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Abstract 

We link causally the riskiness of men’s management of their finances with the probability 

of their experiencing a divorce. Our point of departure is that when comparing single men 

to married men, the former manage their finances in a more aggressive (that is, riskier) 

manner. Assuming that single men believe that low relative wealth has a negative effect 

on their standing in the marriage market and that they care about their standing in that 

market more than married men do, we find that a stronger distaste for low relative wealth 

translates into reduced relative risk aversion and, consequently, into riskier financial 

behavior. With this relationship in place we show how this difference varies depending 

on the “background” likelihood of divorce and, hence, on the likelihood of re-entry into 

the marriage market: married men in environments that are more prone to divorce exhibit 

risk-taking behavior that is more similar to that of single men than married men in 

environments that are little prone to divorce. We offer a theoretical contribution that 

helps inform and interpret empirical observations and regularities and can serve as a 

guide for follow-up empirical work, having established and identified the direction of 

causality.  

 

 

Keywords: Men’s preferences towards risk; Risk-taking behavior; Concern at having low 

relative wealth; Relative and absolute risk aversion; Marital-based difference 

in attitudes towards risk; Likelihood of divorce  
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1. Motivation 

Why is it, as empirical evidence suggests, that controlling for men’s wealth, the riskiness 

of the manner in which men manage their finances is linked with their marital status 

(single, married, and, if married, subject to the likelihood of divorce)? In this paper we 

propose a causal link. We postulate that the potential for success in one market, here the 

marriage market, affects incentives in another market that is linked to the marriage 

market via an individual’s relative wealth. Behavior is guided by a desire to obtain a 

better relative position in terms of wealth distribution, an outcome that, in turn, would 

lead to a better match in the marriage market. Our idea is that although married men who 

are not in the marriage market do not or need not worry about their prospects in that 

market, married men who expect to re-enter that market because of the “background” 

divorce rates (determined by social, cultural, or legal factors) that they face will worry 

somewhat. We show how this variation in the association with the marriage market maps 

onto risk-taking behavior. 

Recent empirical research links the likelihood of divorce with risk aversion. A 

positive correlation between the two has been noted in several studies. For example, 

analyzing US data from the National Longitudinal Survey of Youth (NLSY79) between 

1979 and 2004, Light and Ahn (2010) find a positive relationship between risk tolerance, 

as measured by the willingness to accept alternative lifetime income gambles, and a 

predicted probability of divorce. Roussanov and Savor (2014) report that CEOs of firms 

that are located in US states in which divorce is less costly for the richer spouse 

(presumably male CEOs), and hence more likely, are less risk averse than CEOs of firms 

located in states in which the cost of divorce is higher. These findings prompted us to 

wonder whether the risk aversion of a married individual might be influenced by his 

“background” likelihood of divorce and a corresponding likelihood of reentering the 

marriage market.1,2  

                                                 
1 There is a parallel for our reference to the “background” likelihood of divorce in the literature on 
“background risk.” For that, Harrison et al. (2007) could be consulted. A related discussion of “background 
risk” is in a study by Eeckhoudt et al. (1996) who provide necessary and sufficient conditions for the 
characterization of risk aversion to ensure that any increase in “background risk” induces more risk 
aversion.  
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The received literature has long correlated high status with superior outcomes in 

the marriage market: see Becker (1973) for a theoretical foundation, Cole et al. (1992, 

2001), Robson (1996), Wei and Zhang (2011), and Wei et al. (2017), among others, for 

more recent formulations. Several of these models identify status with relative wealth, in 

line with a long tradition in economics. Smith (1759) argues that wealth accumulation 

yields social status, and that status matters for individual welfare. Veblen (1899) dwells 

at length on the notion that in modern Western societies the aspiration for high relative 

wealth is motivated by an underlying desire for social status. In his study of the origins of 

modern English society, Perkin (1969, p. 85) comments that “the pursuit of wealth was 

the pursuit of social status.” Frank (1985) emphasizes the significance of relative wealth 

for the acquisition of social status. A formal link between social status and individuals’ 

relative wealth is provided in models developed, among others, by Corneo and Jeanne 

(1997), Futagami and Shibata (1998), Pham (2005), and Roussanov (2010).3  

How does a stronger distaste at having a low position in the (domain of) wealth 

distribution transform into lower risk aversion? This is an important question because, 

although there are studies that link relative wealth or relative consumption with risk 

aversion (Campbell and Cochrane, 1999; Gollier, 2004), thus far the behavioral 

mechanism that underlies the transmission from a well-defined measure of displeasure at 

having a low position in wealth distribution to a well-defined measure of risk aversion 

has not been uncovered; it is as if we have an input going into and an output coming out 

of a black box, but no knowledge of the processing that takes place inside the box.4  

                                                                                                                                                 
2 Texts on marital-status transitions (Love, 2010; Christiansen et al., 2015) show that following divorce, 
men tend to reallocate their wealth into riskier assets. These findings echo a result reported earlier on: a 
study of 431 male physicians in the US who were followed up for more than two decades notes that 
multiple times divorced physicians exhibited greater risk-taking tendencies than never-divorced and once-
divorced physicians (McCranie and Kahan, 1986).  
3 Robson (1992, p. 837) writes: “[O]rdinal rank in the wealth distribution enters von Neumann-
Morgenstern utility as an argument in addition to wealth itself. Thus higher wealth increases utility not only 
directly but also indirectly via higher status.” We differ from Robson in that in our model cardinal rank 
enters von Neumann-Morgenstern utility as an argument. This refinement enables us to fine-tune rank-
related information and link it smoothly with relative risk aversion which, too, is a cardinal measure. For 
example, in our framework, in wealth distribution (20, 10) the ordinal rank of 10 is the same (second) as in 
wealth distribution (11, 10), but the cardinal measure is not the same. 
4 Cole et al. (2001) investigate how the portfolio choices of an individual are affected by the individual’s 
concern about his prospects in the marriage market, when this outcome is affected by the individual’s 
relative wealth. The main interest of Cole et al. is in identifying the factors that prompt individuals, when 
they make their portfolio choices, to mimic the portfolio choices of others in order to protect or preserve 
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The preceding discussion prompted a commentary on an earlier version of this 

paper, to the effect that greater risk aversion will usually lead to less risky gambling, 

especially among the initially wealthy. However, as demonstrated by Stark (2019), the 

relationship between a change in wealth and risk aversion is more complex. Stark 

explores a link between the concern over having low relative wealth, the level of wealth, 

and risk aversion. Specifically, Stark studies the relative risk aversion of an individual 

with particular social preferences: his wellbeing is influenced by his relative wealth, and 

by how concerned he is about having low relative wealth. Holding constant the 

individual’s absolute wealth, two results are obtained. First, if the individual’s level of 

concern about low relative wealth does not change, the individual becomes more risk 

averse when he rises in the wealth hierarchy. Second, if the individual’s level of concern 

about low relative wealth intensifies when he rises in the wealth hierarchy and if, in a 

precise sense, this intensification is strong enough, then the individual becomes less risk 

averse: the individual’s desire to advance further in the wealth hierarchy is more 

important to him than possibly missing out on a better rank.  

