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The Impact of Input and Output Decisions on
Agricultural Production Risk

Jean-Paul Chavas, Joseph Cooper, and Steven Wallander

This paper investigates the measurement of risk exposure in agriculture and its linkages with input
and output decisions. We develop a conceptual analysis of risk under general risk preferences,
including cumulative prospect theory. The approach is applied to a sample of U.S. farms from
1996 to 2011. In a multi-input, multi-output framework, the analysis documents the effects
of management on production risk exposure and estimates the cost of risk under alternative
frameworks. We find that variable inputs contribute to increasing risk, while livestock contributes
to reducing risk. Nonfarm income reduces the cost of risk.
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Introduction

Risk is pervasive in agriculture. Unpredictable insect damages or weather shocks can have large
adverse effects on farm production. Risk exposure has generated much interest in the economics of
risk in agriculture (e.g., Harwood et al., 1999; Just and Pope, 2002; Key, Prager, and Burns, 2015).
Farmers can select from a variety of risk management strategies to cope with unforeseen events.
The last decade has seen U.S. agricultural policy move toward supporting insurance programs
for yield, price, or revenue shortfalls, with the 2014 Farm Act eliminating fixed direct payments
(e.g., Effland, Cooper, and O’Donoghue, 2014; O’Donoghue et al., 2016; Shields, 2015). However,
some puzzles remain. One such puzzle is that, while most farmers have been found to be risk
averse (e.g., Lin, Dean, and Moore, 1974; Dillon and Scandizzo, 1978; Binswanger, 1981; Antle,
1987), they are typically not willing to pay much for crop insurance (e.g., Hazell, Pomareda, and
Valdes, 1986; Smith and Glauber, 2012). While most farmers face large risk, why are they are so
unwilling to participate in unsubsidized crop insurance? One possible explanation is that they see
their own risk management strategies to be good substitutes for insurance. Another puzzle involves
the management of agricultural price risk. While futures and option markets for many agricultural
commodities are now well established, it remains difficult to explain why so few farmers participate
in these markets (e.g., Garcia and Leuthold, 2004, p. 240). While the theory of behavior under risk is
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well-developed,1 these puzzles indicate the presence of a gap between the theory and the behavioral
rules associated with risk management.

This paper is motivated as an attempt to fill this gap. We explore how insurance and other risk
management options may interact with one another in agriculture. Addressing this issue requires
analyzing the economics of risk management in agriculture. This is challenging to the extent that
the empirical investigation of production risk and its welfare effects are complex (e.g., Just and Pope,
2002). The objective of this paper is to take a new look at these issues and to gain new insights on
the role of management and risk in agriculture. We define management broadly to include the choice
of inputs and outputs affecting farm income and risk exposure. We also evaluate the role played by
nonfarm income and its effects on the cost of risk.

This paper studies the measurement of risk exposure and its linkages with management and
makes three contributions. Our first contribution is to develop a conceptual approach to the
quantification of risk exposure and, based on that measure, an estimation of the cost of risk. The cost
of risk is defined as the farmer’s willingness to pay to replace a risky payoff by its mean. The analysis
is presented under general conditions in which risk preferences depend on the distribution function of
payoff. This covers cumulative prospect theory (CPT) (Kahneman and Tversky, 1979; Tversky and
Kahneman, 1992), which allows risk preferences to exhibit loss aversion and nonlinear weighting of
probabilities. It includes as a special case the expected utility (EU) model. There is growing evidence
that CPT provides a better representation of risk preferences than the EU model (see Barberis, 2013,
for an overview of the literature), including for farmers (e.g., Liu, 2013; Bocquého, Jacquet, and
Reynaud, 2014). Du, Feng, and Hennessy (2017) find that the EU model cannot explain farmers’
observed insurance choice. Focusing on income risk, Babcock (2015) finds that neither EU nor
CPT can explain farmers’ crop insurance behavior.2 By quantifying risk exposure, conditional on
selected management decisions, our paper focuses on the potential role of management. Considering
management strategies and insurance as substitutes can help explain why farmers do not express a
greater willingness to insure.

Our conceptual contribution is to develop a microeconomic model that includes both price and
production risk and general risk preferences using the directional distance function proposed by
Luenberger (1995) and Chambers, Chung, and FÃd’re (1996) to represent the production technology.
This representation applies to multi-output production processes typically found in agriculture.
Temporal changes in the directional distance function measure changes in the production frontier.
Measures of such changes are used to evaluate technological change and production risk (i.e., the
productivity effects of unanticipated shocks). Going beyond previous literature, we investigate the
role of both inputs and outputs in risk exposure and risk management.

Our second contribution involves the empirical assessment of price risk and production risk
relying on quantile regression. Quantile regression provides a flexible representation of conditional
distribution functions (Koenker, 2005), allowing us to examine how management and technology
affect the distribution of production risk. Using directional distance measures and applied to a multi-
output production process, the analysis documents how inputs and outputs affect productivity under
production risk. Previous research has found that such effects can be significant (e.g., Just and Pope,
2002). For example, Just and Pope (1979) found that fertilizer use tends to increase production risk

1 The economic literature on Pareto-efficient allocations under risk/uncertainty is extensive. Using a state-contingent
approach, Debreu (1959, p. 100) showed that, under Pareto efficiency and perfect markets (including risk markets), production
decisions under risk/uncertainty are consistent with profit maximization. In this case, efficient firm-level production decisions
under risk/uncertainty are independent of consumer/risk preferences (Chambers, 2000; Chambers and Voica, 2017). But
frictions in financial markets mean that risk markets are typically incomplete, in which case risk and risk aversion affect
production decisions (e.g., Sandmo, 1971; Lin, Dean, and Moore, 1974; Pope and Chavas, 1994). The existence of “puzzles”
in agricultural risk management reflects both imperfections in risk markets and complexities in risk management (Just and
Pope, 2002).

2 Babcock (2015) also found that loss aversion can help explain farmers’ insurance behavior under loss aversion if loss is
perceived when insurance indemnity is less than the premium paid. Note that this is a rather peculiar definition of loss (e.g.,
compared to loss defined in terms of income risk).
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(i.e., that fertilizer is “risk increasing”). Our paper is apparently the first to use quantile regression to
evaluate risk in a multi-input, multi-output context. Our analysis provides a framework to evaluate
how inputs and outputs affect production risk. This is an important step in the assessment of the role
of management in agricultural risk.

Our third contribution is an application to a sample of farms. Our framework is applied to U.S.
farm-level data from the U.S. Department of Agriculture Agricultural Resource Management Survey
(ARMS) over the period 1996–2011. The annual survey provides detailed information on farm inputs
and outputs of selected farms.3 Risk preferences can vary considerably across individuals (e.g.,
Halek and Eisenhauer, 2001; Dohmen et al., 2011; Liu, 2013; Bocquého, Jacquet, and Reynaud,
2014; Barseghyan et al., 2018). Without panel data, unobserved heterogeneity makes it difficult
to estimate individual risk preferences using secondary data.4 Such issues constrain our empirical
analysis and lead us to restrict our evaluation to selected specifications of risk preferences.

The analysis considers six netputs: two outputs and four inputs. The two outputs are: (i) crops
and (ii) livestock. Both outputs are measured as implicit quantities defined as revenue divided by
the corresponding price index. The four inputs are: (i) variable inputs, (ii) land, (iii) labor and (iv)
capital (excluding land). Variable inputs and capital are measured as implicit quantities. We find
that variable inputs contribute to increasing risk, while livestock contributes to reducing risk. We
also show how nonfarm income reduces the cost of risk. These effects can be large, indicating that
farmers have options in managing their risk exposure. When management has large effects on risk
exposure, farm management strategies can behave as a substitute for insurance, providing a possible
explanation for why farmers do not express more interest in participating in crop insurance schemes.

Decisions under Risk

Consider a decision maker choosing a m-netput vector zzz = (z1, . . . ,zm) under risk. We use the netput
notation, in which outputs in z are positive while inputs are negative. The risk is represented by a
random vector eee∈Ω, where Ω is the set of states of nature. In agriculture, there are two important
sources of risk: production risk, due to unanticipated weather shocks and damages from pests and
weeds, and price risk, due to volatile agricultural markets. In our analysis, the state e represents both
price risk and production risk facing the decision maker.

