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Somebody’s Watching Me! Impacts of the
Spot Check List Program in U.S. Crop

Insurance

May 13, 2019

Abstract

The “Spot Check List” (SCL) is an important tool developed to help detect and
deter fraud, waste, and abuse in the U.S. crop insurance program. This article examines
whether the SCL program affects producers’ claims filing behavior and provides insights
on the effectiveness of this program. Using proprietary, county-level SCL data and
panel data econometric procedures (which control for both observable and unobservable
confounding factors), we find evidence that counties with producers included in the SCL
tend to have better actuarial performance (i.e., lower indemnity payment amounts)
after being informed about their listing on the SCL. This indicates that the SCL
procedure is a valuable tool for maintaining integrity in the federal crop insurance
program.
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1 Introduction

Fraud, waste, and abuse in the insurance industry is a serious problem for consumers,

regulators, and insurance companies because it has the potential to significantly increase

the cost of providing coverage and may eventually lead to the collapse of different kinds of

insurance programs. For example, in 2014, the U.S. spent approximately $3 trillion on health

care. Medicare accounted for $554 billion of these costs and around $60 billion may have

been squandered due to incorrect billing methods, abuse, and fraud (Bush et al., 2017). For

government-subsidized insurance programs, like Medicare, Medicaid and U.S. crop insurance,

maintaining program integrity is also of critical importance because governments do not want

the public to view them as mismanaging taxpayer dollars.

In 2000, the U.S. Congress enacted the Agricultural Risk Protection Act (ARPA), which

expanded the authorities of the U.S. Department of Agriculture’s (USDA’s) Risk Manage-

ment Agency (RMA)1 and directed them to utilize cutting-edge data mining methods and

related technologies to maintain and improve integrity in the US crop insurance program.

As part of these efforts and to comply with the directives in ARPA, the RMA and their

partners use complex and proprietary algorithms to analyze their large data warehouse con-

taining extensive crop insurance data and information from other related databases collected

over time (e.g. weather data and other administrative data from other USDA agencies). The

aim is to detect individual producers whose claims behaviors demonstrate atypical patterns

that may indicate fraud, waste, or abuse. One of the main outputs from this process is the

“Spot Check List” (SCL) – an annual list of insured farmers, identified using objective and

data-driven statistical techniques, whose loss experience is considered “anomalous” relative

to similarly-situated producers in the same geographic area (i.e., typically within a county),

producing the same crop and using the same cropping practices.

To develop the SCL, previous research and “on-the-ground” observations gathered from

1USDA-RMA is the government agency in charge of administering the US crop insurance program.
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RMA field staff and partner insurance companies (called Approved Insurance Providers

(AIPs)) are first utilized to identify different “scenarios” that suggest potential fraud, waste,

or abuse. For example, one algorithm may pertain to finding those producers that have large

multi-year losses that are consistently higher than their peers in the county. Another algo-

rithm may aim to detect behavior consistent with known fraud schemes that have previously

been recognized.

All producers flagged by these detection procedures are then used to create a pool to be

included in the SCL. The SCL developed for producers of spring-planted crops (e.g. corn,

soybeans), that is based on data analyzed through a particular crop year (say, in 2017,

where data through December 2017 is analyzed), is typically finalized no later than the first

quarter of the following year (i.e., no later than April 1, 2018). Each farmer in the SCL

is then assigned either to the USDA Farm Service Agency (FSA) county office where the

SCL is located or to the AIP who serviced the SCL producer. Soon after, the concerned

FSA county office or AIP sends a formal written letter to the SCL farmers assigned to

them, informing them of their inclusion in the SCL and that their operations are subject

to inspection and policy review during the growing season.2 The FSA county offices or the

AIPs then conduct infield inspections or policy reviews of the SCL producers, although on

occasion a small number of SCL farmers are not inspected or reviewed (i.e., due to time and

resource constraints).

In light of this SCL procedure, the main objective of this paper is to determine the effect

of the SCL program on claims behavior of insured producers and to provide some insights

as to whether the SCL program indeed helps reduce fraud, waste, and abuse. Finding an

2Note that from 2001 to 2011 the FSA had the sole responsibility for conducting infield inspections of
all SCL producers (i.e., both growing season and pre-harvest inspections) to assess whether the condition
of the insured crop was consistent with other non-SCL producers in the area. Beginning in 2012, AIPs
assumed responsibility for inspecting a subset of producers in the SCL (with the FSA still responsible for
the remaining producers). The AIP inspection is more comprehensive than the FSA in the sense that
they perform both infield inspections and a full policy review. Moreover, the AIPs inspect and review
all the SCL producers assigned to them given their contractual obligation to the Federal crop insurance
program. For a more detailed description of what is involved in an AIP inspection and full policy review,
see: https://www.rma.usda.gov/pubs/ra/sraarchives/19sra.pdf.
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effective way to reduce fraud, waste, and abuse is critical for the sustainability of the crop

insurance program, and, consequently, to the continued vitality of the US agricultural and

food system. Thus, carefully evaluating whether the SCL program is effective in helping

maintain the integrity of the US crop insurance program is an important public policy issue.

If the SCL program is effective in reducing exaggerated claims, then more public funding

should be devoted to develop better data-driven algorithms and statistical techniques for

identifying insured producers to be included in the SCL. On the other hand, if the program

is found to be ineffective, then effort should be devoted to searching for other strategies that

can help deter potential crop insurance fraud, waste, or abuse.

Numerous studies in the literature have examined how the actuarial performance of the

U.S. crop insurance program can be improved, either through better rate-making procedures

(i.e., to address adverse selection) or contract parameter modifications (i.e., to address ex

ante moral hazard). For example, see the studies of Knight and Coble (1999), Borman and

Goodwin (2013), and Knight et al. (2010), among others, where different approaches to

improve the U.S. crop insurance rate-making process were explored to help address adverse

selection problems. Turvey (2012), on the other hand, is an example of one study that

explores alternative contract mechanisms that may help curb ex ante moral hazard.

Only a few studies have examined potential fraud behavior in crop insurance (i.e., also

called ex post moral hazard, since this typically ocurs after the insured outcome is realized).3

Rejesus et al. (2004) found evidence of collusion by insurance agents, adjusters, and produc-

ers in the crop insurance program. The study of Atwood, Robison-Cox, and Shaik (2006)

also examined the possible existence of yield switching fraud in crop insurance (i.e., where

farmers switch yields reported across insured fields so as to increase indemnity payments). A

recent study of Zhang, Cao, and Wang (2018) suggest that there is underreporting of insur-

able hogs in a pilot hog insurance program in China (i.e., to lower producer paid premiums,

3It is important to note here that the SCL approach examined in this study aims to not only detect
and deter potentially fraudulent actions, but also other “anomalous” behavior that is suggestive of waste or
abuse (i.e., actions taking advantage of a loophole). As such, the scope of the SCL program covers both ex
ante and ex post moral hazard behavior.
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relative to expected indemnities).

To the best of our knowledge, no study has carefully examined the economic effectiveness

of policies that aim to mitigate fraud, waste, and abuse in crop insurance. This study will

contribute to the literature in this regard. Note that USDA-RMA’s Program Compliance

and Integrity Annual Reports, which were submitted to Congress from 2004 to 2006, all

indicated that the SCL approach is an effective method to discourage misrepresentation of

crop insurance claim amounts (USDA-RMA, 2004 to 2006). However, this conclusion was

primarily based on simple “before-and-after” comparisons of claims behavior (i.e., indemnity

amounts of SCL producers before and after receipt of the SCL letter), without controlling

for possible confounding factors that could have also affected the observed claims behavior

(e.g. weather conditions, production inputs).4 In addition, these reports also did not address

endogeneity issues with respect to the variable that represents inclusion in the SCL due to

time-invariant unobserved heterogeneity. Therefore, in this study, we employ static and

dynamic panel data models that help overcome these issues (i.e., controlling for observable

confounding factors and time-invariant unobserved heterogeneity), and provide a robust

estimate of the SCL’s impact on actuarial performance.5

This paper also contributes to the literature on evaluating strategies to prevent and

mitigate potential fraud, waste, and abuse in various public and private programs such

as tax collection (Slemrod, Blumenthal and Christian, 2001; Lyer, Reckers and Sanders,

2010; Kleven et al., 2011; Pomeranz, 2015; Bott et al., 2017; Mascagni, 2017), TV license

fees (Rincke and Traxler, 2011; Fellner, Sausgruber and Traxler, 2013; Drago, Mengel and

Traxler, 2015), health insurance (Becker, Kessler and McClellan, 2005; Kang et al., 2009;

4The “before-and-after” indemnity comparison is considered by RMA as a measure of “cost avoidance”
attributable to the SCL. Over the years there has been refinements to this cost avoidance calculation (i.e.,
accounting for price changes before and after listing, and accounting for “background” losses common to all
producers in an area), but the basic “before-and-after” procedure remains unchanged. While the reports that
detail the calculation procedures over time remains internal to RMA, the resulting annual cost avoidance
measure is typically made publicly available.