In sum: what the current paper demonstrates is how distaste for relative wealth 

deprivation, motivated by marriage market concerns, can be tractably mapped into the 

received formulae for relative and absolute risk aversion, thereby providing a theoretical 

causal link for recent empirical evidence relating financial risk taking to marriage market 

risk exposure. Having established and identified the direction of causality, our analysis 

can serve as a guide for follow-up empirical work. 

In Section 2 we present a causal link between concern at having low relative 

wealth and relative risk aversion. This enables us to explain the difference in relative risk 

aversion between men who are single and men who are married. With this benchmark 

framework in place, in Section 3 we link differences in relative risk aversion with 

variation in the likelihood of divorce. Our conclusions are presented in Section 4. 

 

 

                                                                                                                                                 
their rank. Here we study how differences in the marital status of individuals result in differences in the 
individuals’ relative risk aversion.  
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2. A link between relative wealth and risky behavior 

In this section we show how intensified distaste at experiencing low relative wealth 

reduces relative and absolute risk aversion which, in turn, results in a higher propensity to 

resort to risky behavior. In particular, we show that individuals’ concern at having low 

relative wealth renders them less relatively risk averse and less absolutely risk averse 

than they would be were they not concerned about having low relative wealth.  

Consider a population P of n individuals with positive levels of wealth 

1 2 ... nx x x< < < , and let 1( ,..., )nx x=x . The individuals know the wealth levels of other 

individuals. Let the relative wealth deprivation of individual i be denoted by ( )iRD x . The 

utility function of individual i, ),( )(i i iu Rx D x  to which, for brevity’s sake, we refer as 

( )iiu x , is  

 1( ) ) ( )( ) (i i i ii ix fu RDxβ β−≡ − x , (1) 

where ( )if x  is a twice continuously differentiable, strictly increasing, and strictly 

concave function describing the preferences of individual i towards his own wealth; 

(1 ) (0,1]iβ− ∈  is the weight accorded by the individual to his preference for wealth; and 

[0,1)iβ ∈  expresses the intensity of individual i’s concern at having low relative wealth. 

We assume a general specification of ( )iRD x , requiring only that ) ( )(i

i

iRD
x

φ∂
≡

∂
x , where 

( ) 0iφ <  for every {1,..., 1}i n∈ − , and ( )iφ  is invariant in ix .5 In words, we assume that 

the relative wealth deprivation of individual i is linearly decreasing in the individual’s 

wealth, namely that 
2

2

) ( )( 0i

i i

dRD
x dx

iφ
=

∂
∂

=
x .  

The utility specification (1) draws on two assumptions. First, that a “rich” 
                                                 
5 A brief foray into the concept of relative deprivation and its history in social psychology and in 
economics is in an Appendix in Stark (2013). Examples of eligible ( )iRD x  functions include 

1

) max( { , 0}
n

k i
k

iR xD x
=

= −∑x , and ( max ,) { 0}i iRD X x= −x  where X  is the average wealth in population 

P. For these functions ) 0(nRD =x  (the relative deprivation of the richest individual is zero). Consequently, 
the condition ( ) 0iφ <  is assumed to hold for i n< . 
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individual attaches the same weight to absolute wealth and, for that matter, to relative 

wealth as does a “poor” individual, namely that iβ  does not depend on ix . Second, in 

using weights that sum up to one, the utility function has the characteristic that a weak 

taste for absolute wealth correlates with a strong distaste for low relative wealth (and vice 

versa).6 This assumption can be interpreted as us assigning 100 percent of weight to the 

absolute wealth and the relative wealth components, permitting any ratio between these 

two terms in the preference specification.  

The coefficient of relative risk aversion (the Arrow-Pratt measure of relative risk 

aversion) of individual i whose wealth is ix , taken holding the wealth levels of other 

members of population P, 1 1 1( ,..., , ,..., )i i nx x x x− + , constant, is  

2

2
( )

( ) ( ,)

i
i

i
i

i

i

ir x

ux
x

u
x

∂−

∂
≡

∂

∂

x

x  

and is well defined in some neighborhood of ix . The corresponding coefficient of 

absolute risk aversion is 

2

2
( )

( ) ( )

i

i
i i

i

i

u
xR x u

x

∂
−

∂
≡

∂
∂

x

x . 

We proceed by attending to the coefficient of relative risk aversion. Because the 

reasoning and claims that pertain to absolute risk aversion are equivalent to those that 

pertain to relative risk aversion, they are omitted. Indeed, throughout the remainder of 

this paper, absolute risk aversion can replace relative risk aversion, thereby conferring to 

our argument a measure of generalization.  

The following lemma shows that the stronger the concern of an individual at 

having low relative wealth, the lower the individual’s relative risk aversion. 

                                                 
6 This characterization will hold also if we were to make the weaker assumption that 

( ( )() )i i iu Rf Da x b−=x x , where , 0,  0a b a b≥ + > . 
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Lemma 1. Assume that i n< . The relative risk aversion of individual i taken from 

population P is a decreasing function of iβ  (the intensity of his concern at having low 

relative wealth). In particular, when 0iβ =  (when individual i is not concerned about 

relative wealth), then his relative risk aversion is higher than when he is concerned about 

relative wealth (namely when 0iβ > ).  

Proof. Given (1), for any i we have that  

( ) (1 ) ( ) ( )i
i i i

i

u f x i
x

β β φ∂ ′= − −
∂

x  

and that 

2

2 (1 ( .) ) )(i
i i

i

u f x
x

β∂ ′′= −
∂

x  

Consequently, 

(1 ) ( )
(1 ) ( )

)
( )

( i i i
ii

i i i

x f xr
f i

x
x
β

β β φ
′′− −

=
′− −

. 

Treating ( )i ir x  as a function of iβ , we have that 

[ ]2
( ) ( )

(1 ) ( ) ( )
( ) 0i i

i

i i

i i i

x f x idr
d f x i

x φ
β β β φ

′′

′− −
= − < ,  

where the inequality sign follows because we have assumed that ( ) 0if x′′ < , and that 

( ) 0iφ <  for i n< . From the last displayed inequality it follows that 

( (0 ) 0)i i i i
i i

r x r xβ β>= > , which completes the proof. Q.E.D. 

We now forge a link with marriage market considerations. To this end, we assume 

that the coefficient iβ  of individuals who are more concerned about their relative wealth, 

for the reason that it influences their standing in the marriage market, takes higher values 

than the corresponding coefficient of individuals who are out of the marriage market. 

