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We want to find an n-input combination (X 1, x 2, x 3, ••• , Xn} for 

which the following function achieves a maximum: 

n . 
' X n 

s = p 1M TT (1 - R,i>] - 6 P.(X.-X.0 ) 
0~ • 1 1 • 1 1 1 1 

1= 1= . 

with the following constraints: 

P. > 0 (i = 0, 1, ••• , n) 
1 

M > 0 

0 < R. < 1 
1 

X. ;:;:; x? > 0 
1 1 

(i = 1, ••• ., n) 

·where P. (i = 1, 2, 3, .••• , n) are the input prices; P is the output price; the X. 
. 1 0 1 

are the amounts of nutrients in the soil after fertilizer application (i.e., they 

include both the quantities naturally occurring in the soil and the quantities 

added by farmers); the X~ (i = 1, ••• , n) are the amoµnts of nutrients naturally· 

occurring in the soil (so that X. -X? would be the amounts that the farmer 
1 1 n x. 

applies and pays for); S is profit; and M TT (1-R. 1 ) is the generalization to 
i=l 1 

n inputs of the Mitscherlich-Spillman crop response function. 

We proceed in the usual fashion by taking the partial derivatives of 

S w. r. t. the n independent variables and equate them to zero: 

as x. - x 
ax = - p M({mR.)R. 1 11 (1-R)) - P. = 0 

i o 1 1 j=H J 1 
(i = 1, 2, ••• , n) (1) 

x. 
1 

Equation (1) could be expressed in terms of variables of the form {1-Ri ): 

n x. X. 
P M(enR.)TT (1-R.J)-P M(~R.)1T (I-R.J}- P. = o 

o 1 j=l J o 1 j=l=i . J 1 
(2) 

In other words, to the left side of the ith equation we have added and sub­
x. 

tracted the term P M(Cn R.) TT (1-R. J) • 
0 1 j=l=i J 
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If we let: 

C. = P M(0nR.) 
l 0 l 

n x. 
w = TT (1-R. l) 

. 1 1 1= . 
x. 

w. = TT (1-R. J) 
1 ·=t:· J J 1 

then we can rewrite (2) as 

P. = C. W - C. W: (i = 1, •• ~, n) 
1 l 1 1 

with the restriction that 

n 
TT w. = wn.-1 

· i=l 
1 . 

.i. e., -- . 

w - X 
1 RI - 1 

• w 
X 

1-R 2 
2 

••• w 
X 

1-R n 
n 

= = 
w 

·n-1 w •· 

(3) 

(4) 

(5) 

(6) 

(7) 

/ 

Hence, we obtain n+l equations in n+l unknowns: w1, w 2 •••• , Wn' W. 

From (6) we get 

P. 
W = W - 1 

i c. 
1 

(i = 1, 2, ••• , n) 

Let D. = P. /C. and substitute into (7): 
1 1 1 

n 

TT (W - D.} = wn-1 
i=l 1 

(8) 

(9) 

i.e., the solution of the n e·quations (1) inn unknowns is equivalent to finding 
n 

the abscissa of the intersection of the two functions TTcw-D.) and wn-l 
' ·-1 1 , . 1-

(equation (9)). 
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Multiplying out the left side of (9) we get: 

If we let 

Zn = Wn - (I) Di+l )Wn-1 + (Dl Dz +• • • + Dn-1 Dn)Wn-2 + 

•••+ (-l)j (D •••D. +•••+D . •••D )Wn-j + 
1 J n-J+l n 

n 
• • • + (-1 )n TT D. 

• 1 l 1= 

then we can say thc,tt we want to find values of W for which Zn = O; or which 
n 

is the same, values such that Tf(W-D.) intersects with Wn-l. 
. · i=l n 1 x. 