5As discussed further below, there is also left-censoring in the main SCL variable used in our empirical
analysis due to government data reporting rules (i.e., related to privacy laws). Hence, our panel data
econometric models also accounted for this issue.
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Rashidian, Joudaki and Vian, 2012) and auto insurance (Hoyt, Mustard and Powell, 2006).

Of particular relevance are the studies that evaluate the effects of sending warning letters to

suspicious individuals (Slemrod, Blumenthal and Christian, 2001; Lyer, Reckers and Sanders,

2010; Kleven et al., 2011; Bott et al., 2017; Fellner, Sausgruber and Traxler, 2013). To the

best of our knowledge, our study is the first to evaluate a similar program in the context of

U.S. crop insurance.

The rest of the paper is organized as follows. In the next section, we present a conceptual

framework that provides testable hypotheses about the effects of the SCL on insurance claims

behavior. In section 3, we describe the proprietary county-level data (and variables) used in

our empirical analysis. In section 4, we discuss the econometric model developed to account

for the econometric issues above. In section 5, the main findings from our estimations are

discussed. In section 6, we conduct robustness checks to examine the sensitivity of our

results when using alternative specifications. Concluding comments and policy implications

are provided in the final section.

2 Conceptual Framework

In the theoretical insurance literature, two paradigms have been widely used to analyze

the ex post moral hazard or insurance fraud behavior by an insured (Rejesus, 2003; Picard,

2013; Vercammen and van Kooten, 1994). The first framework is the so-called costly state

verification paradigm, attributed to Townsend (1979). In this type of model, the insured

knows the actual magnitude of the loss, there is no cost for the insured to file a false claim, and

the insurer can learn the true loss by incurring a fixed auditing cost. The second framework

is the costly state falsification paradigm, attributed to Lacker and Weinberg (1989). In this

second type of model, it is assumed that the insured is able to manufacture an observed

claim that exceeds the loss actually suffered, by incurring a resource cost. It is also assumed

that there is no way for the insurer to learn the true loss.
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Crop insurance has features of both paradigms. On one hand, there are some costs for

the insured to file a false claim. The insured probably needs to incur costs to falsely represent

a claim. In addition, there is a nonzero probability that they will be caught and banned

from participating in any federal programs in the future. On the other hand, with some

costs, the insurance company and the government can discern the true loss of the producer

through a careful audit. In several high-profile cases, producers or insurance agents either

pleaded guilty to or were convicted of crop insurance fraud after criminal investigations by

the authorities. Because of these characteristics, our model below incorporates features from

both paradigms.

Formally, assume that a producer participates in the crop insurance program. The insur-

ance contract specifies that the indemnity payment schedule is t(x), where x is the claimed

loss at the end of the production season. Due to the large number of producers who purchase

crop insurance and the relatively low frequency of audits, each filed claim is only audited

with a probability p(x), with p
′
(x) > 0 , which means that claims with larger losses are

more likely to be audited. Further assume that the producer needs to incur a falsification

cost of C(y − x, γ) if his/her true realized loss is x, but instead he/she files a claim of y

greater than x. The exaggeration activities are costly and γ > 0 is the cost parameter.

C(y−x, γ) is assumed to have the following properties:
∂C(y − x, γ)

∂(y − x)
> 0,

∂C(y − x, γ)

∂γ
> 0

and
∂2C(y − x, γ)

∂(y − x)∂γ
> 0. These imply that the falsification cost increases in the amount of the

exaggerated claim and the cost parameter. In addition, the effect of the exaggerated claim

amount on falsification cost increases with the cost parameter. For example, a quadratic

cost function C(y − x, γ) = γ(y − x)2 satisfies all these properties. In addition, we assume

that if fraud is detected and proven, there is a penalty of f(y − x). This function captures

the fact that if fraud behavior is detected and proven, not only does the insured need to

pay back the exaggerated part of the claim, but also faces the possibility of legal penalties,

including imprisonment, fines, and exclusion from federal programs. This is likely to be very

costly for the insured producer. We further assume that
∂f(y − x)

∂(y − x)
> 0, which means the
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penalty is increasing in the amount of the exaggerated claim.

With these assumptions, the producer’s objective function can be written as follows,

π =
[
1− p(y)

]
· U
[
t(y)− C(y − x, γ)

]
+ p(y) · U

[
t(x)− C(y − x, γ)− f(y − x)

]
, (1)

where U(·) is a twice differentiable von Neumann-Morgenstern utility function with U
′
(·) > 0

and U
′′
(·) < 0.

[
t(y) − C(y − x, γ)

]
is the producer’s return if he files an exaggerated loss

of y and he is not audited. In this case, the producer will get an indemnity payment of t(y)

and pay no fine. The producer will also receive t(y) in the case where he/she is audited but

no sufficient evidence of fraud is found. The term [t(x)− C(y − x, γ)− f(y − x)] is then the

producer’s return if audited and found to be cheating. In this case, the indemnity payment

is t(x) and the producer pays a fine of f(y − x). The producer’s maximization problem is

to maximize (1) with respect to y, the amount of loss to claim, with the restriction y > x.6

The first-order necessary condition for maximization is:

− p′
(y) · U [t(y)− C(y − x, γ)] + [1− p(y)] · U ′

[t(y)− C(y − x, γ)] · [t′(y)− ∂C(·)
∂(y − x)

]

+ p
′
(y) · U [t(x)− C(y − x, γ)− f(y − x)]

+ p(y) · U ′
[t(x)− C(y − x, γ)− f(y − x)] · [− ∂C(·)

∂(y − x)
− ∂f(y − x)

∂(y − x)
] = 0.

(2)

To guarantee that the solution to (2) is a maximum, we also need to impose the following

second-order sufficient condition: FOCy < 0, where FOC(·) is the left hand side of (2) and

FOCy is the derivative of FOC(·) with respect to y.

The SCL program increases the producer’s falsification cost, which corresponds to the γ

parameter in our model. Once the SCL is finalized and the producers included are informed,

the concerned insurance companies or the USDA FSA field offices can conduct growing season

6Under the assumption that reporting a claim less than the true loss incurs no falsification and penalty
cost, it is easy to show that filing a claim less than the true loss is never optimal. And for simplicity, we rule
out the corner solution case, that is, the case where reporting the true loss is optimal. When falsification
and penalty costs are prohibitively high, it is possible that reporting the true loss is the optimal choice.
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or pre-harvest infield inspections of the SCL producers assigned to them. In addition, the

insurance companies, in particular, can can also perform a more comprehensive policy review

of the SCL producers they are designated to inspect. The infield inspection (or policy review)

will give the insurance company or USDA FSA/RMA information on how much the producer

has actually planted/produced and the status of their production. This will make it more

costly for the producer to exaggerate their loss when filing claims. To see the effect of such

an increase in falsification cost on the amount of loss claimed, we derive the comparative

statics of y with respect to γ in our model. Total differentiation of (2) with respect to the

two variables yields FOCydy + FOCγdγ = 0 where FOCγ is the first derivative of FOC(·)

with respect to γ. Therefore, we have
dy

dγ
= −FOCγ

FOCy
. Since FOCy < 0 is the second-order

sufficient condition required for the existence of the maximum, the sign of
dy

dγ
is determined

by the sign of FOCγ. From (2), it is straightforward to show,

FOCγ = p
′
(y) · U ′

[
t(y)− C(y − x, γ)

]
· ∂C(·)
∂γ

−
[
1− p(y)

]
· U ′′

[
t(y)− C(y − x, γ)

]
· ∂C(·)
∂γ

·
[
t
′
(y)− ∂C(·)

∂(y − x)

]
−
[
1− p(y)

]
· U ′
[
t(y)− C(y − x, γ)

]
· ∂2C(·)
∂(y − x)∂γ

− p′
(y) · U ′

[
t(x)− C(y − x, γ)− f(y − x)

]
· ∂C(·)
∂γ

+ p(y) · U ′′
[
t(x)− C(y − x, γ)− f(y − x)

]
· ∂C(·)
∂γ

[
∂C(·)
∂(y − x)

+
∂f(y − x)

∂(y − x)

]
− p(y) · U ′

[
t(x)− C(y − x, γ)− f(y − x)

]
· ∂2C(·)
∂(y − x)∂γ

.