The technology associated with netputs z under state e is given by the feasible set
T (e, t)⊂Rm, where t is a technology index. Under state e and technology index t, denote the state-
contingent netput decision by zzz(e, t) : ΩR→Rm. In this context, zzz(e, t)∈ T (e, t) means that the
state-contingent decision zzz(e, t) is feasible under state e∈Ω and technology t. Any change in the
technology index t captures technological change. For netputs that are chosen ex ante (e.g., land
allocation decisions made before weather and market conditions are known), the feasible set T (e, t)
would restrict the corresponding netputs to be the same for all states e in Ω. Alternatively, for netputs
that vary with state e (e.g., crop yield that depends on weather conditions), the feasible set T (e, t)
represents how the production possibility set would change with state of nature e.5 In this context,
having T (e, t)⊂ T (e′, t) means that e′ is a more favorable state than e (as e′ expands the possibility
set relative to e). Throughout, we assume that the set T (e, t) is closed and has an upper bound for all
e∈Ω and all t.

3 Note that these data are a repeated cross section and not a longitudinal (panel) dataset (as different farms are sampled
every year).

4 Also, without panel data, we do not observe each farmer over time. This prevents us from evaluating either stochastic
dynamics or dynamic risk preferences (e.g., as done by Epstein and Zin, 1991; Chavas and Thomas, 1999). In addition, there
is evidence that risk and time preferences are not very stable over time (e.g., Chuang and Schechter, 2015). Thus, while
exploring risk management in a dynamic context is of interest (e.g., Farrin, Miranda, and O’Donoghue, 2016), this issue is
beyond the scope of this paper.

5 While the set T (e, t) provides a general representation of the technology for a given(e, t), it does not allow possibilities
of substitution across states.



516 September 2019 Journal of Agricultural and Resource Economics

Let ggg = (g1, . . . ,gm)∈Rm
+ be a nonstochastic reference bundle of netputs satisfying ggg 6= 0.

Following Luenberger (1995) and Chambers, Chung, and FÃd’re (1996), for a given g, e, and t,
the productivity of the decision zzz(e, t) can be evaluated using the directional distance function,

(1) D(zzz(e, t),e, t) =

{
maxβ{β : (zzz(e, t) + βggg)∈ T (e, t)} if a maximum exists

−∞ otherwise

}
.

For a given zzz(e, t), state e, and technology t, the directional distance function D(zzz(e, t),e, t)
provides a measure of the distance between zzz(e, t) and the upper bound of the feasible set T (e, t),
distance measured in number of units of the reference bundle ggg.

The properties of the directional distance function D(zzz(e, t),e, t) in equation (1) have been
analyzed by Luenberger (1995) and Chambers, Chung, and FÃd’re (1996). First, zzz(e, t)∈ T (e, t)
implies that D(zzz(e, t),e, t)≥ 0 (since β = 0 is feasible in equation 1). In this context, having
D(zzz(e, t),e, t) = 0 means that point zzz(e, t) is technically efficient as it located on the upper bound
of the feasible set T (e, t). Alternatively, having D(zzz(e, t),e, t)> 0) implies that point zzz(e, t) is
technically inefficient (as it is located below the production possibility frontier). Second, under free
disposal, the directional distance function D(zzz(e, t),e, t) provides a complete characterization of
the technology in the sense that {zzz : D(zzz(e, t),e, t)≥ 0}= T (e, t). Third, these properties hold for a
multi-input, multi-output technology.

For a given e and t, let p(e, t) = (ppp1(e, t), . . . , pm(e, t))∈Rm
++ be the vector of netput prices

under state e∈Ω. This reflects that, besides representing production risk, the states of nature also
include unanticipated price shocks. Using the netput notation (where outputs are positive and inputs
are negative), for a given state-contingent decision zzz(e, t), net income under state e and technology t
is [ppp(e, t)× zzz(e, t)] = ∑

m
i=1 pi(e, t)zi(e, t). Here, [p(e, t)× zzz(e, t)] measures net revenue (i.e., revenue

minus cost), the elements of zzz being positive for outputs (corresponding to revenue) and negative for
inputs (corresponding to cost).

Treating the state of nature e as a random vector, let F(η |zzz(·, t), t) = Pre∈Ω[p(e, t)zzz(e, t)≤ η ]
be the (possibly subjective) cumulative probability distribution of net income conditional on zzz(·, t)
and t. We consider the case in which the decision maker has a preference function, represented by
the utility functional V (F(·)). We assume that functional V (F) is continuous and nonsatiated in
income. Nonsatiation means that V (Fb)>V (Fa) for any Fa 6= Fb satisfying Fa(η)≥ Fb(η) for all
η ∈R, corresponding to first-order stochastic dominance under any rightward shift in the
distribution function from Fa to Fb.

The preference functional V (F(·)) has many models as special cases. This includes the
rank-dependent utility model, in which V (F(·)) =

∫
η

U(η)dG(F(η |zzz(·, t), t), where U(η) is a
von Neumann–Morgenstern utility function reflecting risk preferences and G(F) : [0,1]→ [0,1]
is a strictly increasing function satisfying G(0) = 0 and G(1) = 1. When G(F) 6= F , the model
corresponds to cumulative prospect theory (Tversky and Kahneman, 1992), which allows for
nonlinearity in probabilities (e.g., Kahneman and Tversky, 1979; Quiggin, 1982, 1993; Hong, 1983;
Gonzalez and Wu, 1999; Abdellaoui, 2000; Barberis, 2013). The model also includes as a special
case the expected utility model when V (F(·)) =

∫
η

U(η)dF(η |zzz(·, t), t) (i.e., when preferences are
linear in probabilities and the objective function reduces to EU(η), where E is the expectation
operator).

For a given t, the optimal choice of state-contingent netputs zzz(e, t) is given by

(2) max
zzz(·t)
{V (F(·)) : F(η) = Pr

e∈Ω
[ppp(e, t)× zzz(e, t)≤ η ],η ∈R;zzz(e, t)∈ T (t),e∈Ω,

which has solution zzz∗(·, t). In what follows, we explore the implications of risk and technology for
the optimal netput choice zzz∗(·, t) given in equation (2).
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The Cost of Risk

To assess the cost of risk, we need to relate netput choice with its efficiency implications.
The previous discussion suggests considering evaluating net income at the technically efficient
point [zzz(e, t) + D(zzz(e, t),e, t)ggg]. This seems reasonable to the extent that, under nonsatiation, the
producer would never want to choose netputs that are technically inefficient. Under technical
efficiency, the associated payoff is the adjusted net income π = η + D(zzz(e, t), t)(ppp(e, t)ggg), where
η = ppp(e, t)× zzz(e, t) and ppp(e, t)× ggg = ∑

m
i=1 pi(e, t)gi. We start with an alternative characterization

of optimal behavior.
We obtain the following key result (see the proof in the Appendix):

PROPOSITION 1. The optimization problem in equation (2) satisfies

max
zzz(·,t)
{V (F(·)) : F(η) = Pr

e∈Ω
[ppp(e, t)× zzz(e, t)≤ η ],η ∈R,zzz(e, t)∈ T (t),e∈Ω}

(3a)
= max

zzz(·,t)
{V (F ′(·)) : F ′(π) = Pr

e∈Ω
[ppp(e, t)× (zzz(e, t) + D(zzz(e, t),e, t)g)≤ π],π ∈R},

where F ′(π) is the distribution function of adjusted net income:

(3b) π = ppp(e, t)× zzz(e, t) + D(zzz(e, t),e, t)(ppp(e, t)× ggg).

Proposition 1 shows an alternative way to write the optimal choice zzz∗(·, t) that solves
equation (2). It shows that zzz∗(·, t) can be equivalently obtained as the solution to the
maximization problem stated on right side of equation (3a). Importantly, the feasibility constraint
zzz(e, t)∈ T (e, t) does not appear in this equivalent formulation, having been replaced by adding the
term [D(zzz(e, t),e, t)(ppp(e, t)× ggg)] to net income (as shown in equation 3b). Proposition 1 states that
optimal behavior can be represented by the right side of equation (3a) (i.e., by the maximization
of the utility functional over adjusted net income π). Importantly, under general risk and risk
preferences, Proposition 1 indicates that knowing the distribution function of D(zzz(e, t),e, t) provides
all the relevant information needed to assess the exposure to production risk.6 We rely on this result
in our subsequent analysis.

