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An Abstract 

of 

NECESSARY CONDITIONS FOR FIRST, SECOND 
AND THIRD DEGREE STOCHASTIC DOMINANCE EFFICIENCY 

OF ENTERPRISE MIXTURES 

by 

Francis McCamley and James B. Kliebenstein 
(University of Missouri-Columbia) 

Variations of a result by Dybvig and Ross provide necessary conditions 

for the FSD, SSD and TSO efficiency of enterprise mixtures. Several of their 

perfect market portfolio problem results are adapted to the enterprise mixture 

problem. The results imply that the sets of enterprise mixtures which satisfy 

the necessary conditions for FSD, SSD and TSO efficiency are unions of finite 

numbers of convex subsets. Linear programming can be used to determine 

whether a particular mixture and the (appropriately defined) convex subset to 

which it belongs satisfy these conditions. These ideas are illustrated by 

applying them to a simple example. 
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NECESSARY CONDITIONS FOR FIRST, SECOND 
AND THIRD DEGREE STOCHASTIC DOMINANCE EFFICIENCY 

OF ENTERPRISE MIXTURES 

Expected income-variance (E,V) and expected income-absolute deviations 

(E,A) criteria have been used to analyze crop mixes, livestock production 

decisions and marketing strategies. These criteria have been criticized 

because they are not always consistent with the widely accepted expected 

utility approach to decision making under uncertainty. Stochastic dominance 

criteria, which are consistent with expected utility theory, have largely 

replaced E,V and E,A criteria for analyses involving discrete alternatives. 

However, stochastic dominance criteria are not commonly used for mixture 

problems as there is no widely known simple way to find all members of the 

relevant efficient sets. 

Although stochastic dominance methodology for enterprise mixes is not yet 

fully developed, several techniques which exploit sufficient conditions for 

stochastic dominance efficiency are available. Tauer has shown that unique 

Target MOTAD solutions are second degree stochastic dominance (SSD) efficient. 

This technique, which was also independently developed by Watts, Held and 

Helmers, provides a way of identifying some, but usually not all, members of 

the set of SSD efficient mixtures. Similarly, Porter's mean-target 

semi variance provides a way of identifying some, but usually not all, members 

of the set of third degree stochastic dominance (TSO) efficient mixtures. 

Dybvig and Ross present necessary conditions for SSD efficiency of 

portfolios. Their results can be modified to provide necessary conditions for 

SSD efficiency of enterprise mixtures. These conditions and necessary 

conditions for FSD and TSO efficiency are presented in this paper. Several of 

Dybvig and Ross' portfolio problem results are also adapted to the enterprise 

mixture problem. The adapted results help characterize the sets of mixtures 
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which satisfy the necessary conditions for FSO, SSO and TSO efficiency. These 

ideas are illustrated by applying them to a simple example. 

ASSUMPTIONS 

Three alternative classes of utility functions are assumed. The first is 

the class of strictly increasing functions. The second class includes all 

strictly increasing, weakly concave functions. For the third class, 

nonnegative third derivatives are also required. These classes are similar 

those commonly assumed for FSO, SSO and TSO, respectively.l/ 

Tauer's assumptions about the joint probability distribution of the 

alternatives and the form of the constraints are adopted here as well. That 

is, the joint probability distribution of the outcomes associated with the 

various activities is assumed to be discrete and linear resource constraints 

are assumed. In this paper, pis a column vector of probabilities associated 

withs states of nature. xis a column vector of n activity levels. C is a 

matrix of net returns associated with the activities for the various states of 

nature. Cij is the net return per unit of activity j when the ith state of 

nature occurs. y is a vector of (total) net returns for the various states of 

nature. Thus 

( 1) y - Cx = 0. 

A is a matrix of resource or technical requirements and bis a vector of 

resource levels. The constraints on activity levels are 

( 2) Ax ~ b and 

(3) X ~ 0. 

NECESSARY CONDITIONS FOR STOCHASTIC DOMINANCE EFFICIENCY 

Dybvig and Ross present a general result and three special results which 

are relevant for this paper. The general result is that a mixture, x0 , is 
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stochastically efficient if, and only if, there exists a vector, z0 , which 

satisfies the foll owing conditions}/ 

(4) z01 cx0 ~ z0 1 Cx for a 11 x vectors which satisfy ( 2) and ( 3), 

(5) 0 0 if Cx~ < Cx~ (for all i ,j) and z/pi ~ z ./p. 
J J J 

(6) 0 z > 0. 

