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Practical Alternatives for Forecasting Corn and
Soybean Basis in the Eastern Corn Belt
throughout the Crop-Marketing Year

Nathanael M. Thompson, Aaron J. Edwards, James R. Mintert, and Christopher A. Hurt

This paper re-evaluates practical methods of forecasting corn and soybean basis in the eastern
Corn Belt. The accuracy of forecast methods differs over the course of the crop-marketing year. At
harvest, historical moving average forecasts perform best. Post-harvest forecasts may be improved
at short forecast horizons (<8–12 weeks ahead) by combining historical moving averages and
recent basis levels. Results suggest that using 3-to-5-year moving average forecasts for corn basis
and a 2- or 5-year moving average for soybean basis from harvest through April. The accuracy of
these corn and soybean basis forecasts decreases markedly during the summer months.

Key words: basis forecasting, crop basis, current information, forecast error regression model,
moving averages, naïve forecast

Introduction

Commodity price risk is one of the biggest risks agricultural producers face (Lubben, 2014;
Thompson, Bir, and Widmar, 2019). Schroeder et al. (1998) conclude that futures markets are an
efficient and low-cost source of national agricultural commodity price forecasts, but to effectively
manage risks faced by their operations, farm decision makers need local cash price forecasts.
Kastens, Jones, and Schroeder (1998) concluded that combining current futures prices with basis
forecasts, where basis is defined as cash price less futures price, is an effective approach to generate
local cash price forecasts.

Producers and agribusinesses can buy and sell commodities year-round. However, commodity
price risk may not be the same across the entire crop-marketing year. Therefore, producers and
other cash market participants need accurate basis forecasts throughout the year to evaluate pricing
opportunities and to estimate expected sale or purchase prices when placing hedges (Chicago Board
of Trade, 1990; Tomek, 1997). One category of basis forecasting models that accounts for these
temporal variations is econometric basis forecasting models. These models often rely on time-
series econometrics and/or consider explanatory variables such as futures price spreads, storage
cost and availability, and transportation costs (e.g., Hauser, Garcia, and Tumblin, 1990; Sanders
and Manfredo, 2006; Welch, Mkrtchyan, and Power, 2009; Sanders, 2013; Bekkerman, Brester, and
Taylor, 2016). However, producers’ use of these models is problematic given that they often require
data that are not widely available or, in some cases, forecasts of right-side variables to generate basis
forecasts.
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A second approach to basis forecasting is moving averages based on historical data, sometimes
combined with recent basis levels. These forecasts are relatively easy to generate and provide
reasonably accurate basis forecasts, in many cases outperforming more sophisticated econometric
models (Dhuyvetter and Kastens, 1998; Sanders and Manfredo, 2006; Sanders, 2013). For these
reasons, farm decision makers, grain merchandisers, extension economists, and professionals
teaching commodity marketing and risk management courses often rely on the easier-to-implement
moving average approach to forecasting basis.1 However, existing research evaluating moving
average forecast methods has been limited to evaluating the accuracy of these forecasts during two
narrowly defined periods: harvest and storage (Taylor, Dhuyvetter, and Kastens, 2006; Hatchett,
Brorsen, and Anderson, 2010; Lee and Brorsen, 2017). While this approach acknowledges within-
year differences, it fails to fully explain the dynamics of the accuracy of basis forecasting methods
throughout the crop-marketing year. Dhuyvetter and Kastens (1998) estimate month fixed effects in
their forecast error regression model, which allows for a brief discussion of forecast accuracy by
month. However, by not interacting forecast method and month fixed effects, they fail to account for
the fact that different forecasts may respond differently throughout the marketing year. Hence, the
objective of this study is to examine for the first time the accuracy of various moving average basis
forecasts over the course of the crop-marketing year.

In doing so, we also re-evaluate previous recommendations regarding the optimal length of
moving averages to use when forecasting corn and soybean basis in the eastern Corn Belt. Previous
research has shown that optimal length for moving average basis forecasting models (e.g., 3- or
5-year moving average) varies by region and commodity (Dhuyvetter and Kastens, 1998; Taylor,
Dhuyvetter, and Kastens, 2006; Hatchett, Brorsen, and Anderson, 2010; Lee and Brorsen, 2017). In
addition, the time period evaluated can influence forecast recommendations. For example, increased
volatility of crop basis in recent years has necessarily reduced the accuracy of basis forecasts based
on historical data (Lee and Brorsen, 2017). While this increase in volatility has been attributed to a
number of factors, the increase in corn-based ethanol production is generally considered the largest
contributor to this shift in basis patterns (Irwin and Good, 2009). Since the Renewable Fuel Standard
(RFS) was created under the Energy Policy Act of 2005 and expanded by the Energy Independence
and Security Act of 2007 (U.S. Environmental Protection Agency, 2018), the construction of ethanol
biorefineries across the Midwest has greatly influenced both national and local supply and demand
fundamentals.2

A number of studies have linked commodity price levels and price volatility with ethanol
production (e.g., McNew and Griffith, 2005; Bekkerman and Pelletier, 2009; Fausti, Qasmi, and
Mc Daniel, 2017). However, to date, little work has been done to re-evaluate optimal length moving
average basis forecast recommendations in the post-ethanol era. It is important to note that we are
not attempting to describe the impact of ethanol production on basis forecast accuracy in this paper.
Instead, the objective here is to provide recommendations for pragmatic moving average forecast
methods, which are often used by practitioners.

Recent research has posited that the optimal-length moving average forecast is tied to the
occurrence of structural breaks, such as ethanol (Hatchett, Brorsen, and Anderson, 2010; Lee and
Brorsen, 2017). During eras of stable market conditions, longer moving average forecasts would be
expected to provide more accurate basis forecasts; when a structural break has occurred, the previous
year’s basis is recommended (Hatchett, Brorsen, and Anderson, 2010; Lee and Brorsen, 2017).

1 The popularity of moving average basis forecasts is illustrated by their availability on extension websites (e.g., Kansas
State University, 2019; farmdoc, 2019; Purdue University Center for Commercial Agriculture, 2019). Web resources have
significant potential to make more sophisticated basis forecasts accessible to a larger audience. For example, the Montana
State University Wheat Basis and Price Forecasting Tool (2019) provides wheat basis forecasts based on more sophisticated
econometric models (Bekkerman, Brester, and Taylor, 2016). The disadvantage is that some users may hesitate to accept
forecasts produced by a “black box” as opposed to the simplicity of a moving average forecast.

2 For perspective, nine ethanol biorefineries in the eastern Corn Belt (Illinois, Indiana, Michigan, and Ohio), the focus of
this study, produced 936 million gallons in 2004 (Renewable Fuels Association, 2004). By 2017, 40 biorefineries in the same
region produced 3.8 billion gallons (Renewable Fuels Association, 2017).
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Lee and Brorsen attempted to model the impact of permanent shocks on identifying optimal length
moving average forecasts. Their results indicated that most shocks are permanent; as a result, 1-year
moving averages were generally preferred in their analysis. However, the authors acknowledged that
some large permanent shocks occurred over the period studied (1975–2013). Therefore, they pointed
out that as commodity markets stabilize in the post-ethanol era, a return to longer moving average
forecasts will likely again prove valuable.

While their study provided a formal model for explaining why searching for an optimal-length
moving average depends on the period studied, it did not provide those implementing these forecast
methods with the ability to foresee these shocks or even identify that a permanent shock has taken
place, nor did it evaluate the accuracy of these forecasts for the entire crop-marketing year. Thus,
there is still a need for rigorous analysis of these forecast methods from time to time to provide
current recommendations on the optimal length of moving averages to use when forecasting corn
and soybean basis throughout the crop-marketing year. This is especially true in light of Lee and
Brorsen’s (2017) finding that most shocks are permanent. That is, by definition a temporary shock
would not change the forecast recommendations and could be easily handled by ignoring years
expected to represent exceptional, but not persistent, basis patterns. Permanent shocks, on the other
hand, indicate that the market is operating under a fundamentally new regime that (i) takes time to
stabilize and (ii) requires re-evaluation of forecasting methods as the market restabilizes.

Our research also extends previous work by evaluating whether basis forecast accuracy can
be improved by incorporating current information that is readily available to farmers in the form
of current basis deviations from historical averages. Previous research found that current market
information increased the accuracy of post-harvest basis forecasts in Kansas (Taylor, Dhuyvetter,
and Kastens, 2006), but this approach has not been evaluated for corn and soybeans in the important
production region of the eastern Corn Belt.3,4

We use a rich dataset consisting of cash prices from 129 corn and soybean buyers across
four eastern Corn Belt states (Illinois, Indiana, Michigan, and Ohio) to evaluate the accuracy of
moving average basis forecasts over the course of the crop-marketing year. In addition, we re-
evaluate previous recommendations of the optimal-length moving average basis forecasts. The
results presented here represent generalized recommendations across the entire four state region
and can be implemented using data provided by the Purdue University Center for Commercial
Agriculture (2019) Crop Basis Tool. While one could use similar methods to identify location-
specific recommendations, our objective here is to provide general recommendations that encompass
the entire region. Because the data are limited to the eastern Corn Belt, the basis forecast
recommendations made here may not be appropriate in other locations. Data from 2004–2017 are
included, providing the most comprehensive analysis of post-ethanol basis data to date. We find that,
compared to some recent studies, which recommend 1-year moving average basis forecasts for corn
and soybeans, longer moving averages (3–5 years) may provide more accurate basis forecasts in the
post-ethanol era, particularly for corn. Further, we find that the accuracy of moving average basis
forecasts differs throughout the crop-marketing year. This important contribution has implications
for those forecasting basis but has been largely overlooked in previous studies.