- · From the definition of Was TT (1-R. 1 ) it is obvious that we are inter-
. 1 1 1= 

ested in the ca·se when Z has positive roots (between zero and one). 
n 

The following theorem (known as Descartes I Rule of Signs) will be of 
✓ 

help to us: "the number of positive real roots of an algebraic equation 

Z(W) = 0 with real coefficients, is either equal to the number of variations in 

sign of Z(W) or less than that number by a positive even integer. 11 

In our case 

Z - b Wn + b l wn-l + • • • + b · W + b 
n n n- 1 · O 

where 

b = 1 . n 
n 

b l = - (~ D. + 1) 
n- i=l 1 

. b n-2 = (D 1 D 2 + DI D 3 + • • • + D n-1 D n) 

• • • • •• 

I 
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= (-1 )j (D D • • • D. + • • • + D . l • • • D ) 
1 2 J n-J+ n 

••• 

Since the D. 1s are negative (since the Rm R. are negative for O < R1. < 1 ), and 
1 1 

since in b = (-1 )K (D D • • • D + • • • + D K 1 • • • D ), K = 0, 2,. 3, • •., n , n-K 1 2 K n.,- + n 

we have a sum of several terms, each term consisting of 2K negative factors 

(K D/s and K (-1 )'s), hence all the bn-K's will be positive with the possible 

exception of b 1• 
n-

If we assume b 1 < 0, Z (W) will have two changes of sign (i.e., two 
n- n 

or zero positive real roots; ·the two could be a double root). On the other 

hand, if bn-l > 0, we will have zero positive real roots. So we are inter­

ested only in the case when b 1 < 0, i.e., 
n-

n. 
1 > 6 (-D.). (10) 

. 1 1 1= 
/ 

It is a considerable advance to know that Z would at most hav~ two 
n 

positive real roots. 

We can also prove that the positive roots of Z = 0 will all be· less 
n 

than I. Indeed, we have that W - D. > W (i = 1, • • • n) since - D > 0 (i=l n)· · 
n-1 1 ' i , •• ,, ' 

h TT n-1 
ence i=l (W-Di) > W , and since for W ~ 1 we have that (W-Dn)> 1, it follows· 

[
n-1 n-1 n 

that (W-Dn) TT (W-Di)]>.TT(W-D.)> wn-1, i.e., TTcw-D.)> w11-1 for W~l 
1= I 1= I 1 i= 1 l ,, • 

n 
Hence, intersection of TT (W-D.) and Wn-l can occur only for W < 1. 

i=l - l 
n 

At W = 0, we have w-11-I = o,. while TT (-D.) > 0. 
. i: 1 l . ' ' 

Until further notice, we will assume in the remaining discussion that z = 0 ha 
. . . . n s 

two distinct positive real roots. The circumstances under which this as· t· 
sump 1011 
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is justified will be considered at a later point in this paper. To find the 

largest positive root of Z = 0 numerical analysis methods can be applied. 
n 

As our discussion of the stability of the solution will show, of the 

two positive roots of Zn= 0 we are interested only in a 0 since it corresponds 

to the maximum whereas a.- 0 _1 corresponds: to a saddle point of S. 

Having found the w* (= aG) value that is the largest root of Zn = 0, we 

* . 
solve for the s.et of X. 1s that maximizes S: for this purpose we use equations 

1 

* * W. = W - P./C. 
1 1 1 

* to solve for the W. 1s. 
1 

Next, we solve for 

* xi , * * 
1 - R. = W /W. 

1 1 

where from: 

(i=l, ••• ,n) 

(i = 1, ••• , n) 

x.* 
1 

= 
[ * *] lm 1 - (W /W1 ) 

(i = 1, ••• , n) • 
lmR. 

1 

(11) 

/ 

In the following discussion we will consider the stability of the solution and 

its relation to the sign of z (W). . n 
We have 

as n X. X. 
ax.= Po M{tmRi>.TT(l-RJ. J) - PoM(tmR.) TT (I-R. J)-P. (12) 

1 J=l . lj=l=i J 1 

i.e., as ax = C. W - C. W. - P. 
i l 1 1 1 (I 3) 

(from (3), (4), and (5)). 

Obviously, (12) can be written as as ax = MR. -MC., {i.e •• as marrrlnal . . . i 1 1 o-
profit::: marginal revenue-marginal cost) 

MR.= C. W - C W 
1 l i i ' MC. = P. 

