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Abstract

There has been a recent surge in the literature outlining methodologies that make use
of spatially extraneous yield data in estimating crop insurance premium rates. The idea of
borrowing information across space to better estimate tail probabilities is appealing. Along a
different vein, recent research has questioned the validity of using whatever limited historical
yield data exists given the number of technological changes in seed and farm management
technologies as well as climate change. This literature has suggested historical yield data be
trimmed to the most recent 25-30 years, thereby making the historically discarded yield data
temporally extraneous. In this manuscript, we present three successively flexible data-driven
methodologies to nonparametrically smooth across both space and time simultaneously. We
apply these methodologies in estimating U.S. corn and soybean county-level crop insurance
premium rates. We find significant borrowing of information across both time and space. We
also find all three methodologies improve both the stability and accuracy of crop insurance
premium rates.
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Introduction

There is a great deal of methodological literature on estimating conditional yield distribu-

tions and corresponding crop insurance premium rates.2 Most recently, the idea of borrowing

spatially extraneous yield data to better estimate tail probabilities has attracted signifi-

cant attention. For example, Park, Brorsen, and Harri (2018) proposed a Bayesian Kriging

method for spatial smoothing. Ramsey (2019) presented a Bayesian quantile process for yield

density estimation where the spatial information is introduced through a Gaussian spatial

process. Ker, Tolhurst, and Liu (2016) developed a Bayesian model averaging technique to

exploit possible similarities across space. Finally, Annan et al. (2014) used a distributional

testing procedure to identify possible sets of yield pooling. For earlier works on exploiting

possible spatial similarities in estimating yield distributions and premium rates, see Ker and

Goodwin (2000) and Racine and Ker (2006). All of these methods can be considered some

form of smoothing or weighting between the individual yield data of interest and the spatially

extraneous yield data.

Literature questioning the use of historical yield data in empirical analyses has also started

to surface; not surprising given the significant changes in seed technology (such as the in-

troduction of genetically modified seeds), changes in farming practices (such as precision

farming), and changes in climate. With respect to crop insurance, it does not seem likely

that yield losses from the 1950s and 1960s can inform, to the same degree as yield losses from

the 2000s, about possible losses in 2019. Shen, Odening, and Okhrin (2018), using adaptive

smoothing, found that yields should be trimmed after approximately 20 years. Liu and Ker

(2019), using nonparametric hypothesis tests, found that yields should be trimmed after 25-

30 years. Moreover, many have found statistically significant changes in the higher moments

of yields (see Tack, Harri, and Coble, 2012; Tolhurst and Ker, 2015; Ker and Tolhurst, 2019;

Goodwin and Piggott, 2019), thereby violating the common assumption in the literature of

only correcting for time-varying changes in the first two moments of yields; this necessitates

historical trimming. Similar to extraneous spatial yield data, the trimmed yield data can be

considered temporally extraneous.

2Examples include parametric estimation (Gallagher, 1987; Atwood, Shaik, and Watts, 2003; Sherrick et al.,
2004; Tack, Harri, and Coble, 2012; Tolhurst and Ker, 2015) and nonparametric estimation (Goodwin and
Ker, 1998; Ker and Goodwin, 2000; Ker and Coble, 2003; Norwood, Roberts, and Lusk, 2004).
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The objective of this manuscript is to generalize three methods -- previously used to smooth

only across space -- to smooth simultaneously across both space and time for estimating crop

insurance rates. No assumptions are made as to the degree or form of similarity between the

underlying data generating processes, either temporally or spatially. The first approach we

consider pools all extraneous yield data across both space and time to form a start estimate.

The start estimate is then corrected using the individual yield data. Note that this approach

optimizes the smoothing between the individual yield data and the temporally and spatially

extraneous yield data. However, it is naive in that the methodology treats all extraneous

data identically. The second approach is generally used for smoothing across discrete and

continuous variables. In our case, we have two discrete variables: time and space. As a result,

we require an additional smoothing parameter compared to the first method. However, the

additional smoothing parameter does enable the weights or smoothing across space and

time to differ. The final methodology is Bayesian and smooths across time and space using

posterior weights. The Bayesian methodology is the most flexible in that the weight varies

not only between space and time but within space and time as well. Note, all three proposed

methods allow historical trimming (as per Shen, Odening, and Okhrin (2018) and Liu and

Ker (2019)) without completely discarding the trimmed yield data. Moreover, the proposed

methods capture possible efficiency gains from smoothing across space (as found by Ker,

Tolhurst, and Liu, 2016; Park, Brorsen, and Harri, 2018; Ramsey, 2019).