Lemma 1 reveals that the higher weight assigned to relative wealth translates into 

lowered relative risk aversion. Put differently, when social status is correlated with 
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relative wealth, a higher weight assigned to rank in social space might lead to more risk 

taking in the finances space.7 

 

3. A link between relative risk aversion and the incidences of divorce  

In this section we hypothesize that relative risk aversion will vary depending on the 

“background” likelihood of divorce and hence on the likelihood of re-entry into the 

marriage market. For example, we conjecture that in environments in which the divorce 

rates are high, the risk-taking behavior of men who are married will be less distinct from 

the risk-taking behavior of men who are single.  

To demonstrate rigorously the link between the likelihood of divorce and the 

relative risk aversion of men, we construct in this section a two-period model. The model 

enables us to study the difference in the degrees of relative risk aversion between 

individuals who are married in the first period and individuals who are initially single, 

and to inquire how this difference is moderated by the likelihood of divorce. We proceed 

as follows. In Subsection 3.1 we introduce notation. In Subsection 3.2 we study the case 

in which an individual’s wealth and rank in the wealth distribution are held constant over 

the two periods. In Subsection 3.3 we allow wealth to change, but we continue to hold 

rank constant. In Subsection 3.4 we allow both wealth and rank to vary. We find that in 

all these cases, individuals who are married in the first period are more relatively risk 

averse than individuals who are initially single, and that this difference decreases with the 

likelihood of divorce (namely with the probability that an individual who is married in 

the first period will become single in the second period).  

 

3.1 Notation 

Formally, in any of the two periods, 0 and 1, individual i, 1,2,...,i n= , i P∈ , can be 

either single or married. Depending on the individual’s marital status, his distaste for low 

                                                 
7 For the reason that a higher standing in the marriage market confers a superior match, the quality of the 
match could have been incorporated as a direct argument in the utility function (as is done, for example, by 
Wei et al., 2017). For the purposes of this paper doing so was not deemed necessary: what matters is the 
aspiration for a better match, which is subsumed in the parameter iβ .  
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relative wealth is S
iβ  or M

iβ , where superscripts S and M stand for single and married, 

respectively, and where we assume that 0 1M S
i iβ β< < < . We denote by 0p >  the 

probability that individual i who is single in period 0 will be married in period 1, and by 

0q >  the probability that individual i who is married in period 0 will divorce and hence 

be single in period 1. In fact, what we have in mind is being single at the beginning of 

period 1, as then the individual’s standing in the marriage market in the course of that 

period matters to him.8 For simplicity’s sake, we assume that p, the probability of getting 

married, is the same for all single individuals and, likewise, that q, the probability of 

divorce, is the same for all married individuals. However, our results hold also if this 

assumption is relaxed. 

The individual’s wealth in period 0 is ix , and in period 1 it is iy . We retain the 

assumption that 1 2 ... nx x x< < < . However, 1 2 ... ny y y< < <  need not hold; rank in the 

wealth distribution may change over time. The utility of individual i, ,
ivµ κ , where µ  

denotes the marital status of the individual in period 0 and κ  denotes the marital status of 

the individual in period 1, namely , { , }M Sµ κ ∈ , is a weighted sum of the levels of the 

individual’s utility in the two periods: 

( ), , ( ) ( )i i i i i i iv x y u x u yµ κ µ κρ≡ +  

and  

) ( ) if ,
( )

) ( ) i
(1 )
1 f

(
,) (  (

S S
i i i

i i
i

i
M M

i i i

f x S
u x

f x M
RD
RD

ζ β β ζ
β β ζ

 − =
− −


=

−
≡

x
x

 

where ( )i iu xµ  is the utility of individual i in period 0, ( )i iu yκ  is the utility of individual i 

in period 1, (0,1)ρ ∈  is the discount factor, 1( , , )nx x≡ …x , and 1( , , )ny y≡ …y .9 We 

                                                 
8 In principle, we could consider time-varying parameters, namely tM

i
,β  and tS

i
,β  where tS

i
tM

i
,, ββ <  and 

}1,0{∈t , in which case all our results will still hold, albeit with a slight modification of the model’s 
assumptions. (Details of the required adjustments are available on request.) For simplicity’s sake, in the 
text we retain our “original” assumptions.  
9 As before, we write ( )i iu xµ  and ( ), ,i i iv x yµ κ , rather than ( )), (i iiu RDxµ x  and 

( ), (, )(, ),i ii ii RDv RDx yµ κ x y . 
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denote by ( ),i i iEv x yµ  the expected utility of individual i whose marital status in period 0 

is µ . We note that  

 ( ) ( ) ( ), ,, (1 ) , ,S S S S M
i i i i i i i i iEv x y p v x y pv x y= − + , (2a) 

 ( ) ( ) ( ), ,, (1 ) , ,M M M M S
i i i i i i i i iEv x y q v x y qv x y= − + . (2b) 

In the two-period setting, we consider ( )i ir xµ , the measure of relative risk aversion of 

individual i, which, using (2a) and (2b), we define as  

 

2

2
(

(

,

)
)

)

( ,

i
i

i

i i i

i
i

i
i

i

Ev x y

r
Ev x

dx
dxx

d
dx

y

µ

µ
µ

−
≡ , (3) 

where { , }M Sµ∈ .10 Finally, we introduce two auxiliary variables, S
iγ  and M

iγ , defined as 

follows: 

 (1 )S M S
i i ip pγ β β≡ + − , (4a) 

 (1 )M M S
i i iq qγ β β≡ − + , (4b) 

namely S
iγ  and M

iγ  are the intensities of the distaste at having a low rank in the wealth 

distribution in period 1, as expected in period 0 by a single individual S, and as expected 

in period 0 by a married individual M, respectively.  

In demonstrating that the transformation of uncertainty about the state of being 

married today into the state of being married tomorrow influences the risk taken in wealth 

allocations today, we need to bear in mind that like life expectancy and scores of other 

future-related aspects, future wealth is uncertain. Our innovation is the “invasion” of 

marriage market considerations into the formation of attitudes towards wealth allocation. 

                                                 
10 Generally speaking, the distribution of an individual’s wealth over time may depend on the degree of the 
individual’s relative risk aversion. Assuming that incomes are exogenous in both periods confines the 
analysis to a typical “career path” of an average individual of a given type (where type is determined by 

M
iβ  and S

iβ ). In addition, we assume that the first period lasts long enough for the outcome of financial 
decisions made in that period to be observed in the course of that period. Therefore, it is meaningful to 
measure relative risk aversion as in (3).   
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As noted in footnote 10, we deliberately chose a modeling framework in which the aspect 

of uncertainty that is subjected to analysis is the future marital status of an individual. 

This choice enables us to investigate possible changes in the individual’s risk aversion, 

even when both his absolute wealth and his rank in the wealth distribution change over 

time. We deliberately abstract from other dimensions of uncertainty which, obviously, are 

many: not only is the future wealth of an individual subject to uncertainty; so are his 

health status, as already noted his life expectancy, and even the very nature of the 

marriage market, which can be affected by social, legal, and other developments. (For 

example, changes to the regulatory framework can render divorce more or less costly.) 