Data

We purchased cash prices for corn and soybeans from the first week of 2004 to the last week of
2017 from DTN (2018), which maintains a historical cash price database for thousands of U.S.

3 Basis is an inherently local concept driven by local supply and local demand. Therefore, as Taylor, Dhuyvetter, and
Kastens (2006)pointed out, empirical results from an analysis of data strictly from Kansas locations may not apply to other
locations, such as the eastern Corn Belt.

4 The importance of the eastern Corn Belt as a production region is evident from its share of U.S. corn and soybean
production. Over 2013–2017, the eastern Corn Belt region (Illinois, Indiana, Michigan, and Ohio) produced, on average,
28% of U.S. corn and 30% of U.S. soybeans (U.S. Department of Agriculture, 2018).
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grain buyers. In this study, we focus specifically on four eastern Corn Belt states: Illinois, Indiana,
Michigan, and Ohio. Aggregating across individual locations in these four states, our primary
analysis seeks to provide generalized recommendations that encompass the entire eastern Corn Belt
region. This is similar to previous studies that have sought to provide generalized recommendations
across a geographic region that is assumed to have a similar market structure rather than attempting
to make location-specific recommendations (e.g., Taylor, Dhuyvetter, and Kastens, 2006). However,
it is important to point out that aggregating across locations from several states may raise concerns
about the contribution of any given state to the overall results. Thus, we evaluate the robustness of
the generalized results by comparing them with the results for each individual state.

We also collected corresponding nearby futures prices from DTN, where nearby is defined as
the nearest contract to delivery without going into the delivery month. We used Wednesday prices
to create a weekly price series.5 If Wednesday happened to fall on a holiday, we used Thursday
prices. Data were structured to have 4 weeks per month (48 weeks per year). If a month had five
Wednesdays, we averaged the fourth- and fifth-weeks’ prices and reported the result as the fourth
week. After omitting buyers who started reporting prices after 2004 and those who were missing two
or more consecutive weekly cash prices, 129 unique locations remained, 90 of which reported prices
for both corn and soybeans, while 23 and 16 reported just corn or just soybean prices, respectively.
We extrapolated missing data by averaging the reported values the week before and the week after
the missing values. Missing values were rare (less than 0.01% of the sample) since the selected
sample of locations was chosen for completeness of historical data.

It is important to note that the period represented is characterized by significant structural change
as a result of biofuel policy and the resulting construction of ethanol plants throughout the study
region. In addition to structural change, the eastern Corn Belt experienced severe drought during
the 2012 growing season that resulted in what has been characterized as “once-in-a-generation crop
calamity” (Rippey, 2015). Short supplies resulting from significantly lower yields greatly impacted
basis patterns (Figure 1). However, this has been characterized as a likely temporary shock (Lee and
Brorsen, 2017). For this reason, we subject the analysis to a variety of robustness checks to evaluate
the sensitivity of the results to the inclusion or exclusion of years deemed “exceptional.”

Procedures

We created nearby basis values by taking the cash price less the nearby futures market price. We
then used three general forecast methods (11 specific forecasts) to create basis forecasts for corn and
soybeans for each week of the year. The first five forecasts are based on historical moving averages:

(1) B̂asis j, k, t (N) =
1
N

N

∑
i=1

Basis j, k, t−i,

where B̂asis j, k, t (N) represents the nearby basis forecast for location j in week of the year k and year
t.6 N represents the number of years included in the historical average (N = 1, . . . ,5). Initially, we
chose 5 years as the longest moving average forecast to be evaluated based on previous research in
the study region (Hatchett, Brorsen, and Anderson, 2010; Lee and Brorsen, 2017) and to provide a
reasonable number of out-of-sample forecasts years for evaluation. However, following Dhuyvetter
and Kastens (1998) and Taylor, Dhuyvetter, and Kastens (2006), we also ran the analysis with up to
7-year moving average forecasts to determine the robustness of the results to this assumption.

5 We selected Wednesday prices based on convention, following previous studies that evaluated moving average basis
forecasts (Dhuyvetter and Kastens, 1998; Taylor, Dhuyvetter, and Kastens, 2006; Hatchett, Brorsen, and Anderson, 2010;
Lee and Brorsen, 2017). We also explored weekly averages, and results were qualitatively similar (results available from
authors).

6 Notice that the basis forecast B̂asis j, k, t (N) in equation (1) depends on the year subscript t. Hence, these, and all of the
forecasts in this paper, are fixed rolling-window forecasts.
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Figure 1. Weekly Corn and Soybean Basis for 2004–2017, Averaged across All Locations

The next five forecasts are a modification of the moving averages in equation (1), with the
incorporation of current market information, defined as the deviation of current basis values from
historical basis values h weeks prior to the forecast:

(2) B̂asis j, k, h, t (N) =
1
N

N

∑
i=1

Basis j, k, t−i +

(
Basis j, k−h, t −

1
N

N

∑
i=1

Basis j, k−h, t−i

)
,

where B̂asis j, k, h, t (N) is the nearby basis forecast for location j in week of the year k for forecast
horizon h (i.e., weeks prior to k) and year t. N again represents the number of years included in the
historical average. Notice that the forecast horizon h only impacts the second portion of equation (2),
which represents the adjustment for current market information.7 However, the first component of
equations (1) and (2) does not depend on h, given that the historical average portion of the forecast
for a particular week is the same regardless of when the forecast is made within a given crop year.

The final forecast evaluated is what Dhuyvetter and Kastens (1998) call a naïve forecast. That is,
we used nearby basis h weeks prior to the forecast as the nearby basis forecast:

(3) B̂asis j, k, h, t = Cash j, k−h, t − Futures j, k−h, t .

Following previous research, we evaluated forecast accuracy using mean absolute error (MAE),
where the absolute value of each forecast error is averaged over all locations, weeks, forecast
horizons, and years (Dhuyvetter and Kastens, 1998; Hatchett, Brorsen, and Anderson, 2010).
However, condensing the information embodied in a forecast error series into a single test statistic
restricts evaluation to pairwise comparisons (Dhuyvetter and Kastens, 1998). To alleviate this
problem and generalize the results, previous research specified a forecast error regression model
(Dhuyvetter and Kastens, 1998; Hatchett, Brorsen, and Anderson, 2010), where forecast errors from
competing forecast methods across time and space are stacked and forecast errors are regressed on
explanatory variables such as forecast method and month of forecast. This allows for partial effects
of interest to be isolated and tested using analysis of variance (ANOVA).

7 Our current information forecasts follow Dhuyvetter and Kastens (1998) in that we assume historical basis is “fully
adjusted” for the current basis deviation. Taylor, Dhuyvetter, and Kastens (2006) relaxed this assumption, allowing for a
“partial adjustment” factor that they solve to minimize the in-sample mean absolute error associated with a particular forecast
method and forecast horizon.
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It is well established that these types of models are wrought with potential econometric
misspecifications given the complex nature of the variance–covariance matrix of the error terms
in time series cross-sectional data—in particular spatial-autocorrelation, cross-correlations, and
heteroskedasticity (Hatchett, Brorsen, and Anderson, 2010). While previous research acknowledged
these problems, attempts to correct for these issues generally fell short, resulting in the possibility of
biased and inconsistent standard errors leading to problems with statistical inference. Dhuyvetter and
Kastens (1998) identified groupwise heteroskedasticity among forecast methods and time horizon
variables in their research. Interaction terms of forecast methods and time horizons squared were
included in their model to correct for heteroskedasticity, but dependence of the error terms among
competing forecasts was not addressed. Hatchett, Brorsen, and Anderson (2010) used a variation
of the Dhuyvetter and Kastens (1998) approach to correct for heteroskedasticity and investigated
a year by location interaction random effect to correct for unequal error variance. However, data
limitations prevented convergence for this model specification, resulting in an approach analogous
to that of Irwin, Good, and Martines-Filho (2006): aggregate across locations and commodities and
include a year random effect. While this is an improvement over Dhuyvetter and Kastens’s (1998)
approach, the possibility of incorrectly assuming independence and the resulting problems with
statistical inference still exist.