1 1 
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Wberefrom if MR. > MC. we get from (13): 
1 1 

C. W - C. W. - P. > 0, or 
1 · 1 1 1 

or 

or 

W - W. < P./C. 
1 1 1 

W - W. < D. 
1 1 

W - D. < W. 
1 1 

(C. < O, 
1 

since 

(definition of D.) 
1 

(14) and MR.> MC. being equivalent. 
1 1 

On the other hand: 
' 

·n 

anR.<0) 
1 

TT n-1 
Z = (W-D.) - W (definition of Z ) - n 

and if 

. n . 1 1 
1= 

Z <. O, then 
n 

n 
TT (W-D.) < Wn-1, or 
. 1 1 1= 

n n 
TT (W-D.) < TT w. 
. 1 1 . 1 1 1= 1= 

(from (7)) • 

(14) 

✓ 

(15) 

Wis obtained by a monotonic transformation of the generalized Mitscherlich-
n X. . 

Spillman production function M TT (1-R. 1 ); hence a fixed value of W implies 
· i=l 1 · 

that we are on an isoquant. If we require that besides being on a particular 

isoquant that we also should be on the expa~sion path, then we should have 

the additional condition MR. = >..MC. (i = 1, ••• , n), where >.. is a Lagrange 
1 1 

multiplier • 

. Hence on the expansion path we have three possibilities: 

a) MR. > MC., all i; b) MR. = MC., all i ; c) MR. < MC., all i • Corre-
l l l . l l 1 . 

spondingly, we can have three possible situations on the expansion path: 
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W - D. < W.; W - D. = W. ; and W ..:. D. > W., for all i. Hence, we conclude 
l l l l l l 

that if for a particular W = K we have Z < 0, that is {15) holds, then n 

MR. > MC. (i = 1, ••• , n) at the intersection of the isoquant MW = MK and 
l l 

.the expansion path.· That is, whenever Zn< 0 it will pay to increase all 

inputs along the expansion path {the profit gradient g_ being positive at the 

intersection of expansion path and the isoquant for W = K). 

Analogous reasoning will lead us fo conclude that whenever Z > 0, 
n 

then g_ < 0 on the EP, and that g_ = 0 on the EP if Zn = O. 

we should reduce the use of all n inputs along the EP. 

So that if Z > 0 
n 

.- . 

z n 

0 

( 1, 1) 

w 

FIG. 1 

The above discussion together with Fig. 1 makes it clear that while W = a 
. G 

corresponds to a stable equilibrium w = a 
. 

1 G-1 corresponds to a saddle point 

hence we are interested in determining only a 
- G' the largest real root of 

z = o. n 

· Observe also that in the case of a positive double root for z = 0 
n • 

according to the present analysis the 

have an inflection point. 

solution ~ill be unstable s. • 1nce we will 

• I 
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In the ~hove discussion we have assumed the existence of the ex­

pansion path. We now proceed to show the existence of the EP without 

obtaining an explicit equation for it. 

The following constrained minimization problem gives us points on 

the expansion path: 

--- . 

i.e., 

minimize 

subject to 

n 0 
~ P.(x.-X.) 
i=l l l l 

n X. 
w** = TT (I-R 1 ), 

. I 1 1= 

**/ minimize costs subject to the fact that yield equals MW • 

This is equivalent to minimizing the Lagrangian function: 

n O [ ,:c* n X. ] 
L = ~ P. (X. -x.) +AW - Tf (1-:-R. 1 ) , 

i=l l l l i=l l 

where A is the Lagrange multiplier. The necessary conditions for the 

minimum of Lare: 

and 

BL ax:- = 
l 

· X. X 
P. + A Tf (1-R. J) (-fmR. )R. i = O 

l "+ • J l l 
JTl 

n X. 
w**- TT (1 - R. 1 > = 

i=l 1 O. 

