

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

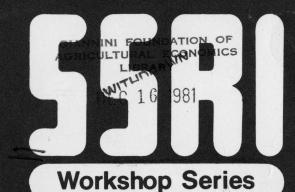
AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

UNIVERSITY OF WISCONSINMADISON

SSRI Workshopsein 7007



ESTIMATING ELASTICITIES OF SUBSTITUTION IN A MODEL OF PARTIAL STATIC EQUILIBRIUM: AN APPLICATION TO U.S. AGRICULTURE, 1947-1974

Randall S. Brown

Laurits R. Christensen

#8007

SOCIAL SYSTEMS RESEARCH INSTITUTE

Social Systems Research Institute
University of Wisconsin-Madison

ESTIMATING ELASTICITIES OF SUBSTITUTION IN A MODEL OF PARTIAL STATIC EQUILIBRIUM: AN APPLICATION TO U.S. AGRICULTURE, 1947-1974

Randall S. Brown Laurits R. Christensen #8007

This paper is a revised version of a paper presented at the Conference on the Economics of Substitution in Production With Special Reference to Natural Resources, Key Biscayne, Florida, December 13 and 14, 1979. It will be published in Measuring and Modelling Natural Resources

Substitution, E. R. Berndt and B. C. Field, editors, MIT Press, forthcoming in 1981.

Estimating Elasticities of Substitution in a Model of Partial Static Equilibrium: An Application to U.S. Agriculture, 1947-1974

Randall S. Brown, Mathematica Policy Research*
Laurits R. Christensen, University of Wisconsin-Madison

I. Introduction

During the 1970's the neoclassical cost function gained substantial popularity as a tool for estimating the structure of production -- especially for estimating substitution possibilities. This surge of popularity can be attributed to the widespread application of duality theory to economic analysis and the concomitant development of flexible functional forms. An important assumption which underlies most cost function applications is that all inputs are in static equilibrium. In many instances, however, the assumption of full static equilibrium is suspect, and hence so are the empirical results. 2

Two basic approaches can be followed to relax the assumption of full static equilibrium. First, costs of adjustment can be recognized explicitly, and the firm can be assumed to be continuously in dynamic equilibrium rather than static equilibrium. The theoretical foundations for models of dynamic equilibrium with explicit costs of adjustment were provided by Eisner and Strotz (1963), Lucas (1967), and others. Berndt, Morrison-White, and Watkins (1979) provide a brief review of empirical applications based on this approach, which they refer to as third generation dynamic models. Second, the firm can be assumed to be in static equilibrium with respect to a subset of inputs (rather than all inputs) conditional on the observed levels of the remaining inputs. It is convenient to refer to

this framework as one of partial static equilibrium. The inputs which are in partial static equilibrium are referred to as variable inputs and the remaining inputs are designated as fixed or quasi-fixed inputs.

The specification of dynamic equilibrium is theoretically attractive and leads to elegant models. However, these models are difficult to implement empirically. Furthermore, departures from full static equilibrium may result for reasons other than internal costs of adjustment. For example, regulatory restrictions may hinder capital mobility. In such cases dynamic equilibrium will be an inappropriate specification.

The specification of partial static equilibrium covers the case of dynamic equilibrium as well as other departures from full static equilibrium. Even if dynamic equilibrium were an appropriate specification, the partial static equilibrium specification might be preferred since explicit modelling of the adjustment process can be avoided. The theoretical basis for the partial static equilibrium cost function (hereafter referred to as the variable cost function) can be found in discussions of the variable profit function, of which it is a special case. Diewert (1974) attributes the notion of a variable profit function to Samuelson (1953-4) and early discussion of its properties to Gorman (1968) and a 1970 unpublished version of McFadden (1978). The first empirical application of a variable profit function appears to be Lau and Yotopoulos (1971).

Lau (1976) provides a general theoretical treatment of variable profit functions. Both static equilibrium cost functions and variable cost functions can be treated as special cases of the variable profit function. Lau makes clear that, under quite general regularity conditions, estimates of the structure of production can be obtained from either cost function specification.

Furthermore, knowledge of the structure of production allows one to infer measures such as elasticities of substitution conditional on the levels of any subset of inputs. This point appears to have been overlooked by Mork (1978) who assumed that full static equilibrium was valid but specified a variable cost function in order to obtain "short-run" substitution and price elasticities. 3

The first objective of the present paper is to derive specific procedures for estimating elasticities of substitution when the partial static equilibrium formulation is appropriate.⁴ The second objective is to apply the procedures to U.S. agriculture using the translog variable cost function.

Our application to U.S. agriculture is relevant because it is widely believed that the U.S. farm sector has been in disequilibrium throughout the postwar period. The principal source of alleged disequilibrium is the lack of mobility of self-employed farm labor. Although the number of self-employed farmers has declined continually in the postwar period, it is believed that the exodus has not been rapid enough to achieve the cost-minimizing mix of farm inputs. Thus we treat self-employed farm labor as a quasi-fixed factor in the cost function for the farm sector. We treat land as a fixed factor for the farm sector, since there is little latitude in the amount of land held by the entire sector. A case could be made for treating agricultural structures and equipment as quasi-fixed. However, since the stocks of structures and equipment have grown steadily for most of the postwar period, we believe it is appropriate to treat them as variable rather than quasi-fixed factors.

All of the data are taken from Brown (1977), who constructed new estimates of the entire range of inputs for the farm sector. The data permit specification of a large number of variable factors, but we limit our application to three aggregates: services from hired labor, services from structures and equipment, and all other purchased inputs -- including fertilizer, feed, seed, and energy -- which are referred to as materials.

II. Methodology

We begin by specifying a general production function for the case of a single output and multiple inputs: 6

(1)
$$Y = F(X_1, ..., X_n, t),$$

where the inclusion of time (t) allows the structure of production to vary over time. If the production function has convex isoquants, and if for any level of output the cost minimizing input mix is employed, then there exists a total cost function which is dual to (1):

(2)
$$CT = G(Y, P_1, ..., P_n, t),$$

where the P_i are the prices of the X_i and $CT = \sum_{i=1}^{n} P_i X_i$ is total cost. If the cost minimizing output mix is not employed, (2) is not valid. However, if cost is minimized with respect to a subset of the factor inputs conditional on the level of output and the remaining inputs, then there exists a variable cost function which is dual to (1):

(3)
$$CV = H(Y, P_1, ..., P_{\ell}, Z_1, ..., Z_m, t),$$

where the Z represent the subset of the X which are not necessarily in static ℓ equilibrium, ℓ + m = n, and CV = $\sum_{i=1}^{p} P_{i}X_{i}$.

