}, x_{t+1}, \ldots, c\right)=P\left(y_{t}=1 \mid x_{t}, \ldots, x_{t-M}, c\right)(t>M) ;
$$

for example, it may be that children do not affect the woman's employment status once they are in school, so that M corresponds to approximately six years. If c is independent of the x 's, then (S) holds and

$$
P\left(y_{t}=1 \mid x_{1}, \ldots, x_{T}\right)=P\left(y_{t}=1 \mid x_{t}, \ldots, x_{t-M}\right)
$$

implies testable restrictions if $\mathrm{T}>\mathrm{M}+1$. Rejection of (S) implies rejection of (G), whereas we may be unable to construct a valid direct test of (G) (or (S')) due to bias from truncating the lag distributions. If the process started at $\mathrm{t}=-\mathrm{J} \leq 0$, then

$$
P\left(x_{t+1}=1 \mid x_{t}, \ldots, x_{1}, y_{t}, \ldots, y_{1}\right)=P\left(x_{t+1}=1 \mid x_{t}, \ldots, x_{1}\right)
$$

does not, in general, hold for any t, even if (G) holds and y depends on only M lagged values of x.

An additional problem is to choose correct functional forms for the conditional distributions under the null hypothesis. Suppose that x is binary and let $t=1$ be the starting point for the process. Then the multinomial distribution provides a completely general specification for $P\left(x_{t+1}=1 \mid x_{t}, \ldots, x_{1}\right)$; but if x is continuous, then specifying the conditional distribution will require a restrictive functional form. It may be easier to justify functional form restrictions in either the Granger or the Sims version of the test. The functional form issue is important; if the regression function is not linear, then the linear predictor form of (G) (or (S)) will generally fail to hold even though (G) holds. The past y's (or future x 's) will help to correct for the error in approximating the regression function.

If we impose no regularity conditions, then we require a stronger version of the Sims definition: y_{t} must be independent of x_{t+1}, x_{t+2}, \ldots conditional on x_{t}, x_{t-1}, \ldots and conditional on any subset of y_{t-1}, y_{t-2}, \ldots.

DEFINITION 4: (S") $-y_{t}$ is independent of x_{t+1}, x_{t+2}, \ldots conditional on $x_{t}, x_{t-1}, \ldots, Y_{t}$ for every Y_{t} and all t, where Y_{t} is a subset of y_{t-1}, y_{t-2}, \cdots.

We shall show that (G) is equivalent to ($S^{\prime \prime}$). In the definition of ($S^{\prime \prime}$), it is sufficient that the conditional independence holds for Y_{t} equal to the null set and all sets of the form $Y_{t}=\left[y_{t-1}, \ldots, y_{t-k}\right], k=1,2, \ldots$;
but we shall present counterexamples to show that, in the absence of $(R),(S)+\left(S^{\prime}\right)$ does not imply (G).

Our proofs are simple applications of the following fundamental property of conditional expectation:

$$
E(y \mid x)=E[E(y \mid x, z) \mid x] .
$$

All of our results and proofs continue to hold as stated when x_{t} and y_{t} are vectors of finite dimension.

The conditional independence property can be weakened by considering regression functions:

DEFINITION 5: $\left(G_{R}\right)-E\left(x_{t+1} \mid x_{t}, x_{t-1}, \ldots, y_{t}, y_{t-1}, \ldots\right)$

$$
=E\left(x_{t+1} \mid x_{t}, x_{t-1}, \ldots\right)
$$

for all t.

DEFINITION 6: $\left(S_{R}\right)-E\left(y_{t} \mid \ldots, x_{t-1}, x_{t}, x_{t+1}, \ldots\right)$

$$
=E\left(y_{t} \mid x_{t}, x_{t-1}, \ldots\right)
$$

for all t.

The Granger version states that x_{t+1} is "mean independent" of current and past y conditional on current and past x. The Sims version states that y_{t} is mean independent of future x conditional on current and past x. We shall use counterexamples to show that there are no equivalencies in the regression case. The counterexamples work because mean independence is not a symmetric relationship. If x is uncorrelated with y , then y is uncorrelated
with x; if x is independent of y, then y is independent of x; but if $E(x \mid y)=E(x)$, it need not be true that $E(y \mid x)=E(y)$.

2. THE MAIN RESULTS

THEOREM 1: (G) implies (S).

PROOF: This is a special case of Theorem 4, which is proved below.

THEOREM 2: (S) does not imply (G).

PROOF: Consider the following counterexample: let y_{1}, y_{2} be independent Bernoulli random variables with $P\left(y_{t}=1\right)=P\left(y_{t}=-1\right)=1 / 2, t=1,2$. Let $x_{3}=y_{1} y_{2}$. Then y_{1} is independent of x_{3} and y_{2} is independent of x_{3}. Let all of the other random variables be degenerate (equal to zero, say). Then (S) holds but x_{3} is clearly not independent of y_{1}, y_{2} conditional on x_{2}, x_{1}, \ldots.
Q.E.D.