Let there be no doubt about it: other aspects and spheres of uncertainty merit theoretical 

work, yet we suggest that such inquiries are better taken up in research that follows our 

present offering. 

 

3.2 Fixed wealth, fixed rank  

We now present our first result for the two-period setting.  

Claim 1. Consider individual i , where i n< , and assume that his wealth does not change 

from period 0 to period 1, that is, i ix y= . In addition, assume that the individual’s rank in 

the wealth distribution remains constant. If the individual starts out as single ( Sµ = ), 

then his relative risk aversion, given by (3), is lower than if he starts out as married 

( Mµ = ).  

Proof. The proof is in Appendix. 

Remark 1. Given the assumptions of Claim 1, the higher the probability of divorce, the 

lower the relative risk aversion of an initially married individual, which narrows the 

difference in the levels of the relative risk aversion between the two types of individuals.  

Proof. The proof is in the Appendix. 
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3.3 Changing wealth, fixed rank 

The assumption regarding the individual’s wealth remaining constant between the two 

periods can however be dropped when instead we impose additional constraints on the 

utility function and on the expected distaste at low relative wealth in period 1, as stated in 

the following claim. 

Claim 2. Consider individual i, where i n< , and assume that i’s wealth in period 1 is 

different than i’s wealth in period 0, namely (1 )i i iy g x= +  for some 1ig > − , yet i’s rank 

in the wealth distribution in the two periods stays the same. Assume further that 

( )i if x axλ= , where 0a > , and 0 1λ< < . Moreover assume that  

 1
1

S
i
M
i

p q p
q p q

β
β

+ −
< ≤

+ −
. (5) 

If individual i starts out as single ( Sµ = ), then his relative risk aversion is lower than if 

he starts out as married ( Mµ = ).11,12  

Proof. The proof is in the Appendix. 

Comment: An implication of (5) is that the probability of a single person getting married 

is higher than the probability of a married individual getting divorced (because 

1S M
i ip q β β≥ > ). This inequality is likely to be the case given that marriage rates are 

consistently higher than divorce rates. (For example, according to CDC 2018 estimates, 

in the US in 2016 these two rates were, respectively, 6.9 in a total population of 1,000, 

and 3.2 in a total population of 1,000.) Another implication of (5) is that the probabilities 

p and q place on a lower limit ( (1 ) (1 )p q q p+ − + − ), and an upper limit ( p q ) on 
S M
i iβ β , namely the ratio between distaste for low rank in the wealth distribution of a 

                                                 
11 In using the power utility function ( )i if x axλ=  we follow a long tradition of wide use of this function for 
fitting utility functions to data (Wakker, 2008). In (1) we augment this utility specification by adding 
concern at having low relative wealth. While )(⋅f  has the property of constant relative risk aversion, our 

concern is with the properties of the utility function ( )iu ⋅ . 
12 If divorce and marriage probabilities are allowed to vary across the individuals, then p  and q  in (5) 

have to be replaced by ip  and iq , respectively. 
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single individual and distaste for low rank in the wealth distribution of a married 

individual. 

 

Remark 2. Analogously to Remark 1, the higher the probability of divorce, the smaller 

the difference between the relative risk aversion of an initially married individual and the 

relative risk aversion of an initially single individual. 

Proof. The proof is in the Appendix. 

 

3.4 Changing wealth, changing rank 

We now consider the case of an individual whose position in the wealth ranking varies 

between periods 0 and 1. We attend to the case in which an individual’s rank in the 

wealth distribution changes from 1n i− +  to 1n j− + , where ,i j n<  and i j≠ .  

Claim 3. Consider individual i, where i n< , and assume that i’s wealth in period 1 

differs from i’s wealth in period 0, namely (1 )i i iy g x= +  for some 1ig > − , and i’s rank 

in the wealth distribution changes over the two periods from 1n i− +  to 1n j− + , i j≠ , 

and ,i j n< . Assume further that ( )i if x axλ= , where 0a > , and 0 1λ< < . In addition, 

assume that 

 1
1

S
i
M
i

p q pz
q p q

β
β

+ −
< <

+ −
, (6) 

where max{ ( ), ( )}
min{ ( ), ( )}

i jz
i j

φ φ
φ φ
− −

≡
− −

. If individual i starts out as single ( Sµ = ), then his 

relative risk aversion is lower than if he starts out as married ( Mµ = ).13  

Proof. The proof is in the Appendix. 

                                                 
13 Assumption (6) links the heterogeneity in the sensitivity of individuals to relative deprivation, as 
measured by z, to the dissimilarity in the distaste for low relative income between single individuals and 
married individuals, as represented by the ratio .S M

i iβ β  In particular, the higher this ratio, the higher the 
heterogeneity parameter z can be. 
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We note that the assumptions in (6) are quite similar to condition (5) in Claim 2, 

albeit the first inequality in (6) is at least as strong as the corresponding inequality in (5): 

the most left hand-side of (6) is weakly bigger than the most left hand-side of (5). This is 

so because z  is defined as the ratio between the maximum and the minimum of two 

positive numbers. Therefore, 1z ≥ .  

Remark 3. Analogously to Remarks 1 and 2, the higher the probability of divorce, the 

smaller the difference between the relative risk aversions of an initially married 

individual and an initially single individual. 

Proof. The proof is in the Appendix. 

 

4. Conclusions 

We have shown that obtaining a desirable outcome in the marriage market influences 

men’s preferences in a predictable manner and thus also behavior in the financial sphere. 

This led us to claim a causal link between the likelihood of divorce and the riskiness of 

financial decisions.  

The logic of our model is that men who are more concerned about their relative 

wealth, as single men can be expected to be, are less relatively risk averse than men who 

care less about their relative wealth - the likely preference of married men. Our model 

provides an analytical foundation to empirical studies on this subject (Sundén and 

Surette, 1998; Grable and Joo, 2004; Roussanov and Savor, 2014; Chattopadhyay and 

Dasgupta, 2015). By the same token, the difference in the extent of relative risk aversion 

between single men and married men decreases when divorce is more likely; a higher 

probability of divorce and thereby of re-entry into the marriage market leads to more 

daring investments. Thus, marital-related considerations can help explain variation in the 

degrees of relative risk aversion even within the group of married men. Because received 

empirical studies on the correlation between risk aversion and the likelihood of divorce 

do not attempt to establish causality (see the references cited in Section 1 to McCranie 

and Kahan, 1986; Light and Ahn, 2010; Love, 2010; and Christiansen et al., 2015), our 
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model can serve as a guide for further empirical work, having established and identified 

the direction of causality.  
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Appendix: Proofs of the claims and of the remarks of Section 3 

Prior to providing proofs of the claims and the remarks of Section 3, we formulate and 

prove three lemmas.  