(3)

With the assumptions made above, it is clear that the first term of (3) is positive, the sign

of the second term is unclear and the third, fourth, fifth, and sixth terms are all negative.

Therefore, if the sum of the first two terms in (3) is negative, then this is a sufficient condition

for
dy

dγ
< 0. A weaker sufficient condition is simply that (3) is negative. Whether or not

these sufficient conditions hold depends on the specifications of p(·), U(·), t(·), C(·, ·) and

f(·) as well as the magnitudes of γ and (y−x). In the special case of a linear utility function
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with U(x) = ax + b (a > 0) and hence U
′
(·) = a and U

′′
(·) = 0, (3) is reduced to be

−a∂
2C(y − x, γ)

∂(y − x)∂γ
which is negative. This leads to one testable hypothesis: Producers who

are on the Spot Check List (SCL) will file smaller claim amounts than what they would have

if they were not on the SCL.

We note, however, that this testable hypothesis can only be empirically validated if

one has access to: (i) individual-producer data on whether the grower is on the SCL

at a particular point in time, and (ii) the associated claims data over time (preferably

claims behavior when the insured was not on the SCL and after they were put on the SCL

(and/or inspected)). Due to the confidentiality considerations explained in more detail be-

low, individual-producers’ data relating to our variables of interest (i.e., being on the SCL

list, and claims behavior) are not accessible. As such (and as discussed further below),

county-level data about SCL listings and claims filing behavior are the only data accessible,

and therefore this is the type of data we use to test our hypothesis. Therefore, the more

“aggregate-level” testable hypothesis that naturally follows from the individual-producer

level hypothesis above is as follows: all other things being equal, a county with more produc-

ers on the SCL will have smaller claim amounts than other similar counties with less (or

no) SCL producers.

3 Data

The data used in our study come from several different sources. Each source is explained

below with a focus on the variables used in the empirical analysis. Because the SCL program

formally started in 2001, we restrict our analysis to data from 2001 to 2015. Also, we only

focus on yield-based and revenue-based individual policies, the two major crop insurance

policies7 for the following four major US row crops: corn, soybeans, wheat, and cotton, in

7Only Yield-Protection (YP) and Revenue Protection (RP) policies (as these policies are called today)
are considered in the SCL process, as such, these are the only two policies included in the analysis here. Other
“less-popular” plans like the Area Risk Protection Insurance (ARPI) and Whole Farm Revenue Protection
(WFRP) Insurance policies are not considered in this study (and in the SCL program).

10



addition to tobacco. Therefore, our data include 78.7% of all crop insurance policies for

which acreage has been reported to USDA-RMA from 2001 to 2015. These data come from

2,200 counties across all U.S. states, except Alaska, Hawaii, and Rhode Island.8

The county-level measures of claims behavior used in our study are: (1) the loss ratio

(LR), (2) the subsidy adjusted loss ratio (LRsubsidy), and (3) the loss cost ratio (LCR).

These are standard measures of actuarial performance and serve as the dependent variables

considered in our regression analysis. LR is defined as the ratio of total indemnities to

premiums, while LRsubsidy is defined as the ratio of total indemnities to producer paid

premiums (total premiums minus subsidy). Finally, LCR is defined as the ratio of total

indemnities to liability. County-level crop insurance experience data such as total insurance

premium, indemnity, subsidy, and liability are publicly available from USDA-RMA.9

As for the explanatory variables in our regression analysis, the key variable of interest

in this study is the number of producers on the SCL in each county (SCL). We obtained

these proprietary data from USDA-RMA through a special agreement. Due to government

regulations regarding data confidentiality, the number of SCL producers in a county is only

reported in our data set if the county has at least four producers on the SCL. We therefore

cannot exactly identify the number of producers on the SCL in a county when the number

of producers on the SCL is less than 4 (i.e., we only know that the number can be 0, 1, 2, or

3).10 Therefore, our empirical specification below is designed to accommodate this important

data feature. The numbers of counties with more than 3 SCL producers from 2001 to 2015

are presented in Table 1. The numbers ranged from 72 to 186 during the sample period. On

average, 123 counties had at least four SCL producers in a particular year and these counties

had approximately 7 SCL producers every year. Table 2 summarizes the detailed frequency

distribution of counties with each number of SCL producers by year. Figure 1 provides the

8Crop insurance policies sold from 2001 to 2015 were distributed in 2,832 counties across all 50 U.S.
states. For the five crops we focus on (i.e., corn, soybeans, wheat, cotton, and tobacco), crop insurance
policies were sold to producers in 2,213 counties across 47 states during the same period. An additional 13
counties were lost due to missing data and counties being merged and consolidated.

9See: https://www.rma.usda.gov/data/sob/scc/index.html.
10In other words, the data are censored from below at 4.
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spatial distribution of the total number of SCL producers from 2001 to 2015.11 We note that

counties with substantial SCL producers are scattered throughout the continental U.S. with

some clustering in the upper Midwest, the Dakotas, the Plains (i.e., Kansas, Nebraska and

the Texas Panhandle), and the Southeastern States (i.e., North Carolina, South Carolina,

Georgia, and Florida).

When the SCL program was started in 2001, the Dakotas and the Plains have larger num-

bers of SCL producers, but the clusterings gradually disappeared during the 10-year period

from 2001 to 2010 (as seen in Figure 2). Figure 3 presents the spatial distributions of the

number of SCL producers from 2012 to 2015. It appears that for these four years, a number

of SCL producers were in Iowa, Missouri, Illinois, and Kansas.12 Figure 4 demonstrates how

indemnities in counties changed over the 3 years after they had at least four producers on

the SCL. It shows that there was a steady decrease in total indemnities paid to counties

after they had at least four producers on the SCL. However, in some years, particularly from

2005 to 2010, there were increases. Indemnities for these years probably were also impacted

by unfavorable weather conditions (e.g. severe nationwide drought). The same trend can be

seen for the loss ratio (Figure 5), the subsidy adjusted loss ratio (Figure 6) and the loss cost

ratio (Figure 7).

In addition to the main variable of interest above, weather is another important deter-

minant of agricultural yields and, consequently, the resulting crop insurance claims (or loss)

amounts. For this reason, we collected weather data from several sources. First, based on

the work of Schlenker and Roberts (2009) and available data from PRISM,13 we collected

monthly county level data on average (averaged across different days in a month as well

as different places in a county) precipitation (mm), minimum temperature (◦C), maximum

11Given the limitation on the number of SCL producers reported in our data, if the number of SCL
producers in a year was less than four for a county, then the number of SCL producers in this figure is coded
as zero.

12It is important to emphasize here that the SCL procedure is national in scope. Even with these
geographical SCL “clusterings” observed over time, there was no explicit attempt to “target” a specific
region in the US or a particular set of crops. These SCL “clusterings” over time are simply a result of
objective, data-driven algorithms applied nationally in order to detect anomalous behavior.

13See: http://www.prism.oregonstate.edu.
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temperature (◦C), and total degree days above 30 ◦C for the growing months.14 Monthly

total degree days are defined as the sum of degrees above a certain threshold during a given

month.15 Specifically, Annan and Shenkler (2015) use degree days above 30 ◦C as a measure

of extreme heat because the threshold can be considered harmful for most U.S. field crops.