For a stationary counterexample, we can let y_{t} be i.i.d. for $t=\ldots,-1,0,1, \ldots$ with $P\left(y_{t}=1\right)=P\left(y_{t}=-1\right)=1 / 2$. Then set $x_{t}=y_{t-1} y_{t-2}$. One can check that y_{t} is independent of $\ldots, x_{t-1}, x_{t}, x_{t+1}, \ldots$, so that (S) holds. One can also check that the x_{t} are independent of each other; hence (G) requires that $P\left(x_{t+1}=1 \mid x_{t}, x_{t-1}, \ldots, y_{t}, y_{t-1}\right)=1 / 2$, which clearly does not hold. For a stationary, nondeterministic counterexample, we can set $x_{t}=y_{t-1} y_{t-2}+u_{t}$, where the u_{t} are independent of each other and of all of the y_{t}.

The proof of Theorem 3 will require two auxiliary definitions and a lemma. Let k be some positive integer.

DEFINITION 7: (G_{k}^{\prime}) $-x_{t+1}$ is independent of $y_{t}, \dot{y}_{t-1}, \ldots, y_{t-k+1}$ conditional on $x_{t}, x_{t-1}, \ldots, y_{t-k}, y_{t-k-1}, \ldots$ for all $t .^{7}$

DEFINITION 8: $\left(S_{k}^{\prime}\right)--y_{t}$ is independent of $x_{t+1}, x_{t+2}, \ldots, x_{t+k}$ conditional on $x_{t}, x_{t-1}, \ldots, y_{t-1}, y_{t-2}, \ldots$ for all t.

LEMMA: (G_{k}^{\prime}) is equivalent to $\left(S_{k}^{\prime}\right) .8$

PROOF: All of the equalities in our proofs hold with probability one. The proofs are based on induction and

$$
E\left(z \mid G_{1}\right)=E\left[E\left(z \mid G_{2}\right) \mid G_{1}\right]
$$

where z is an integrable random variable and G_{1}, G_{2} are σ-fields (information sets) with $G_{1} \subset G_{2}$.

1. We shall show first that (G_{k}^{\prime}) implies (S_{k}^{\prime}). Let B and B_{s} be Borel sets and let $D=1$ if $y_{t} \in B, D=0$ otherwise; $D_{s}=1$ if $x_{t+s} \in B_{s}$, $D_{s}=0$ otherwise. Let $N_{t}=\sigma\left(x_{t}, x_{t-1}, \ldots, y_{t-1}, y_{t-2}, \ldots\right)$ be the σ-field generated by these variables. Clearly (G_{1}^{\prime}) implies (S_{1}^{\prime}); also $\left(G_{k}^{\prime}\right)$ implies (G_{j}^{\prime}) if $j \leq k$. (This is based on the following result: let $G_{j}, j=1, \ldots, 4$ be σ-fields; then G_{1} is independent of G_{2} conditional on $\sigma\left(G_{3} \cup G_{4}\right)$ if and only if

$$
\begin{equation*}
P\left(A_{1} \mid \sigma\left(G_{2} \cup G_{3} \cup G_{4}\right)\right)=P\left(A_{1} \mid \sigma\left(G_{3} \cup G_{4}\right)\right) \tag{2.1}
\end{equation*}
$$

for all $A_{1} \in G_{1}$ (Chow and Teicher [2], Theorem 1.i, p. 217); (2.1) holds
if G_{1} is independent of $\sigma\left(G_{2} \cup G_{3}\right)$ conditional on G_{4}, for then both sides of the equality in (2.1) are equal to $P\left(A_{1} \mid G_{4}\right)$.) So (G_{k}^{\prime}) implies (S').

Now we shall assume that (G_{k}^{\prime}) implies ($S_{j}^{!}$) for some $j \in[1, \ldots, k-1]$, and we shall show that $\left(G_{k}^{\prime}\right)$ and $\left(S_{j}^{\prime}\right)$ imply $\left(S_{j+1}^{\prime}\right)$. Let $N_{t, j}=$ $\sigma\left(N_{t} \cup \sigma\left(x_{t+1}, \ldots, x_{t+j}\right)\right)$.

$$
\begin{equation*}
E\left(D D_{j+1} \mid N_{t, j}\right)=E\left(D \mid N_{t}\right) E\left(D_{j+1} \mid N_{t, j}\right) \tag{2.2}
\end{equation*}
$$

(by $\left(G_{j+1}^{\prime}\right)$ and $\left.\left(S_{j}^{\prime}\right)\right)$;

$$
\begin{aligned}
& E\left(D D_{1} \ldots D_{j+1} \mid N_{t}\right)=E\left[\left(D_{1} \ldots D_{j}\right) E\left(D D_{j+1} \mid N_{t, j}\right) \mid N_{t}\right] \\
& =E\left(D \mid N_{t}\right) E\left(D_{1} \ldots D_{j+1} \mid N_{t}\right)
\end{aligned}
$$