Lemma 2. The following inequalities hold: 

 1S S
i iρβ γ ρ+ < +  and 1M M

i iρβ γ ρ+ < + , (7) 

 M M S S
i i i iβ ργ β ργ+ < + . (8) 

Proof: We note that  

( ) ( )
(1 ) 1

(1 ) (1 )S S S S
i i i i

S S S
i i i

M S S S
i i i ip p p pβ ργ β ρ β ρ

β ρβ β ρ ρ

β β β β+ = + +

+ + < +

+ − < + −

= =
 

and, by similar reasoning, we also have that 1M M
i iρβ γ ρ+ < + , which completes the 

proof of (7). In order to show that (8) holds, we note that S M
i iβ β>  implies that 

 (1 ) (1 )M M S S S S
i i i i i iq q q qγ β β β β β= − + < − + =   (9a) 

and that 

 (1 ) (1 )S M S M M M
i i i i i ip p p pγ β β β β β= + − > + − = . (9b) 

Using (9a), (9b) and, once again, that S M
i iβ β> , we obtain 

( ) ( )
( )

1 1
1 .

M M M S M M S S M S
i i i i i i i i i i

S S S S S
i i i i i

β ργ β ρβ ρβ ρ β ρβ ργ ρ β ρβ

ργ ρ β ρβ ργ β

+ < + = + − + < + − +

< + − + = +
 

Q.E.D. 

In order to introduce the next lemma, we define a function ( ) :[0,1]iH t → R  as 

follows:  

 ( ) ( )( )
( ) ( ) ( ) ( )

i i
i

i

x f x A tH t
f x A t i B tφ

′′−
≡

′ −
,  (10) 
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where 0ix > , as in (1) :f + →R R  is a twice differentiable, strictly increasing, and 

strictly concave function, i n< , and the functions ( ) :[0,1]A t → R  and ( ) :[0,1]B t → R  

are defined as the following linear combinations:  

 1 2 1( ) ( )A t a a a t≡ + − , (11a) 

  1 2 1( ) ( )B t b b b t≡ + − , (11b) 

where it is assumed that 1 2, 0,a a >  and that 1 2, 0b b > .14,15 

Lemma 3. The following properties of the ( )iH t  function hold true. 

I. (0) (1)i iH H>  if and only if 1 2 2 1a b a b> .  

II. Treating (0)iH  as a function of 1a , we have that 
1

(0) 0idH
da

> . 

III. Treating (0)iH  as a function of 1b , we have that 
1

(0) 0idH
db

< .  

Proof. To prove part I, we need to show that  

 1 2

1 1 2 2

( ) ( )(0) (1)
( ) ( ) ( ) ( )

i i i i
i i

i i

x f x x f xa aH H
f x a i b f x a i bφ φ

′′ ′′− −
= > =

′ ′− −
 (12) 

if and only if 1 2 2 1a b a b> . From the assumptions about ,j ja b  for {1,2}j∈ , the concavity 

of ( )f ⋅ , and the assumption that (( 0) )i

i

RDi
x

φ ∂
=

∂
<

x  we know that ( ) ( ) 0i ix f x iφ′′ >  and 

that the two denominators in (12) are positive ( ( ) 0if x′ > ). Hence, (12) can be 

transformed to read  

2 11 2( ) ( ) ( ) ( )i i i ix f x i b x f x i ba aφ φ′′ ′′> , 

which is equivalent to 1 2 2 1a b a b> .  

                                                 
14 These assumptions, in conjunction with the properties ( ) 0f ⋅ >′  and ( ) 0φ ⋅ ≤ , ensure that the denominator 
in (10) is positive hence, obviously, it is not zero. 
15 Strictly speaking, we should have used the notation ( )

ixH t . We write instead ( )iH t  so as to simplify the 

notation, but we bear in mind that function ( )iH t  is defined for a specific value of ix .  
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To prove part II, we note that by (10), (11a), and (11b) we have that  

1
2

1 1 1

(0) ( ) ( ) 0,
[ ( ) ( ) ]

i i

i

idH b x f x i
da f x a i b

φ
φ

′′
= >

′ −
 

where the inequality holds because 1 0b >  and ( ) ( ) 0i ix f x iφ′′ > . By analogy, to prove part 

III, we note that by (10), (11a), and (11b) we have that  

2
1 1

1

1

(0) ( ) ( ) 0,
[ ( ) ( ) ]

i i

i

idH a x f x i
db f x a i b

φ
φ

′′−
= <

′ +
 

where the inequality holds because ( ) ( ) 0i ix f x iφ′′ >  and 1 0a > . Q.E.D. 

Prior to formulating Lemma 4, we define a function , ( ) :[0,1]i jH t → R% . By 

analogy to (10),  

 ,
( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )
i i

i j
i

x f x A tH t
f x A t i C t j D tφ φ

′′−
≡

′ − −
% , (13) 

where 0ix > , ( )if x  is defined in (1), ,i j n< , and the functions ( ) :[0,1]A t → R , 

( ) :[0,1]C t → R , and ( ) :[0,1]D t → R  are defined as the following linear combinations:  

 1 2 1( ) ( )A t a a a t≡ + − , (14a) 

 1 2 1( ) ( )C t c c c t≡ + − ,  (14b) 

 1 2 1( ) ( )D t d d d t≡ + − ,  (14c) 

where it is assumed that 1 2, 0,a a >  1 2, 0c c > , and 1 2, 0d d > .  

Lemma 4. The following properties of , ( )i jH t%  hold. 

I. If 1 2 2 2 1 1( ) min{ ( ), ( )} ( ) max{ ( ), ( )}a c d i j a c d i jφ φ φ φ+ − − > + − − , then 

, ,(0) (1)i j i jH H>% % . 

II. Treating , (0)i jH%  as a function of 1a , we have that ,

1

(0)
0i jdH

da
>

%
. 
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III. Treating , (0)i jH%  as a function of 1d , we have that ,

1

(0)
0i jdH

dd
<

%
. 

Proof. Analogously to the steps taken in the proof of Lemma 3, part I of Lemma 4 is 

proved by transforming the inequality 

 1 2
, ,

1 1 1 2 2 2

( ) ( )(0) (1)
( ) ( ) ( ) ( ) ( ) ( )

i i i i
i j i j

i i

x f x x f xa aH H
f x a i c j d f x a i c j dφ φ φ φ

′′ ′′− −
= > =

′ ′− − − −
% %  (15) 

so as to obtain the equivalent form 

 2 2 1 11 1 2 2( ) ( ) ( ) ( )i c j d i c j da a a aφ φ φ φ− − > − − . (16) 

The following two inequalities hold: 

 { }1 2 1 2 1 2 1 2( ) ( ) min ( ), ( ) ( )i a c j a d i j a c a dφ φ φ φ− − > − − + , (17a) 

 { } 2 1 2 1 2 1 2 1max ( ), ( ) ( ) ( ) ( )i j a c a d i a c j a dφ φ φ φ− − + > − − . (17b) 

Now suppose that  

 1 2 2 2 1 1( ) min{ ( ), ( )} ( ) max{ ( ), ( )}a c d i j a c d i jφ φ φ φ+ − − > + − − . (18) 

We note that (17a), (17b) and (18) together imply (16) and, equivalently (15). 

