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Abstract 
Biotechnology researchers are developing genetically engineered insects with substantial applications in 

agriculture. One strategy is a ‘gene drive’, using CRISPR/CAS9 gene editing. In gene drive, preferentially 

inherited, engineered traits are spread to reduce pest populations or inhibit their ability to spread 

disease. As a landscape-level biotechnology tool, gene drives have the potential to spread throughout all 

growing regions of host crops, efficiently facilitating reduction of pesticide spraying and crop prices due 

to management cost savings and yield loss mitigation. However, this strategy could also limit consumer 

choice to only host crops grown in the presence of gene drive insects. The net consumer welfare impacts 

from these interventions will thus depend upon the heterogeneous valuation of trade-offs between 

pesticides, prices, and drive insect presence. In this study, we administer an online survey to a nationally 

representative probability sample of 1,018 U.S. adults, gathering data on gene drive attitudes and 

impacts on willingness-to-pay (WTP) for two products that are host crops for insects under current drive 

research. Through a hierarchical Bayesian framework, we examine the consumer welfare implications of 

drive insect release scenarios that are either limited or unlimited in scope. Consumer preferences 

indicate lower marginal discounts for drive insect presence versus increased conventional pesticide use 

or a genetically modified crop. The mean and median consumer welfare impacts of unlimited drive 

releases are negative for fresh blueberries. For orange juice consumers, the mean surplus estimate is 

small, negative and statistically insignificant, while the median estimate is positive and statistically 

significant.  We estimate substantial consumer welfare gains with limited drive systems that retain 

alternatives not grown in the presence of drive insects, though gains are more pronounced in 

blueberries than orange juice. Results provide insight into differential consumer valuations of 

biotechnology strategies as well as sorely needed data to inform debates on market impacts of drive 

insect releases. 
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Introduction 

Effective and acceptable management of damaging, invasive species that threaten crops is a continual 

challenge for the agricultural sector. Biotechnology advances and CRISPR/CAS9 gene editing capabilities 

may soon facilitate a novel approach to pest management with the development of genetically 

engineered insects.  This approach could have substantial applications in agriculture, addressing 

devastating pest problems while reducing environmental damages from pesticides.  A type of strategy 

some scientists are pursuing is called a ‘gene drive’ (Barrangou 2014; NASEM 2016), in which scientists 

may be able to modify the genes of insect pests to prevent transmission of serious crop diseases or 

reduce their populations by disrupting normal reproduction (Hammond et al. 2016).  Gene drive systems 

are distinct in that engineered modifications could be intentionally spread through entire populations of 

a pest species, as modified individuals pass on genetic changes that are inherited by up to 100% of their 

offspring (see: Burt (2003), Sinkins & Gould (2006)). 

Recognizing the potential for unintended consequences with such a powerful technology, 

experts and funders have called for precaution, transparency, and early engagement with the public 

(Emerson et al. 2017; NASEM 2016).  The complex environment into which drive insects may be 

deployed is fraught with challenges in terms of technical difficulty, public opinion, governance and 

regulatory hurdles, as well as need for broad cooperation across geographic and trade landscapes where 

the insects may travel (Baltzegar et al. 2018; Kuzma et al. 2018). Public views on gene drives are also 

unlikely to be independent from previous controversy involving genetically modified organisms (GMOs) 

in food supplies (Baltzegar et al. 2018; Costa-Font, Gil, and Traill 2008).  

Distinct components of gene drives as novel forms of agricultural biotechnology require specific 

investigation into potential consumer reactions.  In doing so, researchers can help inform developers 

and policymakers at early stages about the potential downstream impacts of these novel approaches 
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vis-à-vis other pest management alternatives.  For example, the genetic manipulation of pests instead of 

food products may reduce consumer apprehension.  However, the intentional – and potentially 

uncontrolled – spreading of genetic modifications through pest populations, rather than (somewhat) 

field-isolated genetically modified material in GM crops, may increase public concern, as has been 

expressed by gene drive researchers and evaluators (NASEM 2016).  If gene drive insects are deployed 

across a wide enough geographic area, especially with the potential for self-sustaining spread, these 

releases could fundamentally alter the choice sets that consumers face.  Releases could lead to 

widespread reductions in needs for pesticide applications and help efficiently reduce associated 

management costs and pest losses, shifting the supply curve out and ultimately reducing retail prices.  

However, the short, medium, or long-term ubiquitous presence of gene drive insects in growing areas 

currently hosting that pest species means that consumers could no longer face a ‘gene drive insect free’ 

product alternative (Noble et al. 2018). Trade-offs between likely perceived environmental ‘bads’ like 

chemical control and biotechnology products, along with utility associated with price reductions, will 

ultimately determine the net consumer welfare impacts of these interventions. Thus, analyses of 

nuanced and heterogeneous consumer preferences surrounding program impacts of gene drive releases 

in agriculture may ultimately be as consequential and complex as ecological risk assessments. 

The objective of this study is to investigate the demand effects of gene drive insect use in 

growing environments against other chemical and biotechnological approaches to manage destructive 

and invasive agricultural pest species.  Especially given impending implementation of the National 

Bioengineered Food Disclosure Standard, our study provides an important perspective on public values 

and preferences for mobile genetically engineered organisms in growing environments. Through a 

discrete choice experiment embedded within a nationally representative probability sample of 1,018 

U.S. adults, we focus our analysis on willingness-to-pay for fresh and processed fruit products.  We 

believe this is the first study of any genetically engineered insect’s impact on consumer demand for an 
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agricultural good.  We further examine the impact of gene drive insects on the premium consumers are 

willing to pay for USDA-organic pest management regimes, providing important insights for the growing, 

multi-billion dollar organic industry (Willer, H. and Lernoud 2017). We also explicitly compare the 

consumer utility and willingness-to-pay impacts of crop genetic modification vs. gene drive insects for 

pest damage mitigation, providing an innovative understanding of how the public values unique 

biotechnology strategies in agriculture. Lastly, we simulate drive insect release scenarios that 

simultaneously alter multiple attributes in the choice sets and contextualize our findings with empirical 

estimates from the literature noting specific pest impacts on crop prices. We then draw conclusions 

about the value of geographically limited vs. unlimited gene drive insect releases from the lens of 

consumer welfare gains. 

Background 

While no gene drive insect has been released in the environment to date, researchers have actively 

pursued this strategy for some time. One of the first gene drive attempts in an agricultural pest was to 

control Huanglongbing or citrus greening, a bacterial disease (Candidatus liberibacter spp.) which has 

devastated the $3.3 billion U.S. citrus industry, with declines of 21.5% and 25.8% in Florida bearing 

acreage and yield since the disease was found in 2005 (USDA-NASS 2017a). The bacterium is vectored by 

the Asian citrus psyllid (Diaphorina citri), an invasive species from East Asia. The proposed gene drive, 

funded by a grant from the US Department of Agriculture (Turpin et al., 2012), would have spread a 

strain of the citrus psyllid that would no longer be able to transmit the bacterium. This type of gene 

drive is referred to as a replacement drive, in which genetic modifications permeate through an insect 

population over time and leave an altered version of the pest species that remains in the environment. 

In another application, researchers funded by the USDA (Li and Scott 2016), and separately by 

grower associations (Buchman et al. 2018), are seeking to design a suppression drive for Spotted-wing 

Drosophila (Drosophila suzukii). Spotted wing is an invasive species in the United States that 
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dramatically increases control costs and causes extensive damage to ripening berry and cherry crops 

worth over $4 billion in 2016 (Asplen et al. 2015; USDA-NASS 2017b).  Where the suppression drive 

spreads, a trait could be passed that inhibits reproduction of the pest, leading to eventual population 

collapse (Burt 2003). Given these first investments in gene drive target pests, we focus our analysis on 

fresh blueberries and orange juice to provide the most relevant data to inform the current debate. 

With the inherently commercial nature of agricultural applications, ex-ante consumer 

evaluations are crucial to project demand-side effects of gene drive insects.  Building on the stylized 

framework outlined by Mitchell, Brown, & McRoberts (2018), if gene drives work as intended, marginal 

costs of pest management would significantly decline in crop host environments. This is characterized by 

a welfare-increasing expansion of the supply curve.  However, ignoring demand-side effects would be 

highly naïve in a context of polarized debates on genetic modification in agriculture and growing public 

interest in production practices. Negative consumer reactions could partially or significantly attenuate 

net benefits from cost reductions, and have been mentioned in the US popular press such as The 

Atlantic when discussing releases of non-drive versions of genetically modified crop pests (Zhang 2017). 

While we do not attempt to estimate total surplus changes across the system due to lack of data on 

projected supply curve shifts from major pest removal, we examine consumer preferences that may 

drive surplus changes with potentially ambiguous net impacts on consumers and producers alike.  

In addition, heterogeneous demand and segmented markets for target fruit products may – 

potentially – disproportionally impact markets with high sensitivity to genetically engineered organisms 

in growing environments. This includes areas under certified organic production, where, for example, 

control of Spotted-wing Drosophila infestations is possible but difficult and costly due to limited 

effective control methods available (Farnsworth et al. 2017; Van Timmeren and Isaacs 2013). As a gene 

drive approach could decrease pest and disease pressure without the need for pesticide applications, 

this could provide benefits to organic production systems.  However, consumer demand impacts and 
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secure preservation of market price premium for organic labeling are paramount to understand before 

release decisions. As such, consumer studies may be particularly relevant for certified organic growers 

to understand the nature of market risk with drive insect releases, as some authors (e.g. Reeves, & 

Phillipson (2017)) have expressed concern about the impact of genetically engineered insect presence 

on certification retention under certain release contexts and the underscored the role of public reaction. 

Under current regulations 7 CFR § 205.105: 

 “Allowed and prohibited substances, methods, and ingredients in organic production 
and handling”, excluded production methods include: “A variety of methods to genetically 
modify organisms or influence their growth and development by means that are not possible 
under natural conditions or processes and are not considered compatible with organic 
production. Such methods include cell fusion, microencapsulation and macroencapsulation, 
and recombinant DNA technology (including gene deletion, gene doubling, introducing a 
foreign gene, and changing the positions of genes when achieved by recombinant DNA 
technology). Such methods do not include the use of traditional breeding, conjugation, 
fermentation, hybridization, in vitro fertilization, or tissue culture (7 CFR § 205.2-Terms 
defined)”.   

 

Further, USDA Policy Memos on the National Organic Program have detailed responses to questions 

about incidental adventitious presence of genetically modified material in the crop:  

“The NOP regulations prohibit the use of excluded methods (i.e., “GMOs”) in organic 
operations. If all aspects of the organic production or handling process were followed correctly, 
then the presence of a detectable residue from a genetically modified organism alone does not 
constitute a violation of this regulation… As long as an organic operation has not used excluded 
methods and takes reasonable steps to avoid contact with the products of excluded methods as 
detailed in their approved organic system plan, the unintentional presence of the products of 
excluded methods should not affect the status of the organic operation or its organic products” 
(McEnvoy 2012). 

 

Authors Reeves and Phillipson (2017) have argued that the cooperation of organic producers within 

mass release programs of GM insects, as well as the implicit assumption of full geographic coverage for 

GM insect suppression programs, would challenge basic tenants of reasonable exclusionary practices to 

avoid GMOs.  This may be coupled by grower associations (that include organic members) actively 
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funding  GM insect research, for example, in current gene drive Spotted-Wing research (Buchman et al. 

2018). Regulatory agencies have yet to issue firm guidance on this issue. 