We evaluate the three proposed methods with respect to estimating crop insurance pre-

mium rates. Crop insurance programs have been the pillar of U.S. domestic agricultural

policy for the past 25 years. As of 2017, over 100 crops are now covered under various

programs. According to the estimate of the U.S. Congressional Budget Office in 2014, the

total spending on agricultural insurance programs will be almost $90 billion over the coming

decade. Crop insurance represents the largest expenditure in the farm bill after food stamps.

The program is administered by the United States Department of Agriculture’s Risk Man-

agement Agency (RMA). The three proposed methodologies are of primary interest to rating

both area-yield and shallow loss products. Interestingly, the RMA methodology for area-yield

products uses all historical county-level yield data, whereas the Agency’s methodology for

shallow loss products discards historical yield data prior to 1991. Additionally, the proposed

methodologies are of relevance to the farm-level crop insurance programs for two reasons:
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(i) county level rates are used in the rating process for base farm level rates; and (ii) the

proposed methodologies perform very well in small samples given their smoothing properties.

The remainder of this manuscript proceeds as follows. The next section details the yield

data. The third section presents RMA’s detrending and heteroscedasticity methodologies.

The fourth section outlines how the proposed methodologies are generalized to borrow in-

formation across both space and time. The fifth section presents estimated premium rates

and results of an out-of-sample retain-cede rating game. The final section summarizes our

findings.

Data

We use historical county level yield data for corn and soybean from 1951 to 2017, collected

from USDA’s National Agricultural Statistical Service (NASS) Quick Stats portal.3 We focus

on states that account for the majority of national production. We removed states that have

less than 25 producing counties. We also removed states that had more than 10% of their

acreage as irrigated in the 2012 Census of Agriculture. For each state selected, counties with

missing observations were also removed. Following these criteria, we ended up with seven

states for corn: Illinois (IL), Indiana (IN), Iowa (IA), Minnesota (MN), Ohio (OH), South

Dakota (SD), and Wisconsin (WI). These states accounted for 57.8 percent of harvested

acreage and 61.8 percent of national corn production in 2017. All corn states except South

Dakota met the inclusion criteria for soybean. These six states accounted for 50.5 and 53.9

percent of national harvested acreage and production of soybean in 2017, respectively. In

total, our data comprises 414 corn and 373 soybean counties.

RMA Methodology

In the vast majority of the crop insurance literature, premium rates are estimated using

a two-stage process. First, a trend function is assumed and estimated using the historical

yields. Both deterministic and stochastic trends have been used in the literature. Ex-

amples include linear, median regression, two-knot linear spline (Skees and Reed, 1986),

polynomial (Just and Weninger, 1999), nonparametric regression (Goodwin and Hunger-

ford, 2015), Kalman filter (Kaylen and Koroma, 1991) and ARIMA (Goodwin and Ker,

3NASS Quick Stats: https://quickstats.nass.usda.gov
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1998). The residuals from the trend estimation are adjusted for possible heteroscedasticity

via Harri et al. (2011). The detrended and heteroscedasticity adjusted yield data, referred to

throughout as adjusted yields, are then used to estimate conditional yield distributions and

recover premium rates. Zhu, Goodwin, and Ghosh (2011) noted, this two-stage procedure

is by far the most common practice employed in the literature. In this manuscript, we use

the current RMA methodology for trend estimation and heteroscedasticity adjustment given

the relevance of our results to crop insurance.4 Currently, RMA estimates the county level

historical yields, denoted as yt = (y1, ..., yT ), with a robust two-knot linear spline:

(1) yt = θ1 + θ2t+ δ1d1(t− k1) + δ2d2(t− k2) + εt,

where d1 and d2 are indicator functions so that d1 = 1 if t ≥ k1 and d2 = 1 if t ≥ k2, and are

zeros otherwise; k1, k2 are two knots such that k1, k2 ∈ (1 + k̄, . . . , T − k̄) and k2 − k1 ≥ k.

To maintain the proper length of each knot section, the conditions k, k̄ ≥ 10 are imposed to

prevent the knot locations from being too close to each other or too close to the end points.

Knot locations ki are selected through a grid search based on minimizing least squares. The

number of optimal knots (0, 1, 2) is selected based on Akaike information criterion (AIC).

Given the number of knots, parameters are estimated through two robustness procedures

where the spline is iterated to convergence with Huber weights and then twice passed through

a bisquare function.

After the trend estimation, we denote the residuals as ε̂t and the fitted values as ĝ(t) = ŷt.

Heteroscedasticity is corrected for using Harri et al. (2011):5

(2) ln(ε̂2t ) = α + γ ln (ŷt) + vt.