Part II of Lemma 4 is virtually identical to part II of Lemma 3, and can therefore 

be proved by replicating the same line of reasoning. Likewise for part III, where the proof 

mirrors the proof of part III of Lemma 3. Q.E.D. 

 

Proof of Claim 1. We note that the expected utility of individual i who is single in period 

0, defined by (2a), is  

( ) ( ) ( ) ( )
( )

, ,, (1 ) , , (1 ) ( ) ( )

( ) ( ) .

S S S S M S S
i i i i i i i i i i i i i

S M
i i i i

Ev x y p v x y pv x y p u x u y

p u x u y

ρ

ρ

= − + = − +

+ +
  

Given the utility function as defined in (1), and given the assumption that i ix y= , 

( ),S
i i iEv x y  takes the form 
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( ) ( ) ( ){ }, 1 (1 ) ( )

( ) (1 ) ( ).

S S M S
i i i i i i i

S M S
i i i i i

E

R

v x y p p f x

p pRD D

ρ β ρ β β

β ρ β β

 = + − + + − 

 − − + − x y
 

Substituting S
iγ  defined in (4a) we obtain 

( ) ( ) ( ), 1 ( ) ( ) ( )S S S S S
i i i i i i i i i iEv x y f RD Dx Rρ β ργ β ργ = + − + − −  x y , 

which is akin to the deterministic utility function (1). The similarity becomes even more 

vivid when we take the first and second derivatives of ( ),S
i i iEv x y  with respect to ix : 

( ) ( ) ( )

( ) ( )
2

2

( , ) 1 ( ) ( ),

( , ) 1 ( ).

S
S S S Si i i
i i i i i

i
S

S Si i i
i i i

i

dEv x y f x i
dx

d Ev x y f x
dx

ρ β ργ β ργ φ

ρ β ργ

  ′= + − + − + 

  ′′= + − + 

 

Defining ( ),M
i i iEv x y  analogously to the manner of defining ( ),S

i i iEv x y , the relative 

risk aversion of individual i is 

 
( ) ( )

( ) ( ) ( )
( ) 1

1 ) (
)

( )
(i

i i i i

i i i i i
i

x f x
r

f x i
x

µ µ

µ µ µ

µ

µ

ρ β ργ

ρ β ργ β ργ φ

 ′′− + − + =
  ′+ − + − + 

, (19) 

where superscript { , }M Sµ∈  is the initial marital status of individual i. In order to look 

into the differences in the intensity of the relative risk aversion between the individuals of 

the two types, we apply Lemma 3 and substitute as follows: 

 ( ) ( ) ( ) ( )1 21 , 1M M S S
i i i ia aρ β ργ ρ β ργ= + − + = + − + , (20a) 

 1 2, .M M S S
i i i ib bβ ργ β ργ= + = +  (20b) 

We recall that by (7) in Lemma 2, 1 2, 0a a > . And we also have that 1 2, 0b b > . 

We also note that  

 (0) ( )M
i i irH x= , (1) ( )S

i i irH x= . (21) 
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Hence, by Lemma 3, the condition )()( i
S

ii
M

i xrxr >  will be proved upon showing that 

1 2 2 1a b a b> , namely upon showing that 

( ) ( ) ( ) ( ) ( ) ( )1 1M M S S S S M M
i i i i i i i iρ β ργ β ργ ρ β ργ β ργ   + − + + > + − + +    , 

which is equivalent to 

( )( ) ( )( )1 1S S M M
i i i iρ β ργ ρ β ργ+ + > + + , 

where the latter inequality holds by (8) in Lemma 2. Q.E.D. 

 

Proof of Remark 1. We re-apply Lemma 3 and employ the same substitutions as in the 

proof of Claim 1. The difference in the intensities of the relative risk aversion between an 

initially married individual and an initially single individual is given by 

( ) ( ) (0) (1)M S
i ii i i ir rx x H H− = − . 

Upon closer inspection, in the preceding expression only ( ) (0)M
i i ir x H=  depends on the 

probability of divorce q . Hence, we can simplify: 

( ) ( )] ( )] (0)[ [M S M
i i i ii i id r r dx x x dr
dq q

H
d dq

=
−

= . 

Furthermore, we have that 

 1 1

1 1

(0) (0)(0)i i id ddadH H H
dq

db
da dq db dq

+= .  (22) 

Bearing in mind that ( ) ( )1 1 M M
i ia ρ β ργ= + − +  as well as using the definition of M

iγ  in 

(4b), and drawing on the assumption S M
i iβ β> , we obtain that 

 1 ( ) 0S M
i i

da
dq

ρ β β= − − < . (23) 

By analogy, we have that 1
M M
i ib β ργ= + , hence 
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 1 ( ) 0.S M
i i

db
dq

ρ β β= − >  (24) 

Because we have 
1

(0) 0idH
da

>  by part II of Lemma 3, and 
1

(0) 0idH
db

<  by part III of 

Lemma 3, (22), (23), and (24) imply that ( )](0) [ 0i
M

iidH d r x
dq dq

= <  and, hence, the 

difference in the levels of the relative risk aversion between an initially married 

individual and an initially single individual decreases in the probability of divorce. 

Q.E.D. 

 

Proof of Claim 2. To begin with, we show that condition (5) implies that 

 M S
i iγ γ< . (25) 

Indeed, the inequalities in (5) imply that S M
i iq pβ β<  and that 

(1 ) (1 )M S
i iq p p qβ β− + < − + . Then, from the definition of M

iγ  in (4b), the following 

hold:  

 (1 ) (1 ) (1 )M M S M M M
i i i i i iq q q p q pγ β β β β β= − + < − + = − + ,  (26) 

 (1 ) (1 ) (1 ) (1 )M M S S S S M S
i i i i i i i iq p p q p q p pγ β β β β β β γ< − + < − + = − + < − + = .  (27) 

Moreover, we note that  

(1 ) (1 ) (1 )

(1 )

M S M M

M

S M S MS S M M S
i i i i i i i i

M S S
i i i

i i i i i

S
i i

p p p p q q

q q

β β β β ββ ββ β β

β β

γ β β

β γβ

   = <  − + − + =



=  − + 
< − + =

 

 
 

or, in short, that  

 M S S M
i i i iβ γ β γ< . (28) 

Next, we look at the expected utility of an initially single individual as defined by (2a), 

namely  
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( ) ( ) ( )

( ) ( )
, ,, (1 ) , ,

(1 ) ( ) ( ) ( ) ( ) .

S S S S M
i i i i i i i i i

S S S M
i i i i i i i i

Ev x y p v x y pv x y

p u x u y p u x u yρ ρ

= − +

= − + + +
 (28’) 

Because ( )i if x axλ= , then it follows that ( )(1 ) (1 ) (1 ) ( )i i i i i if g x a g x g f xλ λ λ+ = + = + . 