(i : 1, • 0 •In} 

(16) 



** If we define W. = 
l 

w** 
X. 

l .(1-R. ) 
l 
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, then (16) 

8L 
ax. 

l 

~ [ **· **] = P. - A W - W. .en R. = 0 
l l l-

wherefrom 
** ** W -W 
K 

can be written as 

(i = 1, ••• , n) 

>!(* ** 
W. -W 

== ~, 
P. 

l 

where pK* = pK' / lwRK I, p~ = p) lwR. I 
l l l · 

l 

** . ** ** ** Let Y. = W. · - W , so that W. = Y. + W , then 
l l l l 

YK Y. 
l 

so that --;.;c = - I ... 
PK P .... 

l 

* * Y. = P/YK/PK) l 
(i = 1, ••• , n) 

and then from the definitions of w~* we get 
l 

cw**>n-l = Tf w~*, or 
• 1 l 1= 

cw**>n-1 = TT (Y. + w**> 
i=l l 

(w**>n-1 = TTn [P*(y /p* ) **] 
i=l i K K + W 

"'\l 11-\ 
n fk 

(P;)n (w**>n-1 = ( TT P~)YKn + r(PK*w**> ~ P.* p~ ••• P.* ]. 4ft!?.-:} 
. 1 l LI • >· l l t.+.,. .. 
1= . l1 l2•••>in-l 1 2 ln-1 ·,r.. 

· •••+[P*w**>n-m (. ~ P~p.* ••• p* ~ m 
K . >" . l l 1· YK + ••• · l l •••>1 } 2 · 1 2 m m 

* ** n . • • • + (P W ) . K , 
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or 

obtaining an nth degree polynomial in Y K with all coefficients positive except 

*nr ** n ** n-1 J . ** · * for PK L(W )_ - (W ) which is negative, since O < W < 1 and Pi> 0 

(i = 1, ••• , n). 

· So that by the Descartes' Rule of Signs (17) will have one root, proving 

. . ** the existence of EP (we can let K = 1, ••• , n; and knowing YK and W we can 

obtain w..;_*, R:K, and finally XK). 
, 

We study next the necessary second order conditions for a maxi­

mizing·s (in combination with the first orde,r conditions the second order 

conditions are sufficient for a maximum). 

The necessary second order conditions for a maximum of S, require 
/ 

that the following expressions be positive: 

where 

s11 8 12 • • • 8 1H 

(-l)H 8 21 
s ••• 5 2H 22 > 0 

SHI 5H2 8iIH 

s 
· n xi n O 

= P 0M TT {1-R. > _ L) P. ex. -x. ), 
• 1 ·1111 1=1 1= 

s .. = lJ 
a2s 

ax. ax. 
1 J 

(H=I, ••• ,n) (18) 

and 
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Let us denote, for th,e sake of convenience: 

K = P 0 M 

L. = RX. . 1 
1 1 

T. = 1-L. 
1 1 

-a. = Rm. R. ' a.> 0 
1 1 1 

then (18} can be rewritten 

. . . . . . ••• 

a 1aHK L 1 LH TT T., a 2aHK L 2LH TT Ti, - a 1
2 K LH JT T. 

· i=l=l,H 1 i=1=2,H 1 =l=H 1 

(H=l, ••• , n) 

Multipiying ith row by T. and jth column by T.: 
. 1 J 

•••a a KL L TTT 
1 H 2 H i 

••• 

alaHKLlLH TT Ti, a2~~L2LH TT Ti,.• ·a~K½JTH lTTi 

(H = 1, ••• , n) 

Dividing ith row by (a. L.) and jth column by a K( TT T ) . 
1 1 j I I i · 

-Ti Lz • • • ½i 

••• • •• • •• 
Ll Lz • • • -T 

H 

(H:: 1, • •• , n) 

> 0 

> 0 

> 0 
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Adding all other columns to the first column: 

2 H-2 
cTTai) (-K)H(TTTi) (lTLi) -1 +~Li,-l+L2··••LH 

-1 + ~Li' L 2, • • • -l+LH 

(H = 1, ••• , n) 

Subtracting th_e first row from all other rows: 

