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Introduction

Multiple policies have encouraged the use of biofuels, ethanol and diesel primarily derived
from plant-based sources, for transportation. The majority of research and development
(R&D) related to the production of these products are performed by multi-product con-
glomerates. This study explores if policies encouraging the use of biofuels have increased
innovation related to their production. We also investigate the relationship between biofuels
innovation and innovation in agricultural biotechnology, a field of research closely related to
biofuels and typically of interest to the same firms. In addition to determining if policies
increase biofuels innovation, we test if these policies have impacted R&D effort toward agri-
cultural biotechnology. Finally, we check if effort toward biofuels has a positive externality
to agricultural biotechnology in the form of basic scientific insights.

Previous empirical studies on the effects of energy policy on alternative energy have not
focused on biofuels. Clancy and Moschini (2017) performed a theoretical analysis of ethanol
mandates and innovation but their study does not test whether these policies in fact induced
innovation. The literature related to biofuels policy has primarily focused on the success of
these policies in their stated goals, which were primarily the reduction of fossil fuel imports
and a decrease in carbon dioxide emissions. Other research has looked at indirect effects such
as food prices and land use. Our research also contributes to this literature on the impacts
of biofuels policy on agricultural markets by investigating the effects on agricultural R&D.
This paper adds a theoretical model of firm R&D allocation with multiple products. We
empirically test the impact of biofuels policy on the allocation of goods toward both biofuels
and agricultural biotechnology.

We consider the effects of a comprehensive set of biofuels policies using private-sector patent
indicators and policy data from 21 countries, mainly OECD members. We use patent in-
dicators related to R&D effort and R&D output. We find that ethanol blend mandates
have a significant positive effect on biofuels patenting and a significant negative effect on



some agricultural patenting. We also find that these mandates have a positive effect on
quality-adjusted research output related to biofuels but not a significant impact on agricul-
tural research output. The latter effect suggests the possibility that effort directed toward
biofuels has positive spillovers into agricultural research output, as the policies significantly
reduced resources directed toward agricultural research but firms were able to maintain the
same level of effective R&D output. In addition, other policies also had significant positive
or negative effects on either biofuels or agricultural technology patenting.

The findings are relevant for the implementation of future biofuels policies designed to stim-
ulate demand, such as the recent decision in the United States to increase the maximum
ethanol blend allowed during summer months. The finding that firms redirect resources
toward the good that has demand stimulated by a policy and away from other technologies
in their research portfolio is important when considering the effects of other policies that
will impact firms that allocate their research resources across multiple technologies. While
innovation in one area may be stimulated, it can come at the cost of innovation toward other
domains.

While this paper considers a wide range of policies, we focus on innovation in only two
fields, biofuels and agricultural biotechnology. We do not consider the impact on R&D in
automotive and mechanical engineering or the pesticide and fertilizer technology categories,
other areas in which firms research biofuels perform research. While previous economic
studies of patenting have approximated the monetary value of more rudimentary patent
indicators such as citation counts and of some composite metrics (Lanjouw and Shankerman
2002), the market value of the more comprehensive quality metrics used in this study are
not as established in the literature.

Multi-Product Firms and the Innovation Decision

Hicks argues for a theory of “induced innovation,” where “the change in a relative price of a
factor is itself a spur to innovation.” (Hicks 1932, pp 124-125) Macroeconomic approaches to
innovation often treat the introduction of new technologies and goods as part of an endoge-
nous growth process driven either by growth through learning by doing, where aggregate
productivity depends on levels of capital investment, or expanding varieties, where either a
taste for a variety of consumer items or competition between suppliers of intermediate goods
drives growth (Judd 1985; Romer 1987, 1990; Aghion and Howett 1992; Barro and Sala-i-
Martin 1995). Microeconomic approaches to R&D strategies have emphasized firms’ efforts
to maximize profits via cost-saving innovations, particularly when competing with other
firms (Kamien and Schwartz 1972, 1974, 1976; Loury 1979; Lee and Wilde 1980; Reinganum
1982).

Innovation spillovers occur when research efforts in one field have an impact on related tech-
nological fields through complementarities in the research and development (R&D) process.
Applied research intended to develop production technologies for immediate use also ad-
vances basic science (Stokes, 2011). There can be transfer of knowledge from researchers
on one project to another within the same firm. These insights can inform further applied



research in the same field or in different fields. Less abstractly, resources used for research
in one field could be used concurrently for other projects. This can include use of build-
ings for multiple laboratories or use of lab equipment and facilities across research teams.
Throughout this paper, we use the term “spillover effect” to refer to these complementarities
in R&D production. Figure (1) graphically depicts a model of this process using the biofuels
industry as an example.

Figure 1: The Knowledge Spillover Mechanism

The firms we consider are primarily interested in generating technology. To formalize the
notion of R&D spillovers, consider the following model. Firms obtain revenues either directly
through producing goods using their inventions or through licensing technologies to other
firms. A firm can produce differentiated good Yi from the set Y1, Y2, . . . , YN . The firm’s total
profit is shown in equation (1) The firm uses available information to determine the optimal
level of output each market, then determines the optimal level of R&D resources to expend
developing technology to produce each good prior to the production phase.

Π =
N∑
i=1

πi (1)

We combine aspects of the the Spence (1984) R&D model and the Griliches (1992) knowledge
spillover model to present a multi-good cost-reduction model with the potential for techno-
logical spillovers. The firm seeks to minimize costs subject to a R&D budget constraint x.
Each technology investment xi reduces costs for production of good i. If there are spillovers,
investment in xi will also yield sjixi, which reduces costs for good j.



Equation (2) illustrates the nonlinear program for the firm’s cost-minimization problem
for the case of two goods. The costs ci(Yi, r) and cj(Yj, r) represent the costs at given
output levels for each good Yi. Costs are increasing as output levels Yi and in the output
cost parameter r representing rental rate of capital or cost of other non-R&D inputs. For
simplicity, assume that the price parameter for R&D is w regardless of which good is being
researched, but that R&D costs are convex and monotonically increasing.

We add restrictions to the spillover parameters. It is the case in our model that 0 ≤ sij ≤ 1
and 0 ≤ sji ≤ 1. This means that R&D directed toward production of good i can not have
a greater impact on cost-saving technology for producing good j and vice-versa. This does
preclude the potential for serendipitous breakthroughs that have greater impact outside of the
initial field of the research, such as the discoveries of polytetrafluoroethene resin (“Teflon”)
or penicillin’s antibiotic properties during experiments on other subjects. However, it is
intuitive to model the impacts of R&D projects as having the greatest impact with its
intended field. Other parameters are restricted only to the set of non-negative real numbers.

L = (1− xi − sijxj)ci(Yi, r) + (1− xj − sjixi)cj(Yj, r)− λ[wx2i + wx2j − x] (2)

In the case where sij = sji = 0, where research directed toward each technology has no
impact on the other, the terms sijxj and sjixi drop out. The first-order conditions from
equation (2) can then be solved to generate the equations demonstrating optimal levels of
xi and xj with no spillover parameters. These are shown in equation (3) and (4).

x∗i = [(
x

w
)(

ci(Yi, r)
2

ci(Yi, r)2 + cj(Yj, r)2
)]1/2 (3)

x∗j = [(
x

w
)(

cj(Yj, r)
2

ci(Yi, r)2 + cj(Yj.r)2
)]1/2 (4)

In the absence of spillovers, the comparative statics are given in equation (5).

∂x∗i
∂x

> 0;
∂x∗i
∂w

< 0;
∂x∗i
∂Yi

> 0;
∂x∗i
∂Yj

< 0 i 6= j (5)

The change in x∗i and x∗j with respect to a change in the output cost parameter r depends
on the functional forms of the cost functions and the relative magnitude of the ci(Yi, r) and
cj(Yj, r). If both are linear in r, then r can be factored out in the numerator and denominator

and drops out of the equation, resulting in
∂x∗

i

∂r
=

∂x∗
j

∂r
= 0. If the impact on the cost of good

i is greater than the impact on the cost of good j, then an increase in r will have a positive
impact on x∗i and a negative impact on x∗j .