Uzawa (1962) has shown that the elasticities of substitution defined by Allen (1938) can be computed from the partial derivatives of the cost function. The full static equilibrium elasticities of substitution can be computed from the total cost function:

(4)
$$\sigma_{ij} = \frac{CT \cdot CT_{ij}}{CT_{i} \cdot CT_{i}},$$

where $CT_i = \partial CT/\partial P_i$, etc. The partial static equilibrium elasticities of substitution can be computed from the variable cost function:

(5)
$$\sigma_{ij}^{P} = \frac{CV \cdot CV_{ij}}{CV_{i} \cdot CV_{i}},$$

where $CV_{i} = \partial CV/\partial P_{i}$, etc.

The partial static equilibrium elasticities of substitution are valid only for the levels of the fixed factors at which they are evaluated. Furthermore, they do not provide any information as to the substitution possibilities among the fixed factors or between the fixed and variable factors. However, this information can be obtained from the variable cost function, as we demonstrate explicitly below.

If all factors are at their full static equilibrium levels, total cost can be written as the sum of the variable cost function and expenditure for the Z_i :

(6)
$$CT = H(Y, P, Z^*) + \Sigma P_i Z_i^* = I(Y, P, Z^*),$$

where Z_i^* indicates the equilibrium level of Z_i . Our task is to compute the σ_{ij} from (6). In doing so we make use of the full static equilibrium condition for a quasi-fixed factor.

$$\partial CV/\partial Z_i^* = -P_i.$$

Let us define b as a binary variable which is zero if i is a variable factor and unity otherwise. The first partial derivatives of CT are:

(8)
$$\frac{\partial CT}{\partial P_{i}} = \frac{\partial CV}{\partial P_{i}} + \left\{ \sum_{k} \frac{\partial CV}{\partial Z_{k}^{*}} - \frac{\partial Z_{k}^{*}}{\partial P_{i}} + \sum_{k} P_{k} \frac{\partial Z_{k}^{*}}{\partial P_{i}} \right\} + b_{i} Z_{i}^{*}, \quad \forall_{i} ,$$

but the bracketed terms sum to zero by (7). The second partial derivatives of CT are:

$$(9) \qquad \frac{\partial^{2}CT}{\partial P_{i}\partial P_{j}} = \frac{\partial^{2}CV}{\partial P_{i}\partial P_{j}} + \sum_{k} \frac{\partial^{2}CV}{\partial P_{i}\partial Z_{k}^{*}} + \sum_{k} \frac{\partial Z_{k}^{*}}{\partial P_{j}} + \sum_{k} \frac{\partial Z_{k}^{*}}{\partial P_{j}} \left(\frac{\partial^{2}CV}{\partial Z_{k}^{*}\partial P_{j}} + \sum_{\ell} \frac{\partial^{2}CV}{\partial Z_{k}^{*}\partial Z_{\ell}^{*}} + \frac{\partial Z_{\ell}^{*}}{\partial P_{j}} \right) + b_{i} \frac{\partial Z_{i}^{*}}{\partial P_{j}} + b_{j} \frac{\partial Z_{j}^{*}}{\partial P_{i}} + \sum_{k} P_{k} \frac{\partial^{2}Z_{k}^{*}}{\partial P_{i}\partial P_{j}} + \sum_{k} P_{k} \frac{\partial^{2}Z_{k}^{*}}{\partial P_{i}\partial P_{j}} \right) + \sqrt{2} \left(\frac{\partial^{2}CV}{\partial Z_{k}^{*}\partial Z_{k}^{*}} + \frac{\partial^{2}Z_{k}^{*}}{\partial P_{i}\partial P_{j}} + \frac{\partial^{2}Z_{k}^{*}}{\partial P_{i}\partial P_{j}} + \frac{\partial^{2}Z_{k}^{*}}{\partial P_{i}\partial P_{j}} \right)$$

where again the terms in curly brackets sum to zero by (7).

Equations (8) and (9) contain partial derivatives of CV, which can be evaluated from an estimated variable cost function. Evaluation of (8) and (9) also requires estimates of the $\partial Z_{1}^{*}/\partial P_{j}$. For many of the functional forms commonly used for cost functions in empirical work, including the translog, no closed form expression for the Z_{1}^{*} are available. Thus one must compute these derivatives indirectly via numerical methods.

The first order condition which define the optimal levels of the fixed factors given in equation (6) can be rewritten as the implicit functions:

(10)
$$\frac{\partial CT}{\partial Z_{i}^{*}} = \frac{\partial I(Y, P, Z^{*})}{\partial Z_{i}^{*}} = I_{i} = 0, \qquad \forall_{i}$$

These functions can be solved for the Z_i^* as functions of Y and P, and thence for the $\partial Z_i^*/\partial P_i$.

Define:

(11)
$$B = \begin{bmatrix} \frac{\partial I_1}{\partial Z_1^*} & \frac{\partial I_1}{\partial Z_2^*} & \cdots & \frac{\partial I_1}{\partial Z_m^*} \\ \vdots & & & & \\ \frac{\partial I_m}{\partial Z_1^*} & \frac{\partial I_m}{\partial Z_2^*} & \cdots & \frac{\partial I_m}{\partial Z_m^*} \end{bmatrix}$$

(12)
$$\underline{\mathbf{a}_{i}'} = \frac{\partial I_{1}}{\partial P_{i}} \frac{\partial I_{2}}{\partial P_{i}} \dots \frac{\partial I_{m}}{\partial P_{i}}$$

The total differential of I, can be written:

(13)
$$dI_{i} = 0 = \frac{\partial I_{i}}{\partial Y} dY + \sum_{k} \frac{\partial I_{i}}{\partial P_{k}} dP_{k} + \sum_{j} \frac{\partial I_{i}}{\partial Z_{j}^{*}} dZ_{j}^{*},$$

Setting $dY = dP_j = 0$, $\forall_j \neq i$, and dividing both sides by dP_i we have