Utilizing this equivalence, (28’) can be rewritten as 

( ) ( ){ }, 1 (1 ) (1 ) (1 ) ( )

( ) (1 ) ( )

S S M S
i i i i i i i

S M S
i i i i

i i

i

E g g

RD R

v x y p p

p D

f x

p

λ λρ β ρ β β

β ρ β β

  = + + − + + + −   

 − − + − x y
 

which, drawing on (4a), is equivalent to: 

( ) { }, 1 (1 ) (1 ) ( ) ( ) ( ).S S S S S
i i i i i i ii i i i iEv x y fg g RDx RDλ λρ β ρ γ β ργ   = + + − + + − −    x y  

Differentiating this last expression of ( ),S
i i iEv x y  with respect to ix  yields  

{ }

{ }
2

2

( , ) 1 (1 ) (1 ) ( ) (1 ) ( ),

( , ) 1 (1 ) (1 ) ( ).

S
S S S Si i i
i i i i i

i
S

S Si i i
i

i i

i i i i

i

i

g g g

g

dEv x y f x i

g

dx

d Ev x y f x
dx

λ λ

λ λ

ρ β ρ γ β ρ γ φ

ρ β ρ γ

′     = + + − + + − + +     

′′   = + + − + +   

 

The formulae of the expected utility and of its first and second derivatives for an initially 

married individual, as well as the measures of the relative risk aversion of the individuals 

of the two types are modified accordingly. 

Analogously to (19), we have that 

{ }
{ }

( ) 1 (1 ) (1 )

1 (1 ) (1 ) ( )
)

1 ) )
(

( (
i i i ii i

i i
iii i ii i i

x f x
r

f

g g
x

g g gx i

λ µ λ µ

λ µ λ µ µ

µ

µ

ρ β ρ γ

ρ β ρ γ β ρ γ φ

′′    − + + − + +   =
′     + + − + + − + +     

, 

where { , }M Sµ∈ . 

Once again we apply part I of Lemma 3 and substitute, this time as follows:  

 
1

2

1 (1 ) (1 ) ,

1 (1 ) (1 ) ,

M M
i i

S S
ii i

i i

i

a

a

g g

g g

λ λ

λ λ

ρ β ρ γ

ρ β ρ γ

   = + + − + +   
   = + + − + +   

 (29a) 

 1 2(1 ) , (1 ) .i i
M M S S
i i i ib bg gβ ρ γ β ρ γ= + + = + +  (29b) 
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Applying a reasoning analogous to that in the proof of (7) in Lemma 2, it can be shown 

that 1a  and 2a  are positive. For instance, the inequality 2 0a >  is implied by 

( ) ( )
( )

(1 ) (1 ) (1 )

(1 ) 1 (1 ) 1 (1 ) ,

(1 ) (1 )
S

i i

i

S S S S
i i ii i

S S
i i i i i

M S S S
i i i ig g g

g g g

p p p pλ λ λ

λ λ λ

β ρ γ β ρ β ρ

β ρ β β ρ ρ

β β β β+ + = + + + +

+ + + + < + +

+ − < + −

= =
 

and 1 0a >  can be shown to hold similarly, bearing in mind that, obviously, 1 2, 0b b > . 

Also the counterparts of the equalities in (21) hold. Consequently, the proof of the present 

claim will be completed upon showing that 1 2 2 1a b a b> , namely that 

( ) ( )
( ) ( )

1 (1 )

1

ˆ ˆ

ˆ ˆ (1 ) ,

i
M M S S
i i i i i

S S M M
i

i

i i ii i i

g g

g

g

gg

ρ β ρ γ β ρ γ

ρ β ρ γ β ρ γ

   + − + + +  
   > + − + + +  

 

where, to simplify, we substitute ˆ (1 )i ig g λ≡ + . Upon rearranging, we get 

 
( )( ) ( )( )( )

( )( )
ˆ ˆ1 1 1

ˆ1 0.

S M S M
i i i i i i i

S M M S
i i i i i i

g g g

g g

ρ β β ρ ρ γ γ

ρ β γ β γ

+ − + + + −

+ + − − >
 (30) 

The first term on the left hand-side of (30) is positive by the assumption that S M
i iβ β> . 

The second term on the left hand-side of (30) is positive, because by (25) we have that 

0>− M
i

S
i γγ , and we know that 1 0ig+ > . As to the third term, we have, by assumption, 

that 0 1λ< <  and, hence, ˆ1 i ig g+ ≥ , so that on recalling condition (28), we know that 

the third term is nonnegative. With inequality (30) shown to hold, the claim is proved. 

Q.E.D. 

 

Proof of Remark 2. We employ a reasoning that is analogous to the one given in (22) 

(see the proof of Remark 1). The only difference is that conditions (23) and (24) are 

replaced by 

 ( )1 (1 ) 0S M
i i i

da g
dq

λρ β β= − + − <   (31) 

and 
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 ( )1 (1 ) 0S M
i i i

db g
dq

ρ β β= + − > . (32) 

The inequalities in (31) and (32) hold because 0S M
i iβ β− > . By analogy to the proof of 

Remark 1, with (31) and (32) shown to hold, the proof is completed. Q.E.D. 

 

Proof of Claim 3. The proof is similar to the proof of Claim 2. First, we show that (6) 

implies that 

 M S
i izγ γ< . (33) 

Indeed, analogously to (26), we have that   

 M
i

M
i pq βγ )1( −+< . (34) 

Because the first inequality in (6) implies that (1 ) (1 )M S
i iz q p p qβ β− + < − + , we have 

that (1 )M S
i iz q pγ β< − +  and, then, replicating the reasoning in (27) we get that  

(1 ) (1 ) (1 ) (1 )M M S S S S M S
i i i i i i i iz q p p q p q p pγ β β β β β β γ≤ − + < − + = − + ≤ − + = . 

We next show that  

 M S
i izβ β< . (35) 

Indeed, because 1S M
i iβ β > , the second inequality in (6) implies that p q> . But this in 

turn implies that (1 ) (1 ) 1p q q p+ − + − >  and, thus, by the first inequality in (6), we have 

that  

1
1

S
i
M
i

p qz z
q p

β
β

+ −
< <

+ −
, 

which proves that (35) holds. 

Consider now the first and the second derivatives of the expected utility function 

of individual i. For ease of reference, we replicate the expected utility functions for a 

single individual and for a married individual, respectively:  
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 ( ) ( ) ( ), (1 ) ( ) ( ) ( ) ( )S S S S M
i i i i i i i i i i iEv x y p u x u y p u x u yρ ρ= − + + + , (36) 

 ( ) ( ) ( ), (1 ) ( ) ( ) ( ) ( )M M M M S
i i i i i i i i i i iEv x y q u x u y q u x u yρ ρ= − + + + . (37) 

Given the assumptions of the claim, we get that  

( ) ( ){ }, 1 (1 ) (1 ) (1 ) ( )

 ( ) (1 ) ( ),

S S M S
i i i i i i i i i

S M S
i i i i iRD

Ev x y g g p p f

p R

x

Dp

λ λρ β ρ β β

β ρ β β

  = + + − + + + −   

 − − + − x y
 

( ) ( ){ }, 1 (1 ) (1 ) (1 ) ( )

  ( ) (1 ) ( ).

