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Marketing Rules for California Fresh Newtown Apple Sales: 

An Application of Dynamic Progra-rnming* 

David E. Kenyon and Hoy F. Carman 

An important decision made each year at harvest by the firms 

comprising the California apple industry involves the allocation of 

fresh sales between current and future time periods. This paper in­

dicates how dynamic programming can be used to determine the optimum 

intraseasonal allocation of California fresh Newtown apple sales to 

maximize discounted net revenue to growers. The following formulation 

uses only demand for regular storage Newtown apples, whereas the com­

plete study [2] includes demand equations for regular and Controlled 

Atmosphere storage for both Newtown and Delicious variety apples. The 

objective here is to present a simpli:fied example and the logic of 

the procedure without cluttering the exposition. Studies of the opti­

mal intraseasonal allocation of sales during the marketing season 

for several commodities have been conducted previously [1, 3, 4, 6, 7]. 

However, there has been no previous attempt to apply dynamic pro­

gramming to this particular type of allocation problem. Quadratic 

programming and calculus with LaGrangian multipliers are the methods 

typically used for solving the revenue maximization problem. 

David E. Ken.yon and Hoy F. Carman are Assistant Professors of 

Agricultural Economics at Virginia Polytechnic Institute and State 

University and University of California, Da,vis, respectively. 



The Data 

The marketing season for regular storage Newtown apples was 

divided into five time periods.1/ Data were obtained from several 

secondary sources, and a demand equation was estimated at the whole.-

sale level by ordinary least squares regression using dummy variables 

t . . t d 1 h · h · d Z/ o permit intercep an s ope c anges in eac perio .- The final 
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equation explained 63 p~rcent of the variation in Newtown fresh apple 

prices and contained dummy variables permitting an intercept change in 

period five and a change in slope between period 1 and the remaining 

periods. The equation related Newtown fresh apple prices to Newtown 

apple sales, Washington apple sales in California, fresh orange sales 

in California, and consumer income. The coefficients of all these 

va,riables we'l'.'e significantly different from zero at the five percent 

level. 

Packing and wholesaling costs were assumed to remain constant 

during the marketing season, thus not affecting the allocation proce­

dure. However, storage costs (c.) increase with time in storage; 
]. 

therefore, this cost must be considered. Current storage rates in 

California were used. 

The Model 

The determination of the optimum allocation of sales among peri­

ods was based upon the theory of monopolist price discrimination. The. 

problem was to maximize discounted net total revenue (DNTR) by equating 

discounted net marginal revenue (DNMR) in each time period. The total 

revenue (TR) functions in each period were derived from the estimated 
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demand functions. Net total revenue functions (NTR) in each period 

were obtained by subtracting the appropriate storage costs from each 

TR function. Maximum discounted net total revenue was then determined 

by equating discounted net marginal revenue in each time period using 

dynamic progrann.u.ing (DP). 

The dynamic programming problem was formulated as a backward 

multistage problem in which stages were counted from the end of the 

planning horizon instead of the beginning. The relationship between 

time periods and stages of the decision process are illustrated in 

Figure 1. It also contains the functional relationships and data used 

in solving the DP and the resultant optimal marketing decision rules 

and stage return functions. Note that stage 5 is the beginning of the 

first·period in the·marketing s,eason, stage 1 is the beginnir1g of the 

last period in which sales may occur, and stage O is the end of the 

marketing season. In order to have the subscripts on the time periods 

agree with the order in which the problem was solved, the time periods 

were renumbered in reverse order. 

The following definitions and notations were used in formulat­

ing the DP problem: 

X = quantity (in 1000 box units) of Newtown apple 
n 

sales during the nth period from the end of the 

planning horizon. 

S = quantity (in 1000 box units) of apples available 
n 

for sale at the beginning of the n_!h_ period. 

r (S, X) = net total revenue resulting fror-i sale of X units 
n n n n 



Period .1 Period 2 Period 3 Period 4 Period 5 

ss s4 s3 s2 Sl 

P5=S.16-.00043X5 P4=S.28-.00229X4 P3=S.30-.00229X3 P2=S.36-.00229X2 P1=5.74-.000229X1 

d0=1 d1=.992 d2=.984 d3=.977 d4=.969 

C =O 0 
c1 =.16 c2=.n c3=.18 c4=,19 

2 2 2 2 2 
DNTR5=5.16X5-.00043X5 DNTR4=S.OSX4-.00227X4 DNTR3=S.OSX3-.0022sx3 DNTRz=5.25Xz··000224X2 DNTR1=S,38X1-.00222X1 