(by (2.2) and the fact that $E\left(D \mid N_{t}\right)$ is measurable N_{t}). Hence (G_{k}^{\prime}) and (S_{j}^{\prime}) imply (S_{j+1}^{\prime}), and so our result follows by induction.
2. We shall complete the proof by showing that (S_{k}^{\prime}) implies (G_{k}^{\prime}). Let $D=1$ if $x_{t+1} \in B, D=0$ otherwise; $D_{s}=1$ if $y_{t-s} \in B_{s}, D_{s}=0$ otherwise. Let $M_{t, k}=\sigma\left(x_{t}, x_{t-1}, \ldots, y_{t-k}, y_{t-k-1}, \ldots\right) .\left(S_{k}^{\prime}\right)$ implies that x_{t+1} is independent of y_{t-k+1} conditional on $M_{t, k}$. We shall base our induction on the assumption that x_{t+1} is independent of $y_{t-j}, \ldots, y_{t-k+1}$ conditional on $M_{t, k}$ for some $j \in[1, \ldots, k-1]$.

$$
\begin{align*}
& E\left(D D_{j-1} \mid M_{t, j}\right)=E\left[D E\left[D_{j-1} \mid \sigma\left(M_{t, j} \cup \sigma\left(x_{t+1}\right)\right)\right] \mid M_{t, j}\right] \tag{2.3}\\
& =E\left(D_{j-1} \mid M_{t, j}\right) E\left(D \mid M_{t, k}\right)
\end{align*}
$$

(by $\left(S_{j}^{!}\right)$and the induction assumption);

$$
\begin{aligned}
& E\left(D D_{j-1} \cdots D_{k-1} \mid M_{t, k}\right)=E\left[\left(D_{j} \ldots D_{k-1}\right) E\left(D D_{j-1} \mid M_{t, j}\right) \mid M_{t, k}\right] \\
& =E\left(D \mid M_{t, k}\right) E\left(D_{j-1} \ldots D_{k-1} \mid M_{t, k}\right)
\end{aligned}
$$

(by (2.3)). So x_{t+1} is independent of $y_{t-j+1}, y_{t-j}, \ldots, y_{t-k+1}$ conditional on $M_{t, k}$, and our result follows by induction.
Q.E.D.

THEOREM 3: (G) is equivalent to (S^{\prime}) if (R) holds.

PROOF: (S^{\prime}) is equivalent to (S_{k}^{\prime}) holding for all $k \in[1,2, \ldots]$, since the sets $\left[x_{t+1} \in B_{1}, \ldots, x_{t+k} \in B_{k}\right]$ form a π-system generating $\sigma\left(x_{t+1}, x_{t+2}, \ldots\right)$ (Chow and Teicher [2], Theorem 1.iii, p. 217). By the Lemma, (S_{k}^{\prime}) holding for all k is equivalent to (G_{k}^{\prime}) holding for all k. (G) implies that (G_{k}^{r}) holds for all k. So we only need to show that (G_{k}^{\prime}) holding for all k implies (G).

Let $D=1$ if $x_{t+1} \in B, D=0$ otherwise; $D_{s}=1$ if $y_{t-s} \in B_{s}, D_{s}=0$ otherwise. Let $J_{t}=\sigma\left(x_{t}, x_{t-1}, \ldots\right)$. We need to show that for any $j \in[0,1, \ldots]$,

$$
\begin{equation*}
E\left(D D_{0} \ldots D_{j} \mid J_{t}\right)=E\left(D \mid J_{t}\right) E\left(D_{0} \ldots D_{j} \mid J_{t}\right) \tag{2.4}
\end{equation*}
$$

for all t. If (G_{k}^{\prime}) holds for all k, then

$$
\begin{equation*}
E\left(D D_{0} \ldots D_{j} \mid M_{t, k}\right)=E\left(D \mid M_{t, k}\right) E\left(D_{0} \ldots D_{j} \mid M_{t, k}\right) \tag{2.5}
\end{equation*}
$$

for all $k>j$. Taking the limit as $k \rightarrow \infty$ in (2.5) and applying (R) gives (2.4).

Recall that $M_{t, k}=\sigma\left(x_{t}, x_{t-1}, \ldots, y_{t-k}, y_{t-k-1}, \ldots\right)$
and $\operatorname{set} M_{t, \infty}=\bigcap_{k=0}^{\infty} M_{t, k}$.

DEFINITION 9: (G^{\prime}) $-\mathrm{x}_{\mathrm{t}+1}$ is independent of y_{t}, y_{t-1}, \ldots conditional on $M_{t, \infty}$.