Next, we examine welfare measurements under risk. Let F ′(π|zzz(·, t), t) = Pre∈Ω[ppp(e, t)×
(zzz(e, t) + D(zzz(e, t),e, t)ggg))≤ π] be the probability distribution of adjusted net income π conditional
on zzz(·, t) and t. And let F0(k) be a distribution function where all the probability mass is located on
point k.

DEFINITION 1. For a given t and zzz(·, t), the certainty equivalent associated with a distribution
function F ′(·|zzz(·, t)) is the sure income CE satisfying

(4) V (F ′(π|zzz(·, t), t) =V (F0(CE)).

Denote the solution of equation (4) by CE(zzz(·, t), t). The certainty equivalent CE(zzz(·, t), t) is
a sure monetary amount that provides a convenient welfare measure under risk. Indeed, under
nonsatiation, using equation (4) and substituting equation (3a) into equation (2), the maximization
problem in equation (2) is equivalent to maximizing the certainty equivalent CE(zzz(·, t), t). For a
given technology index t, it follows that the optimal netput choice zzz∗(e, t) in equation (2) can be
alternatively written as the solution to the optimization problem

(5) CE∗(t) = max
zzz(·,t)
{CE(zzz(·, t), t)},

6 To illustrate, consider the special case where ggg = (1,0, . . . ,0) and z1 is the first output. Letting zzz = (z1,zzza),
where zzza = (z2, . . . ,zm), it follows that D(zzz(e, t),e, t) = f (zzza(e, t),e)− z1(e, t), where f (zzza(e, t),e, t) = maxz1(e,t){z1(e, t) :
(z1(e, t),zzza(e, t))∈ T (e, t)} is the classical production frontier for z1 given zzza, e and t. Letting ppp = (p1, pppa), where pppa are the
prices of za, net adjusted income in equation (3b) becomes π = p1(e, t) f (zzza(e, t),e, t) + pppa(e, t)× zzza(e, t), which is revenue
from z1 (when z1 is located on the production function f (zzza(e, t),e, t)) plus net income associated with zzza.
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where CE∗(t) is a monetary welfare measure of the decision maker.

DEFINITION 2. For a given t and zzz(·, t)), the implicit cost of risk is the risk premium R(zzz(·, t), t)
satisfying

(6) R(zzz(·, t), t) = M(zzz(·, t), t)−CE(zzz(·, t), t),

where CE(zzz(·, t), t) is defined in equation (4), π is adjusted net income as defined in equation (3b),
and

(7) M(zzz(·, t), t)≡
∫

e∈Ω

πdF(π|zzz(·, t), t)

is the mean of income π .

Under the state-contingent decision rule zzz(·, t) and technology t, the risk premium R(zzz(·, t), t)
in equation (6) is the sure amount of money the decision maker is willing to pay to replace random
income π by its mean, M. The sign of R(zzz(·, t), t) can be used to characterize the risk preferences
of the decision maker. In general, under decision rule zzz(·, t), the decision maker is said to be

risk averse
risk neutral
risk lover

 when R(zzz(·, t), t)


>

=

<

0. The expected utility model is obtained as a special case.

Indeed, under the expected utility model, equations 3, (4), and (6) become EU(π) =U(E(π)−−R),
where E is the expectation operator based on the distribution function F(·|zzz(·, t)). In this context,
R in equation (6) reduces to the Arrow–Pratt definition of the risk premium, where risk aversion
corresponds to a concave utility function U(π) (e.g., Pratt, 1964).

Combining equations (5) and (6), it follows that the optimal netput choice zzz∗(e, t) in equation (2)
or (5) can be alternatively written as the solution to the optimization problem

(8) CE∗(t) = max
zzz(·,t)
{M(zzz(·, t), t)− R(zzz(·, t), t)}.

Under technology index t, equation (8) identifies efficient decisions that maximize the certainty
equivalent of the decision maker under risk. Evaluated at the optimal zzz∗(e, t), it includes two terms:
expected income M(zzz(·, t), t) minus the cost of risk, as measured by R(zzz(·, t), t). In general, the cost
for risk R(zzz(·, t), t) depends on risk exposure, the netput choice zzz(·, t), and technology t.

Empirical Assessment of Risk

The usefulness of the previous analysis relies on knowing the distribution function of payoff and
the utility functional representing risk preferences. We now discuss empirical methods that can
provide a flexible and practical way to estimate the distribution function of payoff, including
both production risk and price risk. While the previous discussion allows for objective as well as
subjective probability assessments, our empirical analysis is limited to “objective probabilities,”
assessed from recorded sample information.7 The specification of risk preferences is discussed
subsequently.

7 Our focus on objective probabilities reflects in large part data constraints from our farm sample (discussed subsequently).
Indeed, we do not have a good empirical basis to evaluate subjective probabilities for three reasons: (i) as we are using
nonpanel data over the period 1996–2011, we do not know how the farmers in our sample may have perceived information
about the economic environment during this period; (ii) there is evidence that many farmers update their information in a
way inconsistent with Bayesian learning (e.g., Barham et al., 2015); and (iii) given the evidence that different farmers learn
at different rates (Barham et al., 2015, as presented by), modeling learning heterogeneity among farmers is a significant
challenge that goes beyond the scope of this paper. On that basis, our empirical risk assessment (including both price risk and
production risk) relies on probabilities assessed from recorded sample information.
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Production Risk

Our analysis of production risk relies on the directional distance function D(zzz(e, t),e, t) defined in
equation (1). As stated in Proposition 1, the directional distance function provides all the relevant
information about technology to assess optimal decisions under risk. On that basis, we proceed
estimating the directional distance function D(zzz(e, t),e, t). The analysis relies on observations of
production decisions made by different farms at different periods. Let zzz jt ∈Rm denote the m-vector
of netputs chosen by the jth farm at time t.8 We consider the case where a set of nt farmers is
observed at time t, all facing similar agroclimatic conditions (i.e., similar soil types and similar
weather conditions). In this context, letting Nt = {1, . . . ,nt}, we assume that all netput decisions
in {zzz jt : j ∈Nt} are made at time t under the same technology and the same state of nature et . To
support this assumption, the empirical analysis that follows focuses on a set of farms in a single
crop reporting district (CRD). Letting t represent both time and a technology index, it follows that
the observations in {zzz jt : j ∈Nt} can be used to estimate D(zzz(et , t),et , t) as a representation of the
underlying technology T (et , t).

The empirical analysis relies on a nonparametric approach, where the feasible set is represented
by the smallest set that includes all observations in {zzz jt : j ∈Nt} (e.g., Varian, 1984; Coelli et al.,
2005).9 The nonparametric approach has several advantages: (i) It provides a flexible representation
of the technology; (ii) it does not require making any parametric assumptions; (iii) it is not subject
to endogeneity bias (as it involves no parameter to estimate); and (iv) it is easy to implement
empirically.

We consider the following nonparametric representation of the technology T (et , t):

(9) T e(et , t) = max
λ

{zzz : zzz≤ ∑
k∈Nt

λkzzzkt ; ∑
k∈Nt

λk = 1;λk ≥ 0,k ∈Nt ,

where T e(et , t) is the smallest convex set that includes all observations in {zzz jt : j ∈Nt} under
variable returns to scale (Varian, 1984; Coelli et al., 2005). Investigations based on equation (9)
have been called data envelopment analysis (DEA) or frontier analysis. As t changes, T e(et , t) can
change due to the shocks et (reflecting risk effects that vary over time) as well as the technology
index t (reflecting technological change).

Substituting equation (9) into equation (1), evaluated at point z∈Rm, we obtain

(10) De(z,et , t) = max
β ,λ
{β : zzz + βggg≤ ∑

k∈Nt

λkzzzkt ; ∑
k∈Nt

λk = 1;λk ≥ 0,k ∈Nt},

where De(zzz,et , t) measures the number of units of ggg separating point zzz from the upper bound of
the set T e(et , t). Obtaining De(zzz,et , t) is relatively easy: Finding the maximum in equation (10) is a
simple linear programming problem.

Next, consider that farms located in a given agroclimatic region are observed over time. Assume
that we have observations on {zzz jt : j ∈Nt} over S periods. Let τ ≡ {t1, t2, . . . , tS} be the set of
periods. In general, De(zzz,et , t) in equation (10) reflects the effects of management z, shocks et ,
and technology t. Treating the shocks e as random variables with a given probability distribution, it
follows that, conditional on (z, t), De(zzz,et , t) has the conditional cumulative probability distribution
function HD(c|zzz, t) = Pr[De(zzz,et , t)≤ c].