However, even if the organic standard is determined legally secure in the short term, consumer 

perception of the product attributes denoted by the USDA-organic label may be even more important 

than final legal decisions about standard guidelines. Recent research has found USDA-organic and ‘Non-

GMO Project’ labels are strong substitutes in apples (McFadden and Lusk 2018), so it is unclear if this 

‘GMO aversion’ also includes genetically engineered insects in the growing area.   In the United States, 

considerable effort and expense has been invested to achieve goals for ‘co-existence’ between 

conventional (GM and non-GM) and certified organic production systems (Greene, C., Wechsler, S.J., 

Adalja, A. & Hanson 2016).  Given tension already surrounding the use of genetically engineered crops in 

close proximity to organic production environments, these niche market demand effects merit attention 

from policy makers in discussions about gene drive insect release, especially if these attitudes translate 

to a strong contraction in WTP for certified organic products when drive insects are present.   

Gene drive insects may also cause structural changes in product availability.  As drive insects are 

released and spread, the ‘absence’ of drive insects in growing areas may simply not be an option in the 

short, medium, or long term depending on context. This structural change in product availability is not 

new.  In fact, pest management requirements can drastically change as invasive species – such as 

Spotted-wing Drosophila or Citrus Psyllid – enter growing environments. After an invasive species enters 

a region, spray requirements to combat infestation may mean lower frequency conventional pesticide 

treatments may no longer be economically tenable and consumers may only be faced with high 

frequency spray options. Further, in extreme cases organic production may no longer be cost-effective 

and producers may revert to conventional production or simply exit host crop cultivation.  Pertinent 

policy questions which require more detailed welfare analysis include:  (1) how much would you have to 

pay a representative consumer pay after the introduction of high spraying regimens to return to his/her 



9 
 

original utility level?, (2) how dramatic of an impact on crop prices must an invasive pest cause for gene 

drive insects to deliver a positive net consumer surplus change?, and (3) what is the value of limiting 

drive insect releases geographically, such that consumers retain product alternatives that were not 

grown in the presence of these modified insects?  

 

Methods – Survey Design 

In this study, we employ a discrete choice experiment (DCE) to investigate consumer responses to gene 

drive insect use in area-wide pest management regimes.  The DCE is embedded within a larger web-

based survey fielded in October and November 2017 through the survey firm GfK’s KnowledgePanel®, a 

representative probability sample of U.S. adults, which resulted in 1,018 completes for analysis.   

All respondents receive a basic explanation of gene drive technology, illustrations of the citrus 

psyllid and spotted-wing Drosophila applications described above, and respondents selected from seven 

frequently-asked-questions (full wording in Appendix A). Respondents then reported attitudes on 

various contexts of gene drives for agricultural pest control and specific views on use in organic 

agriculture. The willingness-to-pay (WTP) portion was only completed by respondents affirming 

household purchase of fresh blueberries or orange juice in the last six months1. From 1,018 total 

respondents, we draw WTP data from 457 fresh blueberry consumers and 408 orange juice consumers 

who completed a (single) DCE.  Following convention to reduce potential hypothetical bias in WTP 

estimates, a cheap talk script2 was adopted in the DCE introduction (J. L. Lusk 2003).  

                                                           
1 In the case of households purchasing both products in the last six months, respondents were randomized at a ratio of 2:1 to 

the blueberry (v. orange juice) DCE.  This is based on pretesting in Amazon MechanicalTurk (n=300, within US) indicating more 
frequent sole consumption of orange juice vs. blueberries and a desire to achieve roughly equivalent DCE sub-sample sizes. 
Consumption of blueberries was somewhat higher in the GfK sample than the Amazon MechanicalTurk pretest sample.  
2 Cheap talk script within the DCE introduction: “When making your choices, please consider the price of the product carefully 

compared to your household's grocery budget. (In questions about hypothetical purchase choices, people often tend to 
overstate their willingness to purchase some products.)” 
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For both products, we include attributes of gene drive insect presence in the growing area, crop 

genetic modification to resist pests, price, and varied traditional pest management regimes, which 

include a high conventional spray level, low conventional spray level, and the USDA-organic seal. 

Product attributes and corresponding levels are outlined in Table 1. Respondents were instructed to 

imagine that are making a regular shopping trip in a grocery store and indicate which of two options, if 

any, they would purchase. A D-efficient design powered to estimate main effects and interaction 

between gene drive insect presence and other current pest management practices was generated and 

fielded to a pretest sample via Amazon MechanicalTurk (n=300) to validate the instrument. Given 

current organic regulations, we excluded the possibility of a genetically modified plant appearing in the 

same alternative as the USDA-organic seal to keep choices realistic. Estimated coefficients from pretest 

models were used to generate more efficient, unique designs for each product for the main round 

(Huber and Zwerina 1996), which yielded a total of 18 choice tasks. These were optimally blocked into 

two groups of nine choice sets for each respondent to avoid survey fatigue. Examples of blueberry and 

orange juice choice set designs are available in Appendix B. 

 

Table 1: DCE Attributes and Levels for Fresh Blueberries and Orange Juice products 

Attributes Levels 

Gene Drive Insects  Present in the growing area to control pest damage; Not 
present in the growing area 

Plant Type Genetically modified to resist pest damage; Not 
genetically modified 

Pest Management Regime USDA-Organic [seal shown]*; Low Conventional Spray 
Level; High Conventional Spray Level 

Price  
          Fresh Blueberries ($/pint) 1.06; 2.12; 4.25; 5.31 
          Orange Juice ($/half-gallon) 2.95; 4.07; 5.21; 6.34 

Note: Plant Type Wording - “The plant and fruit are genetically modified to resist pest damage” [Genetically modified], “The 
plant and fruit are not genetically modified” [non-genetically modified]. Pest Management Regime wording – Blueberries: 
“Conventional insecticides applied only when pest populations are high” [low conventional spray]; “Conventional insecticides 
applied every five days for several weeks while fruit ripens” [high conventional spray] – Orange Juice: “Conventional 
insecticides applied in the field 1-2 times per year” [low conventional spray]; “Conventional insecticides applied in the field 11-
14 times per year” [high conventional spray].  Low v. high spray regimes represent predominate pest management regimes 
before and after the arrival of spotted-wing Drosophila (blueberries) or citrus psyllid (orange juice).  *Due to USDA-organic 
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regulations, to keep the choice tasks realistic the organic attribute was restricted to never appear in the same attribute set as a 
GM plant. 

 

Conceptual Framework and the Econometric Model 

 

Discrete choice models are grounded in random utility theory, allowing researchers to estimate the WTP 

for attributes describing product profiles in an experimental setting.  This follows the Lancastrian 

concept of utility, where Lancaster (1966) argues that utility is not necessarily derived from a good itself; 

rather, utility is gained from the individual attributes composing a good.  In this context, fresh 

blueberries and orange juice are viewed as a collection of production and quality attributes which are 

heterogeneously valued by consumers. We use the DCE approach for several reasons. First, because 

gene drive insects are not present in growing systems and thus, barring the use of deception, a revealed 

preference elicitation method such as experimental auctions is not feasible. Second, DCEs are shown to 

have design advantages over other stated preference methods, such as contingent valuation, by more 

closely simulating a real purchasing scenario (Jayson L. Lusk and Hudson 2004).  

Central to the idea of random utility theory is the assumption that economic actors seek to 

maximize their expected utility subject to the alternatives, or choice sets, they are presented.  Based on 

Manski (1977), an individual’s utility is a random variable because the researcher has incomplete 

information. In a choice experiment, an individual i maximizes utility attained from an alternative j at 

choice scenario (or time) t. Utility is decomposed into a deterministic [𝑉(𝑿𝑖𝑗𝑡)] and stochastic element 

(𝜀𝑖𝑗𝑡), represented here as: 

 

(1)  𝑈𝑖𝑗𝑡 = 𝑉(𝑿𝑖𝑗𝑡) + 𝜀𝑖𝑗𝑡    

 

When an individual faces a choice between two alternatives j and k, he or she is assumed to optimize 

utility such that probability of choosing j is: 
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(2)  𝜋𝑖𝑡(𝑗) = 𝑃𝑟𝑜𝑏{𝑉(𝑿𝑖𝑗𝑡) + 𝜀𝑖𝑗𝑡  ≥ 𝑉(𝑿𝑖𝑘𝑡) +  𝜀𝑖𝑘𝑡  ; 𝑗 ≠ 𝑘} 

 

In this context, 𝑿𝑖𝑗𝑡 is a vector of fresh blueberry or orange juice attributes and 𝜀𝑖𝑗𝑡  is the random 

error term iid over all individuals, alternatives and choice situations (Revelt and Train 1998). The 

deterministic component of utility 𝑉(𝑿𝑖𝑗𝑡) is assumed to be linear in parameters, where alternative j is a 

compilation of price, whether the plant is genetically modified, presence of gene drive insects in the 

growing environment, certified organic pest management (vs. high frequency conventional spraying), 

and low (vs. high) frequency conventional spraying. The experimental design was also powered to allow 

measurement of the interaction between gene drive insect presence and pest management practices, 

which provides critical insight into potential erosion of the value of certified organic production. The 

functional form for the deterministic component can be expressed as: 

 

(3)  𝑉𝑖𝑗𝑡 =  𝜷′𝑿𝑖𝑗𝑡   

 

In this context 𝑿𝑖𝑗𝑡  is a 7 x 1 vector of product attributes,  

𝑿𝑖𝑗𝑡 = [𝑃𝑟𝑖𝑐𝑒𝑗𝑡, 𝐺𝑀_𝑃𝑙𝑎𝑛𝑡𝑗𝑡, 𝐺𝐷_𝐼𝑛𝑠𝑒𝑐𝑡𝑠𝑗𝑡, 𝑂𝑟𝑔𝑎𝑛𝑖𝑐𝑗𝑡 , 𝐿𝑜𝑤_𝐶𝑜𝑛𝑣_𝑆𝑝𝑟𝑎𝑦𝑗𝑡 ,  (𝑂𝑟𝑔𝑎𝑛𝑖𝑐 ∗

𝐺𝐷_𝐼𝑛𝑠𝑒𝑐𝑡𝑠)𝑗𝑡, (𝐿𝑜𝑤_𝐶𝑜𝑛𝑣_𝑆𝑝𝑟𝑎𝑦 ∗ 𝐺𝐷_𝐼𝑛𝑠𝑒𝑐𝑡𝑠)𝑗𝑡].  

 

The parameter vector 𝜷 is to be estimated. Given the likely (confirmed) heterogeneity across 

consumers, we also utilize a random parameters, or mixed logit model. Following the familiar mixed 

logit specification (Revelt and Train 1998), the probability of a consumer i selecting alternative j in choice 

scenario t is: 
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(4)  𝐿(𝒚𝒊|𝜷𝒊) = ∏
𝑒

𝑉𝑖𝑗𝑡(𝜷𝑖)

∑ 𝑒
𝑉𝑖𝑗𝑡(𝜷𝑖)

𝑗

𝑇
𝑡=1  

 

where the unconditional probability is computed by integrating across all individuals’ 𝜷𝑖  and weighted 

by density, such that: 

 

(5) 𝑃𝑖(𝒚𝑖) = ∫ 𝐿(𝒚𝑖|𝜷𝑖)𝑔(𝜷𝑖)𝑑𝜷𝑖  

 

where 𝑔(∙) denotes the density of 𝜷𝑖. We employ a Hierarchical Bayes mixed logit model, generalized by 

Train (2001), for estimation of the parameter vector 𝜷 using his well validated MATLAB code (Train 

2009). Non-price base attributes distributed random normal with mean b and variance Ω and allowing 

for correlation of random coefficients. We test the price attribute as random log-normally distributed 

and fixed (non-random) across individuals.  Interaction term coefficients are modeled fixed across 

individuals. Given classic normal priors on b and a diffuse prior on Ω which is inverted Wishart, the 

conditional posterior on 𝜷𝑖  is: 

 

(6) 𝛬(𝜷𝑖|𝒃, Ω) ∝ ∏ 𝐿(𝒚𝑖|𝑖 𝜷𝑖) ∙ 𝑔(𝜷𝑖|𝒃, Ω) 

 

Draws from the joint posterior are obtained via Gibbs sampling and the Metropolis-Hastings algorithm. 