When we allow sij and sji to take values other than zero, the presence of the spillover
parameter makes determining the effects of a change in output levels less straightforward.
The general equations for x∗i and x∗j are given by (6) and (7) respectively.



x∗i = (
x

w
)1/2(

[ci(Yi, r) + sjicj(Yj, r)]
2

[ci(Yi, r) + sjicj(Yj, r)]2 + [cj(Yj, r) + sijci(Yi, r)]2
)1/2 (6)

x∗j = (
x

w
)1/2(

[cj(Yj, r) + sijci(Yi, r)]
2

[cj(Yj, r) + sijci(Yi, r)]2 + [ci(Yi, r) + sjicj(Yj, r)]2
)1/2 (7)

While the partial derivatives with respect to w and x retain their signs, the possible values
of the spillover parameters are necessary for analysis of how changes in Yi and Yj impact
optimal R&D levels. For ∂xi∗

∂Yi
> 0, it is necessary that sijsji − 1 < 0. For ∂xi∗

∂Yj
> 0, it is

necessary sijsji − 1 > 0. Since we have restricted these parameters such that 0 ≤ sij ≤ 1
and 0 ≤ sji ≤ 1, we can conclude that ∂xi∗

∂Yi
≥ 0 and ∂xi∗

∂Yj
≤ 0. In the case in which R&D

effort directed toward either good produces an equal gain in the technology level both goods,
sij = sji = 1, then ∂xi∗

∂Yi
=

∂xj∗
∂Yj

= 0. In this unusual case, the goods are perfect substitutes

in terms of cost reduction, and the optimal allocation of research effort is x∗i = x∗j =
√

x
2w

.

The spillover parameters sij and sji are treated as fixed for the purposes of this paper, mean-
ing that policies will not affect them. However, it is important to consider how changes in
these spillover parameters impact the optimal level of R&D for each good. When considering
x∗i , the parameter sij indicating how much investment in the other good xj will spill over
to cost reduction for good i will have a negative impact. Increases in sji, the amount of
spillover from xi into cost reduction for good j will raise x∗i

The cross-partials
∂2x∗

i

∂Yj∂sij
and

∂2x∗
i

∂Yj∂sji
depend on the levels of the spillovers and the level of

cost for each good. For certain ranges of the spillover parameters, higher spillovers from
good i onto good j or vice-versa can either aggravate or attenuate the downward force an
increase in Yj will place on x∗i .

Government research agencies and university researchers also perform R&D but are moti-
vated by a more diverse set of objectives than firms. These motivations include attracting
funding and increasing departmental budgets, prize money, career mobility, and prestige.
These motivations are not easily incorporated into a single objective function. We therefore
treat commercial and non-commercial innovation separately in our analysis. Our empiri-
cal emphasis is on the commercial response to policies, which is more directly impacted by
demand and supply-side policy.

Environmental and Energy Policy Impacts on Innovation

Demand side policies, such as purchase support, border measures, or mandates, can lead to
enhanced demand and therefore larger profit gains from productivity-enhancing innovations
(Popp 2002, Johnstone 2010, Calel et al 2016). Policies can also change the incentives for
innovation through supply-side incentives, including subsidies or tax credits for research and
development. These supply side policies decrease the cost of R&D, incentivizing investment
in research activities.



The literature on environmental policy-induced innovation has examined policies aimed at
reducing specific forms of pollution, such as nitrogen dioxide and sulfur dioxide (Popp 2006)
or chlorine (Popp et al 2011), policies incentivizing research into specific forms of alterna-
tive energies such as wind (Nemet 2009; Dechezlepêtre and Glachant 2014; Lindman and
Söderholm), and policies targeting multiple forms of alternative energy technologies (John-
stone et al 2010).

Policies that encourage or mandate the use of renewable sources do so by altering the produc-
tion decision for firms. Firms choose to innovate when the expected gains from an innovation,
namely the decrease in production costs, outweigh the cost of developing a new technology.
Since a decrease in production cost depends both on the magnitude of the per-unit cost
reduction and the total output, higher equilibrium quantities can increase the incentive to
reduce per-unit cost. Because of this, products with higher demand will, in theory, offer
higher potential cost savings from innovation. Certain new technologies can improve welfare
beyond the private surplus gains for firms in an industry through the reduction of negative
externalities. These externality reductions, such as reduced pollution, are one motivation
for policy targeting increased innovation. Clancy and Moschini (2017) model different policy
regimes, green energy mandates and carbon taxes. They find that the possibility of innova-
tion was necessary in order for policies mandating the use of biofuels to be welfare-improving.

Empirical studies suggest policy impacts depend on the nature of the intervention and the
type of technology. Lee and Lee (2013) found that energy-related innovation increased in
the periods between 1976 and 2003. Johnstone et al (2010) argue that broad policies, such
as tradeable certificates, will increase innovation only in industries that are already “close to
competitive” with fossil fuels, such as wind-generated power, whereas innovation associated
with more costly energy sources such as solar require more targeted policies. Lindman
and Söderholm (2016) found that feed-in tariffs and R&D support were complementary in
improving innovation in wind power. An example of more targeted policies are solar “feed-in
tariffs,” policies allowing consumers to sell solar energy back to the utility grid.

Prior R&D activity improves the quality of the status quo technology. Coupled with the
increasing costs to R&D given in equation (2), this would mean that improvements over the
status quo require rapidly increasing levels of R&D input expenditures. Policies supporting
R&D may not be enough to make innovation profitable due to these increased costs. Nemet
(2009) found that wind power innovation was not strongly impacted by California policies
introduced after large innovation gains had occurred, leaving limited areas for improvement.
Popp et al (2011) found similar results in the pulp sector, where demand for low-chlorine
paper led to increased innovation prior to the introduction of regulation. Inclusion of ethanol
improves gasoline’s octane rating and lowers carbon monoxide emissions, so the practice of
ethanol blending predates mandates, evidence of a non-policy source of demand. The per-
ception of biofuels as “green” could contribute to a demand for biofuel blends for consumers
who have strong normative preferences for goods with low environmental impact. Findings
from Albers et al (2016) suggest that there may be some exhaustion of R&D opportunities in
traditional biofuels, as there is a trend of declining innovation in biofuels combined without
a reorientation of R&D toward advanced biofuels.

Our study is aimed at investigating the impact of biofuels policies not only on innovation



within the biofuels sector but also on innovation in the related plant biotechnology sector. We
investigate which, if any, policies will increase innovation in the biofuels sector, followed by an
analysis of whether biofuels-oriented policies also impact innovation in plant biotechnology.

Policies are not homogeneous. While policies aimed at protecting domestic firms from foreign
competition or incentivizing exports are demand-side measures that would in theory have
similar impacts to mandates, they are tested separately. Protection from imports can also
relax competition, which could give firms fewer incentives to cut costs and decrease the
need to innovate. Tax incentives, R&D subsidies, and similar policies provide supply-side
incentives.

Data

We consider a country-year panel of 21 primarily OECD countries spanning 1996 to 2010.
Most countries had data available for all 14 years. Slovakia had 13 years in the sample, while
Greece and Belgium each had 11 years.