In this paper, we attempt (for the first time in the eastern Corn Belt) to re-evaluate previous
recommendations for optimal basis forecast methods post-ethanol while also producing a forecast
error regression model specification that better accounts for potential econometric misspecifications.
Forecast errors from the first 5 years of each data series are not used, so that an equal number of
out-of-sample forecasts are evaluated for each forecast method. Since the data start in 2004, the first
out-of-sample forecast year evaluated is 2009. The regression analysis includes 3,878,928 out-of-
sample forecasts (11 forecast methods, 6 of which have 6 time horizons [4, 8, 12, 16, 20, and 24
weeks] × 219 crop locations [113 corn locations and 106 soybean locations] × 9 years × 48 weeks
per year). The null hypothesis that a pooled model for both corn and soybeans is preferred was
rejected (F = 342.99, p < 0.01) using a Chow (1960) test. As a result, individual mixed models for
each crop (corn and soybeans) were estimated as

AEi, j, k, h, m, t = β0 +
10

∑
i=1

β1, tForecasti +
10

∑
i=5

6

∑
h=1

β2, i, hForecasti × Horizonh

+
10

∑
i=5

6

∑
h=1

β3, i, hForecasti × Horizon2
h +

11

∑
m=1

β4, mMonthm(4)

+
10

∑
i=5

11

∑
m=1

β5, i, mForecasti × Monthm + u jt + εi, j, k, h, m, t ,

where AEi, j, k, h, m, t is the absolute error for the ith forecast in location j in week of the year k and
month m for forecast horizon h (i.e., weeks prior to k) and year t. Forecasti is a fixed effect equal
to 1 if the absolute error is associated with forecast i and 0 otherwise (5-year moving average is
dropped as the reference category). Horizonh is the forecast horizon, 4, 8, 12, 16, 20, or 24 weeks
prior to the forecast date. Notice that the forecast–horizon interaction is only estimated for forecasts
that incorporate current information or the naïve forecast methods (i = 5, . . . ,11). That is, moving
average forecasts without current information do not have an interaction with horizon, given that
these forecasts only use historical information and therefore are the same regardless of when the
forecast is made during the crop year. Monthm is a month fixed effect that equals 1 if the absolute
error is for a forecast in month m and 0 otherwise. Previous research evaluating moving average
forecasts has tended to focus on forecasting during two narrowly defined periods: harvest and storage
(March/April) (Taylor, Dhuyvetter, and Kastens, 2006; Hatchett, Brorsen, and Anderson, 2010).
While this approach acknowledges within-year differences, it fails to fully explain the dynamics
of the accuracy of basis forecasting methods throughout the crop-marketing year. Dhuyvetter and
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Kastens (1998) estimated month fixed effects in their model, which allowed for a brief discussion of
forecast accuracy by month. However, by not interacting forecast method and month fixed effects,
they failed to account for the fact that different forecasts may respond differently throughout the
marketing year. Hence, this is the first study to allow for complete flexibility by measuring forecast
accuracy of various basis forecasts throughout the crop-marketing year. Finally, u jt ∼ N

(
0,σ2

u
)

is a
year by location interaction random effect and εi, j, k, h, m, t ∼ N

(
0, σ2

ε

)
is the random error term.

In estimating the models, as expected, we identified several violations of the linear model
assumptions. A D’Agostinio–Pearson K2 omnibus test of residuals rejects the null hypothesis
of normality. This appears to be the result of high skewness and kurtosis values given the
nature of the dependent variable (i.e., absolute value). Although the absence of normality is not
considered a serious statistical problem in this case (Irwin, Good, and Martines-Filho, 2006),
we estimated the linear mixed model using the minimum variance quadratic unbiased estimation
(MIVQUE0) method, which does not require normality assumptions for the residual error term
or the random effects (Rao, 1971). Similarly, a conditional variance test identified evidence of
static heteroskedasticity. The year by location interaction random effect was included to partially
control for the systematic correlation of error terms within specific years and locations. In addition,
we estimated robust standard errors (“sandwich estimators”) to obtain asymptotically consistent
standard errors (White, 1980).

Models were estimated in SAS PROC MIXED (SAS Institute, Inc., 2013). Tests of simple
effects (i.e., paired t-tests) were conducted using the ESTIMATE statement in PROC MIXED. More
complex hypothesis tests were evaluated using the CONTRAST statement. The modified Diebold–
Mariano (DM) test was used to test for statistical differences in the accuracy of competing forecasts
(Diebold and Mariano, 1995; Harvey, Leybourne, and Newbold, 1997).

Results and Discussion

Corn, Aggregated across All Months

Table 1 presents mean absolute errors for corn averaged across all locations, years, and months for
each of the 11 forecast methods. Results are presented both with and without the 2012–2013 crop-
marketing year included in the forecasts, given the exceptional impact of extreme drought on corn
basis patterns during that year (Figure 1). Slopes of the linear and quadratic forecast by horizon
interaction terms are presented for the relevant forecasts and breakeven number of weeks for these
forecasts are calculated relative to the moving average forecast with the lowest MAE.

While the aggregate MAEs reported in Table 1 are useful for generalizing the results, especially
the evaluation of forecast horizon on the value of current information, a significant forecast by month
interaction (F = 242.60, p < 0.01) indicates that a more thorough analysis of month by forecast
MAEs is necessary.

Corn, Month-by-Month

Table 2 reports the forecast methods with the lowest MAE for each month for three forecast
horizons (4, 12, and 20 weeks).8 Results are again presented both with and without the 2012–2013
crop-marketing year included in the development and evaluation of the forecasts. For example, if
we ignore the 2012–2013 crop year due to exceptional basis from the short crop, someone interested
in forecasting nearby corn basis at harvest (October–November) would want to use a 5-year moving
average regardless of the forecast horizon. However, it is important not to overemphasize the
practical value of a particular forecast for any given month or forecast horizon. That is, in any given

8 Results for 8-, 16-, and 24-week forecast horizons are available from the authors. Results are quantitatively different but
follow a consistent pattern, as expected.
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Table 2. Optimal Forecast Method and Corresponding Mean Absolute Forecast Error
(cents/bu) by Month and Forecast Horizon for Corn with up to a 5-Year Moving Average
Forecast

All Years Without 2012–2013 Crop Year

Month

Optimal
Forecast
Methoda

Mean Absolute
Forecast Error

(cents/bu)

Optimal
Forecast
Methoda

Mean Absolute
Forecast Error

(cents/bu)
Forecast horizon = 4 weeks

September MA5CI 13.96 MA5CI 12.68
October MA4 15.90 MA5 12.73
November MA5 15.30 MA5 12.25
December Naïve 15.05 Naïve 12.87
January Naïve 12.13 MA3 11.56
February MA5CI 7.82 MA5CI 9.43
March MA5CI 5.09 MA5CI 7.80
April MA5CI 2.41 MA5CI 5.69
May MA1CI 6.74 Naïve 8.09
June MA1CI 6.75 Naïve 9.42
July Naïve 21.20 Naïve 14.37
August Naïve 14.16 Naïve 10.69

Forecast horizon = 12 weeks
September MA5 22.13 MA5CI 18.16
October MA4 15.90 MA5 12.73
November MA5 15.30 MA5 12.25
December MA5 16.32 MA4 12.90
January MA4 13.69 MA3 11.56
February MA5 13.11 MA3 11.36
March Naïve 12.85 MA3 12.26
April MA5CI 10.92 MA5 11.08
May Naïve 14.31 Naïve 13.29
June Naïve 15.14 Naïve 14.62
July Naïve 28.48 Naïve 19.58
August Naïve 21.44 Naïve 15.89

Forecast horizon = 20 weeks
September MA5 22.13 MA5 20.00
October MA4 15.90 MA5 12.73
November MA5 15.30 MA5 12.25
December MA5 16.32 MA4 12.90
January MA4 13.69 MA3 11.56
February MA5 13.11 MA3 11.36
March MA5 15.14 MA3 12.26
April MA5 12.30 MA5 11.08
May Naïve 17.68 Naïve 15.94
June Naïve 18.51 Naïve 17.27
July Naïve 31.86 Naïve 22.22
August Naïve 24.82 Naïve 18.54

Notes: MA1–MA5 are 1-to-5-year moving average forecasts. MA1CI–MA5CI are 1-to-5-year moving average forecasts plus current
information. Moving average forecasts that incorporate current information adjust the historical moving average by the deviation of current
basis values from historical basis values h weeks prior to the forecast. Naïve forecasts assume that current basis is future basis for a given
forecast horizon. That is, basis h weeks prior to the forecast is the forecast.
a The most accurate optimal forecast method, of the forecasts evaluated, is identified for each month and forecast horizon and are presented
with the corresponding mean absolute forecast error. For example, if we ignore the 2012–2013 crop year due to exceptional basis from the
short crop, someone interested in forecasting nearby corn basis at harvest (October–November) would want to use a 5-year moving average
regardless of the forecast horizon.
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year, these recommendations may or may not provide the most accurate basis forecast. Instead, it is
more important to generalize these results into actionable recommendations for how various forecast
methods perform at different points throughout the crop-marketing year.

The results seem to offer three distinct forecasting periods, starting with harvest basis forecasts.
When the 2012–2013 crop-marketing year is included, results indicate that basis tends to anchor
to historical averages around harvest: 4- and 5-year moving averages produced the lowest MAEs
in October and November, respectively, for each of the forecast horizons evaluated (4–24 weeks).
The modified DM test indicates that the accuracy of 4- and 5-year moving average forecasts is not
significantly different in those months (DM = 0.92, p = 0.36). This result is generally unchanged
when the 2012–2013 crop-marketing year is excluded, with the 5-year moving average producing
the lowest MAE in October and November for each forecast horizon.