Note, constant and proportional variance in the underlying yield data corresponds to γ = 0

and γ = 2, respectively. Yields are adjusted based on a one-step ahead forecast (ŷT+1) and

4Our results are robust to simple linear trend, median regression, and nonparametric local smoothing.
5See Ker and Tolhurst (2019) for an alternative methodology. Our findings are robust to either heteroscedas-
ticity treatment.
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the heteroscedasticity coefficient (γ̂):6

(3) ŷ∗t = ŷT+1 + ε̂t

(
ŷT+1

ŷt

) γ̂
2

The adjusted yields can then be used to estimate conditional yield distributions or generate

empirical premium rates:

(4) π∗
T+1 =

1

T

T∑
t=1

max
{

0, λŷ∗T+1 − ŷ∗t
}

where λ is the coverage level such that λŷ∗T+1 is the yield guarantee.

Methods: Incorporating Extraneous Data across Space and Time

As mentioned, we wish to consider three methods that can simultaneously smooth yields

across both space and time. Consider we have Q counties each with T adjusted yields where

yjt represents the adjusted yield realization in time t from county j.7 We follow the literature

(Shen, Odening, and Okhrin, 2018) and trim the yield data into sets of 20 years. Given that

we have yield data from 1951-2017, we have three sets of historical yield data: 1998-2017;

1978-1997; and 1958-1977. Note, the two historically trimmed reference sets are 1958-1977

and 1978-1997, while the current yield set is 1998-2017. We divide the data as follows:

y11958 y21958 · · · yQ1958
...

...
. . .

...

y11977 y21977 · · · yQ1977

y11978 y21978 · · · yQ1978
...

...
. . .

...

y11997 y21997 · · · yQ1997

y11998 y21998 · · · yQ1998
...

...
. . .

...

y12017 y22017 · · · yQ2017





Temporal Set 2

Temporal Set 1

Temporal Set 0

6RMA uses a two-step ahead forecast because of data availability/timing issues. We chose a one-step ahead
forecast for our analysis simply to gain an additional degree of freedom given we are truncating an already
very short time series.
7For notational convenience and without loss of generality, we assume all counties have equal T although all
three estimators can handle an unbalanced design.
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All three proposed methods are nonparametric and based on the Nadaraya-Watson (NW),

or standard kernel, estimator. The standard kernel estimator is defined as:

(5) f̂(y) =
1

nh

n∑
i=1

K

(
y − yi
h

)
,

where K() is kernel function assumed to be a square integrable symmetric probability density

function with a finite second moment, and h is the bandwidth or smoothing parameter.

Nonparametric based methods have been used throughout the crop insurance literature (see

Goodwin and Ker, 1998; Ker and Coble, 2003, for examples).

Possibly Similar Estimator (PS)

The possibly similar (PS) estimator uses a start estimate and then nonparametrically

corrects the start. This estimator uses the extraneous yield data to reduce bias. See Ker

(2016) for technical details (rate of convergence and bounded neighbourhood of reductions

in asymptotic mean integrated squared error). If the start is sufficiently close to the density

of interest then the correction function is less rough (as measured by the integrated second

derivative) and bias is reduced in the overall estimation. Of importance for our application

is that there are no restrictions beyond continuity placed on the data entering the start

estimate. That is, the start estimate can be comprised of data from both time and space.

Because the data is simply pooled across space and time for the start estimate, the PS

estimator is relatively naive.

Define ĝ(y) as our initial start estimate with smoothing parameter hg based on all the space

and historical data pooled together. The correction factor function in the PS estimator is

then given as

(6) r̂(y) =
T∑
t=1

1

hT
K

(
y − yt
h

)/
ĝ(yt),

where yt is the individual sample realizations (y1, ..., yt) and, again, ĝ(yt) is the start estimate.

The PS estimator is given by the product of the pooled estimate and the individual correction

factor, which is

(7) f̃(y) = ĝ(y)r̂(y) =
T∑
t=1

1

hT
K

(
y − yt
h

)
ĝ(y)

ĝ(yt)
.



8

Two smoothing parameters, hg and h, are chosen by likelihood cross-validation.

Although the PS estimator is naive in that it necessarily treats the temporal and spatial

extraneous data identically, it has many attractive features. First, Ker (2016) found the

PS estimator to significantly outperform the standard kernel estimator, more so in small

samples. Second, likelihood cross-validation is used to determine the relative smoothing

between the start and the individual estimates. Finally, no assumptions about the form or

extent of similarity across space and time are required.