In Gibbs sampling, a sequence of draws is estimated in which every draw for a parameter is estimated 

conditional on other model parameters in a hierarchical form. Beginning at initial values, a burn-in of 

100,000 draws was specified, after which 1,000 draws were retained, thinning along every 100th draw to 

minimize the impact of autocorrelation, and verifying convergence visually (Train 2009) (Appendix G). As 

the mean (and variance) of a Bayesian posterior distribution of a parameter is asymptotically equivalent 

to a maximum likelihood estimator of that parameter, estimates from the Hierarchical Bayes model may 
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be interpreted similar to classical procedures (Train 2009). Following prevailing reporting convention 

(e.g. Hynes, Hanley and Scarpa, 2008), the mean and standard deviations of the posterior draws are 

presented in a classical sense as the estimate and standard error for each parameter. 

 

Willingness to pay (WTP) estimates of the marginal rate of substitution between price and non-price 

attributes are taken as the negative ratio of non-price and price coefficients, transforming the price 

coefficient where necessary in the lognormal specification. The coefficient on price proxies for the 

marginal utility of income, with WTP for product (non-price) attribute m given by: 

 

(7)  𝑊𝑇𝑃𝑚 = −
𝛽𝑚

𝛽𝑝
 

 

We focus on specifications for preference (vs. WTP) space models since the main lens of analysis, 

welfare estimates from release scenarios of drive insects, are computed via preference space 

coefficients estimates3.   

 

Welfare Implications 
While mWTP estimates are useful for single attribute changes in a purchasing environment with all 

options available to consumers, invasive species and gene drive insects may cause structural changes in 

product availability.  As drive insects are released and spread, the ‘absence’ of drive insects in growing 

areas may simply not be an option in the short, medium, or long term depending on context. This 

follows changes already in place during fluctuating pest management requirements as invasive species – 

such as Spotted-wing Drosophila or Citrus Psyllid – enter growing environments. After an invasive 

                                                           
3 WTP-space model results are quite similar to preference-space models in classical mixed logit model 
specifications and are reported in Appendix E. 
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species enters a region, the frequency and breadth of pesticide applications may increase considerably 

across the infestation region (Farnsworth et al. 2017; Stansly et al. 2019) and any previous ‘low 

frequency’ conventional pesticide regime may largely no longer be available to consumers. 

To answer these questions, we turn to the Small & Rosen (1981) classic discrete formulation of 

compensating variation (CV) from discrete choice estimates which is approximately equivalent to 

consumer surplus (McConnell 1995).  This formula is derived from welfare theory and is noted to weight 

welfare effects by the probability that an alternative is chosen, which avoids erroneous aggregation of 

multiple changes by simply summing the WTP values (Lancsar and Savage 2004). The CV is the amount 

of money needed to return an individual to their original utility after a change in prices, attributes, or 

availability. A positive CV estimate would thus be a negative change in consumer surplus. As the random 

utility model provides direct estimates in utility space, we can use estimation results from the DCE 

directly.  In this framework, the equation is:  

 

(8) 𝛥𝐶𝑆 ≈ −𝐶𝑉 =
1

𝜆
[𝑙𝑛 ∑ 𝑒𝑉𝑗

1𝐽1

𝑗=1 − 𝑙𝑛 ∑ 𝑒𝑉𝑗
0𝐽0

𝑗=1 ] 

 

where the marginal utility of income, 𝜆, is proxied by the estimated price attribute coefficients 𝛽𝑝�̂� and 

scaled by average product prices.   Indirect utility of each of the alternatives 𝑗 ∈ 𝐽 are calculated from 

our preference space model specification and form the base 𝑉𝑗
0 and new 𝑉𝑗

1 choice sets in each state 

𝑡 = {0,1}.   

Modeling Drive Insect Release Scenarios 
Unlike many field-level pest management strategies, the area-wide mass release of gene drive insects 

may lead to their presence in the short, medium, or long term wherever that species is found.  Self-
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limiting strategies to restrict the extent of drive spread have received significant research attention due 

to ecological and policy concern about unlimited spread (Dhole et al. 2018; Kandul et al. 2019). 

However, ‘homing endonuclease’ drive systems are the classic example in gene drive debates and are 

widely discussed in the context of a self-sustaining, unlimited spread through the species population 

(NASEM 2016). For producers, the area-wide supply side benefits to growers in reduced losses and 

control costs will thus depend on the extent to which drive insects can spread. 

 For consumers, this translates to expansion or restriction of the product choice set.  If releases 

are self-sustaining and drive alleles spread freely, consumers may be forced to trade off drive insect 

presence in growing areas for the resulting decrease in spraying and, ultimately, lower prices with 

reduced losses and control costs.  If releases are limited, product alternatives may be available which 

were grown in or outside of release zones. To measure consumer welfare implications of release 

scenarios, we can model a prevailing status-quo (SQ) of a high price, high spray choice set with no drive 

insect presence (outlined in Table 2)4.  Self-sustaining releases simultaneously change multiple attributes 

in the choice set, modeled as moving to lower (pre-infestation), lower (pre-infestation) spray levels, and 

ubiquitous drive insect presence in growing areas.  These two scenarios are the primary comparison of 

interest.  Geographically limited releases would result in localized reduced spraying and thus a 

geographic disparity in producer control costs and losses.  We additionally model a speculative scenario 

where consumers can choose between lower prices and spraying from release areas as well as higher 

price and spray options where releases do not occur.  The practical concurrent availability of both 

scenarios, as well as retail price disparity between these options, may or may not occur depending on 

                                                           
4 1) Status-quo (SQ): Price + pesticide increases because of pest damage; no GD; Alts: a) High Spray/High Price; b) 
Organic/High Price; c) Opt-out.    
2) Gene Drive self-sustaining releases (GD):  GD options with lower prices, pesticides only; no non-GD alts; Alts: a) 
Low Spray/GDIs/Low price; b) Organic/GDIs/Low Price; c) Opt-out. 
3) Limited Drive Releases with both regime products available (GD+SQ):  GD options with lower prices, pesticides; 
retain non-GD alts with higher prices; Alts: a) High Spray/High Price; b) Organic/High Price; c) Low Spray/GDIs/Low 
price; d) Organic/GDIs/Low Price; e) Opt-out. 
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market structure.  However, we examine this from a perspective of public preferences to focus on the 

value of evolving consumer choice given this novel, area-wide pest control strategy. 

 

Table 2: Summary of Drive Insect Release Scenarios on Modeled Consumer Choice Alternatives 

Scenario/regime Description 

Alternative Availability 

Pesticide Spraying  Drive Insect Presence Prices 

Status Quo (SQ) 
Alternatives only 

No releases 
High levels &  
Organic only 

Not present Higher 

Gene Drive (GD) 
Alternatives only 

Self-sustaining, 
unlimited 

spread 

Low levels &  
Organic only 

Present 
Lower  

(pre-invasion levels) 

Both (GD + SQ) 
Alternatives 

Limited 
releases 

High (where no drive 
insect releases), Low 
(where drive insect 

releases), and Organic. 

Not present (where no 
drive insect releases) 
and Present (where 

drive insect releases) 

Higher (where no drive 
insect releases) and 
Lower (where drive 

insect releases) 

 

With fixed individual RUM coefficients, the consumer surplus of the GD over SQ scenario is positive, i.e. 

𝐶𝑆(𝐺𝐷, 𝑆𝑄) > 0, if prices decrease and drive insect preferences are a neutral.  If drive insect 

preferences are non-neutral, the sign is ambiguous.  Further, 𝐶𝑆(𝐺𝐷 + 𝑆𝑄, 𝑆𝑄)  >  𝐶𝑆(𝐺𝐷, 𝑆𝑄) and the 

difference 𝐶𝑆(𝐺𝐷 + 𝑆𝑄, 𝐺𝐷) can be viewed as the consumer benefits of keeping gene drives spatially 

limited.   

 

DCE Estimation Results 
In Table 3 & Table 4, we present our preferred specification of the Hierarchical Bayes mixed logit model 

with correlated random coefficients and a log-normally distributed price coefficient. Model choice was 
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guided by significant gains in log-likelihood compared to modeling price as fixed5.  Our experimental 

design was specifically powered to measure interaction terms between gene drive presence and 

chemical/organic pest management levels and we present results with and without interactions 

included for transparency.  Classical mixed logit models solved via maximum simulated likelihood also 

produce very similar results, with subsequent WTP estimates generally within 5% of Bayesian estimates, 

with little gain in goodness of fit measures.  For transparency, we include these estimates in Appendix E, 

but we focus our discussion on Bayesian estimate coefficients that drive subsequent welfare analysis 

simulations. 

In Table 3 & Table 4, we clearly see that both blueberry and orange juice consumers, on 

average, negatively value genetically modified plant alternatives and gene drive insect presence, while 

positively valuing organic and low conventional pesticide spray levels (versus high conventional spray 

levels).  This conforms with our priors and a large literature on consumer preferences of genetically 

modified organisms and pest management practices (well summarized in Costa-Font, Gil and Traill 

(2008)).  However, while Table 5 illustrates a high positive correlation between GM plant and GD insect 

presence coefficients (BB: 0.789; OJ: 0.564), we see from both sets of WTP estimates that consumers do 

not have equivalent preferences for biotechnology inputs.  In fresh blueberries (Table 3), the mean of 

the WTP posterior distribution for a GM plant is over 2.8 times that of GD insect presence; in orange 

juice (Table 4), the GM plant mean is almost 2 times higher.  This also aligns with our priors, given that 

those concerned with ingesting genetically modified organisms would face this personal ‘risk’ with 

certainty given a GM plant versus some positive, potentially low risk with gene drive insect presence.  

Comparing chemical control to drive insects, the mean WTP impact of moving from low to high 

conventional spray regimes in blueberries is about 1.5 times that of drive insect presence; in orange 

                                                           
5 Base model - Blueberries LL: price fixed (-3075) vs. log-normal (-2883), gain of 6.24%; Orange Juice LL: price fixed 
(-2851) vs. log-normal (-2675), gain of 6.17%. HB model results with a fixed price coefficient in Appendix D. 
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juice, this disparity rises to a factor of three.  In Figure 1, we present a summary of these main effect 

mWTP results for each product using estimates from the Hierarchical Bayes mixed logit specification 

with correlated random coefficients and price modeled as random lognormal (using column 3 WTP 

results from Table 3 & Table 4).   For both blueberries and orange juice, the means of the WTP 

posteriors for GD insect interactions are generally negative (as hypothesized) but the 95% credible 

interval always includes zero.  The positive coefficient for the orange juice interaction between GD 

insects and the organic seal is very nearly zero and imprecisely measured.  Thus, on average, GD insect 

presence does not significantly reduce WTP for organic or low conventional spraying vis-à-vis high 

conventional spray regimes.   