This conditional probability distribution can be evaluated as follows: First, choose a set of
netputs Z = {zzz1, . . . ,zzzn} reflecting n alternative management schemes. Second, using equation (10),
evaluate De(zzz,et , t) for all zzz∈ Z and all t ∈ τ . Third, define the conditional quantile QD(q|zzz, t) as
the inverse of the conditional distribution HD(c|zzz, t) : QD(q|zzz, t) = infc{c : HD(c|zzz, t)≥ q}, where q

8 Note that this does not require observing the same farmers over time. In other words, our analysis holds with or without
panel data.

9 An alternative approach would be to use a parametric approach, where the function D(zzz(et , t),et , t) is assumed to take a
parametric form (e.g., Aigner, Lovell, and Schmidt, 1977; Kumbhakar and Lovell, 2000; Coelli et al., 2005).
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denotes the qth quantile satisfying q∈ (0,1). Assume that QD(q|zzz, t) = XXX(zzz, t)ααα(q), where XXX(zzz, t)
is a vector of explanatory variables (that depend on zzz and t) and ααα(q) is a vector of parameters
associated with the qth quantile, q∈ (0,1). Then, the parameters ααα(q) can be estimated by quantile
regression (Koenker, 2005). By allowing the parameters ααα(q) to vary across quantiles q, quantile
regression provides a flexible representation of (conditional) distribution functions. Under some
regularity conditions, the quantile estimates αααe(q) are consistent and have an asymptotic normal
distribution (Koenker, 2005). These estimates can then be used to obtain the quantile function
Qe

D(q|zzz, t) = XXX(z, t)αe(q). Fourth, inverting the quantile function QQQe
D(q|zzz, t) generates He

D(c|zzz, t),
a consistent estimate of the distribution function HD(c|zzz, t).

Proposition 1 establishes that knowing the distribution function of D(zzz(e, t),e, t) provides all
the relevant information to assess the exposure to production risk. Since the previous estimation
method gives an estimate of the probability distribution of D(zzz,e, t), it provides an empirical basis
to investigate exposure to production risk and its linkages with management.

Price Risk

When the production process takes place over an extended period of time, input decisions are made
before outputs and output prices are known. This can expose producers to significant output price
risk. In this case, there is a need to assess the exposure to price risk. Empirically, this can be done
by using historical data in the estimation of the price distribution. At time t, consider the case where
the ith output price pi evolves according to the stochastic difference equation pi,t = hi(pi,t−1,ut , t),
where ut is an independently distributed random variable. Then, the probability distribution
of the ith output price at time t is Hi(c|pi,t−1, t) = Pr[hi(pi,t−1,ut , t)≤ c]. Consider its inverse,
the associated conditional quantile Qi(q|pi,t−1, t) = infc{c : Hi(c|pi,t−1, t)≥ q}, where q∈ (0,1).
Following Koenker and Xiao (2006), assume that prices are driven by a quantile autoregressive
process, where Qi(q|pi,t−1, t) = γi,0(q) + γi,1(q)pi,t−1 + γi,2(q)t. Then, using historical data on pit ,
quantile estimation can generate consistent estimates of the parameters γi(q) (Koenker, 2005;
Koenker and Xiao, 2006). These estimates can be used to obtain consistent estimates of the quantile
function, Qe

i (q|pi,t−1, t), and its inverse, He
i (q|pi,t−1, t). Again, by allowing the parameters γi(q)

to vary across quantiles q, a quantile estimator provides a flexible representation of the marginal
distribution function of the ith price, He

i (q|pi,t−1, t).

Assessing the Joint Distribution of Risk

Typically, producers face both price risk and production risk. As discussed previously, production
risk can be assessed using the conditional distribution function He

D(c|z, t). And price risk
can be evaluated using the marginal distribution function of each output price He

i (q|pi,t−1, t).
Next, we need a joint assessment of risk across all sources of risk. This requires establishing
linkages between marginal distributions and the joint distribution of risk. This can be done
using a copula. From Sklar’s (1959) theorem, any k-dimensional joint distribution function
H(x1, . . . ,xk) = Pr[X1 ≤ x1, . . . ,Xk ≤ xk] can be expressed in terms of its marginal distributions
Hi(xi) = Pr[Xi ≤ xi], i = 1, . . . ,k, as

(11) H(x1, . . . ,xk) =C(H1(x1), . . . ,Hk(xk)),

where C : [0,1]k→ [0,1] is a copula. Thus, a copula provides a general way to link a joint distribution
to their associated marginal distributions (Nelsen, 1999). As we illustrate next, this can support an
empirical analysis of risk exposure in the presence of multiple sources of risk.
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Table 1. Summary Statistics (N = 1,484)
Netputs Mean Median Standard Deviation
Crop output 18.84 10.50 42.09
Livestock output 159.71 67.46 256.79
Variable inputs 127.06 62.24 184.49
Land (acres) 206.53 140.00 235.86
Labor (hours) 15,374.00 3,640.00 34,905.00
Capital 1,641.61 1,162.22 1,637.13
Age (years) 54.62 52.51 13.43

Notes: With the exception of land and labor, netputs are measured as implicit quantities, calculated as the ratio of revenue (or expense) to the
appropriate price index.

An Application to Agriculture

Our main focus is to investigate the effects of farm management and technology on risk exposure. In
this context, the decision maker is a farmer exhibiting risk preferences given by the utility function
V (F), where F is the distribution function of farm payoff reflecting both price risk and production
risk.

Data

Our analysis relies on data from the Agricultural Resource Management Survey (ARMS) covering
U.S. farms over the period 1996–2011. The survey is sponsored jointly by the USDA’s Economic
Research Service (ERS) and National Agricultural Statistics Service (NASS). The annual survey
provides detailed information on farm inputs and outputs as well as farm business and household
characteristics. The data used for this analysis are drawn from the Cost and Returns Report version
of ARMS, which is the “phase III” farm-level survey.10 Note that the survey draws a different sample
of farm operators every year, so the data form a repeated cross section and not a panel.

Our analysis studies a subset of the data, focusing on farms located in the South-Central CRD
in Wisconsin, which is a part of the U.S. Corn Belt. Farms in this CRD all face similar agroclimatic
conditions. Our analysis considers six netputs (m = 6): two outputs and four inputs. The two outputs
are: (i) crops and (ii) livestock. The four inputs are: (iii) variable inputs, (iv) land, (v) labor, and
(vi) capital (excluding land). Land is measured in acres of harvested land. Labor is the number of
hours worked on the farm. The other netputs are measured as implicit quantities (i.e., as values
[$ thousands] divided by corresponding price indices). The price indices for capital, variable inputs,
crops, and livestock are obtained from the ERS (http://www.ers.usda.gov/data-products/agricultural-
productivity-in-the-us).

The data are first evaluated for outliers. Any observation that involves a variable more than 10
times the value of its 0.8 quantile is treated as an outlier and is deleted. As a result, 153 observations
were dropped, resulting in a total of 1484 observations on farm inputs and outputs over the period
1996–2011. Table 1 reports summary statistics for the data.

Assessment of Production Risk

An important step in our analysis is the assessment of production risk. As discussed previously, this
involves estimating the distribution function of the directional distance function D(z,e, t) conditional
on (z, t). This is done following the nonparametric approach discussed previously. We choose the
reference bundle to be ggg = (g1,g2,0,0,0,0), where (g1,g2) is set equal to the sample mean of
outputs (implying that we set (g3, . . . ,g6) = 0). This means that the directional distance function

10 Additional details on the structure and design of ARMS and copies of the questionnaires are available at
https://www.ers.usda.gov/data-products/arms-farm-financial-and-crop-production-practices/documentation.
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Table 2. Quantile Estimation of the Conditional Distribution of Production Risk Represented
by De (·) in Equation (10), Selected Quantiles q

Variable qqq === 000...111 qqq === 000...333 qqq === 000...555 qqq === 000...777 qqq === 000...999

Intercept −23.82∗∗∗ −29.68∗∗ −36.11∗∗ −50.61∗∗ −59.61∗

Crop output 11.69∗∗∗ 15.56∗∗∗ 13.65∗∗∗ 10.86∗∗∗ 1.31
Livestock output 0.30 −0.22 −1.07∗∗∗ −1.70∗∗ −3.17∗∗∗

Variable input −0.72∗ −1.09∗∗ 0.19 1.34 4.98∗∗

Land 73.13 550.30∗∗∗ 666.80∗∗∗ 1,000.99∗∗∗ 1,807.89∗∗∗

Labor 1.10 13.45∗∗∗ 24.24∗∗∗ 29.99∗∗∗ 36.67∗∗∗

Capital 0.04 0.07∗∗ 0.06 0.10 0.08
t 0.01∗∗∗ 0.015∗∗∗ 0.018∗∗∗ 0.025∗∗∗ 0.03∗∗∗

Notes: Single, double, and triple asterisks (*, **, ***) indicate significance at the 10%, 5%, and 1% level.