Patent Data

Companies engaging in R&D apply for patents on the inventions resulting from their research
in order to protect these inventions as their intellectual property. Therefore, information
on patenting activity provides information on R&D activity and can provide insights into
the relationship between R&D and other properties of the firm. We use patent data from
OECD PATSTAT, the European Patent Office’s Worldwide Patent Statistical Database, to
construct the dependent variables in our analysis. Each patent has an International Patent
Classification (IPC) code assigned by patent examiners that indicate to which industry the
patent is most relevant. The technologies of interest relate to biofuels technologies and
plant science, with separate variables constructed for technologies listed exclusively in each
category and those with multiple IPCs that have at least one IPC that corresponds to each
category. The bibliometric literature on patents suggests that data on patents is a useful
substitute for scarcer firm-level data on research expenditures and returns. Following OECD
guidelines on which patent categories were relevant for biofuels, we consider patents listed
in biofuels (patents in IPC categories C10, C02, C07, C11, C12, Y02) and plants (A01,
A01) and separate those listed exclusively in each category from those listed in both, which
we refer to as “bio-plant” (BP) patents (World Intellectual Property Organization 2017) .
We give descriptions of these categories in table (1) at the four-digit level, though patents
extracted were generally from more detailed sub-categories of these IPCs.



Table 1: Table of IPC Headings

IPC Description Label
Category

C02F Biological Treatment of Water, Wastewater, Sewage, or Sludge Biofuels
C07C Acyclic or Carbocyclic Compounds Biofuels
C10B Destructive Distillation of Carbonaceous Materials Biofuels
C10G Hydrocarbon Oils Biofuels
C10L Use of Additives to Fuels or Fires Biofuels
C11C Fats, Oils and Fatty Acids Obtained by Chemical Modfication Biofuels
C12M Apparatus for Enzymology or Microbiology Biofuels
C12N Microorganisms or Enzymes Biofuels
C12P Fermentation/Enzyme-Using Synthesis of Desired Chemical Compound Biofuels
Y02E Reduction of GHG Related to Energy Generation/Distribution Biofuels
A01G Horticulture, Cultivation, Forestry, Watering Plant
A01H New Processes for Obtaining Plants Plant

We use raw patent counts as the measurement of R&D effort. Previous studies on patents
have used raw patent counts, the literature on patenting suggests that raw patent counts
useful as a proxy measurement for R&D “input” or resources dedicated to research (Hausman
et al 1984; Griliches et al 1987). We assigned a raw patent count by country-year. The
address for inventors determined where to assign the patent. If more than one inventor was
included for a patent, we divided the credit between the inventors’ countries of residence.

More recent patent bibliometrics literature focuses on the value of innovative output. Quality-
weighted patents more closely correspond with the value added to firms than raw patent
counts (Griliches 1990; Hall et al 2005; van Zeebroeck 2010). PATSTAT contains several
measurements of the quality of patents. We use the broadest measurement of patent quality,
quality index 6 score. Quality index 6 (QI6) considers six components of quality: forward
citations, backward citations, patent family size, patent generality, grant lag, and number
of claims (OECD 2012). A quality weighted patent total per country-year is constructed as
yj =

∑n
i qi where qi is the quality score for each patent in IPCs associated with technol-

ogy category j in that country-year. Table (2) shows the summary statistics for individual
patents within a sample. In general, patents within these IPCs had lower quality index
scores than the average patent, which had a QI6 score between .2 and .25 during the same
time period (Squiccarini et al 2013).

Table 2: Summary Statistics for QI Scores of Individual Patents

Variable Mean Std. Dev. Min Max

Biofuel Patent Quality Index 0.114002 0.062959 0 0.344625
Plant Quality Index 0.069266 0.055596 0 0.243278
Bio-Plant Quality Index 0.092101 0.084454 0 0.380423



Policies

Our analysis focuses on policies designed to stimulate the production and use of biofuels.
Biofuels policy data are gathered from the fertilizer and biofuels support policies database
which is maintained by the Trade and Agriculture Directorate of the Organization for Eco-
nomic Co-operation and Development (OECD). The database covers the time period from
1995-2012 and is based on public sources and government information. We construct a
country-year panel of countries that included all policy variables from 1996-2010, wherein
we have coverage of the variables of interest. The novelty of these data are the measurement
of support policies along the supply chain for biofuels. For the purposes of this research we
are concerned with identification of the effect of biofuels mandates on intellectual property
quantity and quality. Below each variable is described, along with the types of policies in-
cluded if the variable is an aggregation of multiple policies. Table (3) describes the policy
variables.

Table 3: Country-Year Descriptions of Policy Variables

Variable Scale Mean Standard Dev

Ethanol Blend Mandate percent volume 0.330266 1.021511
Biodiesel Blend Mandate percent volume 0.090295 0.48103
Feedstock Producer Incentives binary 0.029304 0.168967
Import Measures binary 0.076923 0.266959
Intermediate Supplier Incentives binary 0.051282 0.220978
Producer Investment Incentives binary 0.175824 0.38137
Research and Development Support 2010 dollar PPP 3412.424 27377.69
Sustainability Criteria binary 0.080586 0.272698
Tax Incentives binary 0.362637 0.481644

To give a more accurate evaluation of the impact of blend mandates, we weight the mandate
by the percentage in the country’s overall fuel mix —diesel or gasoline — with which the
type of biofuel is blended. Intuitively, this was done because the fuel mix determines the
actual impact of the mandates. For instance, even a 100% ethanol blend mandate would have
little impact in a country where vehicles primarily operate using diesel. To incorporate this
we multiplied the ethanol blend mandate variable percentage of gasoline and the biodiesel
blend mandate by the percentage of diesel in the fuel mix. If there was a generic biofuels
blend mandate instead of a mandate targeting ethanol or biodiesel that was higher than
either specific mandate, we replaced the specific mandate with the generic mandate. The
information on the fuel mix was obtained using International Energy Agency data (IEA,
2016). Figures (2) and (3) show the prevalence of, respectively, ethanol and biodiesel blend
mandates. The maximum weighted ethanol blend mandate was 9.1 per cent, while the
maximum weighted biodiesel blend mandate was 3.78 per cent.



Figure 2: Ethanol Blend Mandates, Years with Mandate

Figure 3: Biodiesel Blend Mandates, Years with Mandate

We included the level of R&D spending by governments to support biofuels research. This
was expressed as total expenditures adjusted for purchasing power. This variable was the
only policy variable that explicitly targeted R&D, though subsidies at other points in the
supply chain such as investment incentives could affect R&D if investment is directed toward
research activity.

For other policies, exact scale comparisons were difficult due to different implementation
of the policies. An example of this is tax policies, ranging from reductions in corporate
income tax rates to fuel excise tax exemptions.In the econometric analysis, we were only
able to include such tax policies in a binary fashion — presence or absence in a given year
— within certain categories. Policies creating incentives for the production of feedstock
exclusively for biofuels use are classified as feedstock production incentives. Subsidies at any
stage of the production supply chain are considered producer investment incentives, which
include support to capital, land, and intermediate inputs. Intermediate supplier incentives
(ISI) indicate the presence of subsidies directed toward storage, handling, transportation,



blending, or distribution of biofuels. ISI also includes credit concessions for throughput. A
generic tax incentives variable was considered separately and indicates if a country has taxes
directed toward production, intermediate supply, or consumption.

Certain countries had a sustainability criteria condition for biofuels production. This policy
required a minimum life-cycle emissions savings for production of biofuels. It primarily
was intended to limit the types of land that could be used for biofuels production, such as
restrictions on deforestation. We included other environmental policies not directly related
to biofuels production as control variables, which will be in the auxiliary variable set in our
Bayesian model averaging approach.

Several other policies were considered for inclusion but later dropped due to low variation
within our sample, either having no variation within the sample (e.g a dummy variable with
only 0 observations) or a single country-year observation different from the remainder of the
observations. These include export measures such as value added tax refunds on exports,
biofuels quantity targets related to overall volume rather than percentages, domestic price
regulation of biofuels, output based biofuels payments, and purchase support for biodiesel
and ethanol.

Control Variables

We control for several factors that could impact innovation relevant to biofuels. These are
related to market forces outside of policy, environmental policies unrelated to biofuels, and a
measurement of prior accumulated knowledge capital within a country (“knowledge stock”).
To control for the impact of market forces unrelated to policy, we include indices for crop
production, food price, and energy price (FAO, 2017). Data necessary to construct an energy
price index is not available for Brazil. Since Brazil is one of the largest users of biofuels,
particularly bioethanol, we include specifications that do not have this variable in order to
preserve Brazil in the sample.