Consumers do not view biotechnology interventions as equivalent.  For both products, 

genetically modifying the plant for insect resistance has a much greater negative effect on WTP.  For 

blueberries, there is no statistically significant difference between increasing from a low to high 

conventional spray regime and gene drive insect presence.  In orange juice, however, drive insects have 

a much lower impact on WTP. Therefore, when evaluating strategies to combat damaging invasive 

species, a consistent and robust finding is that drive insects have an equivalent or lower impact on mean 

consumer WTP for conventionally produced food products compared to alternative biotechnology 

approaches and heavily increased insecticide spraying. 
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Table 3: Hierarchical Bayes Mixed Logit Coefficients and WTP – Log-Normal Price Coeff. – Blueberries 

 Coefficients   Willingness-to-Pay 

 
(1) 

Without 
Interactions 

  (2) 
With GD 

Interactions 

 (3) 
Without 

Interactions 

(4) 
With GD 

Interactions 

Variables 
Est. 
(se) 

Var. 
(se) 

 
Est. 
(se) 

Var. 
(se) 

 Est. 
(se) 

[95% CI] 

Est. 
(se) 

[95% CI] 

GM Plant 
(v. not GM) 

-1.220 

(0.168) 

5.216 

(0.911) 
 

-1.231 

(0.171) 

5.361 

(0.974) 
 

-1.432 

(0.229) 

[-1.91, -0.99] 

-1.445 

(0.234) 

[-1.92, -1.02] 

GD Insects 
(v. none) 

-0.429 

(0.124) 

2.566 

(0.454) 
 

-0.331 

(0.168) 

2.643 

(0.452) 
 

-0.504 

(0.153) 

[-0.82, -0.21] 

-0.388 

(0.199) 

[-0.76, 0.01] 

Organic 
(v. Conv. High Spray) 

1.774 

(0.201) 

9.422 

(1.434) 
 

1.825 

(0.230) 

9.604 

(1.517) 
 

2.082 

(0.294) 

[1.53, 2.71] 

2.142 

(0.322) 

[1.52, 2.81] 

Conv. Low Spray 
(v. Conv. High Spray) 

0.710 

(0.176) 

4.563 

(0.978) 
 

0.771 

(0.198) 

4.635 

(1.020) 
 

0.835 

(0.226) 

[0.41, 1.30] 

0.907 

(0.249) 

[0.45, 1.42] 

Opt-out ASC 
-4.969 

(0.374) 

37.015 

(4.852) 
 

-4.929 

(0.417) 

37.080 

(5.202) 
 

-5.806 

(0.345) 

[-6.50, -5.15] 

-5.753 

(0.332) 

[-6.41, -5.13] 

Pricea 
0.157 

(0.068) 

1.064 

(0.139) 
 

0.156 

(0.073) 

1.071 

(0.135) 
   

GD Ins. X Organic    
-0.138 

(0.183) 
   

-0.162 

(0.214) 

[-0.60, 0.24] 

GD Ins. X Conv. Low Spray    
-0.147 

(0.210) 
   

-0.176 

(0.249) 

[-0.67, 0.27] 

Log-Lik -2882.80  -2882.33    

aUntransformed, transform with −𝑒�̂�𝑝. For WTP, compute −
𝛽𝑘

𝑒𝛽𝑝
. Note: *indicates the 95% credible 

interval does not contain zero. 
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Table 4: Hierarchical Bayes Mixed Logit Coefficients and WTP – Log-Normal Price Coeff. – Orange Juice 

 Coefficients   Willingness-to-Pay 

 
(1) 

Without 
Interactions 

  (2) 
With GD 

Interactions 

 (3) 
Without 

Interactions 

(4) 
With GD 

Interactions 

Variables 
Est. 
(se) 

Var. 
(se) 

 
Est. 
(se) 

Var. 
(se) 

 Est. 
(se) 

[95% CI] 

Est. 
(se) 

[95% CI] 

GM Plant 
(v. not GM) 

-0.949 

(0.168) 

5.402 

(0.938) 

 -0.933 

(0.166) 

5.468 

(0.929) 

 -0.848* 

(0.167) 

[-1.20, -0.54] 

-0.826* 

(0.163) 

[-1.16, -0.51] 

GD Insects 
(v. none) 

-0.487 

(0.137) 

2.580 

(0.450) 

 -0.420 

(0.187) 

2.517 

(0.407) 

 -0.437* 

(0.134) 

[-0.72, -0.19] 

-0.374* 

(0.173) 

[-0.71, -0.06] 

Organic 
(v. Conv. High Spray) 

1.875 

(0.236) 

9.961 

(1.564) 

 1.859 

(0.252) 

10.038 

(1.517) 

 1.673* 

(0.234) 

[1.21, 2.14] 

1.643* 

(0.251) 

[1.18, 2.16] 

Conv. Low Spray 
(v. Conv. High Spray) 

1.529 

(0.172) 

4.416 

(0.839) 

 1.639 

(0.183) 

4.447 

(0.775) 

 1.364* 

(0.174) 

[1.03, 1.72] 

1.448* 

(0.188) 

[1.09, 1.84] 

Opt-out ASC -7.587 

(0.513) 

45.676 

(6.594) 

 -7.631 

(0.510) 

46.271 

(6.681) 

 -6.748* 

(0.330) 

[-7.42, -6.13] 

-6.72* 

(0.315) 

[-7.36, -6.13] 

Pricea 0.116 

(0.074) 

0.914 

(0.109) 

 0.126 

(0.073) 

0.915 

(0.110) 

   

GD Ins. X Organic    0.040 

(0.235) 

   0.036 

(0.207) 

[-0.38, 0.42] 

GD Ins. X Conv. Low Spray    -0.233 

(0.192) 

   -0.204 

(0.169) 

[-0.54, 0.13] 

Log-Lik -2674.96  -2674.01    

aUntransformed, transform with −𝑒�̂�𝑝. For WTP, compute −
𝛽𝑘

𝑒𝛽𝑝
. Note: *indicates the 95% CI does not 

contain zero.  
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Table 5: Correlation between Random Coefficients – Non-price Normal; Price Lognormal 

Fresh Blueberries GM Plant 
GD 

Insects 
Organic  
(v. C.H.) 

Conv. Low  
(v. C.H.) 

Opt-out 
ASC 

Price 

GM Plant 1.000 0.789 -0.380 -0.613 -0.568 -0.389 
GD Insects 0.789 1.000 -0.134 -0.420 -0.421 -0.332 
Organic (v. Conv. High Spray) -0.380 -0.134 1.000 0.773 0.717 0.404 
Conv. Low (v. Conv. High Spray) -0.613 -0.420 0.773 1.000 0.778 0.485 
Opt-out ASC -0.568 -0.421 0.717 0.778 1.000 0.599 
Price -0.389 -0.332 0.404 0.485 0.599 1.000 

Orange Juice GM Plant 
GD 

Insects 
Organic  
(v. C.H.) 

Conv. Low  
(v. C.H.) 

Opt-out 
ASC 

Price 

GM Plant 1.000 0.564 -0.366 -0.401 -0.550 -0.403 
GD Insects 0.564 1.000 0.154 0.106 -0.364 -0.405 
Organic (v. Conv. High Spray) -0.366 0.154 1.000 0.862 0.626 0.264 
Conv. Low (v. Conv. High Spray) -0.401 0.106 0.862 1.000 0.629 0.235 
Opt-out ASC -0.550 -0.364 0.626 0.629 1.000 0.643 
Price -0.403 -0.405 0.264 0.235 0.643 1.000 

 
 
 

 
Figure 1: Comparing mWTP Estimates of Escalated Pest Management Strategies 
Note: HB Mixed Logit model with correlated random main effects, price as random lognormal (Col. 3 of Table 3 & 

Table 4). Comparisons of coefficients in this graph are only appropriate between attributes of the same product. 
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Welfare analysis 

Consumer surplus impacts of drive insect releases to reduce pesticides and prices 
 

We now simulate consumer surplus impacts of drive insect releases across scenarios outlined in Table 2, 

in which releases both reduce conventional pesticide spraying and prices.  If a pest is more damaging 

and causes increased management costs and losses, this will generally result in increasingly higher retail 

prices. Thus the greater the pest’s impact on retail prices of host crop products, ceteris paribus, the 

greater the ability to benefit from a reduction in pest damage via gene drive insect releases. Pests may 

disproportionately impact prices in the organic (vs. conventional) sector, as control options are often 

limited in scope and effectiveness (Burrack et al. 2019; Farnsworth et al. 2017; Van Timmeren and Isaacs 

2013).  

To contextualize relevant ranges of pest-induced price changes for each product, we use limited 

empirical examples from the economics literature as proxies for blueberries and orange juice. 

Farnsworth et al. (2017) provide a rich analysis of retail price impacts of spotted-wing Drosophila in 

California raspberries, differentiating between organic and conventional markets. We use their 

estimates as the only available proxy for the fresh blueberry market. Farnsworth et al. (2017) note that 

pest management is considerably more difficult in organic production and report that spotted-wing has 

a disproportionately greater impact on organic retail prices. The authors also divide analysis between 

“early” and “late” periods of spotted-wing infestation. As management techniques were less refined in 

“early” days, the initial impact on conventional market prices was considerably higher. For orange juice, 

we proxy with estimates from Moss et al. (2014) of Asian citrus psyllid-vectored citrus greening on fresh 

orange field box prices.  In our initial simulation we assume proportional transmission of price changes 

in the orange juice market. Organic and conventional production are undifferentiated, though organic 

orange juice composes a very small portion of the overall market. 
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Unlimited Drive Releases 
In Table 6 & Table 7, we present a summary of the simulations from the literature’s empirical price 

change estimates, with consumer surplus changes expressed in annual per-capita terms6.  The 

hierarchical Bayesian framework easily facilitates measurement of statistical precision of mean and 

median surplus estimates.  Statistical criteria indicate the superiority of random log-normal vs. fixed 

specifications for the price coefficient, though we present both to elucidate important factors driving 

results.  

For blueberries, the simulation suggests a mean $8.94 consumer surplus loss from unlimited 

drive insect release, which is about the current average retail value of 2.5 pints of fresh berries. For 

comparison, this drive release estimate is quite close in magnitude to our estimates of mean consumer 

welfare loss from the original spotted-wing introduction, at $7.59.  The median loss estimate of $1.61 is 

much smaller and, while still negative, only about 1/3 the estimated median $4.63 loss from spotted-

wing introduction.  While median estimates are comparable whether price is fixed or lognormal, mean 

estimates are considerably higher in the random lognormal specification.  Aside from lognormal 

distributional skew, this is driven in part by the negative correlation between the price and drive insect 

attribute coefficients (see: Table 5), where those with highest aversion to gene drive insect presence 

derive less utility from co-incident price reductions.   The state of the world when drive insects are 

released is also important when considering market impacts and net consumer welfare.  As growers and 

researchers improved management practices between “early” and more recent (“late” or “current”) 

stages of spotted-wing infestation (Farnsworth et al. 2017), especially within conventional production, 

the potential reduction in prices from drive insect releases declines. Thus, consumers may benefit less 

(or be harmed more) from this type of area-wide intervention if releases are delayed past periods of 

                                                           
6 Assuming weekly shopping trips to convert our DCE “shopping trip” simulation to meaningful terms.  Note that 
our ‘per-capita’ population are those whose households have purchased the product at least once in the six 
months before Nov/Dec 2017. 
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improved chemical and/or integrated pest management innovation and adoption.  Given the complexity 

of designing and testing drive systems and the speed of reactions from industry and governmental 

bodies to attempt to cope with invasive threats, this delay is unlikely to be avoided. 

