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We want to find an n-input combinatien (Xl' XZ’ X3, ees, Xn) for

rwhich the following function achieves a maximum:

S = P[Mr(l-R)] EP(XX)
with the following' constraints:

Pi > 0(i=v0, 1, .40, 1)

M>0

0 -<Ri< 1 i=1,¢0.,mn)

X. 2 X%°>0
1 1

‘where Pi(i =1,2,3,...,n) are the input prices; Po is the output price; the Xi

are the amounts of nutrients in the soil after fertilizer application (i.e., they
include both the quantities naturally occurring in the soil and the quantities
added by farmers); the Xf i=1,...,n) are the amounts of nutrients naturally )

occurring in the soil (so that Xi-Xf would be the amounts that the farmer
. n X,
applies and pays for); S is profit; and M ﬂ (I-Ril) is the generalization to
i=1
n inputs of the Mitscherlich-Spillman crop response function.

We proceed in the usual fashion by taking the partial derivatives of |

S w,.r,t, the n independent variables and equate them to zero:

8 . _p MEGRIRI T 1R N
3. =~ Py MrR,R, H_(l-R-)-Pi=0 (i=1,2,...,n) (1)
i jEi ) '
: x,
Equation (1) could be expressed in terms of variables of the form (1 -Ri ):

n
PM(?/nR)TT(lRJ)PM(Q/nR)TT(IRJ)- P, =0 (2)
J 1 J*l . J

In other words, to the left side of the ith equation we have added and sub-

tracted the term P M (0n R ) Tr (1- R.J J)
jFi
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If we let:
C. = P M(&R,) (3)
i o i
n X.
w = JTa-r.% (4)
i=1 .
X,
w. = TTa-r.)) (5)
i ck g j : , ’
jFi
then we can rewrite (2) as
Pi = CiW'CiWi (1=1,ooo,n) i . (6)
with the restriction that
n ,
MTw, =w"? | | (7)
~i=l
i.e.,
n .
.—W—;{ . .E_;; se e W - E_ = ‘VV’n‘m1 .
1-R.!  1-R? 1-R_® w
1 2 n

Hence, we obtain n+l equations in n+l unknowns: W,, W, , ..., W _, W.
) 1 2 n

From (6) we get

1 . .
Wi = W - 'q (1=1: z:"': n)‘ l, (8)

Let Di = Pilci and substitute into (7):

| =]

-1 : .
I1 (W-D,) = wh | (9)

i

j.e., the solution of the n equations (1) in n unknowns is equivalent to finding
n

the abscissa of the intersection of the two functions W(W-Di) and Wn"1 '
i=1 '

(equation (9)).
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Multiplying out the left side of (9) we get:

n n-1 n-2

woo- (ZDi)W +(D,D, +D,D, + +D_ D )W +

ceeD, 404+ 4D ceeD W 4
h] n n

® o0 ‘- j
+ 17D D, ~j+1

loc+(-1)n:rl-l Di = Wn‘-lo
i=

If we let

_ n n-1 n-2
z = W - @D+1)W " + (DD, +-+++D_ ;D W +

LI ) ..j' ‘e 0 ¢ o0 * e n-j |
S+ (-1 (DpreeDy et D e DOWTT 4

n
eeet (-1)" TT D,
i=1 *

then we can say that we want to find values of W for which Z = 0; or which
: ‘ n

is the same, wvalues such that W(W-Di) intersects with Wn—l.
‘ ’ i=1 n X.
~ From the definition of W as -IT (1 -Ril) it is obvious that we are inter-
i=1

ested in the case when Zn has positive roots (between zero and one).

The following theorem (known as Descartes' Rule.of Signs/) will be of
help to us: ‘''the number of positive real roots of an aléebraic equation
Z(W) = 0 with real coefficients, is either equal to the number of variations in
sign of ZkW) or less than that number by a positive even integer."