DNMRs•S.16-.00086X5 DNMR4=S,08-.00454X4 DNMR3=s.qs-.00450X3 DNMR2=5.25-.000448X2 DNMR1=5.38-.00444X1 

-I< ·k .,, 
x;=-14.57400 

';'( 

x5=-15.60163 x4=-24.43443 x3=-39.41608 Xl=Sl 

+.56622179S5 +.24726511S4 +.33140580S3 +,497757s 2 

f 5 (s5 )=S,21746 1\(S4)=7.97617 if3 (s3)=6.17565 f 2(s2)=0,94731 f 1(s1)=5.38S1 

+5.17341741S5 +S.19093148S4 +S,Z2737234s3 +5,31529148S2 
2 -.00222S1 

-.00024347s; -.00056129sz -.00014s67s; - . 00111527$; 

Figure 1. Chronological time contrasted with stages of the decision process and functional relationships used and 
calculated in the dynamic programming model 

so 
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of apples with storage stocks at level S , during 
n 

the nth period from .the end of the planning hori-

zon. 

di = relevant discount rate to adjust the stream of· 

benefits to present value.1./ 

c1 = CO$t ,pei- unit for i periods of storage. 

t = stage transformation, expressing each component n 

of the output of the nth stage as a function of 

the input state and decision in the nth stage, 

i.e., Sn--1 = Sn - Xn. 

The DP problem was formulated as: 

f (S,)=max d.[Q (S, X )], n n i n n n 

X < S. n- n 

=d.[r(S,X) 
1. n n n c. X ], 

i n 

= d. [r (S , X ) - c1. Xn] + 
i n n n 

d.[f 1 (t (S, X ))] 
i n-. n n n 

n = 1, ••. ,N 

n = l 

n = 2, ... ,N 

These equations represent the usual recursion equations of dynamic 

progrannning [5]. Equation (3) can. be interpreted as the maximi­

zation, with respect to apple sales at stage. n, of current dis­

counted net total revenue plus the discounted net total revenue in 

(1) 

(2) 

(3) 

the (n-1) remaining stages, given that the optimal policy will be used 

during the remaining (n-1) stages. The recursive solution of equa­

tions (2) and (3), starting with n = 1 and continuing through n = N, 

yields the optimal N- stage return, fN(SN)' the optimal decision 

* * ~ = ~(SN), and the decision rules Xn = Xn (Sn), n = 1, ••• ,N - 1. 
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The solution procedure is as follows. Start with a one-stage 

process (the last unit in the planning period, n = 1). Regular stor­

age apples cannot generally be stored successfully for more than eight 

months; therefore, the ending storage stock, s0 , must equal zero. R~ 

calling the stage transformation function, s0 = s1 - x1 , the optimal 

c,.,p.al;i..cy. £.o:c".a.,o;oe::'."~.t.ag.e. ,.,Pl:O~.s.s .i.s ·Xi = s1 • The valu.e of a one-stage 

process, as measured by discounted net total revenue, is computed using 

the net average revenue function, p = b01 - b11x1 , where b01 is that 

value that would have been needed in conjunction with h11 to predict 

4/ actual wholesale Newtown apple prices in 1968-69 without error.-

Since the optimal policy for a one-stage process is s1 = Xp the value 

of a ·one-stage process is r 1 = di [b01s1 - b11s12 - c4s1]. For a two­

stage process, using the results 'frotn a one-stage process, we·get 

£2(s2) = ;;x d1 [r2(s2, x2] + f 1 (s1). To maximize f 2(s2), set the 

partial derivative of fi{S 2) with respect to x2 equal to zero: 

c)f/S2) 

ax2 

f ' = di [r2 (S 2 , x2)] + f/S1) = O. (4) 

Since the individual returns functions are quadratic equations 

(see r 1 above), equation (4) gives a linear decision rule of the form 

x2 =a+ bs2.-2/ This process is carried out for each stage, always 

_ remembering that S 1 = S - X • The N stage process leaves us at the n- n n 

current period looking N periods into the future with the problem of 

managing movement from storage in each period. We know the quantity 

of apples in storage at the beginning of the current period and 

fn (Sn) gives a value Xn which is optimal. Upon reaching the (N - 1) 



stage we find ourselves in another stage and fN_1 (SN_1) gives us a 

X._ which is optimum, etc. -""N-1 

The quantity of apples that will be sold each period is not 

known until that period is reached; the information on the quantity 

of apples in storage is used sequentially as it becomes available. 