In orange juice, however, simulating an unlimited gene drive citrus psyllid release results in a 

small, statistically insignificant mean welfare loss of $0.36. This is less than 10% the current average 

retail value of a half-gallon of orange juice. Drive insect welfare losses are considerably lower than the 

estimated mean $9.46 per capita loss from Asian citrus psyllid-vectored citrus greening.  However, a 

plurality of consumers would benefit from drive insect releases, with a small, statistically significant 

median surplus change of $0.73.  More positive results for orange juice are driven, in part, by much 

greater relative disutility from increased insecticide versus drive insect presence (Table 3 & Figure 1).   

Estimates for orange juice consumers have less disparity between model specifications, though we note 

the significant, positive mean welfare estimate of $2.76 in a fixed price coefficient specification. 

We generalize our simulation along a wide range of potential conventional and organic price 

increases from spotted-wing Drosophila and citrus psyllid invasion in Figure 2, placing the empirical 

estimates in context. The range of scenarios assumes pests cause equal or disproportionately greater 

price increases in organic vs. conventional markets. Thus for blueberries in Figure 2a, simply switching 

from high spray and organic regimes to low spray and organic regimes, with ubiquitous drive insect 

presence and a hypothetical null price effect from initial invasions (0% change in conventional or organic 

prices), there is a mean welfare loss of about $11.  Even if conventional prices were not impacted by 

spotted-wing (i.e. along the Figure 2a line for 0% ‘conventional price increase’), consumer welfare still 

improves if drive insects are able to reverse spotted-wing’s impact on organic prices. The Farnsworth et 

al. (2017) “late” period empirical point, with spotted-wing causing an increase in prices of 0.04% in 

conventional markets and 7.0% in organic markets, illustrates this type of gain. 
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Simulations indicate that spotted-wing Drosophila must induce fresh blueberry price increases 

well in excess of 20% for a mean positive consumer welfare gain from drive insect releases.  Orange 

juice prices must increase over 12.4% due to citrus greening for a positive mean welfare estimate, just 

above empirical orange field box estimates from Moss et al. (2014).  Allowing for differential impacts, if 

citrus greening led conventional orange juice prices to rise only 12.0%, organic prices must have risen at 

least 14.0% for a positive mean welfare gain.  To reach statistical significance for a positive mean welfare 

estimate, conventional prices must have increased >16% with organic price increases of >20%. 

Simulations for median estimates across original price impacts are presented in Figure 3. A 

plurality of consumers would benefit from drive insect releases if spotted-wing had induced at least a 

uniform 10% price increase in conventional and organic markets (Figure 3a).  If conventional prices only 

rose 8%, organic prices must have risen at least 20% to similarly achieve this plurality.  With any non-

zero price impact, median estimates for orange juice consumers are always positive (Figure 3).   

Limiting drive releases to retain market choice 
There appears to be considerable welfare gain associated with retaining market alternatives without 

drive insect presence, even when those alternatives have higher prices and pesticide spray levels.  As 

the distribution of ΔCS(GD+SQ, GD) is censored at a zero and unbounded in the positive direction, we 

concentrate analysis on median estimates in Table 6 & Table 7. In blueberries, median welfare gains of 

$10.61 are particularly driven by retaining a higher-priced organic alternative that was not grown in the 

presence of gene drive insects. For orange juice consumers, the impact is more modest, with a median 

$2.44 welfare gain.  In Figure 4, we provide analogous welfare ranges across possible initial price 

impacts of the pest infestations, placing empirical literature estimates in context. Of course, the value of 

additional high spray and/or higher-priced, non-drive alternatives declines as the price of those 

alternatives increases.   
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The structure of the estimate distribution will always result in positive consumer welfare gains 

from limiting drive releases to preserve greater consumer choice.  However, the scale of the estimates 

may be of immense interest to policymakers.  Our results show that, when considering consumer 

welfare with drive insect releases, it is key to distinguish between both the consumer preferences for 

host crop-derived products and to what extent drive insect releases have the capacity to reduce price 

increases from pests.  And while organic producers have disproportionately higher management costs 

and losses due to invasive pests, our data indicate that, on aggregate, there is significant consumer 

welfare gain to retaining organic options without any interaction with biotechnologies.   
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Table 6: Mean and Median Per-capita Annual Consumer Surplus Changes - Blueberries 

   Price Log-normal Price Fixed (non-random) 

Scenario 𝑽𝟏 Alternatives 𝑽𝟎 Alternatives 
Mean 

[90% CI] 
Median 
[90% CI] 

Mean 
[90% CI] 

Median 
[90% CI] 

ΔCS(SQ, Pre-SWD)  
“current” 

 
Original estimated change 
due to SWD introduction, 

with current prevailing 
practices 

High spray & Organic, 
high prices 

(Conv. Price ↑0.04%; 
Org. Price ↑7.04%a)  

Low spray & 
Organic, low 

prices 

-7.592* 
[-9.152, -6.188] 

-4.628* 
[-5.148, -4.004] 

-5.512* 
[-6.448, -4.576] 

-4.784* 
[-5.096, -4.368] 

ΔCS(GD, SQ)  
“current” or “late” 

 
After SWD infestation and 

current prevailing practices, 
release of GD SWD and 

ubiquitous presence 

Low spray & Organic, 
low prices, with 
ubiquitous gene 

drive insect presence 

High spray & 
Organic, high 

prices 
(Conv. Price 

↑0.04%; Org. 
Price ↑7.04%a) 

-8.944* 
[-11.960, -5.928] 

-1.612* 
[-2.756, -0.676] 

-0.676 
[-1.924, 0.520] 

-1.248* 
[-2.236, -0.468] 

ΔCS(GD, SQ)  
“early” 

 
After SWD infestation with 
initial management, release 
of GD SWD and ubiquitous 

presence 

Low spray & Organic, 
low prices with 
ubiquitous gene 

drive insect presence 

High spray & 
Organic,   

high prices 
(Conv. Price 

↑5.8%; Org. Price 
↑6.9%a) 

-8.008* 
[-11.128, -4.888] 

-0.728* 
[-1.612, -0.052] 

0.208 
[-1.040, 1.508] 

-0.780* 
[-1.664, -0.104] 

ΔCS(GD+SQ, GD)  
“current” or “late” 

 
Gain from limiting GD SWD 

presence given current 
prevailing practices 

High spray & Organic, 
high price + no GD 

insect presence; low 
spray & Organic, low 
price with GD insect 

presence 

Low spray & 
Organic, low 
prices, with 

ubiquitous gene 
drive insect 

presence 

25.064* 
[22.464, 28.132] 

10.608* 
[9.412, 11.804] 

12.488* 
[11.823, 13.189] 

9.329* 
[8.574, 10.116] 

a Using price movement estimates from (Farnsworth et al. 2017) for SWD on California raspberries as a proxy, where “Early” uses higher price impacts in initial SWD infestation 

and “Late” or “current” uses attenuated price impacts after improved control regimes were established. Note: annual surplus based on weekly shopping trips; * indicates the 

90% CI does not contain zero. CS(
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Table 7: Mean and Median Per-Capita Annual Consumer Surplus Changes – Orange Juice 

   Price Lognormal Price Fixed (non-random) 

Scenario 𝑽𝟏 Alternatives 𝑽𝟎 Alternatives 
Mean 

[90% CI] 
Median 
[90% CI] 

Mean 
[90% CI] 

Median 
[90% CI] 

 
ΔCS(SQ, Pre-ACP) 

 
Original estimated 
change due to ACP 

introduction 

High spray & 
Organic, high prices 
(All Price ↑11.99%a) 

Low spray & Organic, 
low prices 

-9.464* 
[-10.296, -8.632] 

-8.216* 
[-8.996, -7.436] 

-7.124* 
[-7.592, -6.604] 

-7.384* 
[-8.06, -6.708] 

 
ΔCS(GD, SQ) 

 
After ACP infestation, 
release of GD ACP and 
ubiquitous presence 

Low spray & Organic, 
low prices with 
ubiquitous gene 

drive insect presence 

High spray & 
Organic, high prices 
(All Price ↑11.99%a) 

-0.364 
[-1.924, 1.300] 

0.728* 
[0.260, 1.352] 

2.756* 
[2.028, 3.484] 

1.560* 
[0.988, 2.184] 

 
ΔCS(GD+SQ, GD) 

 
Gain from limiting GD 

ACP presence 
 
 

High spray & 
Organic, high price 
with no GD insect 

presence; Low spray 
& Organic, low prices 

with gene drive 
insect presence 

Low spray & Organic, 
low prices with 
ubiquitous gene 

drive insect presence 

10.712* 
[9.360, 12.272] 

2.444* 
[1.924, 2.964] 

5.252* 
[4.836, 5.668] 

2.288* 
[2.028, 2.548] 

a Using price movement estimates from (Moss et al. 2014) for Florida orange field box prices, where conventional and organic oranges are undifferentiated.  Note: annual 

surplus based on weekly shopping trips; * indicates the 90% CI does not contain zero. 
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Figure 2: Mean consumer surplus from uncontrolled drive insect releases that reduce pesticides and 
prices, across range of original pest-induced price increases for conventional and organic goods. 
Higher original price impacts from pests lead to greater prices reductions and thus higher surplus from drive insect releases.  
Original organic price impacts may exceed conventional prices. HB MXL model, corr. random coefficients, price as log-normal 
random.  Cross-hair markers denote estimates containing zero in 90% CIs. Blueberry empirical points proxied by CA raspberry 
estimates from Farnsworth et al. (2017). OJ empirical point proxied by FL orange field box prices from Moss et al. (2014). 
 

Fresh Blueberries (Figure 2.a) 

 
 

Orange Juice (Figure 2.b) 
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Figure 3: Median consumer surplus from uncontrolled drive insect releases that reduce pesticides and 
prices, across range of original pest-induced price increases for conventional and organic goods 
Higher original price impacts from pests lead to greater prices reductions and thus higher surplus from drive insect releases.  
Original organic price impacts may exceed conventional prices. HB MXL model, corr. random coefficients, price as log-normal 
random.  Cross-hair markers denote estimates containing zero in 90% CIs. Blueberry empirical points proxied by CA raspberry 
estimates from Farnsworth et al. (2017). OJ empirical point proxied by FL orange field box prices from Moss et al. (2014). 
 

Fresh Blueberries (Figure 3.a) 

 
 

Orange Juice (Figure 3.b) 
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Figure 4: Median consumer surplus of limiting drive insect releases to retain market options for higher 
priced, higher spray alternatives (without drive insect presence in growing areas)  
The value of additional higher spray, higher priced non-drive alternatives declines as the price of those alternatives increases.  

HB MXL model, correlated random coefficients, price as random log-normal.  No estimates contain zero in 90% CI. Blueberry 

empirical points proxied by CA raspberry estimates from (Farnsworth et al. 2017). OJ empirical point proxied by FL orange field 

box prices from (Moss et al. 2014). 

 

Fresh Blueberries (top) and Orange Juice (bottom) 

 

 

 

 

 
 

Conclusions and Policy Recommendations 

 

Increasingly successful scientific research is developing the use of gene drive insects to combat invasive 

agricultural pests which cause significant damage in U.S. growing environments.  Researchers, funders, 

and policy makers have already begun a broad debate on the ethics and potential ecological impacts of 
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such technologies (Baltzegar et al. 2018; Emerson et al. 2017; NASEM 2016), and market impacts will 

also be a key concern to address in deliberations over development investments and potential releases.  