In our case

_ n n-1
Zn—an +bn_1W +...+blw+b0
where

b =1
. n
. n -

b = -

n-1 (i2=31 D, +1)
‘b_ . = (D,D ‘

n-2~ (PP +DDy+-cc4D D)
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bpoj = (13X (DyDyeeeDyteeet Dy gy oo D)
nn .
by = (-1) i|=[l D, .

Since the Di's are negative (since the %Ri are negative for 0 < Ri <1), and

. . K _
since in bn_Kz(-—l) (DlDZ---DK+---+D K+1'”Dn)’ K-O,Z,_3,'...,n,

we have a sum of several terms, each term consisting of 2K negative factors

(K Di's and K (-1)'s), hence all the b will be positive with the possible

n-K's
exception of bn—l'
If we assume bn—l <90, Zn(W) will have two changes of sign (i.e., two

or zero positive real roots;-the two could be a double root). On the other

?

hand, if bn;I > 0, we will have zero positive real roots. So we are inter-

ested only in the case when bn-l <0, i.e., B

1 > Z (-D;) . L (10)
i=1 , e
. e
It is a considerable advance to know that Zn would at most have two

positive real roots.
We can also prove that the positive roots of Zn = 0 will all be less ‘

than 1. {ndeed we have that W - D >W(@HE=1,...,n) since - D >0 (i=1 . n)"
- E AR Y ] 3

1
hence TT] (W D )> wh” » and since for W2 1 we have that (W-D )>1 it follows
i=
that (W-D )[]T (W- D)]>TT(W D)>W 1, i.e., TT(W D)>wn for w21,

\
Hence, intersection of -IT (W D. ) and W -1 can occur only for W< 1,

i=1
n
At W = 0, we have w“’1=0-wh11el—|'(-n)>o .
i=1 ‘
Until further notice, we will assume in the rema.lnlng dlscussmn that Z = 0 has

two distinct positive real roots. The circumstances under which this assumpti
ior



w5
is justified will be considered at a later point in this péper. To find the
largest positive root of Zn = 0 numerical analysis methods can be applied,
As our discussion of the stability of the solution will show, of the
two positive roots of Z = 0 we are interested only in % since it corresponds
to the maximum whereas @5y corresponds: to a saddle point of S.
Having found the W*(= aG) value that is the largest root of Zn =0, we

* :
solve for the set of Xi 's that maximizes S: for this purpose we use equations

* * i
Wi=W -Pi/Ci, N 1 _1,...,n)

%
to solve for the Wi s,

Next, we solve for

%*
1 X ox .
"'Ri —W /Wi (1=.1,'oo,n) . (11)
whei',e from:
. w1 - (W W, )]
Xi = (i=1,.o-,n)n‘
P/nRi ‘ _

In the following discussion we will consider the stability of the solution and

its relation to the sign of Zn(W).

We have
3s I %; %
5% = Py MInR)TT(1-R] J) - PM@R,) [] (1-R, J)-P, (12)
i j:]_ J : 1 j:#i J 1
. aS
10 e.’ —e - -
8Xi Ci w Ci Wi - P,

i | (13)
(from (3), (4), and (5)). |

Obviously, (12) can be writt 5 . e, as
| ou | itten as 3X; ~ MRi-MCi, (i.e., as margina] -
profit = marginal revenue -marginal cost)

MRi=CiW-CiWi s MC1=P1



-6-

Wherefrom if MRi > MCi we get from (13):

- - >0
CiW. CiWi Pi , Or

'W--Wi<Pi/C:.l (Ci<0,’since WnRi< 0)
or
w - Wi < Di (definition of Di)
or
- | | (14)
w Di < Wi |

(14) and MR’i> I\/ICi being equivalent.
On the other hand;’

: n :
n-1 . s
= |1 - - t £z
Z, 18 (W Di) w _ (definition o n)

-

and if Zn < 0, then

(W-D,) < Wn-l, or , , -

:j:

i=1

")
t

i

n . )
(W-D,) < T w, (from (7)) . (15)
1 i=1 .