Li-Racine Estimator (LR)

The Li-Racine (LR) estimator smooths across mixed data-types, both continuous and

discrete. Technical details about the LR estimator can be obtained from Li and Racine

(2003), Racine and Li (2004), and Li, Simar, and Zelenyuk (2016). In our application,

the continuous variable is the adjusted yields, whereas space and time represent discrete

variables. As a result, we have three smoothing parameters: one to smooth the adjusted

yields, one to smooth the adjusted yields across time, and one to smooth the adjusted yields

across space.8 In this case, the LR estimator is

(8)

f̂(y) = (Nh)−1

[
2∑

t=1

T∑
j=1

λ1K

(
y − ytj
h

)
︸ ︷︷ ︸

historical data

+
T∑

j=1

λ2K

(
y − y0j
h

)
︸ ︷︷ ︸

current data

+

(Q−1)∑
i=1

T∑
j=1

(1− λ1 − λ2)K
(
y − y0ij

h

)
︸ ︷︷ ︸

spatial data

]

where T is the length of yield data set (T = 20 in our case), ytj represent the historical yields

for the county of interest, y0j represent the current set (1998-2017) of yields for the county of

interest, and y0ij represent the current yields for the other Q− 1 counties. Note, t = 0 refers

to the current or temporal set 0 (1998-2017), t = 1 refers to temporal set 1 (1978-1997) and

t = 2 refers to temporal set 2 (1958-1977).

The LR estimator also has many attractive features. It has been shown to outperform

the conventional frequency or bin estimator that was previously used to handle mixed data

8Because we choose different smoothing parameters across space and time, the estimator more closely re-
sembles the generalization of LR by Li, Simar, and Zelenyuk (2016).



9

types (Racine and Li (2004)). The LR estimator uses likelihood cross-validation to choose the

amount of smoothing over both space and time simultaneously. As a result, if the data are

very different (as measured by likelihood cross-validation metric) across space and/or time,

LR smooths very little. Like the PS estimator, the LR estimator requires no assumptions

about the form or extent of similarity across space and time. Asymptotic normality is

established by Racine and Li (2004); the rate of convergence is the same as the case when

there are only continuous random variables. Finally, the LR estimator is less naive than the

PS estimator in that it recovers different smoothing weights for the extraneous time versus

space yield data.

Bayesian Model Averaging Estimator (BMA)

The final estimator uses Bayesian model averaging (BMA) to recover a set of posterior

weights and smooth across space and time. Recall, we have Q counties, each with a current

yield set and two historical yield sets. Usually, BMA is used to average over models, but

as shown in Ker, Tolhurst, and Liu (2016), BMA can be used to smooth across space.9 We

extend their approach to smooth across both space and time.

In our application, we have 3Q individually estimated densities in the first stage to com-

prise our set of candidate models. We define the BMA estimator for county i as:

(9) f̃i =
2∑

t=0

Q∑
j=1

ωi
tj f̂tj,

where Q is the total number of counties, t = 0 again represents the current period while t = 1

and t = 2 represent the two temporal reference sets, and f̂ are the standard kernel density

estimates based on the individual data sets. We are smoothing across all 3Q estimated

densities with the weights chosen by an empirical likelihood. Note, the weights (ω) are

defined as

(10) ωi
tj =

Li
tj∑2

t=0

∑Q
q=1 L

i
tq

,

where Li
tj is evaluated using current yields from county i at density estimate f̂tj. The weights

necessarily sum to one. Because we recover individual weights for all estimated densities in

9For a comprehensive introduction to the general purpose of BMA, we refer to Hoeting et al. (1999).
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the model averaging, we can calculate the overall weight of the historical data versus the

spatial data in our final county estimates.

The BMA estimator has many attractive features. It has been shown to outperform the

standard kernel estimator (Ker and Liu (2017)). The BMA estimator uses an empirical like-

lihood measure to choose the amount of smoothing over both space and time simultaneously.

As a result, if the data are very different across space and/or time, BMA smooths very little

and behaves much like the kernel estimator. Conversely, if the data are similar across space

or time or both, the BMA smooths accordingly, and gains in efficiency tend to be realized.

As with the PS and the LR estimators, the BMA estimator requires no assumptions about

the form or extent of similarity across space and time. The BMA estimate f̃ converges to the

kernel estimate as the current yield set grows. Finally, the BMA estimator is less naive than

both the LR and the PS estimators in that it recovers different weights not only between

but also within space and time. Note, each extraneous set of yield data receives a different

posterior weight.

Estimating Crop Insurance Premium Rates

We estimate the set of conditional yield densities and accompanying premium rates for the

414 corn counties and 373 soybean counties using standard nonparametric kernel methods

(which do not borrow information) and the BMA, LR, and PS methods (which borrow

information across space and time). We plot in Figure 1 representative examples of both

crops. Interestingly, the proposed estimates tend to be very different from the standard

kernel estimate suggesting significant borrowing of information from the extraneous yields

across both space and time.