In addition, to take drought and flood conditions into account (i.e., extremely dry and ex-

tremely wet conditions), we also collected data on the state-level Palmer Drought Severity

Index (PDSI) from the National Oceanic and Atmospheric Administration (NOAA). For

ease of interpretation, we constructed two variables based on the PDSI, one that represents

dryness (or drought conditions) and the other for wetness (or flood conditions).16

Claims behavior at the county level is also influenced by characteristics of the insurance

policies that farmers in the county purchase. For this reason, we also collected county-level

data for the following control variables: the average number of acres insured per unit (Unit

Size), the ratio of revenue-based policies relative to yield-based policies (Insurance Type),

the ratio of policies with buy-up coverage relative to catastrophic coverage (Coverage Type),

and the average coverage level (Coverage Level) weighted by the number of acres insured.

Specifically, producers can purchase minimum catastrophic coverage (CAT) that will protect

up to 50% of their expected yield/revenue (at 55% of the price), if a loss occurs. Producers

can buy-up to higher levels of coverage with the option to insure up to 85% of the expected

yield/revenue. We include the average coverage level for each county and year to take into

account the effect of coverage levels on claims. These data were collected from the USDA-

RMA’s summary of business.17

Another important determinant of agricultural yields and resulting claims amounts is the

14According to USDA(2010), March to November are the growing months for these five crops.
15Ritchie and NeSmith (1991) argue that the most simple and useful definition of thermal time (td) is

td =
∑n

i=1max{(T i − Tb), 0}, where T i is the daily average temperature, Tb is the threshold temperature,
and n is the number of days. For details of how this variable was constructed, see Schlenker and Roberts
(2006), Schlenker, Hanemann, and Fisher (2007), and SI Appendix of Schlenker and Roberts (2009).

16The county level data for this index were not publicly available (at the time the data set was con-
structed). PDSI is a short-term drought index that measures the dryness of a region for a particular month.
It does not take into account drought conditions in the previous months.

17See: https://www.rma.usda.gov/data/sob/scc/index.html.
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production inputs used by insured farmers. Thus, we collected county-level expenditure data

on seed, fertilizer and chemicals, labor, and other production expenses, from the Bureau

of Economic Analysis (BEA).18 We then divided the expenditure data by the number of

acres planted in the county to get the per acre expenditure data.19 Land rental values for

agricultural land are used as the measure of capital cost, and state-level data on this variable

are collected from the USDA’s Quick Stats.20

It is worth noting that insurance characteristics and input expenditure (with the ex-

ception of land rental values) are farmers’ decision variables and hence are likely to be

endogenous in a regression model for claims filed. Therefore, in the main specification of our

regression analysis below, we only include the number of producers on the SCL, the weather

variables, and land rental values as independent variables. Other insurance characteristics

and input expenditure variables are only included in one of the robustness check regressions.

Table 3 lists the variables used in our empirical analysis below and the corresponding data

sources, while the summary statistics for these variables are then displayed in Table 4.

4 Empirical Strategy

Since we have a county-level panel data set, we first employ a static linear panel data

model with fixed effects to investigate the SCL impact as follows,

yit = f(SCLi,t−1, ..., SCLi,t−J) + γ ·Xit + λt + δ · t+ µi + εit, (4)

18See: https://www.bea.gov/regional/.
19The county-level crop acreage planted was approximated by dividing crop acreage insured reported in

USDA-RMA’s summary of business by the state level percentage of insured acreage as reported by USDA-
NASS. Therefore, there could be approximation error if the percentage of acres insured in a county is very
different from the state average.

20See: http://quickstats.nass.usda.gov/.
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where yit is the logarithm of LR (or LRsubsidy or LCR) in county i and year t,21 and

SCLi,t−j (j = 1, ..., J) are the number of SCL producers in county i in year t−j (j = 1, ..., J).

The SCL variables are our main variables of interest and are meant to capture the effects of

the SCL program on farmers’ claims filing behavior. Since farmers put on the SCL in year

t−1 are inspected in year t, we did not include SCLi,t in the model. Further lags of the SCL

variable beyond the first lag are included to allow for lagged effects of the SCL program on

farmers’ claims filing behavior. The empirical specification in (4) also includes Xit, a vector

of time-varying, county-level control variables such as the weather variables and land rental

values; λt, the year fixed effects, to control for effects from variables that do not vary across

counties; t, a linear time trend; µi, the county fixed effects that control for time-invariant

county level factors that influence claims behavior, and εit, the idiosyncratic error for county

i in year t. We first estimate (4) using the standard fixed effects regression method.

In addition to the static model (4) above, since farmers’ claims filing behavior may exhibit

state dependence, we also employ a dynamic linear panel data model with fixed effects as

follows,

yit =
J∑
j=1

αjyi,t−j + f(SCLi,t−1, ..., SCLi,t−J) + γ ·Xit + λt + δ · t+ µi + εit. (5)

To estimate (5), we first difference (5) to remove the county fixed effects,

∆yit =
J∑
j=1

αj∆yi,t−j + ∆f(SCLi,t−1, ..., SCLi,t−J) + γ ·∆Xit + ∆λt + δ + ∆εit. (6)

By construction, the ∆yi,t−1(= yi,t−1− yi,t−2) variable in (6) is endogenous as it is correlated

with ∆εit(= εit− εit−1). Therefore, we use the GMM estimator of Arellano and Bond (1991)

to estimate (6). We use three sets of instruments to account for the endogeneity in this

21For the LR and LCR variables, 513 observations out of 30,457 have a zero value and these observations
were dropped from the analysis. For the LRsubsidy variable, 537 observations were dropped since 454
observations have a zero value and the total premiums of 83 additional observations were completely covered
from subsidy. In addition, 16 observations which have LCR > 1 were also excluded.
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specification. First, as suggested by Arellano and Bond (1991), we use the second and

feasible higher-order lags of the dependent variable, i.e., yi,t−2, yi,t−3, ..., yi,t−14
22. Suppose J

in (6) is chosen to be 3 and hence observations in the first three years of our data (2001, 2002,

and 2003) cannot be used in estimation, this first set of instruments generate the following

set of 88 moment conditions as,

E
(
yi,t−2 ·∆εit

)
= 0, for t = 2005, 2006, 2007, · · · , 2015

E
(
yi,t−3 ·∆εit

)
= 0, for t = 2005, 2006, 2007, · · · , 2015

E
(
yi,t−4 ·∆εit

)
= 0, for t = 2005, 2006, 2007, · · · , 2015

E
(
yi,t−5 ·∆εit

)
= 0, for t = 2006, 2007, · · · , 2015

E
(
yi,t−14 ·∆εit

)
= 0, for t = 2015,

which can be written succinctly as E(ZDi · ∆Ei) =
−→
0 , where ∆Ei =

[∆εi2005,∆εi2006, · · · ,∆εi2015]T and

ZDi =



yi2003 0 0 · · · 0

yi2002 0 0 · · · 0

yi2001 0 0 · · · 0

0 yi2004 0 · · · 0

0 yi2003 0 · · · 0

0 yi2002 0 · · · 0

0 yi2001 0 · · · 0

...
...

...
. . .

...

0 0 0 · · · yi2001



.

Second, we can use the differenced explanatory variables to form a second set of moment

conditions E(∆Xit · ∆εit) =
−→
0 , as proposed by Arellano and Bond (1991). In our spec-

22As we have 15 years of data, we can only use 14 lags at most.
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ification, 69 (or 75 in the case of using SCL grouping dummies) covariates are used and

therefore, there are 69 (or 75) moment conditions in this set.

Finally, following Arellano and Bover (1995), Blundell and Bond (1998), and Blundell,

Bond, and Windmeijer (2000), we also interact the lagged first differenced dependent variable

∆yi,t−1 with the error term in the level equation (5) εit to form a third set of moment

conditions E(∆yi,t−1εit) = 0 for t = 2004, ..., 2015. This yields another 12 moment conditions.

We then stack all three sets of moment conditions together and estimate the model

using a two-step optimal GMM method. A total of 169 (or 175 in the case of using SCL

grouping dummies) moments conditions are used to estimate 72 (or 78) unknown parameters

in (5). Arellano and Bond (1991) suggest that the standard errors estimated by the two-

step GMM may be biased downward. Therefore, we follow Windmeijer (2005) to obtain the

bias-corrected robust standard errors after estimation.

To complete our empirical specifications, f(SCLi,t−1, ..., SCLi,t−J) needs to be specified.