1

W is obtained by a monotonic transformation of the generalized Mitscherlich-
n X ‘
Spillman production function M-n— (1-R
' i=1
that we are on an isoquant, If we require that besides being on a particular

i i); hence a fixed value of W implies
isoquant that we also should be on the expansion path, theﬁ we should have
the additional condition MRi = )\MCi (i=1,...,n), where A is a Lagrange
multiplier,

_Hence on the expansion path we have three possibilities:
a) MR; > MC,, alli; b) MR, = MC,, alli; ¢) MR, < MC,, alli. Corre-

spondingly, we can have three possible situations on the expansion path:
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W-D.<W,; W- D, =W, ;and W - D, > W,, for all i. Hence, we conclude
1 1

that if for a particular W = K we have Z <0, that is (15) holds, then

MRi > MCi (i =1,...,n) at the intersection of the isoquant MW = MK and

the expansion path.  That is, whenever Zn < 0 it will pay to increase all

inputs along the expansion path (the profit gradient g being positive at the

intersection of expansion path and the isoquant for W = K).

Analogous reasoning will lead us to conclude that whenever z >0,

then g < 0 onthe EP, and that g = 0 onthe EP if Zn = 0, So that if Zn >0

we should reduce the use of all n inputs along the EP,

/ (1, 1)

v
g

’
\

- w G wE et e e w e - m— o | > . -

R
Q

{
]
\

-----—on——---‘w-‘-— - - -
L]
fa—

FIG., 1

The above discussion together with Fig. 1 makes it clear that while W=«

corresponds to a stable equilibrium, W =«

hence - we are interested in . determining only «

- Observe also that in the case of a pos1t1ve double root for Z

according to the present analys1s the solution will be unstable,

have an inflection point,

G

G-1 C€orresponds to a saddle point, |

G’ thve largest‘ real root of

=0

»

since we will



In the above discussion we have assumed the existence of the ex-
pansion path, We now proceed to show the existence of the EP without
obtaining an explicit equation for it,

The following constrained minimization problem gives us points on
the expansion path:

o 0
) minimize 2 P.(x,-X.) .
. sy L1

o B Xi
subject to W = [ (1-R;"),
i=1

- i.e., minimize costs subject to the fact that yield equals MW,

This is equivalent to minimizing the Lagrangian function:

zn) 0 ok Xi '
L= P, (X -X i} _
Z P06 + x[w 1];[1’ (1-R, )] ,

where ) is the Lagrange multiplier., The neces sary conditions for the

minimum of L are:

oL ' X. X
= = P, +2A [ | 1-R. Jy (o i ‘
8X_ | i j#i( 57 rRIR, Y = 0 (16)

(i = l..!.,h)

and
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sk W ‘
If we define Wi = % , then (16) can be written as
i
(1-r, ")

3L, W [ ek **] _ .

aXi - Pi-)\W "Wi MRi—O .(1—1,.0.,11)
wherefrom

*%k *
wy -Wo Py ¥ . =
W T }T , where P = P /Ry |, P = py/|onR, |

1

%%k 3 %%
Let Y, = W, -W , sothat W, =Y, + W then

Y Y.
"I"EE = —3% s, so that
PK Pi
%, 3 .
Y = Pi(YK/PK) (1= 1""’n)

and then from the definitions of Wj* we get

w Rl T W™, or
_ i=1
n
(W**)n-l - ﬂ- (Y. + W**) -
. i=1
#kn-1 T [ Aok
CAR RN INEA SRS

. n
(P;;)n (W**)n-l - -ﬂ— (P Y. 4 P*W**)

i=1 K 'K h-\
ik
()™ (w1 o (]TP YR+ [(p*w**) > p* p¥... p* Jtﬂ*%}
| ipiyeee>i 1 2 i 4%
st PEW TP (3 PXp...p* ) |ym,
i1>iz-'->1 S ) LK

cees (pF WD
ook (P W™



or

n % %k * m
* n * ** n-m ( Z} R R e @ R ) Y + o s e
(i—i |1 Pi)YK tooodt [(PKW ) i1>i2. . '>im11 i, i K

-';+P’;§[(W#*)n-(w**)n-l] =0

obtaining an nth degree polynomial in YK with all coefficients positive except
for P”I‘?[(W**)‘? - (w**)n‘l] which is negative, since 0< W' <1 and P} > 0
G=1,...,n)

So that by the Descartes' Rule of Signs (17) will have one root, proving

%k
the existence of EP (we canlet K =1,...,n; and knowing YK and W we can

X
) sk K X
obtain W K RK , and finally XK).