(14)
$$0 = \underline{a}_{i} + B \begin{bmatrix} \frac{\partial Z_{1}^{*}}{\partial P_{i}} \\ \vdots \\ \frac{\partial Z_{m}^{*}}{\partial P_{i}} \end{bmatrix}, \quad \forall_{i}.$$

It follows that:

(15)
$$\begin{bmatrix} \frac{\partial Z_{\hat{1}}^{*}}{\partial P_{i}} \\ \vdots \\ \frac{\partial Z_{m}^{*}}{\partial P_{i}} \end{bmatrix} = -B^{-1} \underline{a}_{i} ,$$

which can be evaluated for each i. We note that for a single fixed factor (15) simplifies to:

(16)
$$\frac{\partial Z^*}{\partial P_i} = -\frac{\partial I_{Z^*}/\partial P_i}{\partial I_{Z^*}/\partial Z^*}.$$

With these results, evaluation of equation (9) is straightforward for any functional form selected for the variable cost function CV. Before proceeding to the application of these results to a specific example, however, we note the following simplified forms of equations (8) and (9):

$$(8') \qquad \frac{\partial CT}{\partial P_{i}} = \begin{cases} \frac{\partial CV}{\partial P_{i}} & i \in VF \\ Z_{i}^{*} & i \in FF \end{cases}$$

$$(9') \qquad \frac{\partial^{2}CV}{\partial P_{i}dP_{j}} + \sum_{k} \frac{\partial Z_{k}^{*}}{\partial P_{j}} \frac{\partial 2_{CV}}{\partial Z_{k}^{*}\partial P_{i}} \qquad i, j \in VF$$

$$\frac{\partial^{2}CT}{\partial P_{i}\partial P_{j}} = \begin{cases} \sum_{k} \frac{\partial Z_{k}^{*}}{\partial P_{i}} & \frac{\partial^{2}CV}{\partial Z_{k}^{*}\partial P_{j}} \\ k & \frac{\partial^{2}CV}{\partial P_{i}\partial P_{j}} & i \in FF, j \in VF \end{cases}$$

$$\frac{\partial Z_{i}^{*}}{\partial P_{j}} \qquad i, j \in FF$$

where VF is the set of variable factors and FF is the set of fixed factors. Note also that if i is a fixed factor, the x^{th} element of \underline{a}_i is

(17)
$$a_{ik} = \frac{\partial I_k}{\partial P_i} = \begin{cases} 1 & \text{if } k = i \\ 0 & \text{if } k \neq i \end{cases}$$

Hence, from equation (15)

(18) $\frac{\partial Z_{k}^{*}}{\partial P_{i}} = \begin{cases} \begin{bmatrix} -B^{-1} \end{bmatrix}_{ik} & \text{for ieFF} \\ \begin{bmatrix} -B^{-1} & \underline{a}_{i} \end{bmatrix}_{k} & \text{for ieVF} \end{cases}$

As before, all derivatives in (8'), (9'), (17) and (18) are evaluated at the point $Z=Z^*$.

The results in (9') and (18) can also be used to show that the Le Chatelier principle holds if the variable cost function is convex in the fixed factors at Z=Z*, or equivalently, if the second order conditions necessary for Z* to minimize CT are met. The Le Chatelier principle requires that the own price response of variable factors decreases in absolute value with the number of factors which are quasifixed; hence,

$$\frac{\partial^2 CV}{\partial P_i^2} \ge \frac{\partial^2 CT}{\partial P_i^2}$$
 is VF.

From equation (9'), we see that for variable factors

$$\frac{\partial^{2}CT}{\partial P_{i}^{2}} = \frac{\partial^{2}CV}{\partial P_{i}^{2}} + \sum_{k} \frac{\partial Z_{k}^{*}}{\partial P_{i}} \frac{\partial^{2}CV}{\partial Z_{k}^{*}\partial P_{i}}.$$
 ieVF

However, from equations (12) and (18),

$$\sum_{k} \frac{\partial Z_{k}^{*}}{\partial P_{i}} \frac{\partial^{2}CV}{\partial Z_{k}^{*}\partial P_{i}} = a_{i}^{!} [-B^{-1}]a_{i},$$

which is negative semi-definite provided that B is positive semi-definite. Hence, if B is positive semi-definite, the Le Chatelier principle holds. 8

The requirement that CV be convex everywhere in Z, including at Z=Z*, guarantees that B $\left(\equiv \frac{\partial^2 CT}{\partial \underline{Z}^{*2}} = \frac{\partial^2 CV}{\partial \underline{Z}^{*2}} \right)$ is positive semi-definite, and thus that the Le Chatelier principle holds. It might also be noted that the second-

order conditions for Z* to yield a proper minimum of CT require that $\frac{\partial^2 \text{CT}}{\partial Z^*}$ be positive definite. Thus, operationally, in solving for the value(s) of Z which minimize CT, verification that the second-order conditions hold will ensure that CV is convex in Z* and that the Le Chatelier principle holds.

To implement the method described above, we specify a translog form for the variable cost function with additive error term ϵ_c :

(19)
$$\ell n \ CV = \alpha_0 + \alpha_Y \ell n \ Y + \sum_{i=1}^{\ell} \alpha_i \ell n \ P_i + \sum_{i=1}^{m} \beta_i \ell n \ Z_i + \frac{1}{2} \gamma_{YY} (\ell n \ Y)^2$$

$$+ \frac{1}{2} \sum_{i=1}^{\ell} \gamma_{ij} \ell n \ P_i \ell n \ P_j + \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \delta_{ij} \ell n \ Z_i \ell n \ Z_j$$

$$+ \sum_{i=1}^{\ell} \rho_{Y_i} \ell n \ Y \ell n \ P_i + \sum_{i=1}^{\ell} \sum_{j=1}^{m} \rho_{ij} \ell n \ P_i \ell n \ Z_j$$

$$+ \sum_{i=1}^{m} \Gamma_i \ell n \ Y \ell n \ Z_i + \phi_t t + \frac{1}{2} \phi_{tt} t^2$$

$$+ \phi_{tY} t \ell n \ Y + \sum_{i=1}^{m} \phi_{tP_i} t \ell n \ P_i$$

$$+ \sum_{i=1}^{m} \phi_{tZ_i} t \ell n \ Z_i + \varepsilon_c.$$

From Shephard's Lemma (1953), we know that in partial static equilibrium the derivatives $\partial \ln CV/\partial \ln P$ are equal to the shares of these factors ℓ^i in variable cost, $S_i = P_i X_i / \sum_{i=1}^{p} P_i X_i$. Adding disturbance terms ϵ_i to reflect errors in optimization yields:

(20)
$$S_{i} = \alpha_{i} + \rho_{Y} \ln Y + \sum_{j} \gamma_{ij} \ln P_{j} + \sum_{j} \rho_{ij} \ln Z_{j} + \phi_{t}P_{i}t + \epsilon_{i}, \forall_{i}$$

The set of equations, (19) and (20), can be used to estimate the parameters of CV, from which the elasticities of substitution can be derived.