Policies related to the stringency of environmental protection may also impact energy inno-
vation. Porter (1991) introduced the concept, an application of the Hicks induced innova-
tion hypothesis to policies aimed at forcing firms to internalize pollution abatement costs.
Porter’s argument is that stricter environmental regulations will produce innovations in pol-
lution abatement technologies or less polluting versions of products. Subsequent studies
have supported limited versions of this argument (Jaffe and Palmer 1997; Lanoie et al 2011;
Rubashkina et al 2015, Calel and Dechezlepêtre 2016). In deference to these findings, we
include variables measuring the stringency of environmental policies in each country in the
set of control variables. The five measurements of environmental stringency we include are
sulfur dioxide emissions, petroleum excise taxes, environmental vehicle and transportation
tax revenue, energy tax revenue, and the environmental policy stringency index.1

1All aforementioned variables were gathered from OECD Stat with the exception of sulfur dioxide emis-
sions and Brazilian petroleum excise tax. SO2 emissions were gathered from the Community Emissions Data
System (CEDS, 2018) and Brazilian petroleum excise tax was calculated by dividing total petroleum excise
tax revenues by ktoe energy equivalent transportation fuel quantities, both of which were obtained from the
International Energy Agency data (IEA, 2016).



We also control for the knowledge stock in a country. Knowledge stock is a discounted sum
of prior patent activity in a country. Previous patenting demonstrates a country’s propen-
sity for R&D. Popp (2002) demonstrates that omission of a country’s knowledge stock will
significantly bias any analysis of patent data. The knowledge stock variables are constructed
using the PATSTAT database. The knowledge stock variable is a discounted aggregate of
previous years’ patent counts in all categories. We include IPC-specific knowledge stock
limited to the constituent IPCs used in constructing the dependent variables. We use both
citation-weighted and raw measurements of the IPC-specific knowledge stocks in different
model averaging runs.

Methodology

We begin with the standard fixed-effects OLS model for a country-year panel is given in
equation (8). In addition to country fixed effects ξi, we also include a linear time trend. Be-
cause the trend in patenting dramatically dropped in the years following the 2008 recession,
we include a dummy variable γt>2008 to indicate post-2008 years, and include an interaction
between the time trend and the post-2008 dummy to allow the time trend to differ in pre-
and post- 2008 years.

yit = α + βXi,t−L + ξi + ρt+ γt + γt>2008φt+ νit (8)

Previous studies have shown little effect of foreign policies on innovation (Popp 2006) or that
foreign policies have an impact far smaller than that of domestic policies (Dechezlepêtre and
Glachant 2013). We therefore only include a country’s own policies and do not estimate the
cross-country effects of policies.

The subset of Xit comprised of control variables is highly collinear, but there is uncertainty
a priori as to which individual control variables to include and which to exclude. There
is also uncertainty regarding the relevance of environmental regulations. A recent meta-
analysis by Cohen and Tubb (2018) found conflicting evidence of the validity of the Porter
Hypothesis that more stringent environmental regulations will produce greater pollution-
reducing innovation. We also have evidence that the overall knowledge stock is a significant
variable to include, but prior research does not provide guidance on how technology-specific
accumulated knowledge will impact our focal technologies.

We include l ∈ [−2,−1, 0, 1, 2] as a lag from when the policy was implemented, with L = 0
representing the contemporaneous period. Our analysis emphasizes the impacts in the con-
temporaneous period, as the literature suggests that patents are strategically timed to co-
incide with commercialization of the technology (Hopenhayn and Squintani 2015). How-
ever, we investigate specifications with lagged policies in order to investigate potential non-
contemporaneous effects.

Instead of an ad-hoc approach to including or excluding variables in order to avoid collinear-
ity, we use Bayesian Model Averaging (BMA), described below. This approach allows for



a statistically consistent way of testing the validity of various specifications. Independent
variables are split into “focus” and “auxiliary” sets, with focus variables included in all can-
didate models and combinations of auxiliary variables included in candidate models. The
approach allows us to test models including different combinations of the control variables
while excluding others. This method is a Bayesian approach to the OLS model in which
the probability of including a subset of the explanatory variables is uncertain (Mitchell and
Beauchamp 1988; Raftery et al 1997; Hoeting et al 1999; Moral-Benito 2012).

The BMA process fits a series of candidate models conforming to (8) but including different
subsets of controls in Xit to the data and computes the coefficients for the regressors by
weighing the different estimates for each coefficient by the marginal likelihood of observing
the dependent variable when using that model. Model averaging methods are useful in
cases where there are a large number of potential explanatory variables and uncertainty over
which regressors should be included. A common application of the BMA approach is in the
cross-country growth literature (Brock and Durlauf 2001; Fernandez et al 2001; Eicher et al
2009). The use of fixed effect models within a BMA framework appears in growth and trade
analyses (Léon-Gonzaléz and Montolio 2004; Tsangarides 2004; Mirestean and Tsangarides
2009; Chen et al 2009; Magnus et al 2010) . The basic fixed-effects OLS model on which our
BMA analysis is based is:

yit = α + βXi,t−L + δZit + ξi + ρt+ γt>2008 + γt>2008φt+ νit (9)

Xi,t−L is a vector of policy variables in country i in year t − L, Zit a vector of auxiliary
regressors, country-level controls in country i in time t. The remaining terms are the same
as those in equation 8. We apply BMA to this model where the X variables are the “fo-
cus” regressors and are always included while different models contain combinations of the
“auxiliary” Z variables. 2 The basic constituent equations of the BMA process are given in
Hoeting et al (2009). Computing the posterior probability distribution of a value of interest
∆ given the data uses the approach in equation (10). Mj is a candidate model from the set
M of K possible models M = M1,M2, ...,MK equal to the number of subsets produced by
combinations of auxiliary regressors, assuming that the probability of each model being the
true model is positive and that all probabilities sum to one. The observed data is represented
by D. The posterior probability of the model Mj is given by equation (11). Each BMA in
our analysis had a model space of 16,384 candidate models when all control variables were
included.

pr(∆|D) =
K∑
j=1

pr(∆|Mj, D)pr(Mj|D) (10)

pr(Mj|D) =
pr(D|Mj)pr(Mj)∑K
l=1 pr(D|ml)pr(Ml)

(11)

2Though not of interest for analysis, the fixed effects and time trends are in all models alongside the
“focus” regressors.



The estimates for the β coefficients, the value of interest in this study, are generated through
weighting the coefficients estimated by each candidate model. We repeat this process for
patents exclusive to biofuels IPC codes, patents exclusive to plant IPC codes (”plant”), and
patents listed in both biofuels and plant IPC codes (”BP”). Estimates for the parameter β
are given by equations (12) and (13).

E(β|D) =
K∑
j=1

E(β|D,Mj)pr(Mj|D) (12)

var(β|D) =
K∑
j=1

pr(Mj|D)var(β|D,Mj) +
K∑
j=1

pr(Mj|D)[E(β|D,Mj)− E(β|D)]2 (13)

This process models the condition expectation and variance of the parameter given the data
D as a sum of the estimates from each model Mj weighted by the probability of model Mj

being the true model given the data. The process generates a posterior distribution of the
parameter estimates with Bayesian confidence intervals based on the computed mean and
variance estimates. We use a 90% posterior confidence interval to determine if the parameter
estimate for a regressor in the focus set is significant.

For auxiliary variables, we determine significance using the estimated posterior inclusion
probability (PIP). Posterior inclusion probability represents the number of models in which
an auxiliary variable appeared weighted by the posterior probability of those models being
the true model. A coefficient with a PIP of 0.5 or higher is considered significant (Magnus
et al 2010, De Luca and Magnus 2011). PIP is uninformative for focus regressors, which
always have a PIP of 1.0.