The functional equation (3), however, gives the discounted net 

revenue for the entire rlanning period given that an optimal policy 

is followed with respect to periodic apple sales. 

Two important economic measures are contained in equation (4). 
t 
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First, f 1 (s1) is the marginal value of stored apples in stage 1. This 

marginal value is an indicator of the value from increased storage 

in stage 1. Second, from equation (4), we see that: 
t t 

di[r2(s23 X2)] = f 1 (s1), (5) 

or that discounted net marginal revenue in stage 2 equals discounted 

net marginal revenue in stage 1 - the necessary criterion for revenue 

maximization indicated by price discrimination theory. 

The Results 

The solution of the set of recursive equations of the dynamic 

programming problem yielded the set of marketing decision rules and 

stage, return functions shown on the last two lines of Figure 1.Y 

Application of these decision rules to 1968-69 California fresh New­

town sales produced the optimal allocation, prices and total revenue 

presented in Table 1. 

A comparison of actual and optimal sales as presented in Table 

1 indicates that returns per box could have been increased by 4 cents 
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Table 1. Actual and.computed optimal allocation, .prices, and total 

revenue for California fresh Newtown apple sales 1968-69 

Actual 0Etimal 
Total Total 

Month{sl Quantity Price Revenue Quantity ·Price Revenue 

boxes $/box $1,000 boxes $/box $1,000 

Sept.-Oct.-
t414702 Nov. 4.55 6437 1244130 4.63 $7'60 

Dec. 159206 4.92 783 218052 4.78 1042 

Jan. 131434 5.00 ·. 657 213321 4.81 1026 

Feb. 204185 5.09 1039 258843 4.97 1286 

Mar.--Apr •. 315275 5.02 1583 290456 5.07 1473 

TOTAL 2224802 4.72 10499 2224802 4.76 10587 
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per box in 1968-69 by reallocating sales between the five periods •. 

The optimal allocation indicates sales should have been r'educed in 

September, October, November, March, and April and increased in De­

cember, January, and February. The increase in total returns of 

four cents a box in 1968-69 is quite small, but similar calculations 

in other years indicates returns in some years could be improved by 

as much as 15 cents per box [2]. Comparison of non-harvest month 

sales with available storage capacity indicates current capacity is 

sufficient. A check of discounted net marginal revenue in each peri­

od verifies the fact that the decision rules generate quantities 

which equate DNMR among periods, thus maximizing total revenue. 

In practice, actual sales in a given period may not equal the 

eomputed 1'>f}tim-al -.g,ales "€ft,Hi:nti·ty. ·Hewever, · t-h~ •e1'e,ci"Sion- rules ·are 

constructed such that whatever the first decision is the remaining 

decisions will be optimal with respect to the outcome which results 

from the first decision. This is the strong point of the dynamic 

progrann:ning decision rules in comparison to the usual quadratic 

programming or calculus solutions. In the latter two cases, non­

optimal sales in period 1 would require resolving the problem to 

determine the optimal allocation of remaining stocks. 

Conclusions 

The results indicate that dynamic programming is a useful tool 

for solving intraseasonal allocation problems. The calculated de­

cision rules are such that whatever value the initial stage variable, 

discounted net total revenue is maximized by equating discounted net 

marginal revenue in each time period. A simplified. problem was solved 



in order to present the logic of dynamic programming without clut-

tering the exposition. However, the dynamic programming procedure 

is capable of handling larger problem.$ with two stage .and decision 

variables and storage capacity restrictions. 

10 
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Footnotes 

* The authors are indebted to Bill Hardy for his helpful connnents 

on an earlier draft. 

1. The five time periods were: period 1, Sept.-0ct.-Nov.; period 2, 

Dec.; period 3, Jan.; period 4, Feb.; and period 5, Mar.-Apr. 

2. Farm level price data by variety were not available. Maximizing 

returns at the wholesale level will not necessarily maximize 

grower returns. This problem is discussed in more detail in [2]. 

3. d. = 1/(1 + ri) where r = monthly interest rate (.008) and i = N-n. 
1 

4. These adjusted demand equations are shown on the first line of 

Figure 1. For a more detailed explanation of this approach see 

Sosnick [7]. 

5. The function f 1(s1) is trans-f·ormed into a ·function in ·s2 and x2 

using the s·tage transformation s1 = s2 - x2• 

6. F5(s5) does not equal total revenue under the optimum allocation 

in Table 1 since F5(s5) is discounted net total revenue instead 

of total revenue. 
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