-l+~L. , L • • • L 
l 'l: H 

cTTa.r (-K)H(TfT.r-2cnL.) 
0 -1 · ••• 0 

l l l . . . • • • ... 
0 0 -1 

(H = 1, ••• , n) 

> 0 

>O 

But-a determinant of a trangular matrix equals the product of its diagonal 

elements: 

or 

or 

or 

. 2 H-2 · 
( TT a.) (-K)H ( TT T.) (TTL. )(1- :EL.) (-l)H > 0 

l l l l 

(H=l, •.. ,n) 

TT 2 H H-2 
Cl1a1~)-(K) <ITT.) (lTL.)(1-~L.)(-1)2H >O 

H. 
1 - :E L. > O 

i=l l 

H X. 
I> :ER l 

i=l i 

l l 1 

(H = 1, ••• ,n) 

(H=I, ••• ,n) 

{H=I, ••• ,n) 

Obviously, condition (I 9) is (since R~i ~ 0, 
1 all i) equivalent to 

✓ 

(19) 
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1 > ~ R. 1 • 

. 1 1 1= 
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(20) 

Observe that if the first order conditions for a maximum are satisfied, then 

from (I) we obtain 

X . [ X. 
R. i = - P. / P 0 M(.enR. > TT (1 - R. 3>, 

1 1 1 .*. · J J 1 . 

all i. 

i.e., 
X. X. 

R. 1 - 0./ 1T (1-R. J), all i (21) = 
1 1 • *. J J 1 . 

Wherefrom 

X. 
R. 1 > - D., all i 

1 1 

n x: n 
So that I > ~ R. 1 => I > ~ (-D.) => b < 0 => Z has two changes of sign. 

. i= I 1 i= I 1 n-1 n 
However, (10) and (21) do not together imply the stronger condition (20). 

X. n X. n 
Let R. 1 = L . ., then 1 > ~ R. 1 becomes I > ~ L., which is equivalent 

1 n 1 i=l 1 n i=l -1 

to -I < ~ -L . ., and in turn to n-1 < :E (1-L. ), or 
• 1 i . I i 1= . 1= 

n 
n - 1 < ~ T. 

i=l 1 
(T. = I - L., all i) • 

1 1 

,/ 

(22) 

Then if We write the generalized Mitscherlich-Spillman production function 

as 
n 

y = M TT T. 
i=l 1 

we will have the elasticity of production with respect to the vector of the 

Ti's given by 

n 
E:(T) = ~ y /y 

i=l 

, i.e • ., 

= n 
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wherefrom condition (20}, equivalent to (22}, can be stated as 

n 
e (T} ·- 1 < ~ T . • 

- . 1 l l= 

We proceed to show an alternative derivation of the second order conditions. 

Define 

F(W) = J Zn(W)dW , 

so that Z (W) = F 1 (W) • n 

From Fig. 1 we see that F 1 (aG) = 0, and F"(aG) = z ~ (aG) > O; hence 

at aG we minimize F(W) • 

The sufficient condition for F(W) being minimum at a is 
' G 

-- . > 0, or 

Z' > 0 or n , 

a~rfr(W-Di)-Wn-1] . > 0, or 
~=I W=a 

G 

✓ 

{[t1 .TT (W-n.)J- (n-l)Wn- 2} · > 0 , 
J*1 J W=a 

G 
but at W = a we have w -D _ W (. 

. G i - i l = I,•••, n), from first order conditions. 
' 

[ ·~1 TT W. ]- (n-1 )Wn-2 > 0 
1= j=l=i J 

[1~1jTI l~R~i] 
[ r; wn-1 TT 1 ] · 

i=l •:j:• ---X. - (n-l)Wn-2 > 0 
J 1 1-R. J 

J ' 
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[. ~ Wn-l. - 1-] - (n-l)wn-Z > 0 
i=l Wi 

[ ~ W • _!__ J - (n-1) > 0 
. 1 . w. 
1= 1 

n X. 
:E (1-R. 1 ) - (n-1) > 0 
• 1 l 1= 

n X. 
n - .:E R. 1 - (n-1) > 0 

i=l l 

n X. 
:E ·R. 1 + I > 0 
. 1 1 1:=. 

n X . 
. 1 > :E R. 1 • Q.E.D. 