We first consider the basic question of whether the policies impact quality-weighted in-
novation in biofuels patent categories. Next, we estimate the impact of these policies on
plant-related patents and patents classified as both biofuels and plant biotechnology (BP).
We use the same approach to measurements of raw patent counts to determine the level of
effort firms exert toward R&D. We repeated the process for time periods one and two years
before the policies went into effect and one and two years after the policies went into effect
to see if firm behavior changed in the years following passage of the policies. We ran 30
BMAs total, six for each different policy time lag.

Results and Discussion

Biofuels policies do not have a monolithic effect on biofuels patenting or plant patenting.
Certain policies are effective in increasing biofuels innovation, while others have negative or
insignificant effects on biofuels patenting. Other policies have cross-category negative effects
within time periods and across time periods. The presence of spillovers also causes changes
in effort in one category to impact other categories. Since there is a random component



to R&D output, it is possible that increased R&D inputs may not have a positive effect on
innovative output, and this is reflected in some findings. Since theoretical predictions suggest
that firms will delay patenting until close to commercialization (Hopenhayn and Squintani
2015), our analysis focuses on the contemporaneous effects of policies rather than lagged
versions.

Tables (4) and (5) show the results from the BMA process for the policy variables. Coefficient
estimates are averages of the estimates from each candidate model, weighted by the posterior
probability of that model being the true model. The values in parentheses are 90% Bayesian
posterior probability intervals. The output is from the specifications without the energy
price index included and therefore contains our entire 21-country sample.

Table 4: Model Averages, Raw Patent Counts

VARIABLES Biofuels Bio-Plant Plant

Ethanol Blend Mandates 18.24 -4.243 -3.820
(4.321, 32.16) (-7.820, -0.666) (-10.11, 2.469)

Biodiesel Blend Mandate -6.370 -5.155 1.938
(-24.52, 11.78) (-9.653, -0.658) (-6.488, 10.36)

Feedstock Prod. Incent. -48.21 -11.83 -8.496
(-96.69, 0.263) (-24.43, 0.770) (-32.04, 15.04)

Import Measures -96.53 5.535 -18.52
(-209.0, 15.91) (-24.93, 36.00) (-70.90, 33.86)

Intermediate Sup. Incent. -20.73 -3.218 13.29
(-62.29, 20.83) (-13.61, 7.171) (-6.068, 32.64)

Producer Inv. Incent. 45.80 5.124 4.175
(13.17, 78.43) (-3.175, 13.42) (-11.14, 19.49)

R&D Support 1.65e-05 -9.19e-05 6.79e-05
(-3.46e-04, 3.79e-0) (-1.74e-0, -9.84e-06) (-9.62e-05, 2.32e-04)

Sustainability Criteria -6.623 -8.488 8.489
(-53.89, 40.65) (-20.46, 3.479) (-13.91, 30.89)

Tax Incentives -28.58 -0.775 -17.36
(-51.98, -5.176) (-6.777, 5.226) (-28.50, -6.209)

Observations 287 287 287

Posterior means are displayed for each variable with 90% posterior confidence intervals shown in ()



Table 5: Model Averages: Quality-Weighted Patenting

VARIABLES Biofuels Bio-Plant Plant

Ethanol Blend Mandates 4.752 -0.00502 0.487
(2.312, 7.193) (-0.602, 0.592) (-0.239, 1.213)

Biodiesel Blend Mandate 0.938 -1.264 0.622
(-2.273, 4.150) (-2.032, -0.496) (-0.289, 1.533)

Feedstock Prod. Incent. -6.541 -0.833 -0.197
(-15.03, 1.943) (-3.003, 1.338) (-2.783, 2.390)

Import Measures -26.15 -5.454 -7.855
(-46.85, -5.456) (-10.40, -0.511) (-14.24, -1.475)

Intermediate Sup. Incent. -3.060 -0.208 0.443
(-10.41, 4.292) (-2.006, 1.589) (-1.684, 2.571)

Producer Inv. Incent. 4.291 1.540 -0.0995
(-1.622, 10.20) (0.139, 2.941) (-1.799, 1.600)

R&D Support -4.93e-05 -1.83e-05 1.90e-05
(-0.000115, 1.66e-05) (-3.25e-05, -4.06e-06) (2.23e-06, 3.57e-05)

Sustainability Criteria 1.745 -1.417 1.281
(-6.876, 10.37) (-3.470, 0.635) (-1.203, 3.765)

Tax Incentives -6.440 -1.114 -2.470
(-10.61, -2.273) (-2.142, -0.0862) (-3.687, -1.252)

Observations 287 287 287

Posterior means are displayed for each variable with 90% posterior confidence intervals shown in ()



Blend Mandates

Blend mandates for ethanol and biodiesel have different effects. Ethanol blend mandates
significantly increase raw and quality weighted biofuels patents. Non-commercial patenting
follows the same pattern, though there is also an increase in biofuels raw patent counts for
non-commercial patenting. Based on raw patent counts, efforts toward biofuels research
increase while efforts toward BP decrease in response to ethanol blend mandates.

There is evidence of a substitution effect in R&D effort expended toward the different cat-
egories resulting from ethanol blend mandates. Within time periods, significant coefficients
for raw patent counts have opposite signs for biofuels and the other categories. When ethanol
blend mandates have a significant, positive relationship to raw patent counts, their impact
on BP and plant patents was significant and negative or insignificant. In the contemporane-
ous specification, the effect of ethanol blend mandates on biofuels RPC is positive while the
coefficients for Bio-plant RPC is negative. When considering only OECD countries, meaning
excluding Brazil, the impact of ethanol blend mandates on plant-exclusive RPCs was also
negative but these policies continued to have no significant effect on the quality-weighted
patent output. However, this finding was not robust to other specifications of the knowledge
stock, namely the use of raw patent counts for individual IPCs’ knowledge stocks instead of
citation-weighted variants. While the significant negative coefficient remained for the plant
raw patent count, the impact on biofuels raw patent count was no longer significant.

The coefficients for the ethanol blend mandate’s impact on different quality-weighted patent
counts do in some specifications have the same sign. In the one-year lag specification, both are
negatively impacted. This provides some support for the hypothesis of a relationship between
innovation in the two categories. Since the policies would not affect the parameter governing
scientist labor productivity, we believe that an increase in quality-weighted patenting or null
coefficient in the presence of decreased raw patent counts for that IPC category is evidence
for spillovers, as the level of total technology is increasing or remains the same even as xi
decreases. Since total cost-saving innovation in a field is given by xi + sijxj and is a function
of research labor in other technology categories, our theoretical spillover model’s predictions
would be supported by the finding.

There is potential evidence that the spillover effect exists in the responses to ethanol blend
mandates. However, our model of innovation production suggests that if one technology were
to increase, it could be optimal to reduce efforts toward development in another category. If
the policies result in higher levels of Ybiofuels and therefore an increase in the optimal level
of xbiofuels, then the spillovers could result in the previous level of xplant and xbio−plant being
above the optimal level, with the firms reducing R&D inputs toward the fields in order to
obtain the optimum.

Biodiesel blend mandates did not significantly impact the weighted patent count for com-
mercial biofuel or plant patenting but had a negative impact on raw and quality-weighted
bio-plant patenting. Biodiesel blend mandates increase non-commercial raw patent counts
and quality-weighted patent output of biofuels but do not significantly impact commercial
patenting. It is possible that due to patenting occuring outside the private sector, the pri-



vate innovation was “crowded out” or discouraged, as useful technologies were the intellectual
property of the academic or public sector, which produces more R&D toward the “advanced”
biofuels feedstocks than the private sector (Albers 2016).