COROLLARY 1: (G^{\prime}) is equivalent to (S^{\prime}).

PROOF: Repeat the proof of Theorem 3 up to (2.5) with $M_{t, \infty}$ replacing J_{t}. Since $M_{t, 0} \supset M_{t, 1} \supset \ldots$, we have

$$
\lim _{k \rightarrow \infty} E\left(z \mid M_{t, k}\right)=E\left(z \mid M_{t, \infty}\right)
$$

for any integrable random variable z. (Reversed martingale; see Doob [3], Theorem 4.3, p. 331.) Taking the limit as $k \rightarrow \infty$ in (2.5) gives the result.
Q.E.D.

We shall say that the $\left[x_{t}, y_{t}\right.$] process is mixing from the left if

$$
\lim _{k \rightarrow \infty} E\left(\left.z\right|_{-k}, y_{-k}, x_{-k-1}, y_{-k-1}, \ldots\right)=E(z)
$$

for $z \in F .^{9}$ So (R) requires that the process be mixing from the left conditional on $x_{t}, x_{\infty}, \ldots$ for all t.

Let $T=\bigcap_{k=0}^{\cap} \sigma\left(x_{-k}, y_{-k}, x_{-k-1}, y_{-k-1}, \ldots\right)$ be the left tail $\sigma-f i e l d$ of
the $[x, y]$ process. T is degenerate if it contains only sets with probability measure zero or one; an equivalent characterization is that a random variable z is measurable with respect to T only if z equals a constant with probability one. A standard regularity condition requires that T be degenerate -- see

Rozanov [9], p. 178. Since

$$
\lim _{k \rightarrow \infty} E\left(\left.z\right|_{-k}, y_{-k}, x_{-k-1}, y_{-k-1}, \ldots\right)=E(z \mid T),
$$

the process is mixing from the left when T is degenerate. It may seem plausible that (R) also holds when T is degenerate, but this is false. For a counterexample, let x_{1} be independent of x_{0} with $P\left(x_{1}=1\right)=P\left(x_{1}=-1\right)=1 / 2$, and let x_{0} have a uniform distribution on (0,1]; let $x_{t}=0$ for $t \neq 0$ or 1 . We can express x_{0} in terms of its nonterminating dyadic expansion: $x_{0}=\sum_{k=1}^{\infty} d_{k}\left(x_{0}\right) / 2^{k}$, where each $d_{k}\left(x_{0}\right)$ is 0 or 1 . Let $y_{-k}=x_{1}\left[2 d_{k}\left(x_{0}\right)-1\right]$ for $k \geq 1$ and $y_{-k}=0$ for $k<1$. Then y_{-1}, y_{-2}, \ldots is a sequence of i.i.d. random variables, and Kolmogorov's zero-one law implies that T is degenerate. But $x_{1}=y_{-k} /\left[2 d_{k}\left(x_{0}\right)-1\right]$ for any $k \geq 1$, and so

$$
\lim _{k \rightarrow \infty} E\left(x_{1} \mid x_{0}, y_{-k}\right)=x_{1} .
$$

Since $E\left(x_{1} \mid x_{0}\right)=0$, we see that (R) does not hold.

2.1 An Equivalence Without Regularity Conditions

The following equivalence does not require (R):

THEOREM 4: (G) is equivalent to ($\mathrm{S}^{\prime \prime}$).

PROOF: The proof follows that of the Lemma quite closely.

1. We shall show first that (G) implies (S"). Let $J_{t}^{\prime}=$ $\sigma\left(x_{t}, x_{t-1}, \ldots, y_{t_{1}}, y_{t_{2}}, \ldots\right)$, where $\left[t_{1}, t_{2}, \ldots\right]$ is some, possibly finite, subset of $[t-1, t-2, \ldots]$. Let $\left(S_{k}^{\prime \prime}\right)$ be the following property:

$$
\begin{aligned}
\left(S_{k}^{\prime \prime}\right): & P\left(y_{t} \in B, x_{t+1} \in B_{1}, \ldots, x_{t+k} \in B_{k} \mid J_{t}^{\prime}\right) \\
& =P\left(y_{t} \in B \mid J_{t}^{\prime}\right) P\left(x_{t+1} \in B_{1}, \ldots, x_{t+k} \in B_{k} \mid J_{t}^{\prime}\right)
\end{aligned}
$$

for all J_{t}^{\prime} and all t. ($S^{\prime \prime}$) is equivalent to ($S_{k}^{\prime \prime}$) holding for $k=1,2, \ldots$ Let $D=1$ if $y_{t} \in B, D=0$ otherwise; $D_{s}=1$ if $x_{t+s} \in B_{s}, D_{s}=0$ otherwise. (G) implies ($S_{1}^{\prime \prime}$). Assume that $\left(S_{k}^{\prime \prime}\right)$ holds for some $k \in[1,2, \ldots]$. Let $J_{t, k}^{\prime}=$ $\sigma\left(J_{t}^{\prime} \cup \sigma\left(x_{t+1}, \ldots, x_{t+k}\right)\right)$.