Table 1 summarizes the amount of borrowing of yield data across space and time for the

LR and BMA method. For comparison, a standard estimate involves no spatial smoothing

(ωspace = λspace = 0) and equal weight to all historical yields (ωtime = λtime = 2/3). Con-

sistent with Figure 1, the results in Table 1 indicate significant smoothing. Note that the

weight given to extraneous spatial yield data tends to be higher than the weight given to

the historical yield data for both LR and BMA methods. Also, BMA gives noticeably more

weight to the extraneous yield data relative to LR. Finally, there tends to be more smoothing

with soybean versus corn.
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County specific estimates of the temporal and spatial weights are depicted in maps in Fig-

ure 2-3 for corn (corresponding estimates for soybean are in the Appendix). Given that the

temporal, spatial, and individual weights add to one, counties with greater temporal weight

tend to exhibit lower spatial weight. Interestingly, they illustrate very different patterns

between the BMA and the LR methodologies. For the BMA estimator, the majority of corn

counties in Iowa, Minnesota, and Wisconsin have temporal BMA weights below the average.

Counties with relatively high temporal BMA weights are sparsely distributed along the state

lines between South Dakota and the adjacent counties in Illinois and Indiana. With respect

to the LR estimator, the majority of corn counties illustrate fairly constant temporal weights.

Counties with relatively high temporal weight are sparsely located in the outlying areas of

the seven states considered. With respect to the spatial BMA weights, we find that greater

weight is given to the central midwest counties. With respect to the spatial LR weights,

the majority of counties in Wisconsin, Iowa, and South Dakota show relatively low spatial

weights; they correspond to areas with relatively high temporal weights. In summary, the

results show non-trivial spatial and temporal smoothing differences between the BMA and

the LR; recall that the two estimators use different smoothing metrics.

Table 1. Table of Average Weight (%) of BMA and LR for 2019 Estimated
Densities

BMA (%) LR (%)

Crop ωown ωtime ωspace λown λtime λspace

Corn 22.69 33.35 43.96 52.29 18.46 29.24

Soybean 19.39 41.13 39.48 38.49 32.18 29.33

We derive the 90% coverage level premium rates for both corn and soybean from our

estimated 2019 conditional yield densities. We compare these to the base empirical rates

recovered using the current RMA methodology. The actuarially fair premium rate for an

insurance contract, denoted as π, is the expected loss divided by total liability. That is,

defining the random variable crop yield as Y , the actuarially fair premium rate for insurance

coverage below a guarantee, denoted YG, is:

(11) π =
1

YG

∫ YG

0

(YG − y)fY (y)dy,
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Figure 1. Estimated 2019 Conditional Yield Densities by Method

where the density fY (y) is recovered using any of the BMA, LR, or PS estimators. The

estimated premium rate π̂ is defined as a percent of the guarantee YG and is recovered by

substituting f̂Y (y) into equation 11. The box plots in Figure 4 show that for both corn

and soybean, the three proposed estimators produce premium rates with lower median, less

outliers, and smaller interquartile range (IQR) than the RMA estimator. The lower rates are

a reflection of the yield density becoming markedly less skewed in the most recent period.

Recall that weights given the two historical periods are much less than 2/3. This result

was also found by Goodwin and Piggott (2019) and is attributable to the introduction of
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Figure 2. BMA and LR Temporal Weights for Corn
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Figure 3. BMA and LR Spatial Weights for Corn



15

0

5

10

15

20

RMA BMA LR PS
Method

R
at

e 
in

 %

(a) Corn

0.0

2.5

5.0

7.5

10.0

12.5

RMA BMA LR PS
Method

R
at

e 
in

 %

(b) Soybean

Figure 4. Box Plots of 90% Coverage Premium Rates in 2019

genetically modified seeds. The smaller interquartile range and less outliers is a result of

smoothing.

Out-of-sample Rating Games

The above results do not empirically justify the use of the proposed methods; they only

show that the results are different from the current RMA approach.10 To evaluate whether

the proposed estimators are more efficient than the current RMA methodology, we conduct

an out-of-sample retain-cede rating game, where two players using different methodologies

10The proposed methodologies use extraneous information across both space and time in an attempt to
recover more efficient estimates of the unloaded rates. This does not circumvent the benefits of credibility
weighting on those more efficient estimated rates. The theory behind credibility weighting comes from Stein’s
paradox and is applicable independent of the level of estimation error in the initial set of estimates.
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estimate premium rates and adverse select against one another. The game was first proposed

by Ker and McGowan (2000) and has since been employed by Ker and Coble (2003), Racine

and Ker (2006), Harri et al. (2011), Annan et al. (2014), Tack and Ubilava (2015), Tolhurst

and Ker (2015), Yvette Zhang (2017), Shen, Odening, and Okhrin (2018), Park, Brorsen, and

Harri (2018), and Ramsey (2019) to justify alternative rating methodologies. The game was

modified with an additional test of rating efficiency in Ker, Tolhurst, and Liu (2016). The

game was inspired by the retain-cede decision of private insurance companies in regards to

the crop insurance contracts they sell. Private insurers allocate policies across different risk

sharing schemes, exposing themselves to either greater or less risk and in essence, retaining

or ceding the risk of any given policy. Therefore, private insurers determine which policies

to retain and which to cede; policies which insurers believe are over-priced and expect an

underwriting gain are retained versus policies which insurers believe are under-priced and

expect an underwriting loss are ceded. As a result, private insurers necessarily develop their

own rates in attempts to strategically averse select against RMA and recover excess rents.