The net market impacts of these technologies depend not only on the cost savings and yield 

improvement afforded to producers, but also how consumers will react in the marketplace.   

We evaluate heavily informed consumer preferences for multiple strategies to address 

damaging invasive pests, including gene drive insects, crop genetic modification, and heavy conventional 

pesticide spraying regimes.  Unsurprisingly, ceteris paribus, consumers prefer less insecticide and no use 

of biotechnology. However, the introduction of Spotted-wing Drosophila as a major invasive pest has 

already led to increased spraying and control costs (Burrack et al. 2019).  Similarly, the threat of citrus 

greening spread has spurred heavy spray programs to attempt to control Asian citrus psyllid (Stansly et 

al. 2019).  Thus, more pesticides are already a reality in these growing environments.  Our results 

consistently indicate, across both fresh blueberries and orange juice experiments, that consumers had 

lower or statistically equivalent reductions in mean mWTP with gene drive insect presence in growing 

areas compared to current high (v. low) frequency spray regimes. On average, gene drive insects are 

also consistently preferred to crop genetic modification, providing insight into differential public and 

consumer perceptions of biotechnology interventions. It is logical that GMO organism presence in the 

field would elicit a weaker consumer reaction than a genetically engineered product that is directly (and 

intentionally) consumed. We also examine potential impacts on WTP for organic certification.  While 

organic producers may in fact receive very high production benefits from gene drive insects to reduce 

damage without chemical applications, it is reasonable to expect that some segments of their consumer 

base may be hesitant to accept this new technology.  Among organic consumers, there is weaker 

evidence for mean mWTP declines for organic products when drive insects are in growing areas, though 

the effect may be more pronounced among sub-groups of the population. This interactive effect 
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dissipates and is not statistically significant for either product in more sophisticated and significantly 

more explanatory mixed logit specifications.   

However, the area-wide nature of gene drive insect releases, and likely large publicity to 

accompany mass releases of genetically modified insects (NOFA-NY 2017; Zhang 2017), mean 

fundamental changes to product alternative sets are likely to be faced by consumers with non-neutral 

preferences. Unlimited drive insect releases may provide efficiency for lowest cost implementation of 

pest management programs, but grower benefits from reduced control costs and losses must be 

weighed against consumer and public welfare impacts.  Consumer welfare estimation indicates that, 

using model specifications with the highest explanatory power, mean and median consumer surplus 

changes are negative for blueberries. In orange juice, mean surplus changes are small, negative and 

statistically insignificant while median estimates are small, positive and significant.  The value of 

retaining product alternatives is quite large and should be carefully considered when weighing how (and 

if) to implement any release program for genetically engineered or gene drive insects.  Thus the 

ecological risk concerns already expressed by scientists and regulators with self-sustaining gene drive 

insect releases (Delborne et al. 2018; NASEM 2016) are augmented by these marketplace concerns, 

given the inherently commercial nature of any agricultural gene drive pest application.  But just as the 

National Academy of Sciences, Engineering, and Medicine (2016) report emphasizes for case-by-case risk 

assessment with gene drive organisms, our data indicate that parallel case-by-case consumer research is 

paramount for host crop products.   

There are some drawbacks to this study. Awareness of pest control measures will be important 

in extrapolating these results. Our experiment clearly labeled product features, though perfect 

information may not be available to many consumers in the marketplace. Further, while increased 

pesticide application may not be heavily publicized, impending trial releases of non-drive GM 

mosquitoes in Florida led to heavy media coverage (see: Allen (2016) and Servick (2016)). Gene drive 
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insect releases may be similarly publicized, which could increase awareness and potentially lead to a 

greater overall market impact. 

Further research is needed to connect underlying values driving the consistently differential 

impacts of plant vs. insect-based biotechnology solutions. In addition, while our information frame was 

delivered as objectively as possible, the public may receive information on gene drive insects through 

outlets encouraging either support or opposition. Investigating informational and framing effects on 

subsequent consumer decision-making would help to understand implications for market analysis.  
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Appendix A: Full informational text and illustration materials  

The survey informational text is in quotations (emphasis in text present in fielded survey).  Invisible 

timers recorded time spent on each page. 

Introduction with consequentiality statement: 

“You will be shown four (4) short pages in the next section.  Please read the information carefully. 

 Your responses to questions about this information will inform policy decisions at the US 

Department of Agriculture.” 

 

Panel 1: 

“(Page 1 of 4) 
  
In this section, we are going to ask your opinion about a new technology being developed.  We will 
first give a bit more detail about the technology and then two examples of how people are 
proposing to apply it in food production.  We will also ask how use of this technology may affect 
your food purchases. 
  
Insect pests cause significant damage to crops in the United States. Farmers try to control these 
insects as scientists continue to develop new pest control methods and technologies.  
  
As you may have heard, a new strategy under development is called a ‘gene drive’, using a genetic 
engineering technology called CRISPR/CAS9 (pronounced “crisp-er”).  With this approach, scientists 
may be able to modify the genes of insect pests 1) to prevent them from being able to transmit 
diseases to a crop or 2) to reduce their populations by preventing them from reproducing 
normally.” 
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Panel 2: 
 
“(Page 2 of 4) 
  

How does a gene drive work? 

  

Imagine you wanted to make a population of insects a different color. Normally, half of an 

offspring’s genes come from the father and half come from the mother. So if a male with some 

genetic change mated with a normal female, about half of the offspring would inherit the change in 

the father’s DNA. This is illustrated in the figure below.  

  

 

Normal Inheritance  

(red insects have a new genetic change) 

  

 However, with a ‘gene drive’, genetic changes are inherited by almost 100% of the offspring. Their 

offspring then pass on these genetic changes to the next generation, continuing the process. This is 

represented in the figure below.   

  

 
 

Increased Inheritance with Gene Drive  

(red insects have a new genetic change) 

  

 This means, in theory, if you release gene drive insects, over time they could 'drive' the modified 

genes to the entire population of that insect species (demonstrated below). These changes could 

potentially spread to wherever that insect occurs in the world.   
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In agriculture, some scientists have proposed spreading modified genes which could prevent insects 

from transmitting crop diseases. Other scientists have also proposed spreading genes to disrupt 

insect reproduction to reduce or eliminate local populations of specific insect pests.  

  

However, gene drives have never been used in the environment, and there could be many reasons 

why they could fail to spread as intended.” 
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Panel 3: 

 

“(Page 3 of 4) 
 

Gene drives could potentially be used to reduce or eliminate an insect population 

  

An example under consideration is an invasive species of fruit fly called ‘Spotted-Wing Drosophila’, 

which recently arrived from East Asia. This pest causes significant damage to crops, especially soft 

berries like blueberries, raspberries, and strawberries (see picture below).  The fly lays eggs inside 

the berries, which develop into juvenile insects that eat the fruit. Contaminated shipments cannot 

be sold as fresh fruit. 

  

To prevent damage from Spotted-Wing, many farmers have increased insecticide applications, 

spraying up to every 3-5 days and frequently approaching limits enforced by the US Environmental 

Protection Agency. Organic farmers have fewer insecticide options than non-organic farmers for 

this pest, meaning they often have higher losses. Many farms have also stopped growing fruit or 

have gone out of business because they could not afford to control this pest. 

  

Scientists have proposed genetically modifying the insects to make female Spotted-Wing flies not 

able to lay eggs inside the fruit (see picture below). Males would be modified to pass on genes 

which cause their female offspring to not be able to lay eggs. The male offspring would survive, 

mate with normal (wild) females, and continue the process.  

  

This could eventually reduce or locally eliminate this fruit fly. A reduction in flies could mean less 

damage and a reduced need for insecticide sprays to protect certain fruit crops. 
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Base photo credits: Berries: Vaughn Walton, Oregon State University; Flies: Li and Scott (2016), NC State University.  
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Panel 4: 

 

“(Page 4 of 4) 
 
Gene drives could potentially be used to alter a population of insects to not transmit crop diseases 
   
One example is the invasive species Asian Citrus Psyllid (pronounced “si-lid”) which recently arrived 
from East Asia. This pest spreads a type of bacteria which causes a very damaging disease called 
“citrus greening” in US citrus groves.  
  
Citrus greening is not harmful to humans and the fruit is still safe for people to consume.  However, 
citrus greening causes trees to slowly die and significantly reduces the amount of fruit produced 
(see picture below). To slow the spread of the disease, many farmers have increased insecticide 
spraying up to 11-14 applications per year, frequently approaching limits enforced by the US 
Environmental Protection Agency. Citrus greening has cost the US citrus industry billions 
of dollars because infected trees cannot be cured of the disease and increased insecticide spraying 
has not successfully controlled the insect.  Many farms have stopped growing citrus or have gone 
out of business. 
 

  
Example of healthy vs. citrus greening fruit and leaves from a healthy vs. citrus greening tree 

Photo credit: University of Florida 
 

 
Scientists have proposed genetically modifying the Asian Citrus Psyllid so it cannot transmit the 
bacteria that causes citrus greening disease. The insects would continue to live and reproduce in 
the citrus groves, but they would no longer pass the disease to trees. The gene drive could 
potentially spread this disease immunity to the entire species around the world.” 
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FAQ introduction text: 

“Frequently Asked Questions (FAQs) 

 During discussions with the public about gene drives in agriculture, people have frequently asked a 

number of questions. In reading the information on the previous pages, you may have wondered 

about similar things. 

 We have included a short series of seven FAQs with a brief explanation for each. Please mark all 

questions you would like to learn more about. You will be shown information on all questions you 

select. Answers to some questions may be randomly shown whether you select them or not. 

o Is a gene drive insect the same as a genetically modified organism (GMO)? 

o Would engineered gene drives work in any species? 

o Could gene drives be created to affect human populations? 

o Has anyone created an actual gene drive? 

o What are some possible risks of gene drives? 

o Could a genetically modified Spotted-Wing fly or Asian Citrus Psyllid bite humans? 

o How long would the gene drive remain in an insect population after it's released into the 

environment?” 

Appearing in separate frames: 

 

FAQ 1: 

“Is a gene drive insect the same as a genetically modified organism (GMO)? 

Answer: 

A gene drive insect is genetically modified (or 'genetically engineered'), but not all genetically 

modified organisms are gene drives.  

The major difference is that a gene drive insect is modified with the intention that the genetic 

changes pass to all of their offspring and can potentially 'drive' through the population of that insect 

species.” 

FAQ 2 (adapted from Wyss Institute press release): 

“Would engineered gene drives work in any species?   
Answer:  
No, only in species that reproduce sexually, such as insects, animals, and most plants.  They would 
not work in bacteria or viruses, for example.  The genetic changes only spread through the 
population as individuals mate, so it works much faster in species like insects which can reproduce 
very quickly.” 
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FAQ 3 (adapted from Wyss Institute press release): 
 
“Could gene drives be created to affect human populations? 

Answer: 

Not without taking centuries. It takes a very long time to spread a gene drive through a species that 

takes many years to reach sexual maturity. For example, if a trait was introduced into elephants 

(which live for a long time, like humans) using a gene drive today, there would only be four times as 

many elephants with that trait in 100 years than if we hadn't used a gene drive.  

No scientist has proposed using a gene drive in human beings or any higher mammal. This is partly 

because gene drives work best in organisms with fast reproduction cycles and many offspring (like 

insects).” 

FAQ 4 (adapted from Wyss Institute press release): 

“Has anyone created an actual gene drive? 

Answer: 

Yes, though work is ongoing. Some gene drive insects have been developed in specific laboratory 

populations by scientists, but have never been released in the wild.” 

FAQ 5: 

“What are some possible risks of gene drives? 