D(zzz,e, t) can be interpreted as measuring proportional changes in mean outputs. Alternatively,
the outputs being goods sold in competitive markets, our directional distance function D(zzz,e, t)
measures proportional changes in mean gross revenue. In our analysis, the time/technology index
t covers 16 periods (S = 16), from 1996 to 2011. Holding z constant, changes in the directional
distance function over time capture changes in the production frontier, providing a basis to evaluate
the effects of unanticipated production shocks e and of technological change (as reflected in
changes in t). To assess the effects of management, we choose zzz∈ Z, where Z = {zzz1, . . . ,zzzn1996} and
zzz j = [zzz j,1996 + De(z j,1996,e1996,1996)ggg], j ∈N1996, N1996 being the set of sample farms observed in
1996. In this context, zzz j is a technically efficient point associated with the jth farm observed in
1996. Thus, choosing zzz∈ Z corresponds to choosing technically efficient management schemes in
1996. This guarantees that our evaluation points remain within the range of our data. Conditional
on technology t, we study the impact of management on production risk by examining how netputs
zzz∈ Z affect the distribution of temporal changes in the directional distance function.

Following the method discussed previously, we use quantile regression to estimate the
distribution function of De(zzz,e, t) obtained from equation (10), conditional on (z, t). Table 2 reports
the quantile regression results for selected quantiles q = (0.1,0.3,0.5,0.7,0.9). The results indicate
that both management (as reflected by input and output choices) and technology (as reflected by the
time-trend index t) have significant effects on the distribution function.

We conduct a series of hypothesis tests on the quantile regression model (see Table 3). First,
we test whether the regression parameters α(q) vary across quantiles q. Testing the null hypothesis
that ααα(0.1) = ααα(0.3) = ααα(0.5) = ααα(0.7) = ααα(0.9), the F-value was 10.74, with a p-value of 0.001.
Thus, we find strong statistical evidence that the regression parameters vary across quantiles.
Second, we test whether technological change (as represented by t) plays a role. Testing the
null hypothesis that the coefficient of t is 0, the p-values were consistently < 0.001 for quantiles
q = (0.1,0.3, ,0.5,0.7,0.9). Thus, technological change is found to have significant effects on the
distribution of production risk. Third, we test whether management affects the distribution of
production risk. Testing the null hypothesis that the coefficients of the management variables (inputs
and outputs) are all 0, the p-values were all <0.001 for quantiles q = (0.1,0.3, ,0.5,0.7,0.9). Thus,
we find strong statistical evidence that management plays a major role, as it affects exposure to
production risk. This key result and its implications will be discussed further.

The estimates from quantile regression presented in Table 2 provide useful information. First,
the time trend variable t has a coefficient of 0.018 at the median (q = 0.5), which corresponds to
a rate of technological change of about 1.8% per year, consistent with previous estimates for U.S.
agriculture (e.g., Ball et al., 1997). Interestingly, Table 2 shows that the coefficient of t is always
positive, indicating that technological progress contributes to a rightward shift in the distribution of
production risk. But the shift is smaller in the lower tail of the distribution and higher in the upper
tail, implying that technological progress shifts the upper tail of the distribution faster than it does
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Table 3. Hypothesis Testing about the Distribution of Production Risk
Hypothesis Test F Value Degrees of Freedom p-Value
H0: same parameters across quantiles (0.1, 0.3, 0.5, 0.7, 0.9) 10.74 (28, 2612) < 0.001∗∗∗

H0: no technical change
q = 0.1 100.97 (1, 520) < 0.001∗∗∗

q = 0.3 93.72 (1, 520) < 0.001∗∗∗

q = 0.5 111.39 (1, 520) < 0.001∗∗∗

q = 0.7 43.34 (1, 520) < 0.001∗∗∗

q = 0.9 57.43 (1, 520) < 0.001∗∗∗

H0: management has no effect
q = 0.1 7.62 (6, 520) < 0.001∗∗∗

q = 0.3 19.44 (6, 520) < 0.001∗∗∗

q = 0.5 16.77 (6, 520) < 0.001∗∗∗

q = 0.7 25.62 (6, 520) < 0.001∗∗∗

q = 0.9 37.94 (6, 520) < 0.001∗∗∗

Notes: Triple asterisks (***) indicate significance at the 1% level.

the lower tail. Therefore, holding management z constant, median productivity rises and the spread
of the distribution of production risk increases (i.e., exposure to production risk rises).

Second, Table 2 shows the effects of inputs on production risk. While increasing variable inputs
implies a rise in median productivity, it also amplifies risk exposure (as we will discuss further). The
increased spread can be seen in Table 2 through the effects of variable inputs on the lower tail and
upper tail of the distribution. This is consistent with the analysis of Just and Pope (1979) applied to
fertilizer. From Table 2, increases in land, labor, or capital are found to shift the whole probability
distribution to the right. But for land and labor, the shifts are faster in the upper tail, indicating that—
while these inputs contribute to improving median productivity—they also increase the skewness of
production risk (by increasing the spread of the distribution in the upper tail).

Table 2 also shows the effects of the output mix (crops vs. livestock) on production risk. Crop
output is found to contribute to shifting the distribution function to the right. In contrast, livestock
tends to shift the distribution to the left, especially in its upper tail. The distribution shifts reported
in Table 2 reflect basic characteristics of agriculture in the Corn Belt. Crops are more productive
than livestock, but they are also riskier (as crops increase exposure to “downside risk” located in
the lower tail of the distribution). And livestock is less risky: Livestock activities reduce exposure to
“upside risk” (located in the upper tail of the distribution) while not increasing exposure to downside
risk.

Our analysis is also used to evaluate the distribution of farm income: After re-estimating the
quantile regression model for all quantiles q∈ (0,1), the parameter estimates can be utilized to
simulate the distribution of De(zzz,et , t): He(c|zzz, t) = Pr[De(zzz,et , t)≤ c] (as discussed previously).

Evaluated at 2005 prices, [(p2005g)De(zzz,et , t)] gives a measure of gross revenue obtained under
netputs z and technology t. Using our quantile estimates of De(zzz,et , t), distribution functions of
this gross revenue are reported in Figure 1 under alternative scenarios. Figures 1a and 1b include
simulations of the effects of technological change and alternative management scenarios. Figure 1a
considers three situations: t = 2005 (treated as the base case), t = 2000, and t = 2010. Comparing
the distribution functions for different t documents the extent and nature of technological change.
Figures 1a and 1b also show how alternative management schemes affect farm income under
production risk by simulating the effects of an 80% increase in each netput use (denoted by “netput+”
in Figure 1). The effects of an 80% increase in crops and livestock are presented in Figure 1a. And
the effects of an 80% increase in variable inputs, land, labor, and capital are presented in Figure 1b.
As expected, Figure 1a confirms that technological progress generates a strong rightward shift in
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Figure 1a. Estimated Probability Distribution of Farm Income [(p2005 g) D(z,et , t)] under
Alternative Scenarios for Selected Years, Crop and Livestock

Figure 1b. Estimated Probability Distribution of Farm Income [(p2005 g) D(z,et , t)] under
Alternative Scenarios for 2005 and Selected Inputs

the distribution of farm income. It also shows that livestock is less productive but also less risky
than crops. And Figure 1b shows that variable inputs are risk-increasing (as they increase exposure
to both “upside risk” and “downside risk”). Figure 1 illustrates the large effects of technological
progress: The change in technology between 2000 and 2010 generates a larger shift in median farm
income than an 80% increase in any netput.