III. Data

Estimation of the variable cost function for the U.S. farm sector requires time series data on the levels of output and the fixed inputs, the prices of the variable factors, and the level of variable cost. The data, taken from Brown (1977), are described below.

The three variable inputs which we distinguish are hired labor services, capital services, and materials. A translog index of hired labor was constructed from data provided by Gollop and Jorgenson (1980). The implicit wage rate for this index was then used as the price index for hired labor services. The capital services index was based on estimated capital stocks of farm equipment, structures, and inventories. A price index for farm capital services was then estimated using the assumption that on average over the postwar period the rate of return in farming has been the same as in the U.S. corporate sector. Translog quantity and price indexes were derived for materials from detailed data on fertilizer and liming materials, feed, seed, livestock, electricity, petroleum products, and fourteen mis-

cellaneous categories. The level of variable cost was then calculated as the sum of compensation for hired labor, annualized capital costs, and expenditures on other purchased inputs.

The two fixed inputs which we distinguish are self-employed labor services and land. A translog index of self-employed labor was developed from data on hours worked provided by Gollop and Jorgenson (1980). The weights used are based on the assumption that relative wage rates for self-employed workers are the same as for hired workers with the same personal characteristics. An index of land in the farm sector was created from farm acreage by states, obtained from various U.S.D.A. publications. The weights for the index are based on estimates of the value of land per acre from the U.S.D.A. publications Farm Real Estate Historical Series (for years prior to 1963) and Farm Real Estate Market (for 1965 to 1974).

Finally, a measure of farm output was constructed from basic data published annually by the U.S. Department of Agriculture in Agricultural Statistics. A translog index was used to aggregate twelve distinct classes of livestock and nine major classifications of crops into a single measure.

For comparison purposes we also estimate the translog variable cost function with self-employed labor treated as a variable rather than quasifixed factor. This requires a price index and cost estimate for self-employed labor. We estimate the cost of self-employed labor as total farm income minus all other input costs. This figure is then divided by the quantity index to obtain the appropriate price index.

IV. Estimates of Partial Static Equilibrium Substitution Possibilities from the Translog Variable Cost Function

The parameters of the variable cost function were estimated by performing multivariate regression on equations (19) and (20). Efficient estimates were obtained using a modification of Zellner's (1962) method. Since the cost shares in (20) sum to unity, the estimated covariance matrix is singular, and one of the share equations must be deleted at the second stage of the estimation procedure. The estimates obtained are independent of which equation is deleted, and the estimates are asymptotically equivalent to maximum likelihood estimates.

Without loss of generality symmetry was imposed on the γ_{ij} and δ_{ij} . We also required the theoretical restriction of homogeneity of degree one in input prices to hold, using the following linear restrictions:

Finally, constant returns to scale was imposed on the underlying structure of production by requiring (see Lau (1978)):

(22)
$$\alpha_{Y} + \sum_{i}^{m} \beta_{i} = 1; \ \rho_{Yi} + \sum_{j}^{m} \rho_{ij} = 0 \qquad \forall_{i};$$

$$\gamma_{YY} + \sum_{i}^{m} \Pi_{i} = 0; \quad \Pi_{j} + \sum_{i}^{m} \delta_{ij} = 0 \qquad \forall_{i};$$

$$\phi_{tY} + \sum_{i}^{m} \phi_{tZ_{i}} = 0.$$

The variable cost function (19) has thirty-six parameters; with the imposition of symmetry, linear homogeneity in factor prices, and constant returns to scale there are twenty-one independent parameters to be estimated. The full set of parameter estimates is presented in Table 1. The fitted variable cost function satisfies at every sample point the regularity conditions that it be nondecreasing and concave in prices of variable factors and nonincreasing and convex in the levels of the fixed factors.

R² statistics are .997, .770, .809, and .947 for the cost function and shares of capital, hired labor, and materials, respectively.

The estimated partial static equilibrium elasticities of substitution among the variable factors are presented in the first three columns of Table 2. These estimates indicate that hired labor is highly substitutable for materials and moderately substitutable for capital. Capital and materials are estimated to be poor substitutes. The only significant trend in the estimated elasticities of substitution is the decline for capital and labor. Table 2 also contains the own-price elasticities for the three variable inputs. These elasticities are computed as the product of the variable cost share and the Allen own-elasticity of substitution.

Demand for all three variable factors is estimated to be price-inelastic, but the elasticity for hired labor is substantially higher than for capital or materials.

V. Estimates of Static Equilibrium Substitution Possibilities from the Translog Variable Cost Function

Let us denote the elasticity of variable cost with respect to the i the variable input price (the predicted value of S_i in equation (20)) by θ_i . Making use of this notation we can express the derivatives which we need

Table 1

Parameter Estimates for Translog

Variable Cost Function

(standard errors in parentheses)

PARAM- ETERS	ESTI- MATES	PARAM— ETERS	ESTI- MATES	PARAM- ETERS	ESTI- MATES
^a o	10.1827	YEM	.0165 (.0110)	P HF	.0001 (.0304)
αĀ.	3224 (.2255)	Y _{MM}	.1600 (.0138)	o MF	0812 (.0151)
α _K	.4233 (.0023)	å AA	-26.1954 (8.692)	$\pi_{\mathbf{A}}$	31.4549 (8.795)
α _H	.1421 (.0026)	⁶ AF	-5.2595 (2.863)	n _F	4.8143 (2.683)
^d M	.4345 (.0013)	\$ FF	.4452 (1.780)	φŢ	4.0973 (.6505)
β _A	1.1109	PYK	1833 (.0808)	^ф тт	-250.211 (75.48)
β _F .	.2115 (.0853)	PYH	.1572 (.0861)	ф <mark>тү</mark>	96.8287 (25.96)
YYY	-36.2692 (9.429)	MY	.0261 (.0442)	^ф трк	.7175 (.2502)
YKK	.2207 (.0209)	° KA	.1022 (.0790)	^ф трн	6997 (.2698)
Y _{KH}	0440 (.0202)	ρНΑ	1573 (.0860)	^ф тРМ	0178 (.1270)
YKM	1766 (.0123)	^O MA	.0551 (.0407)	^ф тzа	-86.4174 (24.06)
Y _{HH}	.0275	°KF	.0811 (.0279)	^φ TZF	-10.4113 (9.460)