Necessary Conditions for FSO Efficiency 

Conditions (4) and (6) are necessary for FSO efficiency. Condition (6) 

reflects the fact that, for strictly increasing utility functions, marginal 

utility (when defined) is positive. Jointly, conditions (4) and (6) reflect 

the fact that an enterprise mixture is not FSO efficient if a 1 arger net 

return could be obtained under one state of nature without reducing the net 

return under any other state of nature.11 

Necessary Conditions for SSO Efficiency 

To be SSO efficient, a mixture must satisfy the necessary conditions, (4) 

and (6), for FSO efficiency. It must also satisfy condition (5) which ensures 

that marginal utility is a nonincreasing function of income. 

Necessary Conditions for TSO Efficiency 

Conditions (4), (5), and (6) are necessary for TSO efficiency. However, 

condition (5) can be replaced by a stronger necessary condition: 
0 0 ~ 0 0 ..:;; 

2 k/pk - z./p. z./p. - z./p. -
Cx 0 0 0 ( 5 t ) J J~ J J l l~Q if < Cx. < Cx. 

0 0 0 0 k J l 
yk - Yj Yj - Yi 

Condition ( 5 I ) ensures that marginal utility is a nonincreasing function of 

income and that the rate of decrease in marginal utility is nonincreasing 

(i.e., the third derivative of the utility function is nonnegative). 
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Three of Dybvig and Ross' special results help characterize the sets 

which satisfy the necessary conditions for FSD, SSD, or TSO efficiency. 

Although two of these special results are for perfect market portfolio 

problems, they can be adapted to enterprise mixture problems. 

The first special result is that a vector, z0 , either satisfies condition 

(4) for all feasible x0 vectors or no feasible x0 vector. A similar statement 

can be made about vectors which satisfy both conditions (4) and (6). A second 

result is that the set of x0 vectors which satisfy conditions (4) through (6) 

is the union of a finite number of closed convex subsets. This means that 

the set of stochastically efficient mixtures is closed but, in general, not 

convex. Each of the individual closed convex subsets includes those feasible 

x vectors for which the elements of the associated y vectors share a common 

set of rankings. Oybvig and Ross also show that the set of stochastically 

efficient mixtures is connected. 

Oybvig and Ross' third special result applies without modification to the 

enterprise mixture problem. Their first and second special results do not 

apply directly since the feasible set for the enterprise mixture problem is 

not always a hyperpl_ane as is the case for the perfect market portfolio 

problem. Oybvig and Ross' footnote 2 suggests that when inequality 

constraints are present the first and second of the special results mentioned 

above are valid for interior mixtures. For enterprise mixture problems, 

strictly interior mixtures are unlikely to be efficient but other "interior" 

mixtures may be. 

The feasible set for most enterprise mixture problems is a polyhedron. A 

polyhedron can be thought of as the union of its interior, the "interiors" of 

its faces, the ''interiors" of its edges, and its vertices (or corner points). 
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The polyhedron's interior is the (open) set of those feasible mixtures which 

do not also lie on a face, edge or vertex. The "interior" of a face is the 

open set of feasible mixtures on the face which do not also lie on an edge or 

vertex. The "interior" of an edge is defined in an analogous way. 

The first special result is obviously true for the interior of the 

polyhedron. Of greater practical significance is the fact that a similar 

result is valid for the "interiors" of faces and edges. That is, a vector, 

z0 , either satisfies condition (4) for all "interior" vectors, x0 , of a given 

face or edge or it does not satisfy condition (4) for any "interior" x0 vector 

of the face or edge. If an interior vector of an edge, a face or the 

polyhedron satisfies condition (4), then not only all interior vectors but 

also the 11 boundaries 11 satisfy condition (4). The converse is not always true. 

However, if all of the "boundaries" satisfy condition (4), then the interior 

must as we 11 • 

FSD Candidate Subsets 

The modification needed in Dybvig and Ross' second special result 

depends on the degree of stochastic dominance being considered. For FSD, each 

of the candidates for the individual closed convex subsets is a vertex, an 

edge, a face or the polyhedron itself . .!/ Thus, the set of vectors which 

satisfy the necessary conditions is the union of a finite number of closed 

convex sets. 

SSD Candidate Subsets 

For SSD, each of the subset candidates is the intersection of a vertex, 

an edge, a face or the polyhedron itself and a set of x vectors for which the 

elements of the associated vectors share a common set of (weak) rankings. 

This means that each subset of vectors which satisfy the necessary conditions 
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for SSD efficiency must be a convex subset (perhaps improper) of a subset of 

vectors which satisfy the necessary conditions for FSD efficiency. 