Assessment of Price Risk

As discussed previously, the empirical assessment of price risk relies on a quantile autoregression
model applied to output prices. Historical prices for crops and livestock were obtained
from the USDA. The parameter estimates are reported in Table 4 for selected quantiles,
q = (0.1,0.3,0.5,0.7,0.9). Table 4 shows that crop prices exhibit more dynamics than livestock
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Table 4. Estimation of the Distribution of Price Risk, AR(1) and Quantile Regression
Panel A: Crop Price, p1t

Quantile Regression, Selected Quantiles
Variables AR(1) qqq === 000...111 qqq === 000...333 qqq === 000...555 qqq === 000...777 qqq === 000...999

Intercept 0.122 0.266 0.303 0.142 −0.282 −0.278
p1,t−1 0.768∗∗∗ 0.614∗∗ 0.600∗ 0.783∗ 1.145∗∗∗ 1.287∗∗∗

t 0.020∗∗ 0.010 0.011 0.012 0.027∗ 0.017∗

R2 = 0.788

Panel B: Livestock Price, p2t

Quantile Regression, Selected Quantiles
Variables AR(1) qqq === 000...111 qqq === 000...333 qqq === 000...555 qqq === 000...777 qqq === 000...999

Intercept 0.634∗∗∗ 0.758 0.607∗ 0.519 0.892∗∗ 0.431
p2,t−1 0.090 −0.073 0.160 0.238 −0.173 0.465
t 0.023∗∗∗ 0.017 0.014 0.023∗ 0.028∗∗∗ 0.019∗∗

R2 = 0.732

Notes: Single, double, and triple asterisks (*, **, ***) indicate significance at the 10%, 5%, and 1% level.

prices. The quantile estimates of the effects of the time trend t indicate that the upper tails of the
price distributions shift up over time, indicating a rise in price risk for both crops and livestock.
Going beyond Table 4, quantile estimates of output prices were obtained for all quantiles q∈ (0,1).
The results were used to estimate the marginal distribution functions of output prices, providing an
empirical assessment of output price risk in the analysis that follows.

Assessment of Income Risk

Using the estimates De(z,et , t) from equation (10), consider farm income

(12) v(z,et , t) =
3

∑
k=1

pk(et)[zk + De(z,et , t)gk],

where p1(et) is the price of crops, p2(et) is the price of livestock, and p3 is the price of variable
inputs in 2005. Thus, v(zzz,et , t) in equation (12) measures farm income net of variable input costs
under both price and production risk.

As discussed previously, we use a copula to link the marginal distribution functions to the
joint distribution function, including production risk, and price risk for both crops and livestock.
We assume that the copula C(H1,H2, . . .) in equation (11) has a Gaussian distribution (Nelsen,
1999; Arbenz, 2013). Under a Gaussian distribution, the matrix of correlation coefficients ρ gives
sufficient statistics for the copula. In this context, the density function of a Gaussian copula
is 1√

det(ρ)
exp{−0.5[u1,u2, . . .][ρ

−1 − I][u1,u2, . . .]
T}, where ui = Φ−1(Hi), i = 1,2, . . ., Φ−1 being

the inverse standard normal distribution function (Nelsen, 1999; Arbenz, 2013). The correlation
coefficients in ρ reflect the stochastic linkages between the price of crops, the price of livestock, and
production risk. Empirical evidence indicates that such correlations vary among commodities, across
space, and over time (e.g., Harwood et al., 1999; Tejeda and Goodwin, 2009). Previous research has
found that production risk and price risk tend to be negatively correlated (Harwood et al., 1999;
Dismukes and Coble, 2006) and that crop price and livestock price tend to be positively correlated
(Tejeda and Goodwin, 2009). On that basis, our analysis assumes the correlation coefficients to be
−0.3 between production risk and crop price, −0.1 between production risk and livestock price;
and +0.2 between crop price and livestock price. These correlation coefficients were then used to
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parametrize the copula C(H1,H2, . . .) in equation (11), generating an estimated representation of
income risk across all states, including both production risk and price risk for crops and livestock. In
turn, this was used to simulate the distribution function of income v(z,et , t) in equation (12) under
alternative scenarios involving management z∈ Z and technologya t ∈ T . Such simulations provide
the basis for the risk analysis that follows.

Risk Preferences

Analyzing the cost of risk depends on risk preferences. Following the discussion presented
previously, risk preferences are represented by the function V (F(·)) =

∫
e∈Ω

U(·)dG(F(·|zzz(·, t), t).
Let total income be (w + v)> 0, where w is nonfarm income and v is farm income given in
equation (12). We consider the following risk preferences:

(13a) U(w + v) =


(w+v)1−r1−1

1−r1
− (w+L)1−r1−1

1−r1

k[ (w+v)1−r2−1
1−r2

− (w+L)1−r2−1
1−r2

]

 if

{
v≥ L

v < L

}
,

where L is a given threshold point and k ∈R++]. Following Prelec (1998),

(13b) G(F) = exp[−(− log(F))α ],

where α ∈ (0,1] is a probability weight. When k = 1 and α = 1, equations (13a) and (13b) reduce
to the expected utility (EU) model. In addition, when r1 = r2 = r, equations (13a) and (13b) become
an EU model under constant relative aversion (CRRA), with r as the Arrow–Pratt relative risk
aversion coefficient and EU(w + v) =

∫
e∈Ω

(w+v)1−r−1
1−r dF(e|z(·, t), t) (Pratt, 1964; Arrow, 1965). As

argued by Gollier (2001), CRRA has been commonly assumed in the analysis of risk aversion,
the coefficient of relative risk aversion r being typically in the range from 0 (corresponding to
risk neutrality) to 5 (corresponding to a high level of risk aversion). On that basis, we report our
welfare evaluation for r = 1.5, corresponding to a moderate level of risk aversion.11 When k 6= 1
and α ∈ (0,1), equations (13a) and (13b) correspond to a non-EU preference function in two ways.
First, including k > 1 in equation (13a) introduces a kink in the utility function at the threshold
point L, allowing for “loss aversion” as risk preferences can differ between favorable outcomes
(when v≥ L) and unfavorable outcomes (when v < L) (Kahneman and Tversky, 1979; Liu, 2013).
Second, including α < 1 in equation (13b) introduces nonlinearity in the probabilities: The G(F)
function then has an inverted S-shape overweighting the probability of rare events (see Tversky and
Kahneman, 1992; Prelec, 1998; Neilson, 2003; Fehr-Duda and Epper, 2012; Barberis, 2013). Liu
(2013) and Bocquého, Jacquet, and Reynaud (2014) present evidence that farmers tend to overweight
such probabilities.

In what follows, we report results under two risk preference scenarios. The first scenario
corresponds to expected utility (EU) preferences, where r1 = r2 = r = 1.5, k = 1, and α = 1. The
second scenario involves cumulative prospect theory (CPT), where r = 1.5, k = 2, L = 50, and
α = 0.8. The choice of α = 0.8 is consistent with the empirical evidence presented in Liu (2013)
and Bocquého, Jacquet, and Reynaud (2014). The threshold point L = 50 is located within the payoff
range but below the mean payoff in 2005. This CPT scenario illustrates how departures from the EU
model can affect the cost of risk.12

11 The simulation analysis was also done under different levels of risk aversion r. As expected, a higher (lower) risk
aversion coefficient r increased (reduced) the cost of risk.

12 We also conducted a sensitivity analysis on the CPT parameters (α,k,L). The results showed how the simulation results
can be affected by these parameters. The results (not reported here) are available from the authors upon request.
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Table 5. Cost of Risk R and R/M under Alternative Management Scenarios

Expected Utility, EU Cumulative Prospect Theory, CPT
rrr === 111...555,,, ααα === 111,,, kkk === 111 rrr === 111...555,,, ααα === 000...888,,, kkk === 222

Scenarios RRREEEUUU RRREEEUUU///MMM RRRCCCPPPTTT RRRCCCPPPTTT ///MMM

Year 2005 11.40 0.115 14.92 0.151
Year 2010 13.10 0.111 15.72 0.134

Crop+ 10.52 0.101 12.87 0.124
Livestock+ 3.61 0.021 4.87 0.029

Variable input+ 26.88 0.549 37.99 0.776
Land+ 14.74 0.127 18.04 0.156
Labor+ 14.98 0.129 19.00 0.164
Capital+ 11.88 0.113 14.40 0.136

Ninc+ 9.42 0.079 11.51 0.097

Estimates of the Cost of Risk

We use the quantile estimates reported previously to evaluate the distribution function of D(zzz,e, t)
conditional on (zzz, t). These estimates are used to estimate farm income v in equation (12) and
mean household income M(zzz, t) = E(w + v). After replacing π by (w + v), the certainty equivalent
CE(zzz, t) is obtained from equation (4) and the cost of risk R(zzz, t) from equation (6). The results are
reported in Table 5 under selected scenarios evaluating the role of technology t and management
z.13 Table 5 also reports the relative cost of risk R/M, measuring the proportion of mean income a
farmer would be willing to pay to eliminate all production and price risk.