Answer: 

The National Academy of Science, Engineering and Medicine has stated that ‘many of the possible 

harmful effects of gene drives have to do with environmental outcomes’. For example, a gene drive 

that eliminates a species in a particular environment might have impacts on other species. Some of 

these impacts might be predictable, but some species serve functions in the environment that we 

don't yet understand very well. Even in a farmer's field, removing a pest through gene drives may 

leave room for another pest to fill its place. Or, if a gene drive changes the behavior of an insect 

pest, there might be impacts that were not predicted. 

Though extremely rare, sometimes in nature genes can be transferred between species.  With other 

genetically modified animals this has never been found, but it is not yet known if this is possible 

with gene drive insects.” 

FAQ 6: 

“Could a genetically modified Spotted-Wing fly or Asian Citrus Psyllid bite humans? 

Answer: 

No. Neither the Asian Citrus Psyllid nor the Spotted Wing fruit fly can bite humans or other 

animals.” 
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FAQ 7:  

“How long would the gene drive remain in an insect population after it's released into the 

environment?  

Answer: 

Theoretically, if enough gene drive insects are released and the drive works as intended, the genetic 

changes could carry on indefinitely and spread throughout the entire population of that species. 

That said, since gene drives are still under development, it is not known for sure if specific types of 

gene drive insects will be successful at finding mates or if all of their offspring actually inherit the 

DNA changes.   

Some studies have also shown that insects may be able to adapt and develop a 'resistance' to the 

gene drive. This process is similar to insects evolving resistance to a pesticide, with some surviving 

even when they are sprayed. For gene drives, this could mean the gene drive might initially spread, 

but break down (or stop working) after a certain period. Over time, the insect populations might 

return to having no genetically modified individuals.” 
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Appendix B. Choice Experiment Scenario Examples 

Appendix B.1 Choice scenario example: Fresh Blueberries 

 

 

Appendix B.2 Choice scenario example: Orange Juice 
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Appendix C: Sample Details 

Appendix C1. Qualified completes socio-demographic details 

N=1,018 completes % Qualified Completes 

Age Categories  

- 18-29 12.48 

- 30-44 24.95 

- 45-59 28.39 

- 60+ 34.18 

Sex  

- Male 52.26 

- Female 47.74 

Education  

- <High School 7.07 

- High School 25.25 

- Some College 29.08 

- Bachelor  21.02 

- Masters 13.75 

- PhD 3.83 

Household Income  

- < 25,000 11.00 

- 25k to <50,000 18.37 

- 50k to <75,000 15.80 

- >75k 47.45 

Race/Ethnicity  

- White, Non-Hisp 72.89 

- Black, Non-Hisp 7.47 

- Other, Non-Hisp 4.91 

- Hispanic 12.38 

- 2+ Races, Non-H 2.36 
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Appendix D: Fixed Price Coefficient HB WTP Results 

Hierarchical Bayes Mixed Logit Coefficients and WTP – Fixed Price Coefficient – Fresh Blueberries 

 Coefficients   Willingness-to-Pay 

 
Without 

Interactions 
  With GD 

Interactions 
 Without 

Interactions 
With GD 

Interactions 

Variables 
Mean 
(SD) 

Var 
(SD) 

 
Mean 
(SD) 

Var 
(SD) 

 Mean 
(SD) 

[95% CI] 

Mean 
(SD) 

[95% CI] 

GM Plant  

(v. not GM) 

-1.067 

(0.144) 

4.191 

(0.655) 

 -1.070 

(0.145) 

4.203 

(0.657) 

 -1.171 

(0.156) 

[-1.47, -0.87] 

-1.178 

(0.156) 

[-1.50, -0.89] 

GD Insects  

(v. none) 

-0.617 

(0.102) 

2.089 

(0.332) 

 -0.551 

(0.148) 

2.085 

(0.353) 

 -0.677 

(0.111) 

[-0.91, -0.46] 

-0.605 

(0.158) 

[-0.91, -0.29] 

Organic 

(v. Conv. High Spray) 

1.834 

(0.164) 

7.225 

(0.983) 

 1.882 

(0.200) 

7.323 

(1.051) 

 2.012 

(0.178) 

[1.68, 2.39] 

2.072 

(0.213) 

[1.66, 2.50] 

Conv. Low Spray 

(v. Conv. High Spray) 

0.693 

(0.137) 

3.175 

(0.554) 

 0.746 

(0.151) 

3.197 

(0.591) 

 0.761 

(0.15) 

[0.47, 1.04] 

0.821 

(0.167) 

[0.50, 1.15] 

Optout -3.639 

(0.224) 

9.659 

(1.403) 

 -3.608 

(0.231) 

9.841 

(1.448) 

 -3.991 

(0.204) 

[-4.39, -3.61] 

-3.971 

(0.205) 

[-4.37, -3.56] 

Price -0.912 

(0.034) 

  -0.909 

(0.038) 

    

GD Ins. X Organic    -0.091 

(0.165) 

   -0.101 

(0.183) 

[-0.44, 0.25] 

GD Ins. X Conv. Low Spray    -0.116 

(0.184) 

   -0.13 

(0.204) 

[-0.55, 0.26] 

Log-Lik -3075.200  -3074.893    
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Hierarchical Bayes Mixed Logit Coefficients and WTP – Fixed Price Coefficient – Orange Juice 

 Coefficients   Willingness-to-Pay 

 
Without 

Interactions 
  With GD 

Interactions 
 Without 

Interactions 
With GD 

Interactions 

Variables 
Mean 
(SD) 

Var 
(SD) 

 
Mean 
(SD) 

Var 
(SD) 

 Mean 
(SD) 

[95% CI] 

Mean 
(SD) 

[95% CI] 

GM Plant  

(v. not GM) 

-1.018 

(0.152) 

5.153 

(0.781) 

 -1.028 

(0.151) 

5.142 

(0.788) 

 -0.908 

(0.135) 

[-1.18, -0.65] 

-0.913 

(0.131) 

[-1.19, -0.67] 

GD Insects  

(v. none) 

-0.713 

(0.106) 

1.767 

(0.315) 

 -0.556 

(0.153) 

1.793 

(0.324) 

 -0.637 

(0.096) 

[-0.82, -0.45] 

-0.495 

(0.137) 

[-0.75, -0.20] 

Organic 

(v. Conv. High Spray) 

1.812 

(0.198) 

8.842 

(1.245) 

 1.903 

(0.216) 

8.894 

(1.262) 

 1.617 

(0.17) 

[1.28, 1.95] 

1.691 

(0.19) 

[1.30, 2.06] 

Conv. Low Spray 

(v. Conv. High Spray) 

1.289 

(0.141) 

3.42 

(0.565) 

 1.395 

(0.157) 

3.359 

(0.586) 

 1.151 

(0.126) 

[0.92, 1.41] 

1.24 

(0.137) 

[0.97, 1.52] 

Optout -5.641 

(0.308) 

12.287 

(1.622) 

 -5.589 

(0.313) 

12.285 

(1.699) 

 -5.032 

(0.196) 

[-5.43, -4.67] 

-4.965 

(0.194) 

[-5.38, -4.58] 

Price -1.121 

(0.046) 

  -1.126 

(0.047) 

    

GD Ins. X Organic    -0.175 

(0.196) 

   -0.156 

(0.175) 

[-0.49, 0.18] 

GD Ins. X Conv. Low Spray    -0.245 

(0.162) 

   -0.217 

(0.144) 

[-0.49, 0.05] 

Log-Lik -2851.04  -2849.6    
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Appendix E: Classical MSL mixed logit modeling results 

Fresh Blueberries 

Conditional Logit Results 

Model estimation begins with a preliminary conditional logit model in utility space (Table 5, col. 

1&2) which assumes homogeneous preferences across consumers.  Fresh blueberry consumers 

negatively value genetic modifications to the plant itself as well as gene drive insect presence.  

However, the mean disutility for gene drive insect presence is less than half that induced by a 

GM blueberry plant, which is important as future biotechnology alternatives are considered.  

Consumers prefer both low spray and certified organic pest management practices to a high 

conventional pesticide spraying regime, which is largely representative of current conventional 

practices. We can also interpret the negative of the low spray coefficient as the utility 

associated with moving from a low to high spray regime. In this framing, mean drive insect 

impacts are statistically indistinguishable from a high spray regime (p=0.630). 

In this model, gene drive insects appear to statistically significantly impact the marginal utility 

of pest management regimes, decreasing the marginal value of more environmentally friendly 

methods. In particular, there is a modest but statistically significant 23.9% (p<0.001)7 reduction 

in marginal utility for certified organic status, a ratio which directly translates to a percentage 

decline in willingness-to-pay. This result would indicate a decline in the value denoted by the 

certification, though this result softens as we relax IIA in the mixed logit model.  

Mixed Logit Results 

A mixed logit model (Table 5, col. 3&4) accounting for unobserved heterogeneity provides 

marked improvements in model likelihood. The relative impact of biotechnology strategies for 

                                                           
7 Standard error calculated via Delta Method (using nlcom command in Stata) 
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pest mitigation remains roughly unchanged – the mean effect of a genetically engineered plant 

is nearly twice that of gene drive insects, resulting in a mean $1.07/pint reduction in WTP for a 

GM plant and $0.55/pint reduction for gene drive insect presence (Table 6). Compared to a high 

frequency conventional spraying regime, there is a mean $1.82/pint premium for certified 

organic management and a $0.63/pint premium for low frequency conventional spraying. 

Allowing attribute interactions but retaining independent random coefficients, the 

heterogeneity in gene drive insect impact remains across pest management regimes though the 

difference is now only significant for certified organic production (column 4). While the organic 

premium in the absence of drive insects is $1.91/pint, this decreases by a modest but 

statistically significant 22.5% ($0.43/pint) when drive insects are present.  

When we allow all non-price random main effects coefficients to be correlated (T5, col. 5&6), 

we see important shifts in results which we are still exploring.  The disutility from a GM plant 

continues to double that of drive insect presence.  Further, the disutility from a high spray 

conventional regime, remains greater than drive insect presence in the main effects model (col. 

5). Regarding impacts on organic valuation, the interaction coefficient with gene drive insects is 

attenuated and much noisier in the fully correlated model, with a statistically insignificant 6.8% 

reduction in organic WTP (Table 6). The sensitivity of the results to this fully correlated 

specification – which has much higher explanatory power –merits further exploration to 

determine appropriate policy recommendations. 
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Appendix E, Table 1: Fresh Blueberries - Preference Space Estimates 

 (1) (2) (3) (4) (5) (6) 
 

Cond. Logit 
 Base 

Cond. Logit  
Full 

MXL 
Uncorrelated 

Base 

MXL  
Uncorrelated 

Full 

MXL  
Correlated 

Base 

MXL  
Correlated 

Full 
VARIABLES Coeff. 

(s.e.) 
Coeff. 
(s.e.) 

Coeff. 
(s.e.) 

Coeff. 
(s.e.) 

Coeff. 
(s.e.) 

Coeff. 
(s.e.) 

Mean       

Price 
-0.531*** -0.521*** -0.843*** -0.850*** -0.883*** -0.897*** 
(0.0245) (0.0250) (0.0291) (0.0319) (0.034) (0.036) 

Plant GM -0.377*** -0.376*** -0.898*** -0.913*** -1.056*** -1.152*** 
(0.0692) (0.0693) (0.106) (0.106) (0.125) (0.132) 

GD Insects -0.160*** 0.000229 -0.467*** -0.271** -0.612*** -0.568*** 
(0.0492) (0.0700) (0.0750) (0.116) (0.094) (0.137) 

Organic (v. High Spray) 0.848*** 0.950*** 1.536*** 1.626*** 1.809*** 1.934*** 
(0.0833) (0.0972) (0.125) (0.150) (0.172) (0.186) 

GD insects x Org. 
 