Forecasts made for post-harvest months (December–August) generally depend on the forecast
horizon. At shorter forecast horizons, naïve forecasts and forecasts that incorporate current
information generally have lower MAEs than historical moving averages. Unsurprisingly, as forecast
horizon increases, the value of current information deteriorates. This is particularly true for months
closer to harvest. For, example, when the 2012–2013 crop-marketing year is included, 4- or 5-year
moving averages outperform current information/naïve forecasts from October through February at
a 12-week forecast horizon and are not statistically different at the 1% level (DM = 2.22, p = 0.03).
At a 20-week forecast horizon, 4- and 5-year moving averages outperform current information/naïve
forecasts from October through April and are not statistically different (DM = 0.23, p = 0.82).

When the 2012–2013 crop-marketing year is excluded, a similar trend emerges, except that 3-,
4-, and 5-year moving averages produce the lowest MAEs in various months from October through
April. Pairwise comparisons indicate that differences in the accuracy of 3-, 4-, and 5-year moving
average forecasts are small, less than 0.2 cents/bu. The 3-year moving average ultimately produced
the lowest MAE over this period, although it was not significantly different from the 5-year moving
average at the 5% level (DM = 1.72, p = 0.09). This shift toward shorter-length moving averages
(3-year) producing lower MAEs in some months when the 2012–2013 crop year is excluded is
intuitive. That is, when the exceptional basis values observed in 2012–2013 are included in the
analysis, longer moving averages may be preferred, given their ability to pull in additional years
that will drag the forecast back toward historical values. However, when these extreme observations
are dropped from the derivation of moving average forecasts, shorter-length moving averages may
become preferred if recent history is a better predictor of current basis patterns.

Forecasts late in the crop-marketing year (May–August) indicate that a naïve forecast is
generally the best forecast method regardless of forecast horizon. Initially, the fact that naïve
forecasts provide the lowest MAEs at the longest forecast horizons evaluated (up to 24 weeks) may
seem surprising. However, when interpreting this result, it is important to note the levels of MAE
differ throughout the year. For example, at a forecast horizon of 20 weeks, MAEs from October to
April are 12–16 cents/bu regardless of forecast method (Table 2; Figure 2). However, after April,
MAEs increase sharply, with the 5-year moving average reaching an MAE of nearly 50 cents/bu
in July. Hence, forecasting basis during the summer months is notably less accurate, especially at
longer forecast horizons, than earlier in the crop-marketing year regardless of the forecast method.
This is an important point that previous research has largely overlooked.

Although our analysis does not lend itself to identifying the cause of this shift in forecast
accuracy empirically, it is useful to provide some discussion on this point. Mainly, the identified
reduction in forecast accuracy after April coincides with the point in the year when uncertainty
regarding crop inventories has reached its peak. In the months following harvest, inventories of
grain are known and generally plentiful, resulting in relatively predictable basis values. However, as
we move into late spring and early summer, interest begins to shift to new crop production. At this
point in the season, there is uncertainty about crop acreage as well as about early crop conditions
for new crop production, which leads to uncertainty in valuing the remaining old crop inventories.
Thus, basis becomes much more difficult to forecast during this time of year. For example, signals of
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Figure 2. Estimated Mean Absolute Forecast Errors by Month for the Aggregate Best
Forecast for the Entire Year (5-Year Moving Average) and the Best Forecast for Each Month
at a 20-Week Forecast Horizon for Corn, Averaged across All Locations and All Years

a potentially short crop in the coming fall would increase the value of remaining old crop inventories,
causing basis to increase above average levels. Conversely, signals of a large new crop would
diminish the value of old crop inventories, flattening or weakening basis during this period.

Corn, Discussion and Comparison with Previous Recommendations and Accuracy

Differences in geographies, time periods, and forecasts evaluated limit the conclusions that can
be drawn from comparisons to previous research. Nonetheless, it is still instructive to compare
our results with previous basis forecasting recommendations and accuracy. Hatchett, Brorsen, and
Anderson (2010) and Lee and Brorsen (2017) are the closest studies geographically (Illinois) to the
present research. Hatchett, Brorsen, and Anderson concluded that a 1-year moving average forecast
provided the lowest MAE forecast for corn basis at harvest, although no significant forecast main
effect was identified in the forecast error regression model. That is, the accuracy of 1-to-5-year
moving average forecasts was not significantly different for harvest-time basis forecasts. Lee and
Brorsen identified a 5-year moving average as the most accurate harvest basis forecast for corn.

However, lacking in these two studies is the evaluation of alternative forecasts (current
information/naïve) relative to moving average forecasts. For this reason, it is also useful to compare
our results with Taylor, Dhuyvetter, and Kastens (2006), even though their study focused on
forecasting basis in Kansas. Their results also suggest that a 1-year moving average produced the
lowest MAE forecast for corn at harvest. However, similar to Hatchett, Brorsen, and Anderson
(2010), they did not find the 1-year moving average to be significantly different from 5-, 6-, or
7-year moving average forecasts in a series of paired t-tests. Therefore, our finding that corn basis
tends to anchor to historical moving averages at harvest is consistent with previous research. This is
largely because alternative forecasts that incorporate current market information into basis forecasts
are not particularly useful at harvest given that this information generally reflects two different crop
years: current information as old crop and historical basis as new crop (Taylor, Dhuyvetter, and
Kastens, 2006). As for the optimal-length moving average, previous results have been mixed, but
our analysis suggests that longer moving averages (4- or 5 years) provide the most accurate corn
basis forecast at harvest.
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When forecasting corn basis later in the crop-marketing year, Hatchett, Brorsen, and Anderson
(2010) and Lee and Brorsen (2017) both found a 1-year moving average to provide the most accurate
forecast in April. On the other hand, Taylor, Dhuyvetter, and Kastens (2006) found that naïvebasis
forecasts provided the most accurate forecast for corn basis in March across forecast horizons of
4–20 weeks. Therefore, our finding that current information/naïve forecasts improve the accuracy of
basis forecasts post-harvest (December–August), especially at shorter forecast horizons, is consistent
with Taylor, Dhuyvetter, and Kastens. However, contrary to Taylor, Dhuyvetter, and Kastens, our
results indicate that the accuracy of these forecasts is usurped by historical moving averages as
forecast horizon increases. Hence, our results seem to offer a more nuanced view of optimal basis
forecasts post-harvest, depending on both the forecast horizon and time of year for the forecast.

As for the accuracy of these forecasts, it seems as though it has become generally more difficult
to forecast basis, as indicated by higher MAEs. Hatchett, Brorsen, and Anderson (2010), Lee and
Brorsen (2017), and Taylor, Dhuyvetter, and Kastens (2006)reported MAEs for corn basis forecasts
of 9–12 cents/bu at harvest and 1–10 cents/bu for storage basis (March/April). In our study, MAEs
were near 16 cents/bu at harvest and 3–15 cents/bu for storage basis (depending on forecast horizon).
In general, this is not surprising given the volatility of commodity prices during the study period
(2004–2017). It is also important to point out when excluding the 2012–2013 crop-marketing year,
MAEs in our study are only slightly higher than those reported in previous research: around 13
cents/bu at harvest and 6–12 cents/bu for storage basis depending on the forecast horizon.

Corn, Robustness Checks

As with any research effort, the baseline results presented above are conditional on a number of
underlying model assumptions. Here we briefly discuss two of these assumptions and evaluate the
robustness of our results to them. First, we relax the selection of a 5-year moving average as the
longest moving average forecast considered to a 7-year moving average. Results indicate that when
the 2012–2013 crop-marketing year is included, the 7-year moving average produced the lowest
MAE from October to February, depending on forecast horizon (see Online Supplement Table S1).
However, when the 2012–2013 crop year is excluded from the development and evaluation of the
forecasts, the optimal-length moving forecast from October to April varies from a 3-year to a 7-
year moving average depending on month and forecast horizon. Identical to the original analysis,
a 3-year moving average produced the lowest aggregate MAE during this period (October–April)
and is statistically different than the 7-year moving average forecast (DM = 4.16, p < 0.01). Hence,
although they were preferred in some months, the general narrative of the results was qualitatively
unchanged by including the longer moving averages in the analysis. It is also important to recognize
that differences in the results for analyses with different longest length moving average forecasts
(e.g., 5-year vs. 7-year) are confounded by differences in the out-of-sample time period available for
analysis.

Second, we run the model for each of the four states represented (Illinois, Indiana, Michigan,
and Ohio) to investigate the robustness of the generalized results for the eastern Corn Belt region
to individual states (see Online Supplement Tables S2–S5). As expected, while the most accurate
forecast for any given month and forecast horizon were not exactly the same across the four states,
the general recommendations drawn from these results remained unchanged. While this exercise of
evaluating the results for each individual state serves as a useful robustness check, these state-level
results should be used and interpreted with caution, mainly because inferring increased accuracy of
a more “localized” forecast recommendation based on state boundaries is unfounded given that state
boundaries are irrelevant to the flow of grain.
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Soybean, Aggregated across All Months

Table 3 presents mean absolute errors for soybeans averaged across all locations, years, and months
for each of the 11 forecast methods. Results are presented both with and without the 2012–2013 and
2013–2014 crop-marketing years included in the forecasts, given the exceptional impact of extreme
drought on basis patterns during these two years (Figure 1).9 Again, while the aggregate MAEs
reported in Table 3 offer useful information about the impact of forecast horizon on the value of
current information, a significant forecast by month interaction (F = 177.60, p < 0.01) indicates
that more thorough analysis of month by forecast means is necessary for soybeans as well.