. I l 1= 

. . 

\ 

Next1 we proceed to show that the elasticity of substitution is less than one. 

By definition 

. a .. - -
1J 

where 

MP. = 
1 

= 

·-

= 

= 

f. 
1 

d~(X. /X.)] t: l ] 

8£ a 
= ax. = ax. 

1 l. 

[MW] 

a [ n. XK J 
ax. M TT (1 - RK. ) 

l. ~=1 

Xi XK 
M(- GnR.)R. TT (1 - RK ) 

l l K=l=i 

M(GnR.) [w -TT c1 - R:K>] 
1 K=H 

M(S.Ri)W(1 • --½r.) 
1-R.1 

1 

,/ 

. j 

·, 
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( 
X. ) -R. 1 

= M.(0T!Ri) w -...;:.,1 x:;:-.-
1-R. 1 

1 

X. 
n_ R . L - R 1 • T. = 1 - L.) , (Since ai = - 1(//L i • i - i ' 1 1 

wherefrom: 

a.. = 
lJ 

o.. = . lJ 

But since for i =I= j 

It follows that 

d[ 0n(X. /X. >] 
r ( :. L. ~ . )]. , or 

d 011 l 1 J 
a.L. T. 

J J 1 

a.L.T . 
J J 1 

a.L. T. 
1 1 J 

- a.L. , 
1 l 

a.L. , 
l 1 

(3.) xj d xi - xi d xj 
X. X- 2 

1 

• 2 2 2 
a. L. T. 

J J 1 

a. L. T. d(a.L.T.)-a. L. T. d(a.L.T.) 
J J l l l J l l J J J l 

2 
= a.L.T. (-a. L. T. d X. +a.a. L. L. d X.) 

JJl 1 lJ 1 lJlJ J 
2 -

-aiLiT3.(-a3. L 3. Ti d X. +a.a. L. L. d X.) 
J 1 J 1 J 1 

. 2 L . = - a. a. . L. T. (T.+L.)d X. + 
lJlJJ 11 l 

2 
+ a. a. L. L. T. (T.+L.)d X. 

lJ lJJ J J J 

/ 



.. 

-17-

2 2 = - a. a. L. L. T. d X. + a. a. L. L. T. d X. 
1 J 1 JJ 1 1 J 1 J 1 J 

since T. + L. = T. + L. = 1 • 
1 1 J J 

Wherefrom, 

-- . 

a .. = -lJ 

<J •• = 
lJ 

<J •• = 
lJ 

a.L.T. 

( 
X. ) X. dX. - X. dX. 
_L. J 1 1) 

X. x-2 
1 

2 2 
] J 1 • 

a.L. T. 

(-a. a. L. L. T.dX. +a.a. L. L. T. dX. ) 
l]lJJ l lJ l]l J 

2 2 2 
a. L. T. 1 1 J 

dX. 
1 

- ""x. 
l 

a.dX. 
1 1 

T. 

1 
X. 

1 

1 

+ 

+ 
dX. 
__]_ 
X. 

a. dX. 
+ ) ] 

T. 
J 

l dX. 
(x:-} ciY. 

1 

-a. 
1 

y 
a. dX. 

+-1... __J_ 
T. dX. 

1 J 1 

J J 1 

• 

But along an isoquant we have 

MP. dX. + MP. dX. = 0, i.e., 
1 l J J 

Ma. W ( TLi) d X. + Ma. w( Lj ) dX. = O 
l i l J T. J 

J 

Wherefrom: 

so that: 

dX. 
--l = 
dX. 

1 

a .. = lJ 

a L. T. 
i 1 l. 

a. L. T. ' 
J J 1 

l - x:-
1 

a. 
1 -r 

J 

( l ) a. L. T. _ _ 1 l J 
X. a.LT 

l 1 j i 
a 1 a.L.T. 