We study next the necessary second order conditions for a maxi-

’

mizing S (in combination with the first order conditions the second order
conditions are sufficient for a maximum),
The necessary second order conditions for a maximum of S require
e

that the following expressions be positive:

S11 S12°° Sim

‘ S S eve S
H
| S2r S22 2H

- oo o >0 H=1,...,n) (18)
Sur Suz  Sun
where
: n X. n 0
S = POMT]"(I—R.l) -2 P.(X.-X.), and \
. 1 . 1V 11
=1 i=1
s = 2%s
ij = oX, 9X,
1 J
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Let us denote, for the sake of convenience:

K = POM
L. = RYi
1 1
T. = 1-1,
1 1
-, = P/nR » 2.
1 1

then (18) can be rewritten

(-1} aja, kL L, IT T, -aSKL, TrT,'---aZa KL Ly [T

i*l,2

LI ] 4

1

i#1,H

KL TTT a,a,KL

>0 .

2'H

i¥l,

1*2

alaHKLlLHTr T., a,a KL, L

2

i

1L 17 T+ a2 KL Ly 1T

H 1

Multiplying ith row by T, and jth column by TJ.:

et

i LN 3

—
)
S,

2
-a KL, TITTT,a aZKLlLZ'ITT,---a ay KL LT[ T,

2
a,2,KL L, T[T, -a KL,T, ]TT rraap KL LTI T,

a2 KL L ]TT, aZaHKLZLHTTT ceea KLHT TI'T

(H=1.--.,n)

Dividing it j |
ng ith row by (aiLi) and jth column by aj K(ﬂ-Ti):

-Ti L2 ces LH f
Ll "TZ LY LH
L] LZ ® ey _T

>0

>0
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Adding all other columns to the first column:
| | -1+ 2Ly, Ly, o Ly
2 H-2
(TTeyy (0P ATr)  (TLf -1 # DLy -4y oLy | >0

.| +E’Li, Ly, *o° - 141y

H=1,...,n)

Subtracting the first row from all other rows:

- s e L
1+23Li , L., -
0 . )

H-2
(e, e (T (T | >0

H=1,...,n)

But a determinant of a trangular matrix equals the product of its diagonal

elements:

2 H-2 CH
(TTay x (MTp  (TTrpa-Zr)ent > o

H=1,...,n)

01‘_ . .
2 H-2
(M- 0™ (T (Mo -Zr) 0™ >0
| H=1,...,n)
or
1.3
-i=l Li>0 (H:l“,,’n)
or
H x ~
1
1> E‘;’\l Ri (H=1,...,n),
19)
.

Obviously, conditio i 3 i
n (19) 1is (since Ri 20, all i) equivalent to
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1> R, , (20)

Observe that if the first order conditions for a maximum are satisfied, then

from (1) we obtain

X. X.
R = -P/[p,M@r)TT(-R ), an i
i i 0 s ]
jFi
i.e.,
X, . X. '
R.* = -0,/ [T (1-R,J), al14 (21)
2 oexs o)
: jFi , :
Wherefrom
X,
R.*> -D, alli
i i
_ n Xi’ n
Sothat 1> 2 R, = 1> 2 (-D.) = b <0 = Z hastwo changes of sign.
| 5=1 1 i=1 i n-1 n
However, (10) and (21) do not together imply the stronger condition (20).
X, n X, n '
Let R, e L., then 1> 2, Ril becomes 1> ¥ L., which is equivalent
n i=1 n i=1
to -1« Z)-—L., and in turn to n-1 < 7, (1-1.), or
| i=1 * | S g
n ,
n-1< 2, T, (T, =1-L, alli), (22)

i=1
Then if we write the generalized Mitscherlich-Spillman production function

as
n
Y = M]T T.
i=1 ?
we will have the elasticity of production with respect to the vector of the
. Ti's given by |

<3Y )Ti .
aT T 2 lue..