Soybean, Month-by-Month

Table 4 reports soybean forecast methods with the lowest MAE for each month. Results are again
presented both with and without the 2012–2013 and 2013–2014 crop-marketing years included in
the development and evaluation of the forecasts. While the information in Table 4 can be used to
identify the most accurate forecast method for any given month and forecast horizon, it is again
useful to generalize these results into actionable recommendations for soybean basis forecasting
throughout the crop-marketing year.

Similar to corn, three distinct forecasting periods emerge. Results indicate that soybean basis
tends to anchor to historical averages around harvest (Table 4). When the 2012–2013 and 2013–
2014 crop-marketing years are included in the development and evaluation of the forecasts, results
indicate that 1- and 2-year moving averages produced the lowest MAEs in October and November,
respectively, for each of the forecast horizons evaluated. Although the 2-year moving average was
found to be significantly more accurate during this harvest period (DM = 4.69, p < 0.01), practical
differences in MAEs were small, less than 0.2 cents/bu Excluding the 2012–2013 and 2013–2014
crop-marketing years produced a similar result. However, the 1-year average is statistically more
accurate that the 2-year moving average (DM = 5.75, p < 0.01), although the practical implications
of this are again weak given a difference in MAEs of around 0.2 cents/bu. In either case, shorter-
length moving averages (1- or 2 years) are clearly preferred for harvest-time soybean basis forecasts.

Forecasts made for post-harvest months (December–August) generally depend on the forecast
horizon. At shorter forecast horizons, naïve forecasts generally have lower MAEs than historical
moving averages. However, as the forecast horizon increases, naïve forecasts become less accurate.
This is again exacerbated for months closer to harvest. For example, when the 2012–2013 and 2013–
2014 crop-marketing years are included, 1- or 2-year moving averages outperform naïve forecasts
from harvest (October) through February at forecast horizons of 12 weeks or more. However, the
2-year moving average was again found to be significantly more accurate during this time period
(DM = 7.02, p < 0.01).

When the 2012–2013 and 2013–2014 crop-marketing years are excluded, a similar trend
emerges, except 1-, 2-, and 5-year moving averages produce the lowest MAEs in various months
from October to April. Pairwise comparisons indicate that the 2- and 5-year moving average
forecasts are not statistically different at the 1% level (DM = 2.32, p = 0.02) and both produce a
more accurate forecast than the 1-year moving average. This shift toward potentially longer moving
averages (5-year) producing lower MAE in some months when the 2012–2013 and 2013–2014 crop-
marketing years are excluded differs from the results for corn. However, this can again be explained
by the underlying structure of the moving average forecasts and the prolonged impact of the 2012
drought on soybean basis patterns. That is, when exceptional basis values observed in 2012–2013
and 2013–2014 crop-marketing years are included in the analysis, shorter moving averages provide
more accurate forecasts given their ability to avoid including those years in the calculation of moving

9 Models were also estimated without just 2012–2013 and without just 2013–2014. Results were robust to each of these
specifications, so we present only the results without the 2012–2013 and 2013–2014 crop-marketing years for conciseness.
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Table 4. Optimal Forecast Method and Corresponding Mean Absolute Forecast Error
(cents/bu) by Month and Forecast Horizon for Soybeans with up to a 5-Year Moving Average
Forecast

All Years
Without 2012–2013 and
2013–2014 Crop Years

Month

Optimal
Forecast
Methoda

Mean Absolute
Forecast Error

(cents/bu)

Optimal
Forecast
Methoda

Mean Absolute
Forecast Error

(cents/bu)
Forecast horizon = 4 weeks

September Naïve 28.59 Naïve 30.25
October MA1 13.75 MA1 12.63
November MA2 16.60 MA2 16.66
December MA2 14.15 MA2 13.64
January Naïve 20.88 Naïve 21.17
February Naïve 14.77 Naïve 17.06
March Naïve 8.30 Naïve 12.76
April Naïve 4.17 Naïve 8.23
May Naïve 12.06 Naïve 10.97
June Naïve 7.20 Naïve 11.80
July Naïve 24.76 Naïve 20.34
August MA5CI 31.67 MA5CI 22.41

Forecast horizon = 12 weeks
September Naïve 38.28 Naïve 37.84
October MA1 13.75 MA1 12.63
November MA2 16.60 MA2 16.66
December MA2 14.15 MA2 13.64
January MA2 21.55 MA2 21.47
February MA2 18.87 MA5 21.40
March Naïve 17.99 Naïve 20.36
April Naïve 13.87 Naïve 15.83
May Naïve 21.76 Naïve 18.57
June Naïve 16.89 Naïve 19.40
July Naïve 34.45 Naïve 27.93
August MA5CI 39.34 MA5CI 28.45

Forecast horizon = 20 weeks
September MA5 41.31 MA5 39.10
October MA1 13.75 MA1 12.63
November MA2 16.60 MA2 16.66
December MA2 14.15 MA2 13.64
January MA2 21.55 MA2 21.47
February MA2 18.87 MA5 21.40
March Naïve 21.81 MA5 22.22
April Naïve 17.69 MA5 18.63
May Naïve 25.58 Naïve 21.40
June Naïve 20.71 Naïve 22.22
July Naïve 38.12 Naïve 30.76
August MA5CI 42.75 MA5CI 31.27

Notes: MA1–MA5 are 1-to-5-year moving average forecasts. MA1CI–MA5CI are 1-to-5-year moving average forecasts plus current
information. Moving average forecasts that incorporate current information adjust the historical moving average by the deviation of current
basis values from historical basis values h weeks prior to the forecast. Naïve forecasts assume that current basis is future basis for a given
forecast horizon. That is, basis h weeks prior to the forecast is the forecast.
a The most accurate optimal forecast method, of the forecasts evaluated, is identified for each month and forecast horizon and are presented
with the corresponding mean absolute forecast error. For example, if we ignore the 2012–2013 and 2013–2014 crop years due to exceptional
basis from the short crop, someone interested in forecasting nearby soybean basis at harvest (October–November) would want to use a 1- or
2-year moving average regardless of the forecast horizon.
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Figure 3. Estimated Mean Absolute Forecast Errors by Month for the Aggregate Best
Forecast for the Entire Year (2-Year Moving Average) and the Best Forecast for Each Month
at a 20-Week Forecast Horizon for Soybeans, Averaged across All Locations and All Years

average forecasts following 2012. This is consistent with the results of Hatchett, Brorsen, and
Anderson (2010) and Lee and Brorsen (2017). However, when those drought-impacted years are
dropped from the estimation, longer moving averages may be preferred if data in prior years are
helpful for explaining current basis patterns.

Forecasts late in the crop-marketing year (May–August) indicate that a naïve forecast is
generally the best forecast method regardless of forecast horizon. While again surprising, especially
at the longest forecast horizons, this result is consistent with the results for corn above. That is,
MAEs for forecasts late in the crop-marketing year increase significantly regardless of the forecast
method (Figure 3).

Soybean, Discussion and Comparison with Previous Recommendations and Accuracy

Comparing these results with previous soybean basis forecast recommendations and accuracy is also
instructive. Hatchett, Brorsen, and Anderson (2010) and Lee and Brorsen (2017) concluded that a
2-year moving average and 1-year moving average forecast, respectively, provided the lowest MAE
forecast for soybean basis at harvest in Illinois. Including naïveand current information forecasts in
their analysis, Taylor, Dhuyvetter, and Kastens (2006) found that a 1-year moving average also
produced the lowest MAE soybean basis forecast in Kansas at harvest. Therefore, our finding
that soybean basis tends to anchor to historical moving averages at harvest is consistent with
previous research. This is again largely because alternative forecasts that incorporate current market
information into basis forecasts are not particularly useful at harvest given that this information
generally reflects two different crop years (Taylor, Dhuyvetter, and Kastens, 2006). In addition,
our results also seem to confirm previous findings that shorter-length moving averages (1- or 2-
year moving averages in our analysis) may be preferred to longer moving averages for forecasting
soybean basis at harvest.

Hatchett, Brorsen, and Anderson (2010) and Lee and Brorsen (2017) both found a 1-year moving
average to provide the lowest MAE forecast for soybean basis later in the crop-marketing year. On
the other hand, Taylor, Dhuyvetter, and Kastens (2006)found that naïvebasis forecasts provided the
most accurate forecast for soybean basis in March across forecast horizons of 4–20 weeks. This
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is largely consistent with our findings, except that—contrary to Taylor, Dhuyvetter, and Kastens—
our results indicate that the accuracy of naïve forecasts is usurped by historical moving averages at
relatively short forecast horizons for soybeans, about 8 weeks for post-harvest forecasts.