As mentioned above, the SCL variable has been censored at three because of confidentiality

reasons. To accommodate this data feature, we consider two alternative ways of defining

the SCL variables used in estimation. The first one is the linear specification. We simply

set each SCLi,t−j at its observed value and if it is censored, it is set to be 0. As a result,

f(SCLi,t−1, ..., SCLi,t−J) is specified to be,

f(SCLi,t−1, ..., SCLi,t−J) = β0 + β1SCLi,t−1 + β2SCLi,t−2 + · · ·+ βJSCLi,t−J .

Clearly, there are measurement errors for the SCL variables created using this specifica-

tion as those SCLi,t−js taking values between 1 and 3 are wrongly set to be 0. Our second

specification avoids this problem by creating several group dummy variables for the number

of SCL producers based on the SCL frequency distribution table (Table 2). Specifically,

we create four SCL dummy variables to represent 4 groups of counties: SCL03i,t−j = 1 if

county i had 0-3 SCL producers in year t − j and 0 otherwise; SCL456i,t−j = 1 if county i
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had 4-6 SCL producers in year t − j and 0 otherwise; SCL789i,t−j = 1 if county i had 7-9

SCL producers in year t− j and 0 otherwise; SCL10Plusi,t−j = 1 if county i had 10 or more

SCL producers in year t − j and 0 otherwise. With this method, f(SCLi,t−1, ..., SCLi,t−J)

becomes,

f(SCLi,t−1, ..., SCLi,t−J)

= β0 + β456
1 · SCL456i,t−1 + β456

2 · SCL456i,t−2 + · · ·+ β456
J · SCL456i,t−J

+ β789
1 · SCL789i,t−1 + β789

2 · SCL789i,t−2 + · · ·+ β789
J · SCL789i,t−J

+ β10Plus
1 · SCL10Plusi,t−1 + β10Plus

2 · SCL10Plusi,t−2 + · · ·+ β10Plus
J · SCL10Plusi,t−J ,

with SCL03 as the omitted category. Compared with the linear specification, one disadvan-

tage of the group dummy method is that with group dummies, we can no longer examine the

marginal effect of having one more SCL producer on the claims filing behavior of the farm-

ers. Instead, we can only examine the effect on claims when the number of SCL producers

changes from one category to another.

5 Results

5.1 Estimation results

The main estimation results from the static and dynamic models are presented in Tables

5-6. The regressions include lagged dependent variables (only in the dynamic models), SCL

variables, weather variables, a land rental value variable, and a trend variable. But note

that the coefficients for the weather and trend variables are not reported in Tables 5-6 for

brevity. The full results are reported in Tables A.1-A.2 in the appendix. Also, J is chosen

to be 3 in these regressions. Before we present and discuss our estimation results, we first

must test for autocorrelation in ∆εit for the dynamic models. This is because the first set

of moment conditions above, E(ZDi · ∆Ei) =
−→
0 , is valid only if there is no second-order
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autocorrelation in the first-differenced idiosyncratic error term ∆εit.
23 This test is feasible

after estimation since an estimate for ∆εit can be recovered from (6) using the data and

the parameter estimates. The test results are reported in the bottom part of Table 6. The

results clearly reject the null hypothesis that there is no first-order autocorrelation in ∆εit

and fail to reject the hypothesis that there is no second-order autocorrelation in ∆εit at the

conventional significance levels. These results lend support to our empirical specifications.

Several results are notable. First, our estimation results clearly show that there is per-

sistence in the LR, LRsubsidy, and LCR variables for at least two years. Table 6 indicates

that LR, LRsubsidy, and LCR values in the past two years have a positive and statistically

significant effect on the LR, LRsubsidy, and LCR values in the current year, with the effect

from the last year being larger in magnitude than the effect from two years ago. This re-

sult may be capturing state-dependence in losses where unobserved time-varying conditions

(like slowly-evolving states of soil nutrient levels and climate trends) have persistent effects

on yields. This result may also reflect state-dependence due to the relatively stable crop

insurance participation in the sample period, suggesting that premiums and/or liabilities

inherent in the actuarial performance variables are fairly “slow-moving.” This result shows

the importance of using a dynamic specification instead of a static one and including the

lagged dependent variables in the empirical model.

Second, regarding our main SCL variables of interest, we identify strong deterrence effect

in the results from the dynamic models. Based on the SCL linear specification, it appears

that an additional SCL producer in a county (i.e., identified using data through year t−1 and

notified of inclusion in year t), decreases the county’s LR, LRsubsidy, and LCR in year t by

5.8%, 6.1%, and 5.4%, respectively. These estimated effects are much larger than those from

the static models reported in Table 5 and are statistically significant at the 1% significance

level. It shows the importance of controlling for lagged dependent variables in identifying

the SCL effects using county-level data.

23By construction, the first differenced error term is first-order autocorrelated.
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Furthermore, coefficients associated with the SCL group dummies (Table 6) reveal ad-

ditional evidence that more SCL producers in a county leads to a much larger reduction

in the amount of claims filed. For example, compared with counties with 0-3 SCL produc-

ers last year, a county with 4-6, 7-9, and 10 or more SCL producers last year have a LR

that is 35.9%, 53.9%, and 66.1% lower this year, respectively. These effects are again much

larger than those from the static models (Table 5), showing the importance of controlling

for lagged dependent variables in identifying the SCL effects. There is also evidence that the

SCL effects can last for several years. For example, compared with counties with 0-3 SCL

producers, a county with 7-9 SCL producers in the previous year has a loss cost ratio (LCR)

47.9% lower this year, 22.7% lower next year, and 21.4% lower two years later, respectively.

These results show that the SCL program has strong deterrence effect, which implies that

when there are more SCL producers in a county, producers file much lower claim amounts

and the deterrence effect tends to last longer than just during the year they were informed.

Lastly, our results show that rental rates have a positive effect on claims filed. This

indicates that farmers with higher costs on cropland are more likely to file for indemnity

payments.

5.2 Cost Avoidance Estimates

To put further context on the deterrence effects estimated in Table 6, we also calculate

a “cost avoidance” measure (in dollar terms) that reflect the indemnities that could have

been incurred had the SCL program not been in place (i.e., or alternatively, an estimate

of the indemnities avoided due to the presence of the SCL program). Based on the SCL

linear specification in Table 6, the average short-run (or “single year”) effects of notifying

one additional producer in a county that they are on the SCL are: (a) lower county-level

LR (by -5.8%), (b) lower county-level LRsubsidy (by -6.1%), and (c) lower LCR (by -5.4%).

The first step in calculating a short-run, dollar-valued cost avoidance measure is to multiply

the estimated percentage deterrence effect with the average number of of SCL producers in
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a county for a given year.24 For example, consider the 2004 crop year where the average

number of SCL producers for all counties in our sample is 0.434, and the -5.8% deterrence

effect for LR from Table 6. The initial step in the cost avoidance calculation is then to

multiply 0.434 by 0.058, to get the average percentage reduction in LR (i.e., for all counties)

for the year 2004, which is equal to 0.025 (= 0.434× 0.058).

Following our example above, the second step in the cost avoidance calculation is to use

the average percentage reduction in LR (from the first step) to get an estimate of what the

average LR should have been had the SCL program not been present (for a given year). For

the 2004 crop year, we know from our data that the actual observed average LR (across

all counties) was 0.685, with the SCL program present for that year. Thus, the average

county-level LR in 2004 had the SCL program not been in place is calculated as follows

( 0.685
1−0.025

=0.703). This suggests that the average county-level LR for 2004 should have been

0.703 (rather than 0.685) had the SCL program not been in place. This implies that the

average LR for all counties in our sample would have been 0.018 higher in 2004 had the SCL

program not been present (0.018 = 0.703− 0.685).

The third step in our cost avoidance calculation is to then translate the estimated average

LR avoided (0.018, in our example) to a total indemnity avoided measure for a particular

year (in dollar terms) . Since LR is calculated as LR=Indemnities/Premiums, we determine

the average indemnity avoided by multiplying the average LR avoided (across all counties for

a given year) with the observed total premiums collected (for all counties for a given year).

Therefore, for crop year 2004, the average indemnity avoided is $57 million (i.e., calculated

as 0.018× $3.180 billion = $57 million, where $3.180 billion is the observed total premiums

for all counties in the data for 2004) (See Table 7).