' n
e(T) = >
=1 i

. n
Q(I) =.z Y/Y = n
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wherefrom condition (20), equivaient to (22), can be stated as
, n
e(l-1< 2 T,.
i=1 1!
We proceed to show an alternative derivation of the second order conditions.

Define
F(W) = J‘Zn(W)dW ,

so that Zn(W) = F'Y(W).

From Fig, 1 we see that F'(ozG) = 0, and F”(aG) = Z;l(aG) > 0; hence
at as we minimize F(W) . .

The sufficient cox}ditibn for F(W) being minimum at « G is

, BZF(aG)

- aw?>

> 0, or -

: .
Zn > 0, or

n . ’
2 wi-1 : -
aW[E (W-D,) - W ]W_ >0, or
_QG
n

{[{21 ]T(W'D-)]- (n-l)Wn'?“}' >0

j¥i J W=a ’

but “
ut at W = o h - = i
_ G Ve have W Di = Wi i=1,...,n), from first order conditions:

2 e
n-
=1 };’; WJ']" (-W=" > 0
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n
> wrl, -Wl—-] - @-WR2 s o
i=] i

| [1% W . \T\Ir“]‘ y(n-1) > 0

=1 i
X

> (1-R.}) - (n-1) > 0
i=1 :

n X,
n- 2 Ril -(n-1) > 0

1> 2 R.}. Q.E.D.

Next, we proceed to show that the elasticity of substitution is less than one,
By definition
L d[P/n(Xi/XJ.)] 4

ij = dl_?/n(MPi/MPj )]

where

_ 3t _ 9
MP; = £ = 5X, = X, [Mw]

1
n X ,
9 [ K
= IMmJT a -r _)]
3%, K21 K
X

= M(~.0mR.)R.XiT[' a -r 5%
| 171 g K ‘
X
= M(&rR) W -TT (1 -r K
‘[ K#i K )]
]

1]

M(@RIW(1 - —5
1-R.}
b



= M(OR) W | —x—

= M a, w (Li/Ti)

X,
. - . - i,m.1.L
(Since a, = P/nRi, Li Ri 3 T 1 L1) ,

wherefrom:
d[?)n(Xi/X.)}
%; T ° ST or
i j)
d[pm(a.L.T. J
J ) 1
: X.\X.dX. -X.dZX.
, (__J_) i i i j
X, X2
c.. = -~ E ]
. n a,.L.T. a.L.T.d(a.L.T.) - a.L.T. d(a.L.T. )
I S I A iTiT g i7iTg !
a.L.T, 2.2 .2
I A a, L. T,
J ] 1
But since for i%j -
. : y
a9 _ 9
axiLi“‘aiLi' .y =0
J
=z T. = 2 -
> S A T 7% T, =0

.

_ 2
=a,L.T, (~-af

55 1( a, LiTjdXi+aiajLiLjde) -

2 .
-a. L. T, (-3°
11 J( 3 LjTidxj+aia‘jLiLjdXi)

.2

.S =-a.a. L L, T.
i %Ly J(Ti+Li)dXi»+

2

taallL L T, (q
O e j(Tj+Lj)de
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2 2
= - . T, . .a, L, L. T. dX,
= -a; a.j Li LJTJdX1 +a1aJ L1 LJ i 3