K = capital (structures and equipment)

H = hired labor

M = materials

A = land (acreage)

F = self-employed (family)

labor

Y = aggregate output index

Table 2

Substitution and Own-Price Elasticities
Estimated Under the Assumption of
Partial Static Equilibrium

YEAR	σ KH:	σ ε Μ	o ⊞M	ⁿ KK	n HH	MM.
1947	.424	108	1.197	040	662	199
1948	.471	094	1.224	056	664	198
1949	.422	094	1.203	043	664	199
1950	.398	075	1.207	043	666	198
1951	.414	054	1.226	053	667	200
1952	.394	063	1.213	046	667	199
1953	.372	063	1.208	041	667	197
1954	.356	046	1.215	043	668	197
1955	.355	044	1.215	043	668	197
1956	.329	048	1.209	036	668	194
1957	.332	023	1.224	045	668	196
1958	.353	021	1.231	050	668	198
1959	.324	024	1.223	044	668	195
1960	.324	022	1.224	044	668	196
1961	.318	.003	1.242	051	668	197
1962	.305	.011	1.246	052	668	197
1963	. 296	.016	1.248	052	667	197
1964	.270	.025	1.252	051	666	195
1965	.286	.034	1.266	 056	665	198
1966	. 250	.051	1.278	056	662	197
1967	~.268	.040	1.268	055	665	197
1968	.268	.039	1.267	055	665	197
1969	.271	.056	1.297	060	661	199
1970	.220	.062	1.285	056	660	196
1971	. 232	.044	1.264	052	664	194
1972	.219	.054	1.274	054	661	195
1973	.224	.073	1.307	059	656	198
1974	.087	.084	1.292	050	650	188

to evaluate (8') and (9') in terms of the derivatives of ln CV as follows:

(23)
$$\frac{\partial CV}{\partial P_{i}} = \begin{cases} \frac{\hat{CV}\theta_{i}}{P_{i}} & i \in VF \\ 0 & i \in FF \end{cases},$$

(24)
$$\frac{\partial CV}{\partial Z_{\mathbf{k}}^{*}} = \frac{\widehat{CV}}{Z_{\mathbf{k}}^{*}} \frac{\partial \ln CV}{\partial \ln Z_{\mathbf{k}}^{*}}$$

(25)
$$\frac{\partial^{2} CV}{\partial P_{i} \partial P_{j}} = \begin{cases} \frac{\hat{CV}}{P_{i} P_{j}} \left(\theta_{i} \theta_{j} + \frac{\partial^{2} \ln CV}{\partial \ln P_{i} \partial \ln P_{j}} - \omega_{ij} \theta_{i}\right) \omega_{ij} = \begin{cases} 1 & \text{if } i=j \\ 0 & \text{if } i\neq j \end{cases}, j \in VF,$$

$$0 \qquad i \text{ or } j \in FF$$

(26)
$$\frac{\partial^{2} CV}{\partial P_{i} \partial Z_{k}^{*}} = \begin{cases} \frac{\hat{CV}}{P_{i} Z_{k}^{*}} \left(\theta_{i} \frac{\partial \ln CV}{\partial Z_{k}} + \frac{\partial^{2} \ln CV}{\partial \ln P_{i} \partial \ln Z_{k}^{*}} \right) & i \in VF \\ 0 & i \in FF \end{cases}$$

where VF is the set of variable factors, FF is the set of fixed factors, and \hat{CV} is the fitted value of ℓn CV exponentiated.

The steps required to obtain the estimated full static equilibrium elasticities are:

(a) Numerically solve (10) for the optimal levels of the quasi-fixed factors in each year; (b) evaluate the variable cost function at the optimal levels of the quasi-fixed factors for each year; (c) evaluate the derivatives (18), (23), (24), (25), and (26); (d) evaluate the derivatives (8') and (9'); and finally (e) compute the elasticities of substitution from (4). The full static equilibrium own price elasticities are then computed by multiplying the full static equilibrium Allen own-

elasticities of substitution by the shares of total cost estimated at the optimal levels of the quasi-fixed factors.

This operational procedure suggests the following intuitive explanation of how inferences about full static equilibrium are being drawn from estimates of the variable cost function. The estimated variable cost function enables us to plot out a number of partial static equilibrium average total cost functions. Using equation (7), we obtain the points of tangency between these curves and the full static equilibrium average total cost curve. These points enable us to construct the full static equilibrium cost function.

In our application family labor is considered to be a quasi-fixed factor, while land is a fixed factor. ¹⁰ Thus we first solve for the optimal level of family labor in each year. ¹¹ These estimates are presented in Table 3 along with the actual values for family labor. The estimates indicate that there was a very large surplus of family farm labor in the early postwar years. In subsequent years both actual and optimal levels of family labor declined, but the ratio of optimal to actual increased.

The estimated optimal levels of farm family labor from Table 3 can be used to obtain estimated static equilibrium elasticities of substitution, which are presented in Table 4. Comparing the estimates in Tables 2 and 4, we find little difference between the estimated substitution possibilities among K, H, and M in partial and full static equilibrium. The estimated elasticities of substitution between family labor and the variable factors indicate that family labor is substitutable with hired labor and materials but complementary with capital.