The same computational procedure described above is then applied for each year based

24The average number of SCL producers for a given year is calculated for all counties in the sample (which
includes counties with no SCL producers and counties with SCL producers). That is, 1

nall

∑nall

i=1 SCLi, where
nall is the total number of counties in the sample and SCLi is the total number of SCL producers for each
county i (i.e., SCLi can be zero for some counties). The average number of SCL producers across all counties
is considered here because the deterrent effect estimated from dynamic model pertains to the “average” effect
across all counties in the sample (not just the effect on the counties with SCL producers).
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on the estimated short-run LR (-5.8%), LRsubsidy (-6.1%), and LCR (-5.4%) deterrent

effects. The resulting average yearly cost avoidance (or average indemnity avoided) for all

counties in each year are reported in Table 7. Graphically, the trends in the estimated yearly

total indemnity avoided due to the presence of the SCL program is depicted in Figure 8.

The cost avoidance estimates range from a low of $25 million in 2005 (based on the LR

deterrent effect) to a high of $319 million for 2013 (based on the LCR deterrent effect).

Averaging across all years (from 2004-2015), the average yearly cost avoidance (or average

yearly indemnities avoided) is $127 million for the LR specification, $141 million for the

LRsubsidy specification, and $153 million for the LCR specification, respectively (Table 7).

Given that the average yearly indemnities paid out to farmers of the five crops considered

in this study (for the 2004-2015 period) is about $5.7 billion, the average yearly cost avoidance

(or indemnity avoided) based on the LR model specification is about 2.2% of the annual

average indemnities paid out (i.e., $127 million/$5.7 billion = 0.022 or 2.2%). Accordingly,

the average yearly cost avoidance (or indemnity avoided) based on the LRsubsidy and LCR

models are 2.5% and 2.7%, respectively (i.e., $141 million/$5.7 billion = 0.025 or 2.5%, and

$153 million/$5.7 billion = 0.027 or 2.7%). These figures imply that the average yearly

indemnities paid out for the period 2004-2015 would on average have been 2.2% to 2.7%

higher had the SCL program not been in place at that time. Interpreted another way, these

figures suggest that the average yearly indemnities avoided (or average yearly cost avoidance)

for the period 2004-2015 (across all counties) range from about 2.2% to 2.7% of the average

yearly indemnities paid out.

To further validate the estimated 2.2% to 2.7% magnitude of the average yearly cost

avoidance (or indemnity avoidance), we examine existing literature that investigated the

effectiveness of notification strategies (similar to the SCL program) that is used in other

contexts/industries. The majority of studies in this vein specifically look at the effects of

“threat-of-audit” letters in tax reporting situations (Slemrod, Blumenthal and Christian

2001; Kleven et al., 2011; Agostini and Martinez 2014; Doerrenberg and Schmitz 2015;
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Mazzolini, Pagani, and Santoro 2017). The deterrence effects estimated in these tax studies

ranged from 8.2% (Mazzolini, Pagani, and Santoro, 2017) to 19% (Kleven et al., 2011).25

In addition, although we did not find any explicit figures about the effects of inspection

letters (like the SCL approach) in other lines of insurance, Viaene and Dedene (2004) report

that in most European countries fraud, waste, and abuse may represent between 5% to 10%

of the yearly indemnities paid in non-life insurance lines. Therefore, given the deterrence

effect magnitudes in other contexts (as reported above), the cost avoidance (or indemnity

avoidance) estimates for the SCL program as calculated in this study seem reasonable.

Notwithstanding the consistency of our SCL cost avoidance estimates to those reported

in related studies (e.g., tax setting), it is important to acknowledge here that the deterrence

effects in the present study is based on aggregate county-level data rather than individual

insured producer data. The parameter estimates for SCL linear specification in Table 6

demonstrate the effect of an additional SCL producer on county-level actuarial performance,

rather than individual performance. Therefore, our county-level analysis does not precisely

reveal the direct impact of SCL notification on the same SCL producer’s claims filing be-

havior. With the county-level data utilized, the deterrence effects in Table 6 and the cost

avoidance measures calculated above also capture “spillover effects” of SCL notification on

other neighboring non-SCL producers in the county (who could have heard that their neigh-

bor is in the SCL). It is possible that non-SCL producers in the county, who learned that

their neighbor is on the SCL, could also alter their behavior to avoid being included in the

list in the future. For example, neighboring non-SCL farmers may decide not to exaggerate

their claims if they know that their neighbor is in the SCL, so as to reduce the likelihood of

25Detailed calculations of how these percentage deterrence effects are calculated from the results reported
in each study are available from the authors upon request. Typically, the effect of “threat-of-audit” letters is
to increase reporting of tax liability. Note that most of these tax studies cited utilized controlled experiments
(e.g., randomly sending audit letters) or quasi-experimental methods, although there are some that used
administrative data similar to the present study. Another context where the effects of “threat-of-audit”
letters are examined is TV access license setting, where households that do not have license to access TV
broadcasts are sent these letters and the effect is an increase in license registration (See Rincke and Traxler,
2011 and Drago, Mengel, and Traxler, 2015). The magnitude of effects in these TV license studies are similar
to the ones reported here for taxes and for the SCL program.
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being on the SCL in the future.

6 Robustness Checks

In the analysis so far, we have chosen the dependent variable lag length J to be 3.

In this section, we examine whether our main results are robust to alternative lag length

specifications. We consider J = 1, 2, and 4. Tables 8-9 collects the regression results using

the dynamic specification and alternative lag lengths. For the purpose of brevity, we only

report the coefficient estimates for the SCL and lagged dependent variables.26 The results

show that our main findings continue to hold, both in terms of the signs of the estimates

and their statistical significance. The coefficient estimates for the lagged dependent variables

are statistically significant for the first two lagged terms across all lag-depth alternatives.

Regarding the SCL effects, the coefficient estimates of the lagged SCL variables indicate

that the strong and persistent SCL effects are robust across different lag-depth specifications.

Given that the coefficient estimates for the first, second, and third lagged SCL variables are

all statistically significant across different lag-depth specifications, but the fourth lag term

for the SCL variable is not statistically significant, setting J at 3 in the main specification

can be justified. In sum, we conclude that our results are robust to alternative specifications

of the lag-depth J .

Next, we investigate whether the main findings are sensitive to the loss of observations

from taking the logarithm of the dependent variable. For this purpose, we add a small

positive constant (e.g. 0.001) to the dependent variable and then take the logarithm, which

is known as “started logs” (Tukey, 1977; Treiman, 2014).27 This way, we can include those

observations with zero value for the dependent variable in estimation. Table 10 shows that

using started logs in the dynamic models yields very similar estimates of the SCL deterrence

26Full results are available from the authors upon request.
27Further discussions (e.g. the nature and characteristics of estimates of log-linear relationships in the

presence of zero observations for the regressand) can be found in Johnson and Rausser (1971), Hu (1972),
Smith and Cicchetti (1974).
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effects compared to those in section 5.

Furthermore, we considered additional alternative SCL specifications. As a third spec-

ification, we create two SCL variables: SCL1i,t−j = SCLProducerCount if the number of

producers on the SCL > 3 and 0 otherwise; SCL2i,t−j = 1 if SCLProducerCount < 4 and

0 otherwise. This specification is the same as the SCL group dummies specification for the

0− 3 category but linear for the part where SCL > 3. Therefore, this is like a combination

of the two previous SCL specifications. Table 11 collects the main findings from the dynamic

models with a third SCL specification from J = 2 to J = 3. Once again, consistently strong

SCL deterrence effects are found. More specifically, in the case of J = 2, counties with 0− 3

SCL producers (SCL2) in the preceding year have a higher LR, LRsubsidy, and LCR in the

current year by 27.5%, 27.0%, and 24.5% compared to those with 4 or more SCL producers.

Moreover, as seen in the estimates in SCL1 variable, one more producer on the SCL (SCL1)

has an additional negative impact on the LR, LRsubsidy, and LCR by 2.3%, 2.7%, and 2.7%,

respectively.

Different sets of SCL dummies were also examined to evaluate results across differ-

ent SCL groupings. In particular, we used finer groupings as follows: SCL03i,t−j = 1 if

SCLi,t−j is between 0 and 3 and 0 otherwise; SCL4i,t−j = 1 if SCLi,t−j = 4 and 0 otherwise;

SCL5i,t−j = 1 if SCLi,t−j = 5 and 0 otherwise; and so forth. We do not present the results

here, but the main implications from the estimation results remain the same as those from

the coarser groupings of the SCL numbers in section 5.