TSO Candidate Subsets 

The approach for specifying candidate subsets for TSO is both similar to, 

and different from, that employed for FSO and SSD. Just as the SSO criterion 

candidates are (typically proper) subsets of FSD criterion candidates, the TSO 

criterion candidates are subsets of those for SSO. 

If a subset satisfies the necessary conditions for FSD or SSO efficiency, 

a single (but not necessarily unique) z0 vector applies to the entire subset. 

Conditions (4), (5') and (6) suggest that defining subset candidates for TSO 

efficiency in the same way would cause many of the subset candidates to be 

individual enterprise mixtures. Fortunately, an alternative approach exists. 

It involves defining each candidate subset as those mixtures which share the 

same set of basis variables when a linear programming formulation of the 

necessary conditions for TSO efficiency is solved. 

A LINEAR PROGRAMMING FORMULATION 

Linear programming can be used to determine whether any particular 

enterprise mixture, x0 , and the subset candidate to which it belongs satisfy 

the necessary conditions for FSD, SSD or TSO efficiency. Simply compute the 

y0 vector associated with x0 and then 

(7) maximize p'(y-y0 ) 

subject to 

(8) Goy~ Goyo 

as well as ( 1), (2) and (3). If the optimal value of the objective function 

is zero, the necessary conditions are satisfied. If the optimal value is 

positive, the necessary conditions are not satisfied. 
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The specification of G0 depends upon the criterion chosen. For FSD, G0 

is merely an s by s identify matrix. For SSD and TSO, the description of G0 

is simplified by assuming that the states of nature have been permuted so that 

0 0 0 5/ 
Y1>y2>· . • >yJs- For these two criteria, G0 is an s-1 by s matrix. For SSD, 

G~j is zero if j:a; otherwise, it equals Pj• 0 For TSO, G. . is zero if j~i ; it lJ 
equals ( 0 0 ) h ">" Pj yi-yj wen J 1. 

The constraints (8) ensure that the graph of the appropriate cumulative 

function associated with the optimal x vector lies at least as far to the 

right as the cumulative function associated with x0 does.§/ For the FSD 

version of the test, optimal income for each state of nature must be at least 

as great as that associated with x0 • For SSD (and TSO), income substitution 

is allowed among states of nature but only 11 SSD (or TSO) equal or better" 

substitution is permitted. 

AN EXAMPLE 

Three alternative ways of using these ideas are illustrated with data 

from Anderson, Dillon and Hardaker. Each of their five states of nature 

(observations) is assumed to be equally likely. Figure 1 shows the set of 

feasible x vectors. Upper case letters A through H identify the vertices of 

the feasible set. Faces ABEGC, ABO and ACFD lie on the planes defined by the 

wheat acreage, 1 abor and land constraints. The other three faces 1 i e on 

planes defined by nonnegativity constraints. The capital constraint is 

superfluous. 

The ideas presented in earlier sections permit approximating stochastic 

dominance efficient sets. Consider the set of mixtures which satisfies the 

necessary conditions for FSD efficiency. Mixture A (uniquely) maximizes 

expected income subject to the resource and negativity constraints { 2) and 

(3). Therefore, it must be FSD (as well as SSD and TSO) efficient. All other 
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A 
Corner Pofot Coordinates 
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Figure 1. Feasible crop mixes. 
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mixtures which satisfy the necessary conditions must be 11 connected 11 to it 

directly or indirectly.I/ Of the three edges connected to A, only AB and AC 

satisfy the necessary conditions for FSD efficiency. Each face of the 

feasible set has at least one inefficient edge. Therefore, Dybvig and Ross' 

11 a 11 or none II resu 1t means that none of the faces is FSD efficient. The 

interior of the feasible set must be FSD inefficient for the same reason.§! 

A second way to employ the ideas in this paper involves starting with any 

connected set known to satisfy the appropriate necessary conditions. All 

mixtures on edge AC and those on line segment AJ are (unique) Target MOTAD 

solutions. Thus, they satisfy the necessary (and sufficient) conditions for 

SSD efficiency. It is theoretically possible that other mixtures satisfy the 

necessary (and perhaps the sufficient) conditions for SSD efficiency. Line 

segment JB is an appropriate candidate as it is the intersection of an edge 

and the set of x vectors for which elements of the associated y vectors share 

the same rankings (i.e., y2 ~ y1 ~ y5 ~ y4 ~ y3). Its 11 interior11 mixtures are 

found to be SSD ineffic·ient by testing mixture c. Other candidate subsets 

could be examined. However, the FSO results guarantee that all would be found 

SSD inefficient. Thus, for this example, the set of SSD efficient mixtures is 

the set of Target MOTAO solutions. 