Consistent with corn basis forecasts, it has also become generally more difficult to forecast
soybean basis, as indicated by higher MAEs. Hatchett, Brorsen, and Anderson (2010), Lee and
Brorsen (2017), and Taylor, Dhuyvetter, and Kastens (2006)reported MAEs for soybean basis
forecasts of 10–11 cents/bu at harvest and 5–9 cents/bu for storage basis (March/April). In our
study, MAEs were around 14 cents/bu at harvest and 8–22 cents/bu for storage basis (depending on
forecast horizon). In general, this is not surprising, given commodity price volatility in recent years.
Contrary to corn, excluding exceptional years (2012–2013 and 2013–2014) did not greatly increase
the accuracy of soybean basis forecasts.

Soybean, Robustness Checks

Similar to corn, we subjected the soybean results to robustness checks for the specification of the
longest length moving average and results for individual states. When the longest moving average
considered was extended to 7 years, shorter moving averages were still preferred for most of the year
(see Online Supplement Table S6). Specifically, a 1-year moving average was preferred from harvest
(October) to April, depending on forecast horizon and was statistically different from the 7-year
moving average forecast over that period (DM = 8.15, p < 0.01). It is important to acknowledge
that the 1-year moving average here is different than the 2-year moving average identified in the
original analysis. This difference is the result of the shorter out-of-sample time period available for
analysis (2011–2017) due to the longer moving average forecasts.

Second, we ran the model for each of the four states represented (Illinois, Indiana, Michigan,
and Ohio). The most accurate forecast for any given month and forecast horizon was not exactly the
same across the four states, but the general recommendations drawn from these results remained
unchanged (see Online Supplement Tables S7–S10). Again, caution is warranted: These more
“localized” forecast recommendations should not be interpreted as necessarily more accurate than
the generalized recommendations for the eastern Corn Belt region since grain flow is not restricted
by state boundaries.

Conclusions

Commodity markets in the eastern Corn Belt have undergone significant structural change in
recent years. As a result, recent studies have indicated that shorter-length moving average
forecasts, typically 1-year moving averages, should be preferred for forecasting corn and soybean
basis. However, it has also been shown that these recommendations depend on the time period
evaluated. Therefore, the lack of sufficient data post-ethanol may limit the usefulness of previous
recommendations if basis patterns have stabilized in recent years. This study re-evaluates commonly
used optimal-length moving average basis forecasts for corn and soybeans in the eastern Corn Belt.

We find that, relative to the most recent recommendations, longer moving averages (3–5 years)
may currently provide more accurate basis forecasts, in particular for corn. That is, as expected,
longer moving averages are again proving to provide accurate corn and soybean basis forecasts
as basis patterns stabilize. As we move further into the biofuel era of commodity marketing, one
would expect this trend to continue. However, if additional structural change takes place, shorter
moving averages would once again be preferred (Hatchett, Brorsen, and Anderson, 2010; Lee and
Brorsen, 2017). We also show that temporary shocks, such as the 2012 drought, impact the accuracy
of moving average forecasts. We find that excluding years deemed exceptional and unlikely to repeat
from the development of moving average corn and soybean basis forecasts can increase the accuracy
of these forecasts.
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Results generally indicate using 3-to-5-year moving average forecasts for corn from October to
April and 2- or 5-year moving averages for soybeans from October to April. Contrary to previous
research (Taylor, Dhuyvetter, and Kastens, 2006; Hatchett, Brorsen, and Anderson, 2010), we
identified statistically significant differences in the accuracy of competing forecasts in many cases.
Nonetheless, these differences were often small, less than 1 cent/bu, and thus not likely to be
economically important. Hence, similar to Hatchett, Brorsen, and Anderson, we generally conclude
that the selected length of moving averages may not matter all that much.

Instead, the primary contribution of this analysis is that the accuracy of moving average basis
forecasts differs throughout the crop-marketing year. This important contribution has implications
for those forecasting basis yet has been largely overlooked in previous studies. Our results indicate
that simple historical moving averages tend to perform best at and around harvest (October–
November). Post-harvest (December–April) forecasts may be improved at short forecast horizons
(<8–12 weeks) by combining historical moving averages and recent basis levels. The accuracy of
forecasts late in the crop-marketing year (May–August) declines regardless of forecast method.

As a result, our results offer a more nuanced view of basis forecasting than some previous
research. Generalized rules of thumb regarding the use of naïveor moving average basis forecasts
may need to be modified with respect to both commodity and the time of year of the forecast.
This is critical information for practitioners, among whom these forecasts are used widely to create
accurate forecasts of basis which play an important role in a number of marketing and management
decisions. In particular, risk managers need to be aware of the notable deterioration of moving
average basis forecast accuracy late in the crop-marketing year. Extreme caution should be practiced
when forecasting corn and soybean basis beyond April, which implies that farmers interested in
earning storage returns for corn and soybeans should be cognizant of the risk associated with basis
forecasts for the latter stages of the crop storage season.

[First submitted September 2018; accepted for publication March 2019.]
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MA1–MA5 are 1- to 5-year moving average forecasts. MA1CI–MA5CI are 1- to 5-year moving
average forecasts plus current information. Moving average forecasts that incorporate current
information adjust the historical moving average by the deviation of current basis values from
historical basis values h weeks prior to the forecast. Naïve forecasts assume that current basis is
future basis for a given forecast horizon. That is, basis h weeks prior to the forecast is the forecast.
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Table S1. Optimal Forecast Method and Corresponding Mean Absolute Forecast Error
(cents/bu.) by Month and Forecast Horizon for Corn with up to a 7-Year Moving Average
Forecast

All Years Without 2012–2013 Crop Year

Month

Optimal
Forecast
Method

Mean Absolute
Forecast Error

(cents/bu)

Optimal
Forecast
Method

Mean Absolute
Forecast Error

(cents/bu)
Forecast Horizon = 4 weeks

September MA7CI 14.36 MA7CI 13.18
October MA7 16.54 MA5 13.01
November Naïve 16.16 Naïve 12.55
December Naïve 13.66 Naïve 10.59
January Naïve 11.33 Naïve 11.22
February MA6CI 5.87 MA7CI 8.10
March MA4CI 3.43 MA5CI 6.98
April MA5CI 0.99 MA5CI 5.28
May MA1CI 7.01 Naïve 9.29
June MA1CI 6.12 Naïve 10.67
July Naïve 24.45 Naïve 16.04
August Naïve 15.28 Naïve 10.98

Forecast Horizon = 12 weeks
September MA7 21.21 MA7CI 18.06
October MA7 16.54 MA5 13.01
November MA7 16.76 MA7 13.00
December MA7 16.19 MA4 12.03
January MA7 14.52 MA3 12.32
February MA7 13.11 MA3 11.38
March MA7CI 12.03 MA7CI 12.07
April MA7CI 9.77 MA7CI 10.30
May Naïve 15.50 Naïve 14.50
June MA1CI 15.67 Naïve 15.88
July Naïve 32.33 Naïve 21.25
August Naïve 23.16 Naïve 16.19

Forecast Horizon = 20 weeks
September MA7 21.21 MA7 18.90
October MA7 16.54 MA5 13.01
November MA7 16.76 MA7 13.00
December MA7 16.19 MA4 12.03
January MA7 14.52 MA3 12.32
February MA7 13.11 MA3 11.38
March Naïve 15.62 MA3 12.54
April MA7 12.52 MA3 11.75
May Naïve 19.08 Naïve 17.14
June MA1 18.80 Naïve 18.52
July Naïve 35.92 Naïve 23.90
August Naïve 26.74 Naïve 18.84

Notes: See notes on the title page.

[Received September 2018; final revision received March 2019.]
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Table S2. Optimal Forecast Method and Corresponding Mean Absolute Forecast Error
(cents/bu.) by Month and Forecast Horizon for Corn with up to a 5-Year Moving Average
Forecast in Illinois

All Years Without 2012–2013 Crop Year

Month

Optimal
Forecast
Method

Mean Absolute
Forecast Error

(cents/bu)

Optimal
Forecast
Method

Mean Absolute
Forecast Error

(cents/bu)
Forecast Horizon = 4 weeks

September MA5CI 13.10 MA5CI 11.78
October MA3 15.07 MA5 12.02
November Naïve 14.61 MA5 11.08
December Naïve 14.52 Naïve 12.08
January Naïve 11.32 MA3 10.42
February MA5CI 7.14 MA5CI 8.82
March MA5CI 5.02 MA5CI 7.22
April MA4CI 2.54 MA5CI 5.51
May MA1CI 7.52 Naïve 7.95
June MA1CI 6.09 Naïve 8.60
July Naïve 21.48 Naïve 14.11
August Naïve 13.37 Naïve 10.36

Forecast Horizon = 12 weeks
September MA5 20.51 MA5CI 16.96
October MA3 15.07 MA5 12.02
November MA5 14.81 MA5 11.08
December MA5 16.27 MA3 12.23
January MA3 13.40 MA3 10.42
February MA5 12.34 MA3 10.02
March Naïve 12.79 MA3 10.30
April MA5CI 11.20 MA5 9.81
May Naïve 14.67 Naïve 12.68
June Naïve 14.65 Naïve 13.32
July Naïve 28.61 Naïve 18.84
August Naïve 20.51 Naïve 15.08