$$
\begin{align*}
E\left(D D_{k+1} \mid J_{t, k}^{\prime}\right) & =E\left[D E\left[D_{k+1} \mid \sigma\left(J_{t, k}^{\prime} \cup \sigma\left(y_{t}\right)\right)\right] \mid J_{t, k}^{\prime}\right] \tag{2.6}\\
& =E\left(D_{k+1} \mid J_{t, k}^{\prime}\right) E\left(D \mid J_{t}^{\prime}\right)
\end{align*}
$$

(by (G) and $\left.\left(S_{k}^{\prime \prime}\right)\right)$;

$$
\begin{aligned}
E\left(D D_{1} \ldots D_{k+1} \mid J_{t}^{\prime}\right) & =E\left[\left(D_{1} \ldots D_{k}\right) E\left(D D_{k+1} \mid J_{t, k}^{\prime}\right) \mid J_{t}^{\prime}\right] \\
& =E\left(D \mid J_{t}^{\prime}\right) E\left(D_{1} \ldots D_{k+1} \mid J_{t}^{\prime}\right)
\end{aligned}
$$

(by (2.6)). Hence (G) and ($S_{k}^{\prime \prime}$) imply ($S_{k+1}^{\prime \prime}$), and our result follows by induction.
2. We shall complete the proof by showing that (S") implies (G). Let $D=1$ if $x_{t+1} \in B, D=0$ otherwise; $D_{s}=1$ if $y_{t-s} \in B_{s}, D_{s}=0$ otherwise. Let $J_{t}=\sigma\left(x_{t}, x_{t-1}, \ldots\right)$. For any $k \in[0,1, \ldots]$, ($S^{\prime \prime}$) implies that x_{t+1} is independent of y_{t-k} conditional on J_{t}; in fact, only (S) is needed for this result. We shall base our induction on the assumption that x_{t+1} is independent of y_{t-j}, \ldots, y_{t-k} conditional on J_{t} for some $j \in[1, \ldots, k]$. Let $J_{t}^{*}=\sigma\left(x_{t}, x_{t-1}, \ldots, y_{t-j}, \ldots, y_{t-k}\right)$.

$$
\begin{equation*}
E\left(D D_{j-1} \mid J_{t}^{*}\right)=E\left[D E\left[D_{j-1} \mid \sigma\left(J_{t}^{*} \cup \sigma\left(x_{t+1}\right)\right)\right] \mid J_{t}^{*}\right]=E\left(D_{j-1} \mid J_{t}^{*}\right) E\left(D \mid J_{t}\right) \tag{2.7}
\end{equation*}
$$

(by (S") and the induction assumption);

$$
\begin{aligned}
E\left(D D_{j-1} \cdots D_{k} \mid J_{t}\right) & =E\left[\left(D_{j} \ldots D_{k}\right) \cdot E\left(D D_{j-1} \mid J_{t}^{J}\right) \mid J_{t}\right] \\
& =E\left(D \mid J_{t}\right) E\left(D_{j-1} \cdots D_{k} \mid J_{t}\right)
\end{aligned}
$$

(by (2.7)). So x_{t+1} is independent of $y_{t-j+1}, \ldots, y_{t-k}$ conditional on J_{t}, and induction shows that x_{t+1} is independent of y_{t}, \ldots, y_{t-k} conditional on J_{t}. Then our result follows since this holds for any $k \in[0,1, \ldots]$. Q.E.D.

It is clear from our proof that an apparently weaker version of (S") will imply (G): it is sufficient to assume that y_{t} is independent of x_{t+1}, x_{t+2}, \ldots conditional on $X_{t}, x_{t-1}, \ldots, Y_{t}^{*}$ for every Y_{t}^{*} and all t, where $Y_{t}^{*}=\left[y_{t-1}, \ldots, y_{t-k}\right]$ for some $k \in[1,2, \ldots]$. However, in the absence of (R), we cannot further weaken (S"). Consider the following counterexample:

$$
\begin{aligned}
& y_{t}=y_{0} \text { for all } t \\
& x_{1}=y_{0}, x_{t}=0 \text { for } t \neq 1
\end{aligned}
$$

Then (S^{\prime}) holds since the distribution of y_{t} conditional on any non-null subset of previous y's is degenerate; but (G) clearly does not hold. Note that (S) does not hold.