- --- • l l l 
T a.LT. 

l J l 



,,,. 

-18-

divide n:umerator and denominator by - a.L. /T.: 1 1 1 

let 

- . 

er •• = lJ 

a .. = lJ 

CJ •• = lJ 

= 

a.. = 
lJ 

0~. = lJ 

However, 

since 

u 
= 

:: 

T. T. 
1 + J 

a. X. L. a. X. L. 
1 1 1 J J 1 

1 1 • 
L. + L. 

1 J 

1 - L. 1 - L. 
1 + a. X. L. a. X. L. 

1 1 1 J J J 
1 1 • 
L. + L. 

1 J 
-a.X. -a.X. 

1 1 1 1 J J - e - e 
-a.X. + -a.X. 

(a.X.)e 1 1 (a.X.)e J J 
1 1 

a.X. a.X. 
1 1 J J e + e 

aK XK • then 

-Y:· -Yd 
1 - e l 1 + - e 

: -Y. -Y. 
Y. e l J 

1 
Y. e 

Y. Y. 
l e J e + 

Y. Y. 
e 1 -1 e l_1 

Y. + 
l Y. 
Y. Y. .. 

e l e J + 
eu-1 eu -< u , for u > 0, 

(~ UK) 00 UK 
- -1 6 

·K=O K! -
K=l K! = 

u u 
00 K·-1 00 UK lj u E. 

00 - = I; < 

= 

K=l Kt K=O (K+I )! K=O 

✓ 

K u - - eu -
K! • 
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u 
In turn, 

e -1 u < e 
u 

for u > 0, implies that O < cr •• < 1 for X., X. > O. 
lJ 1 J 

We suggest the Newton's method for finding roots of equations, to 

find the largest positive root of Z = O. In this method, W , the nth 
. n n 

approximation to a root of Z(W) is given by: 

= w -n-1 
n = 2, 3, ••• 

It can be proved (see Appendix B) that if a function Z (W) and its second n 

derivative have the same sign on [a, b] and S is the only root of Z (W) = 0 . n 

on [a, b], . then the Newton method converges to S if our fir st approximation 

to I; is in [a, b]. We are going to show that if Z = 0 has two roots on 
. • n 

(0, 1) then Zn (W) and Z~ (W) are both positive for W > aG where aG is the 

largest real root of Z (W) = O. Indeed, the nth degree polynomial 
n 

z = b Wn + b wn-l + • • • + b 1W + b 0 · · n n n-1 

can be expressed 

where: 

z 
n = u (W) • • • u (W) (W -a ) • • • (W -a ) 

1 K 1 G 

n = 2K + G 

u.(W) > 0 
1 

(i, ••• , K) 

,/ 

K = number of conjugate pairs of complex roots of Z = 0 . n 

G = number of real roots of Z = 0 n 
-

(23) 

aj = jth real root ?f Zn = 0 listed in ascending order of magnit~de. 

From (23) it is obvious that Zn> 0 for W ~ aG. 

\ 
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A theorem of Rolle states: "Between two consecutive (real) roots 

aj a~d aj+l of a polynomial Z(W} there is at least one and at any rate an 

odd number of roots of its derivative Z '(W). 11 

~ I 
If n ~ 3, then if Z has two changes of sign, so will Z · · so that Z = 0 n · n' n 

has either zero or two positive real roots. By Rolle 1s theorem if Z = 0 has n 

two positive real roots aG and aG-l then Z~ = 0 has one root on (aG-i' aG), 

and we conclude that Z~ = 0 must have two real positive roots (f3G and f3G-l ). 

The other positive root of Z~ = 0 is between _on (0, aG-l ). Indeed, if n ~ 3, 

then Z~ > 0 at· W = o. Since Zn= 0 at aG-:l we conclude that Z~ = 0 some­

where on (0,_aG-l ). 