Finally, we included additional categories of control variables in the regression to evaluate

the sensitivity of our results. The additional control variables included are insurance char-

acteristics and input expenditure variables. As discussed above in section 3, these variables

are potentially endogenous. Table 12 collects the estimates for the key variables.28 We note

that the coefficient estimates for the lagged dependent variables and SCL deterrence effects

are nearly identical to our baseline results in section 5 with slightly lower magnitudes.29

28The full regression results are available from authors upon request.
29Table A.3 in the appendix shows the resulting costs avoided for all counties in each year, which are
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In addition, regarding the insurance policy characteristics variables, our results show that

counties with larger insured units on average have better actuarial performance. This result

is consistent with the empirical regularity in crop insurance where larger insured units tend

to have lower risk or more aggregated insured areas tend to have lower variability. Larger

insured units have a higher chance of a “portfolio” effect where the part of a large unit with

a loss tends to be compensated with another area within the unit that has no loss (see, for

example, Knight et al., 2010 and Marra and Schurle, 1994). Moreover, results indicate that

counties with higher ratios of revenue-based relative to yield-based insurance policies have

better actuarial performance, which is consistent with the inherent “natural hedge” between

prices and yields when revenue is insured instead of just yields being insured.

Lastly, counties with producers purchasing more buy-up coverage (relative to CAT) and

counties where producers buy more coverage have poorer actuarial performance, which sim-

ply indicates that the likelihood of losses increases as insurance coverage increases. Next,

with regards to the production inputs, our results show that rental rates and fuel expenditure

have a positive effect on claims filed. This implies that farmers with higher costs on these

two items are more likely to file for indemnity payments (and higher indemnity amounts).

However, higher per acre labor cost have a negative effect on claims amount. This may be

due to the fact that with more labor, yields are likely to be higher and losses are less likely.

7 Conclusions

Fraud, waste, and abuse are major concerns in the U.S. crop insurance program. Reducing

the incidence of fraud, waste, and abuse improves the financial viability of the program, and

provides benefits for both the participating private insurance providers and taxpayers. Such

improvements are key to maintaining the integrity and stability of this centerpiece U.S. farm

safety-net policy. Recognizing this, the USDA RMA implemented the SCL approach to help

based on the estimation results from the SCL linear specification in Table 12. Figure A.1 also illustrates the
trends in the estimated costs avoided due to the presence of the SCL program.
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detect producers potentially engaging in fraud, waste, and abuse, and consequently mitigate

overall moral hazard behavior in the US crop insurance program. Specifically, the SCL

is designed to help discourage misrepresentation (or exaggeration) of claimed losses (i.e.,

encourage truthful revelation).

However, even with the important role that the SCL plays in maintaining the integrity of

the U.S. crop insurance program, there have been no rigorous econometric studies that have

examined its effectiveness. This study is the first to evaluate the effect of the SCL process

on producers’ claims behavior. Using proprietary county-level SCL data and controlling

for confounding factors that may also influence claims behavior, our econometric analyses

over the 2001-2015 period provide strong statistical evidence that the SCL process does

indeed affect claim amounts in the counties with SCL producers. Counties with producers

listed on the SCL tend to have lower LRs, LRsubsidys, and LCRs in the year when the

SCL producers are notified about their listing, and this effect carries over in subsequent

years. For example, an additional producer informed of inclusion in the SCL in a county will

result in approximately 5.8% lower county-level loss ratio (LR) in the year of notification.

These results suggest that the SCL process may have facilitated a reduction in moral hazard

behavior and is indeed a major factor in maintaining the integrity of the US crop insurance

program. Hence, there is empirical support for the notion that the SCL procedure is effective

in influencing producer claims behavior.

Given the results in this paper, the SCL approach seems to be a valuable and effective tool

for mitigating fraud, waste, and abuse in the U.S. crop insurance program. One important

policy implication is the need for continued budgetary support for this program. In partic-

ular, more resources are needed to conduct more in-season inspections and policy reviews

(i.e., after notification of SCL listing), in order for producers to believe that the USDA-RMA

can “credibly” pursue further investigations. This will assist in further encouraging truthful

claims behavior. Moreover, providing resources to improve the statistical algorithms used

for detecting “anomalous” producers potentially engaging in fraud, waste, and abuse also
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seems to be warranted.

Finally, even though this article provides important advances to assessing the effectiveness

of the SCL fraud-mitigation approach, further research in a couple of dimensions is still

needed. More accurate inferences about the effectiveness of the SCL could be made if

individual level SCL data were analyzed. Availability of such data would allow one to assess

whether the SCL notification process actually influences individual farmer behavior and (as

mentioned in Section 5) would likely enable one to calculate more precise cost avoidance

measures.
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Table 1: Number of Counties with more than 3 SCL Producers

Year County Mean Std. Dev. Max

2001 186 14.15 18.25 134
2002 135 7.95 5.00 31
2003 138 7.30 4.47 28
2004 114 7.28 4.04 23
2005 84 6.83 4.29 21
2006 72 6.61 3.93 26
2007 155 5.95 2.65 18
2008 151 5.80 2.19 16
2009 126 5.83 2.22 19
2010 90 5.72 2.18 18
2011 102 5.65 2.29 13
2012 96 5.45 2.13 11
2013 157 5.80 2.03 11
2014 146 6.18 2.14 11
2015 89 5.10 1.64 10

Table 2: Frequency Distribution of Counties with Different Numbers of SCL Producers

Number of SCL producers

Year ≤ 3 4 5 6 7 8 9 10 11-20 21-30 >30

2001 1,864 48 21 17 7 10 9 8 33 11 22
2002 1,902 43 17 14 8 10 6 1 32 3 1
2003 1,894 51 16 18 7 13 5 2 25 1 0
2004 1,914 37 22 7 3 13 8 5 18 1 0
2005 1,926 34 15 10 3 5 3 1 12 1 0
2006 1,957 26 19 5 4 3 2 2 10 1 0
2007 1,867 62 27 26 9 6 9 7 9 0 0
2008 1,872 60 29 19 10 12 9 9 3 0 0
2009 1,890 41 31 18 14 9 6 4 3 0 0
2010 1,906 30 26 13 4 7 5 4 1 0 0
2011 1,910 49 18 9 7 5 2 7 5 0 0
2012 1,943 50 17 8 5 4 2 5 5 0 0
2013 1,897 60 30 23 8 12 11 11 2 0 0
2014 1,906 47 23 22 10 18 8 16 2 0 0
2015 1,968 50 14 10 5 4 3 3 0 0 0
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Table 3: List of Variables used in Estimation and their Sources

Variables Description and Sources

1. Monthly weather data

County levela

Precipitation Precipitation (mm), Jan-Dec

tMin, tMax Averages of Min. (Max.) temperatures (Celsius), Jan-Dec

dday30C Total degree days above 30 ◦C (Celsius and days), Jan-Dec

State levelb

Drought Palmer Z index for drought level

Wetness Palmer Z index for wetness level

2. Land datac

Rent Rent per acre

3. Insurance characteristics datad

Average Unit size Total acres insured/ number of units

Insurance Type Ratio of revenue-based relative to yield-based policies

Coverage Type Ratio of buy-up relative to catastrophic type policies

Coverage Level Avg. coverage level weighted by the number of acres insured

4. Input expenditure datae

Seed Seed expenditure per acref

Petroleum Products Petroleum products expenditure per acre

Fertilizer and Chemicals Fertilizer and chemicals expenditure per acre

Hired Labor Hired labor expenditure per acre

All Other Expenses Expenditure per acre for Machinery, Interest, Tax, etc.

a. Reproduced based on Schlenker and Roberts (2009) and PRISM.

b. Reproduced from Palmer Z Index of NOAA (National Oceanic and Atmospheric Administration).

c. USDA Quick Stats (State level).

d. Reproduced from Summary of Business (USDA-RMA, County level).

e. BEA (Bereau of Economic Analysis): CA45 Farm income and expenses (County level).

f. Reproduced from Summary of Business (USDA-RMA) and USDA-NASS (County level).
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Table 4: Summary Statistics

Variable Mean Std. Dev. Min. Max.