There remains the possibility that $(S)+\left(S^{\prime}\right)$ implies (G); but consider the following counterexample:

$$
\begin{aligned}
& y_{0}, \ldots, y_{2 k-1} \text { are independent for some } k \geq 3 \text { with } \\
& \qquad P\left(y_{s}=1\right)=P\left(y_{s}=-1\right)=1 / 2(s=0, \ldots, 2 k-1) ; \\
& y_{2 k t+s}=y_{s} \text { for } s=0, \ldots, 2 k-1 \text { and for all } t ; \\
& x_{2 k}=y_{k} y_{2 k-1}, \quad x_{t}=0 \text { for } t \neq 2 k .
\end{aligned}
$$

Then (S^{\prime}) holds since the distribution of y_{t} conditional on $y_{t-2 k}$ is degenerate. Also (S) holds since y_{k} is independent of $x_{2 k}$ and $y_{2 k-1}$ is independent of $x_{2 k}$. Clearly (G) does not hold. Furthermore, y_{t} is independent of x_{t+1}, x_{t+2}, \ldots conditional on $x_{t}, x_{t-1}, \ldots, y_{t-1}, \ldots, y_{t-k+2}$ for all t. So it appears that no further simplification of (S") is possible.

2.2 The Linear Predictor Case

We shall conclude this section by relating our results to the linear predictor case.

COROLLARY 2: If the joint distribution of $\left[x_{s}, y_{s}, \ldots, x_{s-k}, y_{s-k}\right]$ is multivariate normal for all integers s and k, then (G), (S), and ($S^{\prime \prime}$) are equivalent.

PROOF: In the proof that ($S^{\prime \prime}$) implies (G), only (S) is needed to show that x_{t+1} is independent of y_{t-k} conditional on J_{t} for $k \in[0,1, \ldots]$. By joint normality, the pair-wise independence implies that x_{t+1} is independent of $\sigma\left(y_{t}, y_{t-1}, \ldots\right)$ conditional on J_{t}. Hence (S) implies (G). By Theorem 4, (G) implies (S"). Clearly (S") implies (S).
Q.E.D.

Assume that x_{t} and y_{t} have finite variance for all t. Consider the Hilbert space of random variables generated by the linear manifold spanned by the variables $\left[\left(x_{t}, y_{t}\right), t=\ldots,-1,0,1, \ldots\right]$, closed with respect to convergence in mean square. We include also a constant (1) in the space. The inner product is $\left\langle z_{1}, z_{2}\right\rangle=E\left(z_{1} z_{2}\right)$. Then the linear predictor of a random variable based on a set of random variables is the projection of the random variable on the closed linear subspace generated by the set of random variables and 1.

We can always construct a multivariate normal process [x_{t}^{*}, y_{t}^{*}] with the same means and covariances as the $\left[x_{t}, y_{t}\right.$] process. If the linear predictor of y_{t} based on all x is identical to the linear predictor based on x_{t}, x_{t-1}, \ldots, then y_{t}^{*} is independent of $x_{t+1}^{*}, x_{t+2}^{*}, \ldots$ conditional on x_{t}^{*}, x_{t-1}^{*}, \ldots. Then Corollary 2 implies that x_{t+1}^{*} is independent of $y_{t}^{*}, y_{t-1}^{*}, \ldots$ conditional on $x_{t}^{*}, x_{t-1}^{*}, \ldots$. Hence the linear predictor of x_{t+1} based on $x_{t}, x_{t-1}, \ldots, y_{t}, y_{t-1}, \ldots$ is identical to the linear predictor based on x_{t}, x_{t-1}, \ldots. In a similar fashion we can establish the converse: if the linear predictor of x_{t+1} based on current and lagged x and y is identical to the linear predictor based on current and lagged x , then Corollary 2 implies that the linear predictor of y_{t} based on all x is identical to the linear predictor based on current and lagged x.

So Corollary 2 implies the original Sims result on the equivalence of the linear predictor versions of (G) and (S). We have the additional result that the linear predictor version of (G) or (S) implies the linear predictor version of (S").

Now consider the linear predictor version of (S'). Let
$H\left(1, x_{s}, x_{s-1}, \ldots, y_{j}, y_{j-1}, \ldots\right)$ denote the closed linear subspace spanned by those variables; let $E *\left(z \mid 1, x_{s}, x_{s-1}, \ldots, y_{j}, y_{j-1}, \ldots\right)$ denote the projection of z on the closed linear subspace. Let F_{L} be the set of random variables that are contained in $H\left(1, x_{s}, y_{s}, \ldots, x_{s-j}, y_{s-j}\right)$ for some integers s and j.
$\operatorname{CONDITION}\left(R_{L}\right): \lim _{k \rightarrow \infty} E *\left(z \mid x_{t}, x_{t-1}, \ldots, y_{-k}, y_{-k-1}, \ldots\right)=E *\left(z \mid x_{t}, x_{t-1}, \ldots\right)$ for all $z \in F_{L}$ and all t.

By considering a multivariate normal process with the same means and covariances as the $\left[x_{t}, y_{t}\right]$ process, we can show that the linear predictor version of (G_{k}^{\prime}) is equivalent to the linear predictor version of (S_{k}^{\prime}). Then an argument similar to that used in the proof of Theorem 3 shows that the linear predictor version of (G) is equivalent to the linear predictor version of (S^{\prime}) if (R_{L}) holds.