M M S M
i i i i i i i i i

M S M
i i i i iRD

Ev x y g g q q f x

q Dq R

λ λρ β ρ β β

β ρ β β

  = + + − + + + −   

 − − + − x y
 

Differentiating these two expressions with respect to ix  and substituting as per 

definitions (4a) and (4b) yields 

{ }

{ }
2

2

( , ) 1 (1 ) (1 ) ( ) ( ) (1 ) ( ),

( , ) 1 (1 ) (1 ) ( ),

i i i
i i i i i i i i

i

i i i
i i i i i

i

dEv x y g g f x i g j
dx

d Ev x y g g f x
dx

µ
λ µ λ µ µ µ

µ
λ µ λ µ

ρ β ρ γ β φ ργ φ

ρ β ρ γ

′   = + + − + + − − +   

′′   = + + − + +   

 

where { , }M Sµ∈  and, therefore, 

{ }
{ }

( ) 1 (1 ) (1 )

1 (1 ) (1 ) ( ) ( ) (1 ) ( )
( )

i i i i i i

i i i i i i
i i

i i

x f x g g
r

f g
x

g g x i j

λ µ λ µ

λ µ λ µ µ µ

µ
ρ β ρ γ

ρ β ρ γ β φ ργ φ

′′    − + + − + +   =
′   + + − + + − − +   

. 

We can now apply part I of Lemma 4 and substitute as follows:  

 
1

2

1 (1 ) (1 ) ,

1 (1 ) (1 ) ,

M M
i i i i

S S
i i i i

a g g

a g g

λ λ

λ λ

ρ β ρ γ

ρ β ρ γ

   = + + − + +   
   = + + − + +   

 (38a) 

 1 2,M S
i ic cβ β= = , (38b) 

 1 2(1 ) , (1 ) .M S
i i i id g d gρ γ ρ γ= + = +  (38c) 

We note that the definitions of 1a  and 2a  are the same as in the proof of Claim 1 (in other 

words, (38a) and (29a) are identical) and, therefore, we have that 1 2, 0a a >  by the same 
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argument as the one employed in the proof of Claim 1. In addition, we obviously have 

that 1 2, 0c c > , and that 1 2, 0d d > . In order to complete the proof, we need to show that  

 1 2 2 2 1 1( ) min{ ( ), ( )} ( ) max{ ( ), ( )}a c d i j a c d i jφ φ φ φ+ − − > + − − , (39) 

which, upon substitution, translates into 

( ) ( )
( ) ( ) ,

ˆ ˆ1 }(1 )

ˆ ˆ1

min{ ( ), ( )

max{ ( )( , (1 ) )}

M M S S
i i i i i i i

S S M M
i i i i i i i

g

g

i j

i j

g g

g g

ρ β ρ γ β ρ γ

ρ ρ

φ φ

β φρ γ β γ φ

   + − + + +  
   > 

− −

− −+ − + + + 

 

where, again, as we did just prior to (30), we substitute (1ˆ )iig g λ≡ + . Upon rearranging 

and substituting max{ ( ), ( )}
min{ ( ), ( )}

i jz
i j

φ φ
φ φ
− −

=
− −

, we obtain the following equivalent expression: 

 
( )( ) ( )( )( ) [ ]

[ ] 2

1 1 1 (1 )

(1 ) (

ˆ ˆ

1)

ˆ

ˆ ˆ (1 ) ( 01) .
i i i

S M
i

S M S M S M
i i i i i i i i

M S S M
i i i i i ii i i

z g z z g

g z z

g g g

g g zg

ρ β β ρ ρ γ γ ρβ γ

ρβ ργ β β γ γ

+ − + + + − + + −

++ − −− + − + >
 (40) 

On the left hand-side of (40) there are six terms. We already showed that the first two 

terms are positive (see (35) and (33), respectively), and because 1z ≥  we know that the 

last two terms are nonnegative. So what remains to be evaluated are the signs of the 

middle two terms. To this end, we consider two cases. First, suppose that 

(1 ) ˆ 0i ig zg+ − < . Then it follows that [ ](1 ) 0ˆM S
i i zggρβ γ− + − > , and we infer that  

[ ] [ ]ˆ(1 ) (1 ) 0ˆS M M S
i i i i i ii iz g g zg gρβ γ ρβ γ+ − − + − >  

because both terms on the left hand-side of this last inequality are positive (we note that 

ˆ(1 ) 1i i iz g g g+ ≥ + ≥ ). Second, suppose, alternatively, that (1 ) ˆ 0i ig zg+ − ≥ . It can then 

be easily checked that iiii gzgggz ˆ)1(ˆ)1( −+≥−+ , so we will have that 

 
[ ] [ ]

( )[ ]
(1 ) (1 )

(1 ) ,

ˆ

ˆ 0

ˆS M M S
i i i i i i

S M M S
i i i i i

i i

i

z g g z

z

g g

gg

ρβ γ ρβ γ

ρ β γ β γ

+ − − + −

≥ − + − ≥
 (40a) 

where the second inequality in (40a) follows from (28) and, again, from ˆ(1 )i iz g g+ ≥ . 

We conclude that (40a) holds true and so does Claim 3. Q.E.D. 
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Proof of Remark 3. We apply the same reasoning as in the proof of Remark 1, and we 

note that for Remark 3 to hold it suffices to show that , (0)
0i jdH

dq
>

%
, where the function 

(0)iH%  is defined by (13) and by the substitutions of (38a), (38b), and (38c). 

It then follows that 

 , , , ,1 1 1

1 1 1

(0) (0) (0)(0)i j i j i j i jdH dH dH dHda dc dd
da dq dc d d dqd qq d

= + +
% % % %

. (41) 

Because the substitution for 1a  is the same as in Remark 1, we have that 1 0da
dq

>  by (31), 

and that 
1

, 1(0)
0i j da

da
dH

dq
<

%
 by part II of Lemma 4. We also note that 1 0dc

dq
= . Finally, the 

definition of 1d  in (38c) implies (recalling (4b)) that  

1 (1 )( ) 0S M
i i

dd g
dq

ρ β β= + − > , 

and, hence, we have that 
1

, 1(0)
0i j dd

dd
dH

dq
<

%
 by part III of Lemma 4. In sum, we showed 

that the first and third terms on the right hand-side of (41) are negative, and that the 

middle term is equal to zero. Thus, , (0)
0i jdH

dq
<

%
 which, as we know from the proof of 

Remark 1, implies that the difference between the relative risk aversion of a married 

individual and the relative risk aversion of a single individual is declining in the 

probability of divorce. Q.E.D. 
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