Biodiesel blend mandates had inconsistent and typically insignificant effects. This could
be attributed to the comparably low number of observations in which any biodiesel blend
mandates were present; only 15 of the 287 contemporaneous observations had any type
of mandate for biodiesel. Likely due to this, there were high estimated variances for the
coefficients. These policies reduced or did not significantly impact raw patent counts for
biofuels depending on the time period. Since raw patent counts for biofuels, as well as the
other categories, were not impacted by the biodiesel mandates in those time periods, we do
not take this as evidence that the policy drove the increase in innovation.

Other Policies

Import measures did not have a significant effect on raw patent counts. However, in the
contemporaneous period these policies reduced the quality-weighted patents in plant cate-
gories. In the specification with a two-year lag, quality-weighted patents increased in all
three categories.

Intermediate supplier incentives increased raw plant patenting and decreased weighted bio-
fuels patenting. This finding, however, was not consistent when applying leads or lags to the
policies.

Producer investment incentives increased raw patenting in biofuels IPC categories while
increasing quality-weighted counts in biofuels. These policies decrease the cost of investment,
including investment in R&D. Since this can be seen as decreasing R&D input price w or
raising the R&D budget x in equation (2) it would increase the optimal level of xi and xj
used for research based on the comparative statics demonstrated in equations (6) and (7).
The findings in the contemporaneous period support this prediction. The two-year lagged
version showed an increase in plant raw patent count and quality-weighted patent counts. A
one-year lag of producer investment incentives produced a significant increase in biofuels raw
patent counts without an increase in quality-weighted patent counts. However, even though
there was no significant increase in raw patent counts in plant patenting or BP patenting,
each had increases in quality-weighted patents in response to producer investment incentives.
With a one-year lead or two-year lead, there were no significant coefficients for these policies.
It is possible that firms adjusted their timing in order to take advantage of the policies, but
once policies were in effect, they consistently increased efforts in at least one category while
not decreasing effort anywhere else.

While R&D support, a measurement of government spending on research, should have a
similar effect, it did not increase R&D spending by private firms as proxied by raw patent
counts. Quality-weighted counts for biofuels and BP decreased. Quality-weighted plant
patenting did increase significantly, despite R&D support not resulting in increased plant
inputs. It is possible that government and university R&D, while not reflected in the research
effort of private firms or their output of biofuels and BP research, is increasing R&D output



for private firms in the plant sector via spillover, in turn crowding out private firms’ research
by raising the status quo technological level.

Tax incentives had a significant, negative effect for all dependent variables in the contempo-
raneous period. In other specifications, there were either significantly negative coefficients
or no significant effect.

Controls: Environmental Policies, Agricultural and Energy Prices,
and Knowledge Stock

We assigned control variables to the auxiliary regressor set in the BMA process. Therefore,
we interpret as significant those variables with posterior inclusion probabilities greater than
.5, as these regressors were included in the true model with greater than 50 per cent likeli-
hood. The coefficients are computed in the same manner as the “focus” regressors. Tables
6 and 7 show the results for the control variables. For these tables, the estimates are from
the specification with all control variables, so only 20 countries were included in the sample.
Brazil was excluded due to the absence energy price index data. When Brazil was included
but the energy price index variable was omitted, there were not major differences.

Our measurement for environmental vehicle and transportation tax revenue had a significant,
negative effect on biofuels raw patent counts and quality-weighted biofuels patent counts.
The same variable had a significant, positive effect on BP patent counts. Other environmental
variables did not significantly impact raw patenting in any of the IPCs considered.

These findings do not strongly support the Porter hypothesis that environmental regulation
can promote R&D and leave an industry more efficient. Instead, the findings are limited,
with vehicle taxes contributing negatively to biofuels research effort. The energy policy
stringency index, a more comprehensive measurement of regulations, had a negative effect
on R&D output but did not affect R&D inputs in any categories.

Energy prices, measured by the energy price index variable, had a significant, positive effect
on raw patent counts for plant IPCs. None of the other indices related to prices or production
levels were significant.

Though the small set of countries in the sample prevented creating trade dyads to investigate
international impacts, we did include a global average of ethanol blend mandates for each
year. Including this variable did not impact the sign or significance of the coefficients in the
focus set, but in the auxiliary set, it did have a PIP greater than .5 for quality-weighted
biofuels patenting, biofuels raw patent count, and bio-plant raw patent count.

The findings related to knowledge stock supported the Popp (2002) finding that omitting
knowledge stock will bias the results. The knowledge stock for all categories was included
in the focal regressor set, but when treated as an auxiliary variable, its PIP was 1 or near 1
in all specifications, confirming Popp’s findings. The knowledge stocks for individual patent
categories were also significant in most specifications. While difficult to consider evidence
of spillovers, as there were both positive and negative cross-category effects, it does support



that there are connections between R&D in the different technology categories.

Table 6: Auxiliary BMA Variables, Raw Patent Counts

VARIABLES Biofuels Biofuels-Plant Plant
Post. Mean PIP Post. Mean PIP Post. Mean PIP

Sulfur Dioxide Emissions 0.000858 0.07 0.000217 0.07 0.001356 0.1
Env. Poli. Stringency -8.55981 0.31 -0.11439 0.06 -5.23224 0.36
Petroleum Excise Tax 0.061413 0.1 -0.01891 0.1 -0.06143 0.14
Env Transp Tax Rev -0.02509 0.98 0.002552 0.54 0.000922 0.18
Energy Tax Rev 0.001274 0.34 4.63E-05 0.09 1.53E-05 0.06
Food Price -0.22638 0.11 0.059404 0.11 -0.2119 0.17
Agricultural Output 0.001341 0.06 0.006077 0.07 0.056568 0.14
Energy Price -0.02818 0.06 0.04465 0.13 0.821917 0.66
Knowledge Stock A01 -1.02E-06 0.19 6.60E-06 1 -6.41E-06 0.98
Knowledge Stock C02 0.000342 0.98 -9.6E-05 0.97 -4.71E-06 0.18
Knowledge Stock C07 -1.4E-05 0.99 3.86E-06 0.98 -1.70E-07 0.22
Knowledge Stock C10 -0.00055 1 -3.1E-05 0.57 -8.6E-05 0.96
Knowledge Stock C11 0.000197 1 1.76E-05 0.61 2.06E-07 0.12
Knowledge Stock C12 -4.62E-07 0.13 -5.29E-06 1 2.88E-06 0.97

Posterior means (Post. Mean) are reported along with posterior inclusion probabilities (PIP) for each

variable.



Table 7: Auxiliary BMA Variables, Quality-Weighted Patents

VARIABLES Biofuels Biofuels-Plant Plant
Post. Mean PIP Post. Mean PIP Post. Mean PIP

Sulfur Dioxide Emissions -0.00032 0.08 -2.2E-05 0.06 -2.6E-05 0.08
Env. Poli. Stringency -1.62458 0.33 -0.04876 0.08 0.020229 0.06
Petroleum Excise Tax 0.01716 0.12 0.000879 0.07 0.004363 0.11
Env Transp Tax Rev -0.00568 1 0.000108 0.2 7.38E-06 0.07
Energy Tax Rev 0.000111 0.2 3.84E-05 0.25 2.94E-06 0.06
Food Price 0.007819 0.06 0.003407 0.07 0.002807 0.06
Agricultural Output -0.00379 0.07 0.003439 0.11 0.00291 0.09
Energy Price -0.06124 0.21 -0.00266 0.08 -0.00041 0.06
Knowledge Stock A01 -9.21E-07 0.44 1.15E-06 1 -1.01E-06 0.97
Knowledge Stock C02 6.14E-05 1 -2.2E-05 1 2.61E-06 0.46
Knowledge Stock C07 -2.21E-07 0.19 7.98E-07 1 1.27E-07 0.53
Knowledge Stock C10 -8E-05 1 2.02E-07 0.08 -9.01E-06 0.79
Knowledge Stock C11 -1.6E-05 0.91 7.72E-06 1 -7.00E-06 0.95
Knowledge Stock C12 -2.07E-06 0.92 -9.57E-07 1 3.63E-07 0.8

Posterior means (Post. Mean) are reported along with posterior inclusion probabilities (PIP) for each

variable.