Forecast Horizon = 20 weeks
September MA5 20.51 MA3 18.97
October MA3 15.07 MA5 12.02
November MA5 14.81 MA5 11.08
December MA5 16.27 MA3 12.23
January MA3 13.40 MA3 10.42
February MA5 12.34 MA3 10.02
March MA5 13.49 MA3 10.30
April MA5 11.74 MA5 9.81
May Naïve 18.04 Naïve 15.06
June Naïve 18.02 Naïve 15.70
July Naïve 31.98 Naïve 21.22
August Naïve 23.88 Naïve 17.47

Notes: See notes on the title page.
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Table S3. Optimal Forecast Method and Corresponding Mean Absolute Forecast Error
(cents/bu.) by Month and Forecast Horizon for Corn with up to a 5-Year Moving Average
Forecast in Indiana

All Years Without 2012–2013 Crop Year

Month

Optimal
Forecast
Method

Mean Absolute
Forecast Error

(cents/bu)

Optimal
Forecast
Method

Mean Absolute
Forecast Error

(cents/bu)
Forecast Horizon = 4 weeks

September MA5CI 15.61 MA5CI 13.19
October MA4 17.22 MA5CI 13.27
November MA4 17.01 MA4 14.93
December Naïve 16.66 Naïve 14.79
January Naïve 13.97 MA4 13.07
February MA5CI 9.48 MA5CI 10.45
March MA5CI 5.54 Naïve 8.26
April MA5CI 2.54 MA5CI 6.12
May MA1CI 6.34 Naïve 8.47
June MA1CI 8.55 Naïve 10.95
July Naïve 22.19 Naïve 15.81
August Naïve 15.73 Naïve 11.00

Forecast Horizon = 12 weeks
September Naïve 23.12 MA5CI 18.86
October MA4 17.22 MA3 14.16
November MA4 17.01 MA4 14.93
December MA5 17.53 MA4 14.83
January MA4 14.23 MA4 13.07
February MA4 14.34 MA3 13.19
March Naïve 12.77 Naïve 13.94
April MA5CI 10.47 MA5CI 11.79
May Naïve 13.90 Naïve 14.16
June MA2CI 16.02 Naïve 16.64
July Naïve 29.43 Naïve 21.50
August Naïve 22.96 Naïve 16.69

Forecast Horizon = 20 weeks
September MA5 23.29 MA5 19.46
October MA4 17.22 MA3 14.16
November MA4 17.01 MA4 14.93
December MA5 17.53 MA4 14.83
January MA4 14.23 MA4 13.07
February MA4 14.34 MA3 13.19
March Naïve 16.14 MA3 14.78
April MA4 13.13 MA3 12.05
May Naïve 17.27 MA5 17.06
June Naïve 19.56 Naïve 19.65
July Naïve 32.79 Naïve 24.51
August Naïve 26.33 Naïve 19.70

Notes: See notes on the title page.
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Table S4. Optimal Forecast Method and Corresponding Mean Absolute Forecast Error
(cents/bu.) by Month and Forecast Horizon (in weeks) for Corn with up to a 5-Year Moving
Average Forecast in Michigan

All Years Without 2012–2013 Crop Year

Month

Optimal
Forecast
Method

Mean Absolute
Forecast Error

(cents/bu)

Optimal
Forecast
Method

Mean Absolute
Forecast Error

(cents/bu)
Forecast Horizon = 4 weeks

September Naïve 14.03 Naïve 14.41
October MA4 15.39 MA5CI 12.33
November MA4 12.23 MA5 10.90
December MA5 10.65 MA4 8.97
January MA5 10.17 MA5 9.41
February MA5CI 6.63 MA5CI 8.30
March MA4CI 3.31 MA5CI 7.04
April MA5CI 1.09 MA4CI 4.81
May Naïve 6.15 Naïve 8.32
June MA1CI 6.21 Naïve 9.06
July Naïve 20.12 Naïve 12.88
August Naïve 15.00 Naïve 11.18

Forecast Horizon = 12 weeks
September Naïve 22.10 Naïve 20.77
October MA4 15.39 MA5 12.36
November MA4 12.23 MA5 10.90
December MA5 10.65 MA4 8.97
January MA5 10.17 MA5 9.41
February MA4 11.21 MA5 10.77
March MA5CI 12.09 MA5CI 13.03
April MA5CI 9.75 MA5CI 11.09
May Naïve 14.22 Naïve 14.68
June Naïve 14.84 Naïve 15.42
July Naïve 28.19 Naïve 19.24
August Naïve 23.07 Naïve 17.55

Forecast Horizon = 20 weeks
September MA5 25.18 Naïve 23.53
October MA4 15.39 MA5 12.36
November MA4 12.23 MA5 10.90
December MA5 10.65 MA4 8.97
January MA5 10.17 MA5 9.41
February MA4 11.21 MA5 10.77
March MA4 14.54 MA3 13.14
April MA3 10.91 MA3 11.95
May Naïve 17.34 MA5 16.52
June MA1 17.86 MA5 17.95
July Naïve 31.31 Naïve 22.01
August Naïve 26.19 Naïve 20.31

Notes: See notes on the title page.
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Table S5. Optimal Forecast Method and Corresponding Mean Absolute Forecast Error
(cents/bu.) by Month and Forecast Horizon for Corn with up to a 5-Year Moving Average
Forecast in Ohio

All Years Without 2012–2013 Crop Year

Month

Optimal
Forecast
Method

Mean Absolute
Forecast Error

(cents/bu)

Optimal
Forecast
Method

Mean Absolute
Forecast Error

(cents/bu)
Forecast Horizon = 4 weeks

September MA5CI 15.02 MA5CI 14.89
October MA5CI 16.96 MA5CI 13.42
November MA4 15.70 MA4 13.28
December Naïve 15.48 Naïve 13.85
January Naïve 13.23 Naïve 14.22
February MA5CI 8.84 MA5CI 10.81
March MA5CI 5.23 Naïve 8.94
April MA5CI 2.04 MA4CI 5.90
May MA1CI 4.34 Naïve 8.09
June MA1CI 7.43 Naïve 10.84
July Naïve 19.34 Naïve 14.08
August Naïve 15.22 Naïve 11.42

Forecast Horizon = 12 weeks
September Naïve 23.00 MA5CI 21.14
October MA4 17.29 MA5 13.76
November MA4 15.70 MA4 13.28
December MA5 16.44 MA4 13.85
January MA5 14.71 MA4 14.37
February MA5 14.90 MA3 14.39
March Naïve 13.28 Naïve 15.16
April MA5CI 10.61 MA5CI 12.23
May Naïve 13.42 Naïve 14.32
June Naïve 15.89 Naïve 17.07
July Naïve 27.06 Naïve 20.31
August Naïve 22.94 Naïve 17.64

Forecast Horizon = 20 weeks
September MA5 26.20 MA5 23.43
October MA4 17.29 MA5 13.76
November MA4 15.70 MA4 13.28
December MA5 16.44 MA4 13.85
January MA5 14.71 MA4 14.37
February MA5 14.90 MA3 14.39
March Naïve 16.75 MA3 16.60
April MA4 13.20 MA3 13.97
May Naïve 16.89 Naïve 17.52
June Naïve 19.37 Naïve 20.27
July Naïve 30.53 Naïve 23.51
August Naïve 26.41 Naïve 20.84

Notes: See notes on the title page.
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Table S6. Optimal Forecast Method and Corresponding Mean Absolute Forecast Error
(cents/bu.) by Month and Forecast Horizon for Soybeans with up to a 7-Year Moving Average
Forecast

All Years
Without 2012–2013

and 2013–2014 Crop Years

Month

Optimal
Forecast
Method

Mean Absolute
Forecast Error

(cents/bu)

Optimal
Forecast
Method

Mean Absolute
Forecast Error

(cents/bu)
Forecast Horizon = 4 weeks

September Naïve 29.18 Naïve 32.11
October MA1 13.31 MA1 11.95
November MA1 14.90 MA1 13.90
December MA1 10.77 MA1 8.79
January Naïve 20.00 Naïve 20.94
February MA7CI 14.44 Naïve 18.40
March Naïve 7.92 Naïve 14.90
April Naïve 4.46 Naïve 11.14
May Naïve 13.65 Naïve 13.64
June Naïve 7.09 Naïve 14.37
July MA2CI 24.64 Naïve 20.06
August MA6CI 32.00 MA5CI 21.39

Forecast Horizon = 12 weeks
September MA7CI 37.43 Naïve 38.33
October MA1 13.31 MA1 11.95
November MA1 14.90 MA1 13.90
December MA1 10.77 MA1 8.79
January MA1 20.31 MA1 21.47
February MA1 15.84 MA1 19.96
March Naïve 17.22 MA1 19.09
April MA7CI 13.58 Naïve 17.35
May Naïve 22.96 Naïve 19.86
June MA7CI 16.00 MA2CI 19.06
July MA2CI 31.64 MA3CI 24.53
August MA6CI 39.09 MA4CI 25.25

Forecast Horizon = 20 weeks
September MA7CI 40.49 Naïve 39.69
October MA1 13.31 MA1 11.95
November MA1 14.90 MA1 13.90
December MA1 10.77 MA1 8.79
January MA1 20.31 MA1 21.47
February MA1 15.84 MA1 19.96
March MA1 17.61 MA1 19.09
April MA7CI 16.64 MA7 18.24
May Naïve 26.02 Naïve 21.22
June MA7CI 19.06 MA2CI 20.76
July MA2CI 35.39 MA3CI 25.76
August MA6CI 42.12 MA4CI 26.63