Table 5 contains the estimated price elasticities of demand for the inputs in static equilibrium. As in Table 2 we find a very price-inelastic

Table 3 $\mbox{Actual } (Z_{\mbox{F}}) \mbox{ and Cost-Minimizing } (Z_{\mbox{F}}^{\star}) \mbox{ Levels of the Quasi-Fixed Factor Family Labor}$

Year	z _F	Z * F	
1947	2.224	.765	
1948	2.070	.408	
1949	2.014	.591	
1950	1.969	.788	
1951	1.864	.675	
1952	1.840	.600	
1953	1.807	.666	
1954	1.779	.809	
1955	1.728	.710	
1956	1.607	.776	
1957	1.477	.821	
1958	1.361	.543	
1959	1.361	.554	
1960	1.308	.505	
1961	1.191	.560	
1962	1.159	.588	
1963	1.066	.497	
1964	1.014	.637	
1965	.998	.506	
1966	.934	.649	
1967	1.000	.508	
1968	.995	.457	
1969	.970	.458	
1970	.935	.578	
1971	.886	.324	
1972	.893	.328	
1973	.897	.277	
1974	.856	.668	

Table 4

Full Static Equilibrium Elasticities of Substitution
Estimated from the Translog Variable Cost Function

Year	^σ KH	^σ KM	σ _{HM}	σ _{KF}	$\sigma_{ m HF}$	^σ MF
1947	.331	189	1.275	106	.368	.646
1948	.301	121	1.251	256	.262	.563
1949	.294	155	1.263	193	.313	.600
1950	.327	122	1.286	097	.353	.639
1951	.336	059	1.284	147	.298	.605
1952	.276	091	1.268	208	.285	.580
1953	.267	102	1.275	174	.311	.598
1954	.292	078	1.298	090	.378	.634
1955	.268	073	1.289	139	.322	.610
1956	.262	093	1.301	077	.366	.642
1957	.296	059	1.326	067	.388	.671
1958	.265	024	1.293	161	.289	.590
1959	.223	038	1.288	182	.290	.581
1960	.210	031	1.280	224	.263	.559
1961	. 249	.026	1.299	188	.263	.567
1962	.247	.040	1.305	186	.248	.566
1963	.215	.050	1.292	248	.208	.529
1964	.242	.061	1.319	168	.248	.571
1965	.220	.081	1.306	238	.195	.529
1966	.236	.100	1.342	166	.226	.567
1967	.196	.089	1.304	262	.178	.513
1968	.975	.084	1.297	281	.173	.503
1969	.189	.117	1.321	257	.163	.511
1970	.177	.115	1.337	209	.201	.538
1971	.068	.070	1.278	362	.143	.459
1972	.056	.086	1.285	358	.137	.457
1973	.033	.118	1.296	369	.112	.441
1974	.064	.140	1.357	218	.197	.523

Table 5
.
Full Static Equilibrium Own-Price Elasticities
Estimated from the Translog Variable Cost Function

Year	n _{KK}	n _{HH}	η _{ΜΜ}	η _{FF}
1947	.043	676	279	304
1948	.034	670	251	231
1949	.048	673	261	268
1950	.016	677	277	294
1951	007	675	268	258
1952	.025	674	256	248
1953.	.029	675	261	266
1954	.004	678	275	291
1955	.013	677	266	274
1956	.015	680	277	303
1957	016	681	290	316
1958	006	675	261	251
1959	.010	675	255	251
1960	.011	674	248	232
1961	024	673	255	224
1962	029	672	256	220
1963	028	670	244	189
1964	038	671	259	221
1965	043	668	247	179
1966	053	666	260	204
1967	044	667	242	165
1968	039	667	238	161
1969	056	662	244	153
1970	052	662	250	184
1971	020	665	218	135
1972	027	663	219	130
1973	043	657	218	108
1974	050	652	244	181

demand for capital. The demand for hired labor is the most elastic of all the inputs, and the estimated elasticities are virtually the same in partial and full static equilibrium. The demand for materials is found to be somewhat more price-elastic in full static equilibrium than in partial static equilibrium. The own-price elasticity for family labor is estimated to be fairly small and declining over time.

The large discrepancies between actual and optimal levels of family labor in Table 3 tends to confirm the specification of family labor as a quasi-fixed factor rather than a variable factor. It would be of interest to know, however, how much different our estimates of substitution possibilities in the farm sector would be if family labor were specified as a variable factor. It is straightforward to investigate this question by estimating a translog variable cost function with family labor moved from the quasi-fixed to the variable category. We estimate such a cost function, with land still treated as a fixed factor, and present the estimated elasticities of substitution in Table 6.

The estimated elasticities of substitution in Table 6 are quite different from those in Table 4. Treating family labor as a variable input causes the following changes in the estimated elasticities of substitution:

(a) Family labor and hired labor are found to be highly complementary (in recent years) rather than substitutable. (b) Family labor and materials are found to be much less substitutable in recent years. (c) Family labor and capital are found to be complementary only in recent years, rather than in all years. (d) Capital and materials are found to be more complementary in early years and more substitutable in recent years.

(e) Substitution possibilities between capital and hired labor are esti-

Table 6

Full Static Equilibrium Elasticities of Substitution Estimated from the Translog Variable Cost Function with Family Labor Treated as a Variable Factor

Year	σKH	σ _{KM}	σ _{HM}	σ _{KF}	$\sigma_{ t HF}$	σ _{MF}
1947	.377	464	1.424	.342	.200	.589
1948	.472	311	1.465	.407	.119	.522
1949	.406	350	1.426	.351	.142	.574
1950	.397	287	1.420	.337	.094	.578
1951	.445	181	1.438	.364	.011	.541
1952	.425	177	1.413	.329	.014	.559
1953	.398	181	1.403	.306	.009	.575
1954	.391	140	1.405	.300	042	. 574
1955	.393	119	1.403	.295	064	.571
1956	.361	141	1.399	.279	056	.588
1957	.378	091	1.419	.304	120	.571
1958	.415	046	1.430	.322	167	.544
1959	.394	027	1.408	.282	196	.557
1960	.425	.015	1.392	.259	236	.537
1961	.463	.091	1.397	.250	375	.492
1962	.476	.129	1.386	.216	458	. 471
1963	.498	.172	1.376	.175	572	.434
1964	.491	.185	1.372	.153	622	.433
1965	.525	.231	1.370	.111	794	.366
1966	.519	.259	1.374	.074	959	.342
1967	.548	.280	1.340	038	-1.052	.286
1968	. 544	.283	1.336	056	-1.077	.286
1969	.560	.318	1.353	095	-1.374	.196
1970	.533	.320	1.342	140	-1.401	.237
1971	.537	.320	1.327	192	-1.406	.229
1972	.538	.343	1.328	273	-1.662	.173
1973	.560	.387	1.340	454	-2.375	.027
1974	.514	.395	1.317	662	-2.650	.007