Mimicking this allows one to hypothetically compare two sets of premium rates.

In the out-of-sample rating game, we assume that RMA pools all historical yield data as

they currently do; that is, yield data from 1951-1997 is used to estimate the RMA premium

rates for 1998. Conversely, the private insurer estimates their rates using one of the three

methodologies that borrow extraneous yield data across both space and time. We again

consider periods of 20 years; that is, the current set would consist of yields from 1978-1997,

historical set 1 would consist of yields from 1958-1977, and historical set 2 would consist of

yields from 1951-1958.11 As the rating game moves forward, more and more data will be in

the historical set 2. The spatial reference sets come from the group of all other counties’

current sets. Based on the two sets of rates from the RMA and private insurer, the private

insurer identifies which contracts to retain and which to cede. The underwriting gains or

losses for the set of retained and ceded contracts are calculated using the actual yields in

1998. This process is repeated for 20 years, and the loss ratios (defined as the ratio of total

underwriting losses to total premiums) for both the retained and ceded sets of contracts are

calculated. We conduct the game for each crop at 90% coverage levels.

11We considered alternative schemes whereby the historical yield data is split into equal periods (1951-1964,
1964-1977) and results were not qualitatively different.
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As in the above cited literature, we undertake two hypothesis tests. The first tests whether

the loss ratio from the retained contracts is less than the loss ratio from randomly retaining

contracts; choosing which contracts to retain randomly is equivalent to the private insurer

being indifferent between the two sets of competing rates. Randomization methods are used

to recover the null distribution of the test statistic and a p-value. Game 1 mimics the current

reality of the U.S. crop insurance program. However, in the program, the private insurer has

an advantage because they react to the RMA premium rates. As such, whichever of the two

competing rates the private insurer uses has an inherent competitive advantage in game 1.

This advantage is nullified in game 2 by contrasting the changes in loss ratios under both

sets of the competing rates (see Ker, Tolhurst, and Liu (2016) for details). The number of

contracts considered is the number of counties multiplied by 20 years: 6,210 contracts for

corn and 5,595 contracts for soybean. The results, which include the percent retained by

the private insurer, the government or ceded contracts loss ratio, the insurer or retained loss

ratio, p-value of game 1, and p-value of game 2, are presented in Tables 2-3.

Table 2 presents the rating game results for corn. When the private insurer uses the BMA

estimator, they realize a loss ratio less than RMA in six of total seven states. With respect to

game 1, the p-value is significant for five of seven states. This suggests that economically and

statistically significant rents can be recovered by private insurers using the BMA method.

With respect to game 2, the p-value is significant in four of seven states. This suggests

that the proposed BMA method leads to statistically significantly more accurate premium

rates than the current RMA methodology. When using LR method, similar to the BMA

estimator, the private insurer realizes a loss ratio less than the RMA in all seven states

except Illinois. With respect to game 1, the p-value is significant in five of seven states.

With respect to game 2, the p-value is significant in three of seven states. Finally, when

using the PS estimator, the private insurer realizes a lower loss ratio than the RMA in all

seven states except Illinois. With respect to the p-value in game 1, we find significance in

five of seven states. With respect to the p-value in game 2, we find significance in three

of seven states. In summary, we find statistically significant monies can be earned by the

private insurers employing these estimators which simultaneously smooth across space and

time by adverse selecting against the government (RMA) in 15 of the 21 games. Moreover,

we find that the rates produced by these proposed estimators are statistically more accurate
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than the RMA rates in 10 of the 21 games. In no games is the RMA estimator found to be

statistically more accurate than the three proposed estimators.

Table 3 shows the results for soybean. When the private insurer uses the BMA estimator,

they realize a loss ratio less than RMA in all six states. With respect to game 1, the p-value

is significant for five of six states. With respect to game 2, the p-value is significant in three

of six states. When the private insurer uses the LR method, they realize a loss ratio less

than the RMA in all six states. With respect to game 1, the p-value is significant in all six

states. With respect to game 2, the p-value is significant in two of six states. Finally, when

using the PS estimator, the private insurer realizes a lower loss ratio than the RMA in all

six states. With respect to the p-value in game 1, we find significance in five of six states.