 -0.227***  -0.369***  -0.132 
 (0.0831)  (0.143)  (0.156) 

Low Spray (v. High) 0.200*** 0.320*** 0.527*** 0.654*** 0.701*** 0.776*** 
(0.0720) (0.0791) (0.0972) (0.119) (0.143) (0.149) 

GD insects x Low Spray 
 

 -0.257***  -0.245  -0.092 
 (0.0976)  (0.168)  (0.174) 

Opt-out 
-1.807*** -1.698*** -3.471*** -3.340*** -3.499*** -3.523*** 

(0.124) (0.130) (0.177) (0.182) (0.240) (0.231) 
       

SD¹       

Plant GM    1.395*** 1.455*** 1.969*** 2.000*** 
   (0.124) (0.127) (0.156) (0.157) 
GD Insects   0.870*** 1.014*** 0.593*** 0.390*** 
   (0.124) (0.110) (0.130) (0.097) 
Organic   1.769*** 1.896*** 2.365*** 1.128*** 
   (0.138) (0.143) (0.241) (0.249) 
Low Spray   -0.886*** 1.166*** -0.349*** 0.494*** 
   (0.146) (0.146) (0.382) (0.208) 
Opt-out   2.553*** 2.470*** 1.997*** 1.729*** 
   (0.155) (0.152) (0.321) (0.252) 

Observations 12,339 12,339 12,339 12,339 12,339 12,339 
LL -3898 -3895 -3229 -3220 -3073 -3068 

Note: Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1. ¹For full covariance matrix 
of col. 5&6 models with correlated random coefficients, see appendix (omitted here for space). 
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Appendix E, Table 2: Fresh Blueberries – WTP Estimates  

 (1) (2) (3) (4) (5) (6) 
VARIABLES 

Cond. Logit - 
Base 

Cond. Logit – 
Full 

MXL 
Uncorrelated 

Base 

MXL  
Uncorrelated 

Full 

MXL  
Correlated 

Base 

MXL  
Correlated  

Full 

       
Plant GM 
(v. Non-GM) 

-0.709* -0.722* -1.065* -1.074* -1.196* -1.285* 
[-0.971, -0.447] [-0.990, -0.454] [-1.305, -0.826] [-1.314, -0.835] [-1.471, -0.921] [-1.571, -0.999] 

GD Insects Present 
(v. Absent) 

-0.302* 0.0004 -0.554* -0.319* -0.693* -0.634* 
[-0.488, -0.116] [-0.263, 0.264] [-0.724, -0.383] [-0.582, -0.056] [-0.900, -0.487] [-0.922, -0.345] 

Organic  
(v. High Spray) 

1.595* 1.823* 1.822* 1.914* 2.050* 2.157* 
[1.250, 1.941] [1.412, 2.234] [1.542, 2.102] [1.575, 2.252] [1.662, 2.436] [1.754, 2.560] 

Low Spray  
(v. High) 

0.377* 0.614* 0.625* 0.769* 0.794* 0.865* 
[0.108, 0.647] [0.304, 0.924] [0.405, 0.846] [0.492, 1.047] [0.473, 1.116] [0.531, 1.198] 

GD Insects x 
Organic 

 -0.436*  -0.434*  -0.148 
 [-0.756, -0.115]  [-0.765, -0.103]  [-0.489, 0.194] 

GD insects x  
Low Spray 

 -0.494*  -0.288  -0.103 
 [-0.874, -0.114]  [-0.682, 0.105]  [-0.486, 0.281] 

Opt-out -3.401* -3.260* -4.117* -3.931* -3.963* -3.929* 
[-3.707, -3.094] [-3.589, -2.931] [-4.454, -3.779] [-4.255, -3.607] [-4.398, -3.528] [-4.340, -3.518] 

Note: 95% confidence intervals constructed by Delta method (Hole 2007) 

 

 

Orange Juice 

Conditional Logit Results 

When assuming homogeneous preferences among orange juice consumers, disutility derived 

from gene drive insect presence is statistically equivalent to that of a genetically modified 

orange tree (Table 7, col. 1; p=0.973). Each biotechnology strategy is associated with a mean 

$0.55/half-gallon reduction in WTP (Table 8). Compared to a high frequency conventional spray 

regime, there is a $1.49/half-gallon premium for certified organic production and a $0.92/half-

gallon premium for a low frequency spray regime. The presence of gene drive insects decreases 

marginal utility (and WTP) for organic certification by a statistically significant 20.28% 

(p=0.014).   
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Mixed Logit Results 

However, when incorporating continuous heterogeneity across respondent preferences, the 

mean reduction in WTP for a GM orange tree is nearly 47% greater than the reduction for gene 

drive insect presence. While meaningful, this difference between biotechnology strategies 

remains lower than that found for blueberry production. Mean reduction in WTP from gene 

drive insects, as well as premiums for organic production and low spray regimes, are relatively 

unchanged in the mixed logit specification and further allowing for correlated random 

coefficients does not qualitatively change WTP estimates.   

For both mixed logit models, the magnitude of the relative reduction in WTP for organic 

pest management when drive insects are present is on the order of 10-11%, but this estimate is 

not statistically significant.  Modeling heterogeneity across respondents continues to be key to 

understanding policy-relevant impacts of these new technologies. 
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Appendix E, Table 3: Orange Juice – Preference Space Estimates 

 (1) (2) (3) (4) (5) (6) 
 

Cond. Logit 
 Base 

Cond. Logit  
Full 

MXL 
Uncorrelated 

Base 

MXL  
Uncorrelated 

Full 

MXL  
Correlated 

Base 

MXL  
Correlated 

Full 
VARIABLES Coeff. 

(s.e.) 
Coeff. 
(s.e.) 

Coeff. 
(s.e.) 

Coeff. 
(s.e.) 

Coeff. 
(s.e.) 

Coeff. 
(s.e.) 

Mean       

Price 
-0.605*** -0.607*** -1.023*** -1.026*** -1.078*** -1.086*** 

(0.0313) (0.0312) (0.0399) (0.0401) (0.044) (0.045) 

Plant GM -0.336*** -0.336*** -0.867*** -0.870*** -0.944*** -1.069*** 

(0.0710) (0.0702) (0.117) (0.117) (0.136) (0.146) 

GD Insects -0.333*** -0.252*** -0.590*** -0.477*** -0.628*** -0.473*** 

(0.0547) (0.0633) (0.0788) (0.124) (0.094) (0.144) 

Organic (v. High Spray) 0.904*** 1.006*** 1.555*** 1.640*** 1.674*** 1.811*** 

(0.0908) (0.101) (0.133) (0.160) (0.180) (0.210) 

GD insects x Org. 
 

 -0.204**  -0.170  -0.204 

 (0.0905)  (0.176)  (0.195) 

Low Spray (v. High) 0.558*** 0.569*** 0.980*** 1.036*** 1.200*** 1.345*** 

(0.0680) (0.0895) (0.0893) (0.109) (0.122) (0.143) 

GD insects x Low Spray 
 

 -0.0515  -0.151  -0.259 

 (0.0898)  (0.147)  (0.158) 

Opt-out 
-2.804*** -2.785*** -5.421*** -5.396*** -5.515*** -5.561*** 

(0.175) (0.179) (0.252) (0.253) (0.290) (0.300) 

       

SD¹       

Plant GM    1.774*** 1.765*** 4.401*** 4.735*** 

   (0.133) (0.133) (0.661) (0.743) 

GD Insects   0.723*** 0.729*** 1.431*** 1.310*** 

   (0.122) (0.123) (0.285) (0.270) 

Organic   1.763*** 1.755*** 8.045*** 8.497*** 

   (0.158) (0.159) (1.073) (1.126) 

Low Spray   0.945*** 0.940*** 2.568*** 2.614*** 

   (0.124) (0.124) (0.487) (0.465) 

Opt-out   2.722*** 2.724*** 11.503*** 12.025*** 

   (0.183) (0.183) (1.400) (1.480) 

Observations 11,016 11,016 11,016 11,016 11,016 11,016 

LL -3668 -3667 -2996 -2995 -2856 -2862 

Note: Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1. ¹For full covariance matrix 
of col. 5&6 models with correlated random coefficients, see appendix (omitted here for space). 
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Appendix E, Table 4: Orange Juice - WTP Estimates  

 (1) (2) (3) (4) (5) (6) 
VARIABLES 

Cond. Logit - 
Base 

Cond. Logit – 
Full 

MXL 
Uncorrelated 

Base 

MXL  
Uncorrelated 

Full 

MXL  
Correlated 

Base 

MXL  
Correlated  

Full 

       
Plant GM 
(v. Non-GM) 

-0.555* -0.554* -0.847* -0.847* -0.876* -0.985* 
[-0.788, -0.322] [-0.784, -0.324] [-1.065, -0.630] [-1.063, -0.631] [-1.118, -0.634] [-1.238, -0.732] 

GD Insects Present 
(v. Absent) 

-0.550* -0.416* -0.577* -0.465* -0.583* -0.435* 
[-0.738, -0.362] [-0.625, -0.208] [-0.730, -0.423] [-0.703, -0.226] [-0.757, -0.409] [-0.697, -0.173] 

Organic 
(v. High Spray) 

1.494* 1.659* 1.520* 1.598* 1.553* 1.668* 
[1.177, 1.813] [1.310, 2.008] [1.283, 1.756] [1.306, 1.889] [1.237, 1.869] [1.301, 2.035] 

Low Spray  
(v. High Spray) 

0.923* 0.937* 0.957* 1.009* 1.113* 1.239* 
[0.685, 1.162] [0.629, 1.245] [0.792, 1.122] [0.812, 1.207] [0.891, 1.335] [0.984, 1.494] 

GD Insects x 
Organic 

 -0.336*  -0.165  -0.188 
 [-0.629, -0.044]  [-0.501, 0.170]  [-0.540, 0.164] 

GD insects x  
Low Spray 

 -0.085  -0.147  -0.238 
 [-0.376, 0.206]  [-0.427, 0.133]  [-0.522, 0.045] 

Opt-out -4.638* -4.591* -5.297* -5.258* -5.116* -5.121* 
 [-4.942, -4.334] [-4.907, -4.276] [-5.617, -4.977] [-5.583, -4.932] [-5.471, -4.761] [-5.492, -4.749] 

Note: 95% confidence intervals constructed by Delta method (Hole 2007) 
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Appendix F: HB MXL, with correlated random coefficients and price modeled as fixed/non-random 

Table 1: Mean consumer surplus from uncontrolled drive insect releases that reduce pesticides and prices, across 
range of original pest-induced price increases for conventional and organic goods. 
Higher original price impacts from invasive pests lead to greater reduction in prices and thus greater welfare benefit from drive insect releases.  
Cross-hair markers denote estimates containing zero in 90% CIs.  Blueberry empirical estimates are proxied by California raspberry estimates from 
Farnsworth et al. (2017). Orange juice empirical estimates are proxied by Florida orange field box prices from Moss et al. (2014). 
 

Fresh Blueberries 

 
Orange Juice 
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Appendix G: Convergence of HB model coefficients 
 

 
Note: Burn in of 100,000 draws; followed by 1000 retained draws, thinning every 100th draw.  Non-price attributes modeled random normal, 
price as random lognormal. 