Table 7

Full Static Equilibrium Own-Price Elasticities
Estimated from the Translog Variable Cost Function
with Family Labor Treated as a Variable Factor

Year	n _{KK}	п _{нн}	n _{MM}	n _{FF}
	_			
1947	047	- .546	290	268
1948	118	- .543	275	264
1949	076	 543	292	266
1950	080	- .538	298	264
1951	117	533	295	257
1952	102	535	301	256
1953	089	533	305	257
1954	095	528	306	253
1955	098	526	307	251
1956	082	524	308	254
1957	105	516	308	250
1958	125	515	306	243
1959	115	515	309	238
1960	123	521	310	224
1961	143	518	310	197
1962	148	519	310	174
1963	154	521	310	139
1964	153	519	310	129
1965	163	521	310	072
1966	165	514	310	037
1967	164	529	309	039
1968	164	529	309	047
1969	170	522	309	129
1970	166	518	307	125
1971	164	524	305	150
1972	166	520	304	229
1973	172	513	305	464
1974	166	508	294	539

mated to have increased over time rather than decreased. The only estimated elasticity of substitution which did not change much was that
between hired labor and materials.

The estimated elasticities of substitution in Table 6 do not appear to be as plausible as those in Table 4. Much of the implausibility can be attributed to the fact that the curvature conditions are violated for the last eight years of the sample. Even for the earlier years, however, the results based on family labor as a quasi-fixed factor appear more plausible. For example, substitutability between family labor and hired labor with complementarity between family labor and capital seems much more plausible than the converse.

The estimated own-price elasticities in Table 7 are quite similar to those in Table 5. For the three inputs which are treated as variable in both cost functions, the difference between the two sets of estimates are quite small. The family labor estimates are similar until the early 1960's, after which they differ substantially.

VI. Concluding Remarks

In this paper we have presented an empirical framework for estimating substitution possibilities in situations where full static equilibrium is not a tenable assumption. Economists have long questioned whether it is appropriate to assume that capital stocks are in full static equilibrium. Our framework can be used to investigate such cases. Furthermore, this formulation is not limited to treating one or more capital stocks as quasifixed inputs. Any inputs which are thought to be in disequilibrium can be treated as quasi-fixed, as we have shown by treating family labor as a quasi-fixed input in the U.S. farm sector.

Although our example dealt with only one quasi-fixed factor, application of the method developed to models with more quasi-fixed factors introduces no methodological complications. The principal practical complication is that the cost function must be minimized with respect to all quasi-fixed factors simultaneously.

In our empirical application three sets of elasticities of substitution were presented for the farm sector over the 1947-74 period. The first two sets were estimated under the assumption that family labor is a quasi-fixed factor. The first set portrays substitution possibilities among the variable inputs conditional on the observed level of family labor. The second set portrays substitution possibilities which would prevail among family labor and the variable inputs if family labor were at its optimal level. These two sets of elasticities of substitution are quite similar. The third set of elasticities of substitution is based on the assumption that the observed levels of family labor were in fact optimal. These elasticities differ substantially from the other two sets. We conclude that the specification of particular inputs as variable or quasi-fixed may have important consequences in the estimation of substitution possibilities.

Footnotes

*This research was supported in part by the Electric Power Research Institute. The authors wish to thank Douglas Caves and Ernst Berndt for helpful comments on a draft of this paper, and Philip Schoech, Michael Tretheway, and Mario Miranda for assistance in obtaining our empirical results.

Diewert (1974) and Fuss and McFadden (1978, Volume 1) each provides extensive discussion of both topics.

Full static equilibrium and partial static equilibrium are often referred to as "long run" and "short run" equilibrium. We avoid the latter terminology because movement from partial to full static equilibrium requires input adjustments that may not take place with the passage of time.

³Mork (1978, p. 1) erroneously states: "Estimation of the short run demand response requires a short run estimation model." In the paper he displays some valid relationships between "short-run" and "long-run" elasticities in the case of full static equilibrium. However, if full static equilibrium were the appropriate formulation, then the long-run elasticities should be estimated directly and the short-run elasticities inferred indirectly using his formula — rather than vice versa.

⁴Caves, Christensen, and Swanson (1980) have recently demonstrated how to estimate shifts in the production structure (productivity growth) when the partial static equilibrium approach is appropriate.

 5 Tweeten (1969) provides discussion and further references.

⁶We do not develop the theory for the multiproduct case since our emphasis is on substitution possibilities among factor inputs. Generalization of our methodology to the multiproduct case is straightforward.

 7 These simplifications result from applying (14) and from the fact that any derivatives of CV with respect to prices of fixed factors are equal to zero. These results were derived by Lau (1976, p. 150).

 8 Note that this result (also presented in Lau (1976)) is necessarily true only in the neighborhood of the full static equilibrium. That is, the relationship given in (9') holds only when all derivatives are evaluated

at Z=Z*. Thus, while $\partial^2 CT/\partial Z^{*2>0}$ guarantees that $\partial^2 CV/\partial P_i^2 \Big|_{Z=Z^*} \ge \partial^2 CT/\partial P_i^2$,

it may not be true that $\partial^2 CV/\partial P_i^2 \Big|_{Z=Z_0} \ge \partial^2 CT/\partial P_i^2$.

The translog index number formula can be written:

$$\ln (Y_t/Y_{t-1}) = \Sigma \overline{W}_i \ln (Y_{ti}/Y_{t,i-1}),$$

where $\overline{W}_i = (W_{it} + W_{i,t-1})/2$, and $W_i = P_i Y_i / \Sigma P_i Y_i$. This formula was suggested by Fisher (1922), advocated by Tornqvist (1936), Theil (1965), and Kloek (1966), and has been used extensively by Christensen and Jorgenson (1973) and others. Diewert (1976) showed that this index is exact for a translog function.

¹⁰The R² statistic for each equation is defined as R² = $1 - \Sigma e_{\rm t}^2/\Sigma(y_{\rm t}-\bar{y})^2$, where $e_{\rm t}$ is the residual and $y_{\rm t}$ the value of the dependent variable in period t. Of course, for estimation procedures other than ordinary least squares, R² cannot in general be interpretated as the proportion of variance explained, since the residuals are no longer orthogonal to the regressors. However, it still provides a useful indicator of goodness-of-fit.