With respect to the p-value in game 2, we find significance in two of six states. In summary,

we find statistically significant monies can be earned by the private insurers employing these

estimators which simultaneously smooth across space and time by adverse selecting against

the government (RMA) in 15 of the 18 games. Moreover, we find that the rates produced

by these proposed estimators are statistically more accurate than the RMA rates in 7 of the

18 games. In no games is the RMA estimator found to be statistically more accurate than

the three proposed estimators.

The above games assume that the RMA uses all available historical yield data in estimating

their premium rates. However, as mentioned, literature is showing that yield data greater

than 25 years in the past should be discarded in the rating process. Therefore, we repeat

the above analysis assuming RMA discards yields greater than 25 years. The above games

compared the proposed smoothing across space and time to no smoothing and using all

historical yield data. We also wish to compare the proposed smoothing across space and

time to no smoothing and using only trimmed yield data or the most current 25 years of yield

data. The results are presented in Tables 4-5 in appendix. The results are very consistent

with the above game results. The proposed smoothing across space and time is preferred to

no smoothing and historically trimming yields.

Conclusions

Recent literature (Ker, Tolhurst, and Liu (2016); Park, Brorsen, and Harri (2018); and

Ramsey (2019)) find that estimating premium rates by incorporating spatial information can
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Table 2. Rating Game Results of Corn: RMA with Full Sample

Number of Retained by Loss Ratio Loss Ratio Game 1 Game 2
Method-State Counties Private (%) Government Private p-value p-value

BMA vs RMA

Illinois 73 59.9 0.406 0.589 0.0577 0.1316
Indiana 60 68.9 0.633 0.568 0.0013 0.0002
Iowa 91 51.6 0.340 0.300 0.1316 0.2517
Minnesota 57 76.7 0.370 0.169 0.0000 0.0059
Ohio 58 55.8 0.907 0.458 0.0013 0.0013
Wisconsin 48 62.0 0.445 0.389 0.0059 0.8684
South Dakota 27 79.3 1.370 0.494 0.0002 0.0000

LR vs RMA

Illinois 73 53.6 0.417 0.602 0.0577 0.0207
Indiana 60 54.9 0.680 0.529 0.0000 0.0577
Iowa 91 41.4 0.386 0.258 0.0059 0.1316
Minnesota 57 60.2 0.310 0.153 0.0002 0.0207
Ohio 58 46.4 0.748 0.510 0.4119 0.2517
Wisconsin 48 49.0 0.443 0.380 0.0207 0.7483
South Dakota 27 70.7 1.408 0.434 0.0000 0.0000

PS vs RMA

Illinois 73 68.1 0.277 0.618 0.0577 0.0577
Indiana 60 77.2 0.614 0.576 0.0059 0.0059
Iowa 91 55.4 0.355 0.292 0.0577 0.2517
Minnesota 57 77.1 0.329 0.176 0.0000 0.1316
Ohio 58 69.2 1.030 0.479 0.0000 0.0013
Wisconsin 48 77.5 0.437 0.399 0.0059 0.9423
South Dakota 27 92.0 1.422 0.546 0.0002 0.0002

increase efficiency and accuracy. To date, no one has proposed estimating premium rates by

incorporating extraneous yield information across both space and time. This is particularly

important, as recent literature (Shen, Odening, and Okhrin (2018); and Liu and Ker (2019))

has shown that, given the significant changes in seed and farm technology, incorporating

historical losses (as is currently done) increases estimation error.

In this manuscript, we generalize three methods, which have been previously used to

spatially smooth yields, to perform smoothing across both time and space simultaneously.

Our results illustrate significant borrowing of information across both time and space. Not

surprisingly, the premium rates are less variable across space. Finally, we evaluate the three
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Table 3. Rating Game Results of Soybean: RMA with Full Sample

Number of Retained by Loss Ratio Loss Ratio Game 1 Game 2
Method-State Counties Private (%) Government Private p-value p-value

BMA vs RMA

Illinois 82 36.6 0.858 0.368 0.0207 0.2517
Indiana 59 44.7 0.872 0.463 0.0002 0.0207
Iowa 93 38.4 1.015 0.314 0.1316 0.0577
Minnesota 55 71.5 1.034 0.430 0.0000 0.0207
Ohio 51 62.9 1.186 0.462 0.0000 0.0207
Wisconsin 33 86.4 1.437 0.711 0.0013 0.1316

LR vs RMA

Illinois 82 29.7 0.767 0.408 0.0059 0.2517
Indiana 59 32.5 0.764 0.457 0.0207 0.1316
Iowa 93 22.5 0.802 0.337 0.0013 0.0207
Minnesota 55 58.9 0.932 0.380 0.0013 0.0059
Ohio 51 46.5 0.901 0.467 0.0013 0.0577
Wisconsin 33 72.7 1.142 0.683 0.0059 0.5881