Suppose that we transform the random variables so that $E\left(x_{t}\right)=E\left(y_{t}\right)=0$ for all t. Let $T_{L}=\bigcap_{k=0}^{\infty} H\left(x_{-k}, y_{-k}, x_{-k-1}, y_{-k-1}, \ldots\right)$. In the terminology of Rozanov [9], the [x_{t}, y_{t}] process is linearly regular if $T_{L}=0 .{ }^{10}$ This condition is similar to (R_{L}), but in fact does not imply (R_{L}). For a counterexample, let x_{t} be i.i.d. with mean zero and variance one for $t \leq 0$; let $x_{t}=0$ for $t>0$. Let $y_{-t}=\sum_{j=0}^{t-1} x_{-j}$ for $t \geq 1 ; y_{-t}=0$ for $t<1$. Then the projection of x_{0} on $H\left(x_{-1}, x_{-2}, \ldots, y_{-k}, y_{-k-1}, \ldots\right)$ equals x_{0} for any $k>1$, since $x_{0}=y_{-k}-\left(x_{-1}+\ldots+x_{-k+1}\right)$. The projection of x_{0} on $H\left(x_{-1}, x_{-2}, \ldots\right)$ is 0 ; hence $\left(R_{L}\right)$ does not hold. Since $y_{-k-1}-y_{-k}=$ x_{-k}, we have $H\left(x_{-k}, y_{-k}, x_{-k-1}, y_{-k-1}, \ldots\right)=H\left(y_{-k}, x_{-k}, x_{-k-1}, \ldots\right)$. If we use $\left[x_{0}, x_{1}, \ldots\right]$ as an orthonormal basis, then the coordinates of a
point in $H\left(y_{-k}, x_{-k}, x_{-k-1}, \ldots\right) \underset{\infty}{ }$ form a square-summable sequence whose first k elements are equal. Hence $T_{L}=\cap_{k=0} H\left(y_{-k}, x_{-k}, x_{-k-1}, \ldots\right)=0$, and the counterexample is complete.

3. REGRESSION

Our causality definitions have used conditional independence instead of zero partial correlation. The conditional independence property can be weakened by using the regression function versions $\left(G_{R}\right)$ and $\left(S_{R}\right)$. The following example will show that neither of these definitions implies the other.

Let u_{t} be i.i.d. for all t with $P\left(u_{t}>0\right)=1$. Let v_{t} be i.i.d., independent of the u 's, with $P\left(v_{t}=1\right)=P\left(v_{t}=-1\right)=1 / 2$. Set $x_{t}=u_{t-1} v_{t-1}, y_{t}=u_{t}$. Then with probability one

$$
\begin{aligned}
& E\left(x_{t+1} \mid x_{t}, x_{t-1}, \ldots, y_{t}, y_{t-1}, \ldots\right) \\
& =E\left(u_{t} v_{t} \mid u_{t}\right)=u_{t} E\left(v_{t}\right)=0 .
\end{aligned}
$$

Hence (G_{R}) holds; but

$$
\begin{aligned}
& E\left(y_{t} \mid \ldots, x_{t-1}, x_{t}, x_{t+1}, \ldots\right) \\
& =E\left(u_{t} \mid u_{t} v_{t}\right)=\left|u_{t} v_{t}\right|=y_{t}, \\
& E\left(y_{t} \mid x_{t}, x_{t-1}, \ldots\right)=E\left(y_{t}\right) .
\end{aligned}
$$

So (G_{R}) does not imply (S_{R}).
Now let $x_{t}=u_{t-1}, y_{t}=u_{t} v_{t}$. With probability one

$$
E\left(y_{t} \mid \ldots, x_{t-1}, x_{t}, x_{t+1}, \ldots\right)
$$

$$
=E\left(u_{t} v_{t} \mid u_{t}\right)=u_{t} E\left(v_{t}\right)=0
$$

Hence (S_{R}) holds; but

$$
\begin{aligned}
& E\left(x_{t+1} \mid x_{t}, x_{t-1}, \ldots, y_{t}, y_{t-1}, \ldots\right) \\
& =E\left(u_{t} \mid u_{t} v_{t}\right)=\left|u_{t} v_{t}\right|=x_{t+1}, \\
& E\left(x_{t+1} \mid x_{t}, x_{t-1}, \ldots\right)=E\left(x_{t+1}\right)
\end{aligned}
$$

So $\left(S_{R}\right)$ does not imply (G_{R}). Furthermore, we have

$$
E\left(y_{t} \mid \ldots, x_{t-1}, x_{t}, x_{t+1}, \ldots, y_{t_{1}}, y_{t_{2}}, \ldots\right)=0
$$

where $\left[t_{1}, t_{2}, \ldots\right]$ is any subset of $[t-1, t-2, \ldots]$. So ($S_{R}^{\prime \prime}$) does not imply $\left(G_{R}\right)$. It appears that there are no interesting equivalencies in the regression case.
4. CONCLUSION