First, Table 5 reports that, evaluated at means values under 2005 conditions, R/M amounts to
11.5% of mean income under EU and 15.1% of mean income under CPT. This shows that the cost
of risk can be relatively large, reflecting the importance of agricultural risk. In turn, this indicates
a strong willingness to insure against income risk either under EU or CPT. This result is consistent
with the analysis presented by Babcock (2015). Table 5 reports that prospect theory increases the
farmer’s willingness-to-pay to eliminate risk relative to a more traditional EU specification, although
the differences between REU and RCPT is not very large. Table 5 also reports that, depending
on management, the relative cost of risk R/M varies from 0.021 to 0.776. Thus R amounts to
between 2% and 78% of expected net income, indicating that the cost of risk can vary considerably
across management scenarios. The relative cost of risk R/M is lowest (0.021, or 2.1%) under the
scenario (livestock+, EU), reflecting that livestock is a low-risk enterprise. And R/M is highest
(0.776, or 77.6%) under the scenario (Variable Input+, CPT), reflecting that variable inputs are risk
increasing.14 This documents our key result: Management can have sizable effects on the cost of
risk. As such, management strategies can provide effective options to reduce risk exposure and
the associated cost of risk. Our analysis indicates that neglecting these options would provide an
incomplete evaluation of the economics of risk in agriculture.

Second, comparing t = 2005 with t = 2010, Table 5 shows that technology has a positive effect
on the cost of risk R. Between 2005 and 2010, REU rises from 11.40 to 13.10 (or 14.9%) and RCPT
rises from 14.92 to 15.72 (or 5.3%). Yet between 2005 and 2010, mean income rises at least as
fast as the cost of risk, implying that the relative cost of risk does not increase: R/M stays at about
0.11% under EU, and it declines from 0.151 to 0.134 under CPT. This is another important result:

13 Unless otherwise indicated, the evaluations are conducted at sample means, with w = 30 and t = 2005.
14 This does not imply that farmers should produce more livestock or use lower levels of variable inputs. Indeed, the cost

of risk R captures only a part of the economic motivation for a particular management strategy.



528 September 2019 Journal of Agricultural and Resource Economics

While technological change has increased both mean income and income risk, the effects of new
agricultural technologies have not increased the relative cost of risk R/M.

Third, Table 5 reports the effects of management z on the cost of risk R. Recall that “netput+”
denotes situations involving an 80% increase in the corresponding netput. Table 5 reports that
alternative management schemes have major impacts on the cost of risk R. At one extreme, livestock
offers the least amount of production risk: Under “livestock+,” the relative cost of risk R/M declines
to 0.115 to 0.021 under EU and from 0.151 to 0.029 under CPT. Again, this documents that livestock
production involves much lower risk exposure than crops. At the other extreme, variable inputs can
contribute to increasing production risk: under “variable netput+,” the relative cost of risk R/M rises
sharply from to 0.115 to 0.549 under EU and from 0.151 to 0.776 under CPT. Again, it means that
variable inputs are “risk increasing.”

Finally, Table 5 reports another scenario, denoted by “Ninc+,” where nonfarm income w is
increased by 20 ($20,000). Table 5 shows that increasing nonfarm income reduces the cost of risk
R from 11.40 to 9.42 (or −17.3%) under EU and from 14.92 to 11.51 (or −29.6%) under CPT.
This reflects important income effects: Under CRRA, the farmer exhibits decreasing absolute risk
aversion and the cost of risk declines with wealth (Pratt, 1964). This is another key result: Our
analysis shows that nonfarm income can contribute to significant reductions in the cost of risk (and
thus in the incentive to insure).

The cost of risk R reported in Table 5 measures the willingness-to-pay to eliminate risk. But risk
elimination is typically not feasible. Next, we evaluate the welfare effects associated with marginal
reductions of exposure to downside risk as typically done in insurance schemes. Letting Qi be the
ith quantile of income π , we consider πi = max{π,Qi} as the income received after eliminating
the exposure to income risk below Qi and moving the associated probability mass to Qi. This is
the scenario of a stylized subsidized insurance scheme, in which the farmer does not pay for the
insurance contract while benefiting from the associated risk reduction. Denote the mean income of
πi by M(Qi), which is an increasing function of Qi. We also consider the case where income is
[πi + M(Q0)−M(Qi)], corresponding to a fair insurance contract that eliminates the risk below Qi
while keeping expected income constant. This is the scenario in which the farmer pays for insurance,
keeping expected income constant, the entire benefit of the insurance scheme coming from the
associated risk reduction. Holding management constant, we apply our analysis to the evaluation
of risk under these alternative insurance schemes. Evaluating the effects of eliminating risk below
the ith quantile, we denote the cost of risk by R(Q) under subsidized insurance and by R′(Q) under
fair insurance. The results are presented in Table 6 for both EU and CPT risk preferences under
selected quantiles.

As expected, Table 6 shows that eliminating the risk below quantile Qi always increases expected
income M(Qi). These effects can be substantial: M(Qi) goes from 98.99 at Q0 to 110.14 (+11.4%)
at Q0.5. By reducing exposure to risk, increasing Qi also reduces the cost of risk. Table 6 indicates
that these effects are notable.

First, consider the case of subsidized insurance, where πi = max{π,Qi}. Table 6 shows that REU
declines from 11.40 at Q0 to 8.08 at Q0.3 and to 5.10 at Q0.5. And RCPT declines from 14.92 at Q0
to 8.24 at Q0.3 and to 4.41 at Q0.5. Finding that RCPT differs from REU indicates that the willingness
to insure can vary under CPT compared to EU. Table 6 reports the relative cost of risk defined as
the ratio R/M (i.e., the cost of risk R as a proportion of expected income M). Figure 2 reports the
relationships between the relative cost of risk R/M and the level of risk protection that varies with
Qi. Based on subsidized insurance schemes πi = max{π,Qi}, REU/M declines from 0.115 at Q0 to
0.079 at Q0.3 and to 0.046 at Q0.5. This demonstrates that the cost for risk decreases when insurance
provides greater risk protection. And RCPT/M declines from 0.151 at Q0 to 0.040 at Q0.5. As showed
in Figure 2, the relative cost of risk R/M follows similar patterns with respect to q under expected
utility EU versus CPT.

Alternatively, under fair insurance schemes, where income is [πi + M(Q0)−M(Qi)], Table 6
shows that the relative cost of risk R′EU/M declines from 0.115 at Q0 to 0.056 at Q0.5. And R′CPT/M
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Table 6. Cost of Risk R under Alternative Income Insurance Scenarios: R(Qi) for Subsidized
Insurance and R′(Qi) for Fair Insurance

Quantile
PPPrrr [πππ ≤≤≤Qi] === iii QQQ0 QQQ0.2 QQQ0.3 QQQ0.4 QQQ0.5 QQQ0.6 QQQ0.7

Mean payoff M (Qi) = E [max(π,Qi)]
($thousands)

98.99 100.32 102.70 105.99 110.14 116.94 129.05

Cost of risk under EU ,
r = 1.5,α = 1,k = 1

REU (Qi) 11.40 9.82 8.08 6.50 5.10 3.52 1.81
R′EU (Qi) 11.40 9.94 8.36 6.89 8.38 6.75 4.72

REU (Qi)/M(Qi) 0.12 0.10 0.08 0.06 0.05 0.03 0.01
R′EU (Qi)/M(Qi) 0.12 0.10 0.08 0.07 0.06 0.04 0.02

Cost of risk under CPT ,
r = 1.5,α = 0.8,k = 2

RCPT (Qi) 14.92 10.86 8.24 6.10 4.41 2.68 1.02
R′CPT (Qi) 14.92 10.99 8.53 6.52 4.91 3.23 1.50

RCPT (Qi)/M(Qi) 0.15 0.11 0.08 0.08 0.04 0.02 0.01
R′CPT (Qi)/M(Qi) 0.15 0.11 0.09 0.07 0.05 0.03 0.02

Notes: M (Qi) = E [max(π,Qi)] is the mean payoff obtained after eliminating the risk below the ith quantile Qi, the ith quantile of π . The cost
of risk R is obtained under two insurance scenarios: R(Qi) under subsidized insurance, where πi = max{π,Qi}; and R′ (Qi) under fair
insurance, where income is [πi + M (Q0 )−M (Qi )]. The estimates are evaluated at t = 2005 and at sample means.