A third way of employing the <ideas is simply to determine whether 

selected mixtures satisfy the necessary conditions for stochastic dominance 

efficiency. This is illustrated by applying the TSO variant of the test to 

mixtures a, band d. Of these three mixtures, only a satisfies the necessary 

conditions}../ 

CONCLUDING REMARKS 

Necessary conditions for FSO, SSO and TSD efficiency of enterprise 

mixtures were discussed. A linear programming formulation which permits 
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determining whether a given enterprise mixture satisfies those conditions was 

presented. These ideas are illustrated by applying them to example data from 

Anderson, Dillon and Hardaker. For this example, the necessary conditions for 

SSD and TSO (and perhaps FSD) are also sufficient. This is not always true. 

As contrasted with the outcomes commonly realized when the FSD criterion 

is applied to discrete alternatives, the FSD efficient set for the Anderson, 

Dillon and Hardaker example is a very small subset of the feasible mixtures. 

The relative effectiveness of SSD and TSO also differs from that ordinarily 

observed. Typically, the SSD criterion eliminates a significant fraction of 

the FSD efficient alternatives but the TSO criterion eliminates only a small 

proportion of the SSD efficient alternatives. The opposite results were 

observed in this paper. 

Although the tests discussed here can be useful, the most appropriate 

role for them is not yet known. Complementary and/or competitive methods 

exist. Target MOTAD and mean-target semivariance have been mentioned above. 

Bawa, Lindenberg and Rafsky (BLR) suggest an approach which can be used to 

approximate stochastic dominance efficient sets for (imperfect market) 

portfolio problems. This approach could be extended to deal with the 

enterprise mixture problem. It is likely that to be cost-effective, any 

extension would have to deal explicitly with resource and nonnegativity 

constraints. The tests discussed in this paper also do this. Thus, these 

tests and the BLR algorithm may be complementary. 
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FOOTNOTES 

1/ The classes of functions associated with FSD, SSD and TSO, respectively, 

have been variously described. As in Zentner et al., it is common to 

describe these classes in terms of the derivatives of various orders of 

the functions belonging to them. Fishburn and others have presented 

broader definitions. The classes considered in this paper are slightly 

larger than the former but slightly smaller than the latter. 

'~/ These conditions are specialized versions of those in Dybvig and Ross' 

Theorem 1. The only property they assumed for the set of feasible y 

vectors is convexity. Clearly, this assumption is valid for this paper. 

11 The argument Dybvig and Ross used to justify (their version of) condition 

(4) involved concave programming theory. That particular argument is not 

valid for FSD but the simpler one suggested here is. 

~/ Even though the argument in the previous paragraph was in terms of 

"interiors" (which are not closed sets), the "all or none 11 result 

guarantees that the set of vectors which satisfy conditions (4) and (6) 

is the union of closed convex sets. Each candidate subset is closed and 

convex because it is the intersection of two closed, convex sets. 

§/ This formulation assumes that the elements of y0 are unique (i.e., no 

"ties"). Explicit examination of cases involving ties is unnecessary 

since ties are associated with more than one candidate subset and are 

efficient if any one of these candidate subsets is efficient. 

£/ In this formulation, the alternative (cumulative) probability levels are 

fixed and the associated income levels are variable. 

ZI A more extensive discussion of search strategies is presented elsewhere 

(McCamley and Kliebenstein, 1985). 
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· ~/ Inspection of the matrix, C, provides another way of determining the FSD 

efficiency status of the "interior" of face ABEGC and the interior of the 

feasible set. Face ABEGC lies on the plane defined by the wheat acreage 

constraint. Since the second column of C is strictly positive, each 

11 interior11 mixture on ABEGC is dominated by one (on edge AB or edge AC) 

which includes more oat acreage. The fact that all elements of C are 

positive means that all FSD efficient mixtures must be associated with 

faces, edges or vertices of the feasible set. 

'l_/ A previous application of mean-target semivariance determined that all 

crop mixes on AJ except those involving less than (approximately) .58 

hectares of (old) wheat satisfy sufficient conditions for TSO efficiency 

(McCamley and Kliebenstein, 1984). Since this set is identical to the 

set which satisfies the necessary conditions presented in this paper, it 

is the TSO efficient set. 
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