since T.+L.=T. +L.=1.
i i J

J
Wherefrom,
X. X. dX, - X, dX.
(__.J_) A S T
X. X2
g..= = > .
ij a.L.T, (-afa.L,L,T.dX, +a,a’L,L,T,dX,)
’ J Jj 1 . 131 1 ) % 1 gJ i) 1 ]
31Ty a’ Ll T,
b I
ax. dXx.
- 2oy
X, X.
.. = z 1
ij aidXi - a.dX,
. PR
’ T. T..
1 J
daX.
Y 1y
- x. t (x7) 3%
o, = : ! e
J -a. a. dXx,
- 41 . 1
T. T, dX.
i j i
But along an isoquant we have
MPi dXi + MPj de = 0, i.e.,
Li L.
Ma, W(~.I-.-—) d X, +Maj W(Tl-) dxj =
1 J
Wherefrom:
daXx, | a L. T
—_—d = o i1
dXx, =~ a, L. T, °*
. Jg i
so that:
..3.(1.. . (_L)aiLiT.
. i X./a.1,.T.
i = ) J )i
J a, iL a; L. T,
L, "T "I LT
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divide numerator and denominator by - aiLi/Ti:

T T,
1 b o—
a. X. L. a. X. L.
- I ! 7371
i T L T '
T. T
i i
1 -Li 1-1.
a X L Yt iX L,
o - i1 173773
ij N ’
L. L.
1 J
-a.X -a.X
l -e 1 + l] - e J J
1% “25%;
a.X.)e a.X.)e
.. = ( 1) (_J J)
1) a X, a.X. :
et ? + ed J
let YK = aK XK , then
- | ~Y; -Y
- 1 -e * + 1 -¢4d
Y -Y,
. Y.e *? Y.e J
g.. = )
lJ Yi Y I
e + J
Yi Y.
€ -1 + e J_l
. Y, Y.
g.. = ]
1J Yi Y. : '
H e’-1
- u
owever, 5 < e , for u>0,
o0 K ’
nou)_, © LK
- el 1 > v
since - K=0 K! K=1 KI
u =

i

[{]
ARV
Iﬂ

2 = <§ ..‘EE... u
1 K!  K=0 (K+1)! Koo gy = € o
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u ’ -
e -1 ¢ e’ for u>0, implies that 0< Oij <1 for X, XJ. > 0.

In turn,

We suggest the Newton's method for finding roots of equations, to
find the largest positive root of Zn- = 0. In this method, Wn’ the nth

approximation to a root of Z(W) is given by:

vZ(Wn-l)

Wn = Wn-l T T T e n=23...
. Z (W )
n-1

It can be proved (see Appendix B) that if a functi:)n Zn(W) and its second
derivative have the same sign on [a,b] and E is the only root of Zn(W) =0
on [a, b], then the Newton method converges to § if our first approximation
to § is in [a, b]. _ We are going to show that if Zn = 0 has two roots on

G G

'(0, 1) then Zn(W) and Z;'I(W) are both positive for W > @, where «,, is the
largest real root of Zn(W) = 0. Indeed, the nth degree polynomial 4

- n n-1 . .
__Zn = an +bn_1W +---+b1W+b0

can be expressed

Zn = ul(W)' . -uK(W) (W-al) ove (W-aG) : (23)
where:

n = 2K+G

u. (W) > 0 G, ..., K)

K = number of conjugate pairs of complex roots of Zn =0

G = number of real roots of Zn =0

aj = jth real root tof Zn = 0 listed in ascending order of magnitude.

From (23) it is obvious that Zn >0 for W> Qs
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A theorem of Rolle states: ''"Between two consecutive (real) roots

aj and a. ., of a polynomial Z(W) there is at least one and at any rate an

jtl

odd number of roots of its derivative Z'(W). " .

If n 2 3, then if Zn has two ’changes of sign, so will Zv;; so that Z;: 0
has either zero or two positive real roots, By Rolle's theorem if Z = 0 has

3 3 l -— . 9
two positive real roots @5 and @ then Zn = 0 has one root on (aG—l’ aG),

and we conclude that ZI{I = 0 must have two real positive roots (ﬁG and ﬁG-l)'

The other positive root of Zx’1 = 0 is between on (0, ¢ Indeed, ifn 2 3,

G-l)'

then ZI'1 >0at W =20, Since Zn =0 at o we conclude that Zr,m = 0 some-

).