Conclusion

This study demonstrates that biofuels policies impact private sector R&D in biofuels and
agricultural biotechnology. Ethanol blend mandates were clearly associated with increased
R&D effort in biofuels and higher total production of quality-weighted patent output. Biodiesel
blend mandates and others produced less noticeable effects in regard to this benefit. Pre-
vious literature has empirically demonstrated effects on food prices and emissions, while
theoretical analysis suggests that only in the presence of innovation would biofuels mandates
be welfare-improving over status quo approaches (Clancy and Moschini 2017) .

While the impact of energy policy on innovation in other forms of alternative energies has
been rigorously studied, biofuels were not included in these studies. We found that, similar
to previously studied policies, certain biofuels blend mandates correlated with increased
innovation. We extend our analysis of policy impacts by examining if policies impacting
biofuels R&D have effects on innovation in other fields. Evidence of spillover effects is present,
but only certain policies cause firms to incorporate these benefits into their investment
strategies. The countervailing impact is substitution of aggregate R&D effort away from
plant biotechnology. There is evidence that this effect negates the innovation gains in plant
biotechnology that could be realized from the spillover effect. While biofuels policies can
increase demand for biofuels, incentives for producing greater amounts of plant biotechnology
remain unchanged or could even be reduced by land use changes favoring biofuels. Therefore,
due to the technological spillovers from biofuels research, firms reduce their investment in
bio-plant R&D, remaining at the same technological level and, therefore, the same level of
output.

Ethanol blend mandates were more effective at promoting biofuels innovation than biodiesel
blend mandates. However, the impact of this innovation appears limited by firms’ decisions
to substitute between R&D effort to biofuels research and that directed at bio-plant research
rather than to increase or decrease both at once. Once the policies have been in effect for two
years, the effect on R&D resource allocation is reversed. It is also possible that firms may face
constraints, such as a limited supply of specialized scientists or facilities, that necessitate this
tradeoff between research effort in one category and effort in another. When policies affect the
demand for biofuels, the scarce scientific resources should in theory be reallocated toward that
industry. Spillovers, in conjunction with the decreasing marginal returns to R&D investment
can also explain why firms would decrease inputs to some technologies in response to policies
while simultaneously increasing effort toward developing other technologies. Our results
strongly suggest that biofuels policies have an impact on the R&D decisions of multiproduct
firms in the agricultural sector.
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Appendix: Lag and Lead BMA Specifications

Table 8: One-Year Lag, Raw Patent Counts

VARIABLES Biofuels RPC Bio-Plant RPC Plant RPC

Ethanol Blend Mandates 10.52 -2.325 7.166
(-9.869 - 30.91) (-7.401 - 2.751) (-0.803 - 15.13)

Biodiesel Blend Mandates -16.87 -3.805 -3.218
(-41.14 - 7.396) (-9.807 - 2.198) (-14.33 - 7.890)

Feedstock Prod. Incent. -35.58 -7.783 -15.24
(-91.40 - 20.25) (-22.05 - 6.483) (-41.45 - 10.96)

Import Measures -14.89 -14.92 -20.87
(-103.8 - 74.00) (-38.46 - 8.606) (-62.89 - 21.15)

Intermediate Sup. Incent. -11.35 -10.96# -4.602
(-55.14 - 32.43) (-21.66 - -0.249) (-24.35 - 15.14)

Producer Inv. Incent. 40.20# 7.718 15.58
(2.869 - 77.52) (-1.439 - 16.87) (-1.386 - 32.54)

R&D Support 6.41e-05 -6.21e-05 3.55e-05
(-0.000284 - 0.000412) (-0.000144 - 1.99e-05) (-0.000126 - 0.000196)

Sustainability Criteria 13.83 -6.167 31.70
(-59.46 - 87.12) (-24.23 - 11.89) (-1.815 - 65.21)

Tax Incentives -36.24# -0.423 -14.60#
(-64.83 - -7.649) (-7.636 - 6.790) (-27.62 - -1.592)

Observations 287 287 287

Posterior means are displayed for each variable with 90% posterior confidence intervals shown in ()



Table 9: One-Year Lag, Quality-Weighted Patenting

VARIABLES Biofuels Bio-Plant Plant

Ethanol Blend Mandates -4.047 -0.697 -1.103#
(-7.476 - -0.618) (-1.492 - 0.0985) (-2.017 - -0.189)

Biodiesel Blend Mandates 0.876 -1.642# -0.723
(-3.463 - 5.214) (-2.650 - -0.634) (-1.964 - 0.518)

Feedstock Prod. Incent. -1.372 0.0737 -1.231
(-11.37 - 8.629) (-2.354 - 2.501) (-4.158 - 1.696)

Import Measures 9.040 1.063 6.090
(-6.923 - 25.00) (-2.748 - 4.874) (1.480 - 10.70)

Intermediate Sup. Incent. -1.164 -1.298 -1.379
(-9.046 - 6.718) (-3.117 - 0.521) (-3.618 - 0.860)

Producer Inv. Incent. 6.301 2.415# 2.296#
(-0.450 - 13.05) (0.866 - 3.965) (0.379 - 4.212)

R&D Support -3.49e-05 -1.62e-05# 2.79e-06
(-9.99e-05 - 3.01e-05) (-3.01e-05 - -2.33e-06) (-1.40e-05 - 1.95e-05)

Sustainability Criteria -2.556 -3.192# -0.981
(-15.74 - 10.62) (-6.249 - -0.135) (-4.686 - 2.724)

Tax Incentives -6.816# -1.467 -2.651#
(-12.14 - -1.488) (-2.669 - -0.266) (-4.088 - -1.215)

Observations 287 287 287

Posterior means are displayed for each variable with 90% posterior confidence intervals shown in ()



Table 10: Two-Year Lag, Raw Patent Counts

VARIABLES Biofuels Bio-Plant Plant

Ethanol Blend Mandates -15.11 1.450 7.030
(-35.92 - 5.704) (-3.812 - 6.712) (-2.712 - 16.77)

Biodiesel Blend Mandates -29.01 -5.440 -10.87
(-64.57 - 6.545) (-14.16 - 3.276) (-27.31 - 5.572)

Feedstock Prod. Incent. -5.630 -0.986 -14.23
(-72.55 - 61.29) (-17.57 - 15.60) (-45.26 - 16.80)

Import Measures 26.18 20.18 20.80
(-62.19 - 114.5) (-1.577 - 41.94) (-20.01 - 61.61)

Intermediate Sup. Incent. -19.53 2.885 -4.603
(-67.54 - 28.49) (-8.950 - 14.72) (-26.78 - 17.57)

Producer Inv. Incent. 32.16 0.645 18.94#
(-5.828 - 70.16) (-8.692 - 9.982) (1.398 - 36.48)

R&D Support 1.05e-05 -5.41e-05 5.19e-05
(-0.000325 - 0.000346) (-0.000134 - 2.59e-05) (-0.000103 - 0.000207)

Sustainability Criteria 13.64 2.160 30.92
(-83.06 - 110.3) (-21.43 - 25.75) (-13.70 - 75.54)

Tax Incentives -26.61 -5.439 -20.14#
(-58.60 - 5.392) (-13.36 - 2.483) (-35.05 - -5.225)

Observations 268 268 268

Posterior means are displayed for each variable with 90% posterior confidence intervals shown in ()



Table 11: Two-Year Lag, Quality-Weight Patenting

VARIABLES Biofuels Bio-Plant Plant

Ethanol Blend Mandates -5.856# -0.742 -1.022
(-9.567 - -2.146) (-1.727 - 0.243) (-2.128 - 0.0849)

Biodiesel Blend Mandates -0.792 -2.153# -2.817#
(-6.757 - 5.174) (-3.650 - -0.657) (-4.722 - -0.912)