Analogous :reasoning will show that if Z has two changes of sign and . n 

n ~ :' then z; will have two real roots 'YG-l and .'YG' with O < 'YG-l < {3G-l 

< 'Y G < f3 a• So that z; (W)° > 0 for W > a G' (a G > f3 G > 'Y G). Hence, since 

aG < I ·and since (Zn/z;) > 0 for W > 'Ya, we conclude that W = 1 is a 

convenient approximation to aG when using the Newton method given that Z . n 

has two real roots. 

The Newton method can also tell us if Z = 0 has real positive roots: . n 

if when applying the Newton method we start with WO = 1 and after a few · 

iterations: either, a) the jth approximation W. is negative, or, b) W.+1> W., 
J . J J 

or, c) z' = 0 at W = W. while Z (W.) f. O; then we can conclude that Z = o 
n _ J n J . n 

has no real roots. 

\ 
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. 
APPENDIX A 

The Special Case of Three Inputs 

We can be more definite about the existence of real positive roots of· 

Zn = 0 when n = 3 (n = 1, 2 being trivial_ cases). 

3 2 1 
The discriminant of a cubic equation b, W + h2 W + h1 W + h0 = 0 

is given by 

And the following important relations hold true: 

if fl < o. one root is real and two are complex; 

if fl = o. all roots are real and two are equal; 

if .A > 0, the three roots are real and unequal. 
. . 3 

Hence. after having determined that b2 = (i~l Di + 1) is negative (so that 

we have either zero or two real positive roots for z3 = 0, we check for the 

sign of the discrimininant, and if f:i > 0 we are assured that our P!oblem has 

. a solution. since two of the three real roots will be positive and unequal. 

' 
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APPENDIX B 

Convergence of the Newton Method 

In the Newton method the (n+l )th approximation to a root is given by 

X +l = 8 (X ), where 8(X) = X - f(X) • 
n n f'(X) 

Theorem: If f(X) is continuous on [a, b], f 1 (X) f. 0 on [a, bJ: f(a) < 0, 

f(b) > 0, f(X) £11 (X) > 0 for a ~ X ~ b, and !; is the only root of f(X) = 0 on 

[a, b], then the Newton method converges to I; (assuming x0 is in (!;, bJ~) 

Proof: First note that f(X) f' (X) ~ 0' (X) = 

= 1 -

ie e. I 

8'(X) > 0 

N~xt, note that 

8(X) < X 

[£' (X)] 2 - f(X) f' (X) = 

[f' (X) ] 2 

on [a, b] 

f(X) f" (X) 

[f 1 (X)I2 

for l;<X:O:b, 

> 0 I 

✓ 

for if the.re is some X l such that !; > X :.: b and X l ~ 0 (X l ), then 

:.: 0 

(B-1) 

(B-2) 

(since X l ~ 8 (X l)). wherefrom we have f(X l) ~ 0, since f 1 (X l > O 

(because £(a)<'. 0, f(b) > 0, and f 1 (X) f. 0). But £(XI) ~ 0 is a contradiction 

since we have assumed f(a) < 0, f(b) > 0, and only one root of f(X) = 0 on 

[a, b] • 

. We.proceed to show that if x0 > !;, then S <XI< x0• 
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(by (B-I)) 

⇒ XI> I; since 0(x0) = XI, and 0(1;) =I;, 

since f(I;) = 0 • 

X 0 > ~- ⇒ X 0 > 0 (X0) by (B-2) 

⇒ Xo>XI • 

By induction, we have x 0 > XI > • • •> Xn > I;, if x 0 > I;. Hence we have a 

bounded monotone sequence. Therefore ·a limit exists, i.e., lim X = l. 
n n-+oo 

We proceed to show that J, = I;: 

Since 

lim 
n-+oo 

f{X ) 

Xn+I =X n hence - I n £' (X ) 
n 

£( lim X ) 

·xn+I lim X 
n-+oo n 

= -
n-oo n £ 1 ( lim X ) 

n-oo n 

J, = J, - f{J,) , where from 
f '(J,) 

f(J,) = 0, and since I; is the only root on [a, b], we have J, = I; • 

Hence the sequence x0, x 1, ••• , Xn converges to I;. 

' 
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