In the development up to this point, it has been assumed that CT refers to total costs. Treating land as fixed rather than quasi-fixed implies that CT includes only non-land costs, and that land is left at its actual value in performing the calculations necessary to construct the static equilibrium elasticities. The quasi-fixed factors (family labor in this application) are set at those values which minimize CT.

¹²Due to the nonlinear way in which Z enters the translog variable cost function, no closed form solution for Z* results from the first order conditions given in equation (7). However, a variety of computer algorithms are available for minimizing a function such as CT. We found the algorithm given in Berndt, et al. (1976), modified to use the actual second derivatives $\frac{3^2}{2^2}$ rather than the approximation they suggest, to be

easy to use and reliable. This algorithm also performed well in experiments with two fixed factors. However, a numerical zero-finding routine, used to solve for those Z values which satisfied the first-order conditions for the two-fixed-factor case, produced results which seemed very reasonable, but which corresponded to a saddle point rather than a minimum. This highlights the importance of selecting a reliable optimization algorithm and, of course, checking the second order condition.

References

- R.G.D. Allen, <u>Mathematical Analysis for Economists</u>, St. Martin's Press, New York, 1938.
- E. R. Berndt, C. J. Morrison-White, and G. C. Watkins, "Energy Substitution and Capital Utilization in a Dynamic Context," Economics Department, University of British Columbia, November 1979.
- E. R. Berndt, B. H. Hall, R. E. Hall, and J. A. Hausman, "Estimation and and Inference in Nonlinear Statistical Models," <u>Annals of Economic and Social Measurement</u>, 3/4, 1976, pp. 653-65.
- R. S. Brown, Productivity, Returns, and the Structure of Production in U.S. Agriculture, 1947-1974, Economics Department, University of Wisconsin-Madison, unpublished doctoral dissertation, 1977.
- D. W. Caves, L. R. Christensen, and J. A. Swanson, "Productivity Growth, Scale Economies, and Capacity Utilization in U.S. Railroads, 1955-1974," Discussion Paper #8002, Social Systems Research Institute, University of Wisconsin-Madison, January 1980.
- L. R. Christensen and D. W. Jorgenson, "Measuring the Performance of the Private Sector of the U.S. Economy, 1929-1969," in Measuring Economic and Social Performance, M. Moss, ed., Natural Bureau of Economic Research, 1973.
- W. E. Diewert, "Exact and Superlative Index Numbers," <u>Journal of Econometrics</u>, Vol. 4, No. 2, 1976, pp. 115-45.
- R. Eisner and R. H. Strotz, "Determinants of Business Investment," in Impacts of Monetary Policy, Englewood Cliffs, N.J.: Prentice-Hall, 1963.
- I. Fisher, The Making of Index Numbers, Hougton Mifflin Company, Boston, 1922.
- M. Fuss and D. McFadden, <u>Production Economics: A Dual Approach to Theory</u>
 and <u>Applications</u>, 2 volumes, <u>Amsterdam</u>, <u>North-Holland Publishing Company</u>,
 1978.
- F. M. Gollop and D. W. Jorgenson, "U.S. Productivity Growth by Industry, 1947-1973," in New Developments in Productivity Measurement and Analysis (S. W. Kendrick and B. N. Vaccara, eds.), Studies in Income and Wealth, Vol. 44, University of Chicago Press for the National Bureau of Economic Research, 1980, pp. 17-124.

- W. M. Gorman, "Measuring the Quantities of Fixed Factors," in <u>Value, Capital</u>, and Growth: Papers in Honour of Sir John Hicks, (J.N. Wolfe, ed.), Chicago, Aldine Publishing Co., 1968, pp. 141-72.
- T. Kloek, <u>Index cijfers</u>: enige methodologisch aspecten, Pasmans, The Hague, 1966.
- L. J. Lau, "A Characterization of the Normalized Restricted Profit Function," Journal of Economic Theory, Vol. 12, February 1976, pp. 131-63.
- L. J. Lau, "Applications of Profit Functions," in Fuss and McFadden (1978, Volume 1), pp. 133-216.
- L. J. Lau and P. A. Yotopoulos, "A Test of Relative Efficiency and an Application to Indian Agriculture," American Economic Review, Vol. 61, 1971, pp. 94-109.
- R. E. Lucas, "Optimal Investment Policy and the Flexible Accelerator," International Economic Review, Vol. 8, No. 1, 1967, pp. 75-85.
- D. McFadden, "Cost, Revenue, and Profit Functions," in Fuss and McFadden (1978, Volume 1), pp. 3-109.
- K. A. Mork, "The Aggregate Demand for Primary Energy in the Short and Long Run for the U.S., 1949-1975," Report No. MIT-EL 78-007 WP, Energy Laboratory, Massachusetts Institute of Technology, 1978.
- P. A. Samuelson, "Prices of Factors and Goods in General Equilibrium," Review of Economic Studies, Vol. 21, 1953-54, pp. 1-20.
- R. W. Shephard, <u>Cost and Production Functions</u>, Princeton University Press, Princeton, 1953.
- H. Theil, "The Information Approach to Demand Analysis," <u>Econometrica</u>, Vol. 33, 1965, pp. 67-87.
- L. Tornqvist, "The Bank of Finland's Consumption Price Index," <u>Bank of</u> Finland Monthly Bulletin, No. 10, 1936, pp. 1-8.
- L. G. Tweeten, "Theories Explaining the Persistence of Low Resource Returns in a Growing Farm Economy," <u>American Journal of Agricultural Economics</u>, Vol. 51, 1969, pp. 798-817.
- U.S. Department of Agriculture, Agricultural Statistics, U.S. Government Printing Office, Washington, D.C. (annual).
- , "Farm Real Estate Market Developments," Economic Research Service, 1965-1974.
- ______, "Farm Real Estate Historical Series," Economic Research Service, Bulletin #570, 1973.

- H. Uzawa, "Production Functions with Constant Elasticities of Substitution, Review of Economic Studies, Vol. 29, 1962, pp. 291-99.
- A. Zellner, "An Efficient Method of Estimating Seemingly Unrelated Regressions and Tests for Aggregation Bias," <u>Journal of the American Statistical Association</u>, Vol. 57, June 1962, pp. 348-368.