Feedstock Prod. Incent. 7.070 1.564 -0.487
(-4.272 - 18.41) (-1.336 - 4.465) (-4.080 - 3.107)

Import Measures 21.90 5.466 5.206
(6.913 - 36.89) (1.768 - 9.164) (0.532 - 9.879)

Intermediate Sup. Incent. -5.525 -0.454 -1.948
(-13.66 - 2.609) (-2.498 - 1.591) (-4.562 - 0.666)

Producer Inv. Incent. 3.742 0.809 3.127#
(-2.653 - 10.14) (-0.792 - 2.411) (1.093 - 5.161)

R&D Support -1.60e-05 -6.96e-06 -6.79e-06
(-7.20e-05 - 4.00e-05) (-2.07e-05 - 6.83e-06) (-2.41e-05 - 1.05e-05)

Sustainability Criteria 0.596 -2.670 -0.430
(-15.63 - 16.82) (-6.767 - 1.427) (-5.599 - 4.740)

Tax Incentives -1.332 -0.625 -0.749
(-6.872 - 4.209) (-1.994 - 0.745) (-2.474 - 0.977)

Observations 268 268 268

Posterior means are displayed for each variable with 90% posterior confidence intervals shown in ()



Table 12: One-Year Lead: Raw Patent Counts

VARIABLES Biofuels Bio-Plant Plant

Ethanol Blend Mandates 0.301 0.294 7.355#
(-12.79 - 13.39) (-3.215 - 3.802) (1.247 - 13.46)

Biodiesel Blend Mandates 0.697 -6.693# 1.542
(-16.72 - 18.11) (-11.06 - -2.322) (-6.162 - 9.245)

Feedstock Prod. Incent. -26.34 -13.31# -4.213
(-72.37 - 19.69) (-25.43 - -1.188) (-26.53 - 18.10)

Import Measures 107.2 1.622 5.969
(-7.320 - 221.7) (-28.27 - 31.51) (-47.61 - 59.55)

Intermediate Sup. Incent. 22.19 -4.179 16.31
(-16.03 - 60.42) (-14.18 - 5.820) (-1.913 - 34.53)

Producer Inv. Incent. 9.777 -0.446 -3.604
(-21.39 - 40.95) (-8.645 - 7.753) (-18.37 - 11.16)

R\&D Support 3.16e-05 -6.27e-05 4.94e-05
(-0.000288 - 0.000351) (-0.000143 - 1.72e-05) (-9.49e-05 - 0.000194)

Sustainability Criteria -11.11 -4.532 11.42
(-67.12 - 44.90) (-18.79 - 9.723) (-13.83 - 36.66)

Tax Incentives -37.03# -1.254 -16.92#
(-58.92 - -15.15) (-7.033 - 4.525) (-27.48 - -6.362)

Observations 266 266 266

Posterior means are displayed for each variable with 90% posterior confidence intervals shown in ()



Table 13: One-Year Lead: Quality-Weighted Patenting

VARIABLES Biofuels Bio-Plant Plant

Ethanol Blend Mandates 1.205 0.114 1.369#
(-0.705 - 3.115) (-0.528 - 0.756) (0.652 - 2.086)

Biodiesel Blend Mandates 1.975 -1.087 0.198
(-0.518 - 4.469) (-1.911 - -0.264) (-0.711 - 1.107)

Feedstock Prod. Incent. -5.211 -1.069 -0.690
(-12.00 - 1.581) (-3.349 - 1.212) (-3.292 - 1.911)

Import Measures 18.92# 2.391 -0.491
(2.146 - 35.70) (-3.217 - 7.999) (-6.766 - 5.785)

Intermediate Sup. Incent. 3.147 -0.226 1.607
(-2.520 - 8.814) (-2.106 - 1.654) (-0.531 - 3.744)

Producer Inv. Incent. 0.0974 0.257 -0.743
(-4.468 - 4.663) (-1.291 - 1.806) (-2.486 - 1.000)

R\&D Support -3.45e-05 -9.52e-06 1.59e-05
(-8.06e-05 - 1.16e-05) (-2.43e-05 - 5.24e-06) (-9.74e-07 - 3.27e-05)

Sustainability Criteria 1.122 -1.460 0.849
(-6.952 - 9.195) (-4.040 - 1.119) (-2.061 - 3.760)

Tax Incentives -7.623# -1.122# -2.355#
(-10.86 - -4.391) (-2.208 - -0.0368) (-3.592 - -1.118)

Observations 266 266 266

Posterior means are displayed for each variable with 90% posterior confidence intervals shown in ()



Table 14: Two-Year Lead, Raw Patent Counts

VARIABLES Biofuels Bio-Plant Plant

Ethanol Blend Mandates -22.33# -2.089 -2.329
(-35.40 - -9.250) (-5.556 - 1.378) (-8.942 - 4.284)

Biodiesel Blend Mandates -14.37 -3.893 1.640
(-30.87 - 2.123) (-8.244 - 0.459) (-6.160 - 9.441)

Feedstock Prod. Incent. -12.82 -9.254 -16.29
(-63.14 - 37.49) (-21.65 - 3.145) (-39.31 - 6.726)

Import Measures -106.8 5.040 5.429
(-216.1 - 2.384) (-23.91 - 33.99) (-49.90 - 60.75)

Intermediate Sup. Incent. 32.63 -0.276 26.74
(-5.939 - 71.20) (-10.45 - 9.895) (7.964 - 45.52)

Producer Inv. Incent. 23.62 4.934 -4.190
(-8.826 - 56.06) (-3.687 - 13.56) (-20.41 - 12.03)

R\&D Support -1.91e-05 -3.77e-05 -8.99e-06
(-0.000331 - 0.000292) (-0.000118 - 4.29e-05) (-0.000158 - 0.000140)

Sustainability Criteria -70.68# -3.931 -1.711
(-127.8 - -13.51) (-17.66 - 9.803) (-27.39 - 23.96)

Tax Incentives -39.14# -0.346 -5.670
(-62.44 - -15.83) (-6.320 - 5.629) (-16.62 - 5.280)

Observations 245 245 245

Posterior means are displayed for each variable with 90% posterior confidence intervals shown in ()



Table 15: Two-Year Lead, Quality-Weighted Patenting

VARIABLES Biofuels Bio-Plant Plant

Ethanol Blend Mandates -1.213 0.00975 -0.380
(-3.221 - 0.795) (-0.660 - 0.680) (-1.082 - 0.321)

Biodiesel Blend Mandates 0.312 -0.558 0.562
(-2.180 - 2.804) (-1.418 - 0.302) (-0.300 - 1.424)

Feedstock Prod. Incent. -3.213 -1.050 -2.050
(-11.01 - 4.579) (-3.483 - 1.383) (-4.546 - 0.446)

Import Measures -12.09 1.837 5.583
(-29.36 - 5.182) (-4.781 - 8.455) (-0.393 - 11.56)

Intermediate Sup. Incent. 1.033 -0.444 1.703
(-4.791 - 6.857) (-2.429 - 1.541) (-0.348 - 3.754)

Producer Inv. Incent. 2.519 0.809 -0.194
(-2.401 - 7.439) (-0.869 - 2.487) (-1.981 - 1.592)

R\&D Support 1.24e-05 -2.13e-07 1.18e-05
(-3.38e-05 - 5.86e-05) (-1.58e-05 - 1.54e-05) (-4.39e-06 - 2.80e-05)

Sustainability Criteria -1.430 -1.129 0.478
(-9.579 - 6.720) (-3.757 - 1.498) (-2.263 - 3.219)

Tax Incentives -3.710# -0.124 -0.865
(-7.149 - -0.272) (-1.289 - 1.041) (-2.050 - 0.320)

Observations 245 245 245

Posterior means are displayed for each variable with 90% posterior confidence intervals shown in ()