PS vs RMA

Illinois 82 52.0 0.951 0.426 0.0207 0.0577
Indiana 59 62.6 1.041 0.494 0.0013 0.0207
Iowa 93 46.6 1.101 0.341 0.1316 0.2517
Minnesota 55 71.9 0.937 0.436 0.0013 0.1316
Ohio 51 71.9 1.201 0.513 0.0013 0.1316
Wisconsin 33 91.4 2.199 0.698 0.0000 0.1316

proposed methods using an out-of-sample simulated game -- representative of the structure of

the U.S. crop insurance program -- and find very strong evidence that smoothing across time

and space can garner significant rents through adverse selection activities by the private

insurers and is more efficient than the current RMA methodology. Specifically, we find

statistically significant monies can be earned by the private insurers in 15 of the 21 games

for corn and 15 of the 18 games for soybean. Furthermore, we find that the rates produced

by these proposed estimators are statistically more accurate than the RMA rates in 10 of the

21 games for corn and 7 of the 18 games for soybean. In none of the 39 games is the RMA

estimator found to be statistically more accurate than the three estimators which smooth

across space and time.
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Figure 5. BMA and LR Temporal Weights for Soybean



26

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Weight

BMA: Weight on Space

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Weight

LR: Weight on Space

Figure 6. BMA and LR Spatial Weights for Soybean



27

On-line Appendix

Table 4. Rating Game Results of Corn: RMA with Restricted Sample

Number of Retained by Loss Ratio Loss Ratio Game 1 Game 2
Method-State Counties Private (%) Government Private p-value p-value

BMA vs RMA

Illinois 73 26.6 0.699 0.769 0.0013 0.0207
Indiana 60 33.1 0.851 0.628 0.0000 0.0013
Iowa 91 29.7 0.422 0.336 0.0577 0.0577
Minnesota 57 29.8 0.367 0.177 0.0000 0.0013
Ohio 58 24.9 0.913 0.315 0.0002 0.0059
Wisconsin 48 20.1 0.715 0.206 0.0002 0.7483
South Dakota 27 32.8 1.140 0.645 0.0013 0.0207

LR vs RMA

Illinois 73 25.3 0.772 0.611 0.0059 0.1316
Indiana 60 28.5 0.805 0.672 0.0002 0.0577
Iowa 91 28.0 0.412 0.349 0.1316 0.1316
Minnesota 57 22.9 0.305 0.291 0.0059 0.1316
Ohio 58 35.2 0.845 0.560 0.0577 0.4119
Wisconsin 48 19.2 0.702 0.207 0.0002 0.0577
South Dakota 27 26.7 1.176 0.496 0.0000 0.2517

PS vs RMA

Illinois 73 39.5 0.610 0.867 0.0577 0.2517
Indiana 60 35.9 0.622 0.971 0.0000 0.0577
Iowa 91 32.6 0.384 0.393 0.0577 0.7483
Minnesota 57 32.0 0.317 0.271 0.0207 0.1316
Ohio 58 35.7 0.921 0.446 0.0000 0.0207
Wisconsin 48 32.0 0.745 0.316 0.0207 0.8684
South Dakota 27 63.9 1.236 0.811 0.0059 0.0577
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Table 5. Rating Game Results of Soybean: RMA with Restricted Sample

Number of Retained by Loss Ratio Loss Ratio Game 1 Game 2
Method-State Counties Private (%) Government Private p-value p-value

BMA vs RMA

Illinois 82 18.4 0.860 0.305 0.0002 0.1316
Indiana 59 13.7 0.981 0.269 0.0013 0.0577
Iowa 93 22.3 0.920 0.240 0.0207 0.2517
Minnesota 55 32.5 0.885 0.567 0.0059 0.0577
Ohio 51 30.0 1.010 0.464 0.0000 0.0207
Wisconsin 33 41.4 1.524 0.856 0.0013 0.0577

LR vs RMA

Illinois 82 28.5 0.807 0.554 0.1316 0.1316
Indiana 59 18.1 0.834 0.811 0.0577 0.2517
Iowa 93 22.9 0.823 0.409 0.0013 0.2517
Minnesota 55 23.5 0.832 0.554 0.0577 0.1316
Ohio 51 26.0 0.881 0.617 0.0207 0.0577
Wisconsin 33 31.4 1.326 0.962 0.0207 0.4119

PS vs RMA

Illinois 82 28.3 0.859 0.477 0.0207 0.4119
Indiana 59 23.9 1.013 0.461 0.0207 0.2517
Iowa 93 29.0 0.938 0.328 0.1316 0.7483
Minnesota 55 38.3 0.882 0.591 0.0577 0.9423
Ohio 51 37.8 1.052 0.477 0.0002 0.0207
Wisconsin 33 55.0 1.727 0.865 0.0059 0.0577