If y_{t} is a binary variable, then the regression function for y_{t} conditional on x_{t}, x_{t-1}, \ldots is generally not identical to the linear predictor of y_{t} based on x_{t}, x_{t-1}, \ldots. So even if y is independent of future x conditional on current and past x , it will generally not be true that x is strictly exogenous in the linear predictor sense; the future x's will help to correct for the error in approximating the nonlinear regression function. Suppose, for example, that $t=1$ is the starting point for the process and that

$$
E\left(y_{2} \mid x_{1}, x_{2}, x_{3}\right)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{1} x_{2}
$$

The linear predictor version of (G) or (S) requires zero partial correlation between $x_{1} x_{2}$ and x_{3} given x_{1} and x_{2}. This will be true if the joint distribution of (x_{1}, x_{2}, x_{3}) is multivariate normal or, more generally, if the regression function for x_{3} conditional on x_{1}, x_{2} is linear. I would not expect it to be true if x_{t} is a binary variable. For then the regression function is

$$
E\left(x_{3} \mid x_{1}, x_{2}\right)=\gamma_{0}+\gamma_{1} x_{1}+\gamma_{2} x_{2}+\gamma_{3} x_{1} x_{2},
$$

and γ_{3} is generally not zero.
So we have considered extensions of the Granger and Sims definitions that use conditional independence instead of linear predictors. The extended Granger definition of " y does not cause x " is stronger than the condition that y be independent of future x conditional on current and past x ; so noncausality is stronger than strict exogeneity. Under a weak regularity condition, however, if y is independent of future x conditional on current and past x and past y, then y does not cause x.

FOOTNOTES

${ }^{1}$ I am grateful to John Geweke, Kenneth Judd, James Kuelbs, Linda Rothschild, Charles Wilson, Arnold Zellner, and especially Christopher Sims for helpful discussions. Financial support was provided by the National Science Foundation (Grants No. SOC-7925959 and No. SES-8016383).
${ }^{2}$ Granger's initial definition was in terms of the regression function. He then specialized it to the linear predictor form. Granger also allowed for conditioning on information in addition to the current and past values of x and y . It is straightforward to modify our results to incorporate such additional conditioning.
${ }^{3}$ His proof assumes that the process is covariance stationary with no linearly deterministic component; also the process has an autoregressive representation. Hosoya [7] showed that these conditions are not necessary.
${ }^{4}$ See Rao [8], section 6 b .
${ }^{5}$ A Co-Editor has informed me of a paper by Florens and Mouchart [4] which contains results similar to (G) implies (S) and (S) does not imply (G). Their paper relates the Granger definition to the concept of transitivity in sequential analysis.
${ }^{6}$ The linear predictor version of (S') has been used by Geweke, Meese, and Dent [5]. Under assumptions similar to those used by Sims [10], they show that the linear predictor version of (S^{\prime}) is equivalent to the linear predictor version of (G).
${ }^{7}$ This definition is related to Granger's [6] definition of causality lag.
 (S_{k}^{\prime}) are equivalent in the linear predictor case.
${ }^{9}$ Mixing is defined for stationary processes in Billingsley [1], p. 12.
10
A stationary process is linearly regular if it does not have a deterministic component; see Rozanov [9], Chapter II, section 2. Sims [10] assumes that the process is linearly regular.

REFERENCES

[1] Billingsley, P.: Ergodic Theory and Information, Wiley, New York, 1965.
[2] Chow, Y.S., and H. Teicher: Probability Theory: Independence, Interchangeability, Martingales, Springer-Verlag, New York, 1978.
[3] Doob, J.L.: Stochastic Processes, Wiley, New York, 1953.
[4] Florens, J.P., and M. Mouchart: "A Note on Non-Causality," University of Aix-Marseille, unpublished manuscript, 1980.
[5] Geweke, J., R. Meese, and W.T. Dent: "Comparing Alternative Tests of Causality in Temporal Systems: Analytic Results and Experimental Evidence," University of Wisconsin-Madison, Social Systems Research Institute Workshop Series No. 7928, 1979.
[6] Granger, C.W.J.: "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, 37 (1969), 424438.
[7] Hosoya, Y.: "On the Granger Condition for Non-Causality," Econometrica, 45 (1977), 1735-1736.
[8] Rao, C.R.: Linear Statistical Inference and Its Applications, Wiley, New York, 1973.
[9] Rozanov, Y.A.: Stationary Random Processes, Holden-Day, San Francisco, 1967.
[10] Sims, C.A.: "Money, Income, and Causality," The American Economic Review, 62 (1972), 540-552.