Figure 2. Relative Cost of Risk under Alternative Insurance Schemes R(Qi)/M (Qi) under
Two Scenarios: Subsidized Insurance and Fair Insurance

declines from 0.151 at Q0 to 0.050 at Q0.5. The differences between subsidized insurance and fair
insurance are due to income effects: Keeping expected income constant reduces income under the
fair insurance scheme, implying a relative increase in the cost of risk (under CRRA). Table 6 reports
that these income effects are present but of moderate magnitude.

In addition, from Table 6, note that any risk reduction in the range below Q0.3 gives a relatively
large decline in the cost of risk R compared to a corresponding increase in mean payoff M. This
would correspond to insurance coverage for catastrophic events. Thus, within the range below Q0.3,
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Figure 3. Risk Benefit of Alternative Insurance Schemes [R(Q0)− R(Qi)] under Two
Scenarios: Subsidized Insurance and Fair Insurance

risk redistribution has the potential to generate positive welfare benefits. But any risk reduction in
the range above Q0.4 generates a larger increase in mean payoff M than a reduction in the cost of risk
R. In other words, in situations where Qi ≥Q0.4, the welfare effects of increasing q are dominated
by changes in mean payoff M, indicating that the welfare benefit of insurance schemes on the cost of
risk can be relatively large, but only when they reduce risk in the lower tail of the payoff distribution.

Finally, note that the risk benefit of an insurance scheme eliminating risk below q can be written
as [R(Q0)− R(Qi)] under subsidized insurance and as [R′(Q0)− R′(Qi)] under fair insurance.
Estimates of these risk benefits are reported in Figure 3, which shows that the risk benefits from
insurance are higher under CPT compared to EU . In other words, EU would underestimate the
risk benefit of insurance compared to CPT for both subsidized insurance and fair insurance.
Our sensitivity analysis on the parameters (a,k,L) indicates that this result is due in part to the
overweighing of the probability of rare events. When the risk eliminated by insurance corresponds
to low-probability events in the lower tail of the distribution, CPT would put more weight on the
probability of these events, leading a higher willingness to insure under CPT than EU . These
results are similar to the ones obtained by Babcock (2015). They indicate that, in the evaluation
of income risk under risk aversion, neither EU nor CPT can explain why farmers do not express
more willingness to buy insurance.

Comparing the results presented in Figure 3 and Table 5 is instructive. As noted previously,
Table 5 shows that reducing variable inputs or increasing livestock has large and negative impacts
on the cost of risk R. Importantly, such impacts are similar in magnitude to the risk benefits of
insurance reported in Figure 3. This is one of our key results: When management has large effects
on risk exposure, farm management strategies can behave as substitute for insurance, thus providing
a possible explanation for why farmers do not exhibit a stronger willingness to participate in crop
insurance programs.

Conclusion

This research has developed an analysis of risk exposure and the cost of risk. We developed
a conceptual model under general conditions. The assessment of production risk relies on the
directional distance function. Quantile regression is used to investigate the role of management
and its effects on risk exposure. Finally, the conceptual analysis of the cost of risk is presented
under general risk preferences. This analysis is applied to a sample of U.S. farms in the Corn
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Belt. It documents how technology and management can affect risk exposure. We find that variable
inputs are risk-increasing but that livestock is risk-reducing and that nonfarm income contributes
to reducing the cost of risk. These effects can be large. Our analysis shows that farmers have many
options in managing their risk exposure. Neglecting such management options (e.g., in the evaluation
of insurance) would provide an incomplete view of risk behavior. Our analysis helps refine our
understanding of the role of management in risk exposure. By showing how farm management
strategies can reduce risk exposure, we document that management and insurance can behave as
substitutes, thus providing a possible explanation for why farmers do not express greater willingness
to participate in crop insurance.

Our analysis focused on agriculture in a part of the U.S. Corn Belt, but it could be extended
in several directions. First, our empirical results are specific to a given agroclimatic region. There
is a need to expand the analysis to other agroclimatic regions. Second, risk preferences can vary
across individuals (e.g., Halek and Eisenhauer, 2001; Dohmen et al., 2011; Liu, 2013; Bocquého,
Jacquet, and Reynaud, 2014; Barseghyan et al., 2018). We have not addressed the implications of
heterogeneity in individual risk preferences. When imperfectly observed, such heterogeneity makes
it difficult to evaluate risk preferences and their welfare implications. More research is needed on
this topic. Third, the analysis presented in this paper was limited to a static approach. It would be
useful to explore risk management in a dynamic framework. Finally, current concerns about climate
change make the analysis presented in this paper highly relevant. Will technological progress and
improved management be sufficient to deal with the increased climate-induced-risk in agriculture?
More research is needed to examine this issue.

[First submitted September 2017; accepted for publication December 2018.]
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Appendix:

Proof of Proposition 1. From equation (1), since zzz(e, t)∈ T (e, t) implies that D(zzz(e, t),e, t)≥ 0, it
follows that T (e, t)⊂ {zzz(e, t) : D(zzz(e, t),e, t)≥ 0}. Given (ppp(e, t)× ggg)> 0 and under feasibility,
we obtain π − η = ppp(e, t)× (D(zzz(e, t, t)ggg)≥ 0. Thus, under nonsatiation, the distribution function
of F ′(π) weakly dominates the distribution function F(η), implying that V (F ′(·))≥V (F(·)). It
follows that

max
zzz(·,t)
{V (F(·)) : F(η) = Pr

e∈Ω
[ppp(e, t)× zzz(e, t)≤ η ], η ∈R, zzz(e, t)∈ T (t), e∈Ω}

≤max
zzz(·,t)
{V (F(·)) : F(η) = Pr

e∈Ω
[ppp(e, t)× zzz(e, t)≤ η ], η ∈R,D(zzz(e, t),e, t)≥ 0}

≤max
zzz(·,t)
{V (F ′(·)) : F ′(π) = Pr

e∈Ω
[ppp(e, t)× (zzz(e, t) + D(zzz(e, t),e, t)ggg)≤ π], π ∈R, D(zzz(e, t),e, t)≥ 0}}

≤max
zzz(·,t)
{V (F ′(·)) : F ′(π) = Pr

e∈Ω
[ppp(e, t)× (zzz(e, t) + D(zzz(e, t),e, t)ggg)≤ π], π ∈R.}}

We now need to show that the reverse inequality holds:

max
zzz(·,t)
{V (F(·)) : F(η) = Pr

e∈Ω
[ppp(e, t)× zzz(e, t)≤ η ], η ∈R, zzz(e, t)∈ T (t), e∈Ω}

≥max
z(·,t)
{V (F ′(·)) : F ′(π) = Pr

e∈Ω
[ppp(e, t)× (zzz(e, t) + D(zzz(e, t),e, t)ggg)≤ π],π ∈R}.

Let zzz+(e, t) be the solution to the second optimization. Under nonsatiation and given π − η =
ppp(e, t)× (D(zzz(e, t), t)ggg), this reverse inequality holds when D(zzz+(e, t),e, t) =−∞ for any state
e∈Ω. Next, consider the case where D(zzz+(e, t),e, t)>−∞ for all e∈Ω. Then, there exists
at least one zzz′(e, t) satisfying D(zzz′(e, t),e, t)>−∞ for all e∈Ω. From equation (1), we have
[zzz′(e, t) + D(z′(e, t),e, t)g]∈ T (e, t), implying that

max
zzz(·,t)
{V (F(·)) : F(η) = Pr

e∈Ω
[ppp(e, t)× zzz(e, t)≤ η ], η ∈R,zzz(e, t)∈ T (t), e∈Ω}

≥V (F ′(·)) evaluated at [z′(e, t) + D(z′(e, t),e, t)ggg],

for any zzz′(e, t) satisfying D(zzz′(e, t),e, t)>−∞ for all e∈Ω. When D(zzz+(e, t),e, t)>−∞, choosing
zzz′(e, t) = zzz+(e, t) gives the desired result. �
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