G-1

G-1

Analogous reasoning will show that if Zn has two changes of sign and

where on (0, a

> 4 . ) . .
n 2 4, then Z will have two real roots Ya-1 and.'yG, with 0 < YG-1 < ﬁG-—_l

-

< 'yG.< ﬁG. So that Z;'I(W)'> 0 for W > e (ozG > [BG > 'yd). Hence, since

aq < 1-and since (Zn/Z;;) >0 for W> Yo Ve conclude that W‘= lis a

convenient approximation to @, when using the Newton method given that Zn

G
has two real roots,

The Newton method can-a.lso tell us if Zn = 0 has real positive‘ roots:
if when applying the Newton method we start with W0 = 1 and after a few
" iterations: eit.her, a) the jth approkimation Wj is negative, or, b) Wj+1> Wj’

or, c¢) Zrlx =0 at W = Wj while Zn (Wj) # 0; then we can conclude that Zn =0

has no real roots.
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APPENDIX A i

The Special Case of Three Inputs

We can be more definite about the existence of real positive roots of

Zn = 0 whenn = 3 (n =1, 2 being trivial cases).

The discriminant of a cubic equation b, W> + b, W’ + b W' + by = 0

is given by

3 2 3 2
b0-4b b, t+b bl-4b1-27b0

- 2
,A=18b2b 2 by 2

1
And the following important relations hold true:

if A < 0, one root is real and two are complex;

0, all roots are real and two are equal;

e
s}
o>
I

if A > 0, the three roots are real and unequal.
. A 3 _
Hence, after having detérmined that b2 = (2 Di + 1) is negative (so that
i=1
we have either zero or two real positive roots for Z3 = 0, we check for the

sign of the discrimininant, and if A> 0 we are assured that our problem has '

.a solution, since two of the three real roots will be positive and unequal,
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APPENDIX B

Convergence of the Newton Method

In the Newton method the (n+l1)th approximation to a root is given by
X = (X ), where S(X) = X - fX) .
n+l n f}
£ (X)
Theorem: If £(X)is continuous on [a, b], f'(X) # 0 on [a,b], f(a) <0,
£(b)> 0, £(X) £(X)> 0 fora <X <b, and § is the only root of f(X) =0 on

[a,b], then the Newton method converges to § (assuming X, is in (§, bJ.)

0
Proof: First note that £(X) £ (X) =» ©'(X) =

syl e’ o s fx) L X X)) S

[£(x) 1% [/ (x)T°
i, e.,
- O'%x) > o on [a,b] : | | . (B-1)

Next, note that

Ox) < x for = E<X=zb, | i (B-2)
for if there is some X1 such that € > X 2 b and X1 < @(Xl), then

| £(X. ) £(X,) |
o)) = X - — > =20
£(x)) £'(x))

(since X1 < @(Xl)), wherefrom we have -f(Xl) < 0, since f'(X1 >0
(because f(a) < 0, £(b)> 0, and fl(X) # 0). But f(Xl) S.O is a contradiction
since we have assumed f(a) < 0, f(b)> 0, and only one root of f(X) = 0 on
(a, bl.

. We proceed to show that if X0 >E, then§ <X, <X,,

1 0
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Indeed,

Xo> & = QX)>OE)  (by (B-1))
P Xl > € since e(Xo) = Xl’ and ©(§)=§,
since f(§) = 0.
Also,
Xg>8 = X,> e(xo) by (B-2)
= X,>X; .
By induction, we have X3 > X; >+..>X > g, if X > €. Hence we have a

bounded monotone sequence. Therefore a limit exists, i,e,, lim Xn = 4.

n-co
We proceed to show that £ = E:
: £(X )
Since Xn+1 = Xn - — a , hence
(X))
n .
£(lim X )
im X_., = lm X_- e
n— o n n—w = £ (lim X_) . -
ne M .

L = 4 - -f’(—!') , where from
£(2)

£(2) = 0, and since € is the only root on [a, b], we have £ =§ .

Hence the sequence XO’ Xl’ vees Xn‘ converges to §,
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