Notes: See notes on the title page.
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Table S7. Optimal Forecast Method and Corresponding Mean Absolute Forecast Error
(cents/bu.) by Month and Forecast Horizon for Soybeans with up to a 5-Year Moving Average
Forecast in Illinois

All Years
Without 2012–2013

and 2013–2014 Crop Years

Month

Optimal
Forecast
Method

Mean Absolute
Forecast Error

(cents/bu)

Optimal
Forecast
Method

Mean Absolute
Forecast Error

(cents/bu)
Forecast Horizon = 4 weeks

September Naïve 26.48 Naïve 26.80
October MA1 14.03 MA1 13.06
November MA1 16.58 MA1 17.14
December MA1 14.32 MA1 13.93
January Naïve 19.94 Naïve 19.37
February Naïve 14.24 Naïve 15.50
March Naïve 8.17 Naïve 11.50
April Naïve 4.37 Naïve 7.43
May Naïve 12.13 Naïve 10.16
June Naïve 6.85 Naïve 10.53
July Naïve 25.29 Naïve 19.86
August MA5CI 30.87 MA5CI 20.73

Forecast Horizon = 12 weeks
September Naïve 35.33 Naïve 33.88
October MA1 14.03 MA1 13.06
November MA1 16.58 MA1 17.14
December MA1 14.32 MA1 13.93
January MA2 21.22 MA2 20.21
February MA3 17.94 MA5 20.04
March Naïve 17.01 Naïve 18.58
April Naïve 13.22 Naïve 14.51
May Naïve 20.98 Naïve 17.24
June Naïve 15.69 Naïve 17.61
July Naïve 34.13 Naïve 26.95
August MA5CI 38.25 MA5CI 26.69

Forecast Horizon = 20 weeks
September MA5 38.59 MA5 35.47
October MA1 14.03 MA1 13.06
November MA1 16.58 MA1 17.14
December MA1 14.32 MA1 13.93
January MA2 21.22 MA2 20.21
February MA3 17.94 MA5 20.04
March Naïve 20.41 MA5 20.61
April Naïve 16.62 Naïve 17.03
May Naïve 24.38 Naïve 19.76
June Naïve 19.09 Naïve 20.13
July Naïve 37.53 Naïve 29.46
August MA5CI 41.62 MA5CI 29.61

Notes: See notes on the title page.
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Table S8. Optimal Forecast Method and Corresponding Mean Absolute Forecast Error
(cents/bu.) by Month and Forecast Horizon for Soybeans with up to a 5-Year Moving Average
Forecast in Indiana

All Years
Without 2012–2013

and 2013–2014 Crop Years

Month

Optimal
Forecast
Method

Mean Absolute
Forecast Error

(cents/bu)

Optimal
Forecast
Method

Mean Absolute
Forecast Error

(cents/bu)
Forecast Horizon = 4 weeks

September Naïve 31.52 Naïve 33.70
October MA3 13.23 MA5 11.79
November MA3 17.79 MA5 15.31
December MA2 14.69 MA2 13.83
January Naïve 22.83 MA2 23.40
February Naïve 15.99 Naïve 18.95
March Naïve 8.55 Naïve 13.73
April Naïve 4.49 Naïve 8.81
May Naïve 12.32 Naïve 11.72
June Naïve 8.13 Naïve 12.99
July Naïve 23.53 Naïve 20.25
August Naïve 30.10 Naïve 22.38

Forecast Horizon = 12 weeks
September MA5 41.25 MA5 39.81
October MA3 13.23 MA5 11.79
November MA3 17.79 MA5 15.31
December MA2 14.69 MA2 13.83
January MA2 23.06 MA2 23.40
February MA2 21.07 MA5 23.57
March Naïve 19.90 Naïve 22.55
April MA5CI 14.99 Naïve 17.63
May MA5CI 22.19 Naïve 20.54
June MA5CI 19.47 Naïve 21.81
July Naïve 34.88 Naïve 29.07
August MA5CI 40.11 MA4CI 30.32

Forecast Horizon = 20 weeks
September MA5 41.25 MA5 39.81
October MA3 13.23 MA5 11.79
November MA3 17.79 MA5 15.31
December MA2 14.69 MA2 13.83
January MA2 23.06 MA2 23.40
February MA2 21.07 MA5 23.57
March MA3 23.89 MA5 24.22
April MA5CI 18.71 MA5 19.57
May MA5CI 25.91 MA5 23.48
June MA5CI 23.19 MA5CI 25.33
July Naïve 39.65 Naïve 32.73
August MA5CI 43.84 MA4CI 33.49

Notes: See notes on the title page.
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Table S9. Optimal Forecast Method and Corresponding Mean Absolute Forecast Error
(cents/bu.) by Month and Forecast Horizon for Soybeans with up to a 5-Year Moving Average
Forecast in Michigan

All Years
Without 2012–2013

and 2013–2014 Crop Years

Month

Optimal
Forecast
Method

Mean Absolute
Forecast Error

(cents/bu)

Optimal
Forecast
Method

Mean Absolute
Forecast Error

(cents/bu)
Forecast Horizon = 4 weeks

September Naïve 25.82 Naïve 32.31
October MA4 12.66 MA4 9.90
November MA5 13.12 MA5 8.06
December MA4 9.85 MA5 4.78
January MA5 15.93 MA3 17.38
February MA5 11.70 MA4 14.43
March Naïve 4.27 Naïve 11.67
April MA3CI 1.88 MA4CI 6.44
May Naïve 8.69 Naïve 10.03
June Naïve 7.12 Naïve 12.39
July Naïve 23.14 Naïve 19.09
August Naïve 37.12 Naïve 22.39

Forecast Horizon = 12 weeks
September Naïve 38.80 Naïve 40.92
October MA4 12.66 MA4 9.90
November MA5 13.12 MA5 8.06
December MA4 9.85 MA5 4.78
January MA5 15.93 MA3 17.38
February MA5 11.70 MA4 14.43
March MA5 14.66 MA5 16.76
April MA3CI 10.12 MA5 12.97
May MA5CI 20.21 MA5 17.03
June Naïve 20.10 Naïve 20.99
July Naïve 36.12 Naïve 27.69
August Naïve 50.09 Naïve 30.99

Forecast Horizon = 20 weeks
September MA5 45.07 MA5 41.61
October MA4 12.66 MA4 9.90
November MA5 13.12 MA5 8.06
December MA4 9.85 MA5 4.78
January MA5 15.93 MA3 17.38
February MA5 11.70 MA4 14.43
March MA5 14.66 MA5 16.76
April MA5 11.85 MA5 12.97
May MA5CI 24.45 MA5 17.02
June MA5CI 26.49 Naïve 25.94
July Naïve 42.91 Naïve 32.64
August Naïve 56.88 Naïve 35.95

Notes: See notes on the title page.
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Table S10. Optimal Forecast Method and Corresponding Mean Absolute Forecast Error
(cents/bu.) by Month and Forecast Horizon for Soybeans with up to a 5-Year Moving Average
Forecast in Ohio

All Years
Without 2012–2013

and 2013–2014 Crop Years

Month

Optimal
Forecast
Method

Mean Absolute
Forecast Error

(cents/bu)

Optimal
Forecast
Method

Mean Absolute
Forecast Error

(cents/bu)
Forecast Horizon = 4 weeks

September Naïve 34.73 Naïve 41.03
October MA3 11.20 MA5 10.47
November MA2 15.23 MA5 13.04
December MA2 12.37 MA2 11.34
January MA2 21.82 MA5 24.84
February Naïve 15.89 Naïve 21.59
March Naïve 8.83 Naïve 17.05
April Naïve 3.29 Naïve 10.90
May Naïve 11.75 Naïve 13.61
June Naïve 7.82 Naïve 15.83
July Naïve 23.75 Naïve 22.34
August MA5CI 33.80 MA5CI 27.21

Forecast Horizon = 12 weeks
September Naïve 46.26 Naïve 49.62
October MA3 11.20 MA5 10.47
November MA2 15.23 MA5 13.04
December MA2 12.37 MA2 11.34
January MA2 21.82 MA5 24.84
February MA2 20.05 MA5 25.37
March Naïve 20.36 Naïve 25.64
April MA5CI 14.62 Naïve 19.49
May MA5CI 22.40 Naïve 22.20
June Naïve 19.35 Naïve 24.42
July MA5CI 34.24 Naïve 30.93
August MA5CI 42.11 MA5CI 33.36

Forecast Horizon = 20 weeks
September Naïve 50.79 Naïve 52.86
October MA3 11.20 MA5 10.47
November MA2 15.23 MA5 13.04
December MA2 12.37 MA2 11.34
January MA2 21.82 MA5 24.84
February MA2 20.50 MA5 25.37
March MA2 22.92 MA3 27.04
April MA5CI 17.87 MA5 21.79
May MA5CI 25.65 Naïve 25.44
June MA5CI 22.85 MA5CI 27.26
July MA5CI 37.49 MA5CI 33.75
August MA5CI 45.36 MA5CI 35.64

Notes: See notes on the title page.
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