Loss (Cost) Ratio
LR .85 .96 5.75 ∗ 10−4 11.90
LRsubsidy 2.31 2.66 2.45 ∗ 10−3 64.28
LCR .12 .15 5.95 ∗ 10−5 1.00
Precipitation
Mar prec 68.43 49.17 1.08 359.64
Apr prec 88.82 56.43 .63 584.87
May prec 101.84 59.73 .51 550.42
Jun prec 107.90 62.52 .22 728.44
Jul prec 93.83 54.46 .37 428.86
Aug prec 89.45 56.69 .29 489.99
Sep prec 80.99 59.01 .66 509.47
Oct prec 78.25 56.19 1.20 552.78
Nov prec 62.81 52.63 1.10 379.47
Temperature
Mar tMin .07 5.50 -18.40 17.55
Apr tMin 5.30 4.41 -8.38 20.81
May tMin 10.90 4.00 -1.42 22.78
Jun tMin 16.05 3.66 3.34 24.98
Jul tMin 18.03 3.20 6.80 28.05
Aug tMin 17.13 3.51 5.22 27.22
Sep tMin 13.06 3.91 .46 24.37
Oct tMin 6.57 4.00 -5.18 21.56
Nov tMin .52 4.53 -13.45 16.75
Mar tMax 12.94 6.43 -6.04 30.86
Apr tMax 19.04 4.80 1.54 34.31
May tMax 24.05 3.84 11.38 37.88
Jun tMax 28.75 3.49 17.91 42.16
Jul tMax 30.82 3.00 21.17 43.30
Aug tMax 30.17 3.24 20.24 43.47
Sep tMax 26.63 3.44 16.39 40.10
Oct tMax 19.83 4.54 6.26 34.21
Nov tMax 12.97 5.33 -3.24 28.03
Mar dday30C .02 .29 .00 15.97
Apr dday30C .30 1.38 .00 35.70
May dday30C 2.08 4.67 .00 72.28
Jun dday30C 9.36 13.47 .00 137.99
Jul dday30C 16.65 18.81 .00 182.70
Aug dday30C 14.79 19.32 .00 179.97
Sep dday30C 4.67 7.93 .00 109.20
Oct dday30C .45 1.56 .00 37.20
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Table 4: Continued

Variable Mean Std. Dev. Min. Max.

Nov dday30C .01 .11 .00 4.04
Drought
Mar Drought .96 1.13 .00 5.00
Apr Drought .66 .95 .00 4.30
May Drought .83 1.12 .00 4.66
Jun Drought .84 1.18 .00 5.85
Jul Drought .77 1.17 .00 5.47
Aug Drought .72 1.05 .00 5.10
Sep Drought .81 1.08 .00 4.56
Oct Drought .44 .73 .00 3.98
Nov Drought .71 .88 .00 3.69
Wetness
Mar Wetness .52 .95 .00 6.79
Apr Wetness .95 1.45 .00 8.67
May Wetness 1.08 1.70 .00 9.17
Jun Wetness 1.21 1.72 .00 6.95
Jul Wetness .98 1.48 .00 7.99
Aug Wetness .96 1.39 .00 9.99
Sep Wetness .85 1.49 .00 9.09
Oct Wetness 1.32 1.88 .00 10.86
Nov Wetness .70 1.24 .00 6.84
Land ($/acre)
Rent 93.33 55.64 23.00 329.00
Insurance characteristics data
UnitSize 99.61 67.07 2.16 1113.48
InsuranceType .60 .25 .00 1.00
CoverageType .87 .16 .00 1.00
CoverageLevel .68 .07 .50 .84
Input expenditure data ($/acre)
Seed 81.29 160.07 .05 6474.83
PetroleumProducts 104.43 233.69 .90 8905.72
AllOtherExpenses 963.94 2426.51 7.25 62968.68
FertilizerChemicals 168.39 314.69 .12 14946.22
HiredLabor 232.70 813.25 1.24 34295.06

Note: The total number of observations in the estimation sample is 23,331 from

2,099 counties and years 2001-2015. When using LRsubsidy as the dependent

variable, 8 additional observations were dropped since their total premiums

were completely covered from subsidy (i.e., 23,323 observations from 2,098

counties).
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Table 5: Main Estimation Results from Static Models

Dependent variable

Linear Specification Group Dummies Specification

Variable ln(LR) ln(LRsubsidy) ln(LCR) ln(LR) ln(LRsubsidy) ln(LCR)

SCLProducerCount
L1. −.008∗ −.012∗∗∗ −.007∗

(.004) (.004) (.004)
L2. .004 .002 .004

(.004) (.004) (.004)
L3. −.001 −.002 −.001

(.003) (.003) (.002)
SCL456
L1. −.053∗ −.076∗∗∗ −.037

(.029) (.029) (.029)
L2. .061∗ .046 .065∗∗

(.032) (.032) (.031)
L3. −.076∗∗ −.091∗∗∗ −.062∗

(.032) (.032) (.032)

SCL789
L1. −.059 −.089 −.046

(.065) (.065) (.065)
L2. −.037 −.052 −.014

(.061) (.061) (.060)
L3. −.173∗∗ −.190∗∗∗ −.139∗∗

(.069) (.068) (.067)

SCL10Plus
L1. −.137 −.175∗ −.149∗

(.091) (.092) (.090)
L2. −.002 −.018 −.004

(.089) (.088) (.087)
L3. −.015 −.037 −.016

(.065) (.064) (.065)
Land ($/acre)
ln(Rent) .333∗∗∗ .336∗∗∗ .277∗∗∗ .337∗∗∗ .340∗∗∗ .280∗∗∗

(.108) (.104) (.106) (.108) (.104) (.106)

Obs. 23,331 23,323 23,331 23,331 23,323 23,331
Counties 2,099 2,098 2,099 2,099 2,098 2,099

Notes: a. *** : p < 0.01, ** : p < 0.05, * : p < 0.10, b. Parenthesis: county-level clustered robust
standard errors, c. Parameter estimates for weather variables, year dummies, and trend are omitted for
the sake of brevity. See appendix table A.1 for full estimation results.
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Table 6: Main Estimation Results from Dynamic Models

Dependent variable

Linear Specification Group Dummies Specification

Variable ln(LR) ln(LRsubsidy) ln(LCR) ln(LR) ln(LRsubsidy) ln(LCR)

Lagged dependent variable (α̂)

L1. .090∗∗∗ .079∗∗∗ .067∗∗∗ .092∗∗∗ .081∗∗∗ .070∗∗∗

(.013) (.013) (.014) (.013) (.013) (.014)

L2. .039∗∗∗ .027∗∗ .016 .042∗∗∗ .030∗∗ .018

(.012) (.012) (.013) (.012) (.012) (.013)

L3. .005 −.003 −.010 .009 .001 −.006

(.011) (.011) (.011) (.011) (.011) (.011)

SCLProducerCount

L1. −.058∗∗∗ −.061∗∗∗ −.054∗∗∗

(.009) (.009) (.008)

L2. −.013∗ −.015∗∗ −.011

(.008) (.008) (.007)

L3. −.001 −.003 .000

(.005) (.005) (.005)

SCL456

L1. −.359∗∗∗ −.374∗∗∗ −.333∗∗∗

(.055) (.055) (.054)

L2. −.109∗ −.121∗∗ −.090

(.058) (.057) (.056)

L3. −.070 −.086 −.078

(.057) (.057) (.057)

SCL789

L1. −.539∗∗∗ −.556∗∗∗ −.479∗∗∗

(.131) (.130) (.127)

L2. −.276∗∗ −.292∗∗ −.227∗

(.122) (.120) (.116)

L3. −.290∗∗ −.290∗∗ −.214∗

(.126) (.124) (.120)

SCL10Plus

L1. −.661∗∗∗ −.699∗∗∗ −.603∗∗∗

(.147) (.143) (.141)

L2. −.240 −.272∗ −.210

(.153) (.146) (.144)

L3. −.010 −.033 .014
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Table 6 (continued)

Linear Specification Group Dummies Specification

Variable ln(LR) ln(LRsubsidy) ln(LCR) ln(LR) ln(LRsubsidy) ln(LCR)

(.129) (.124) (.121)

Land ($/acre)

ln(Rent) .419∗∗∗ .342∗∗∗ .055 .418∗∗∗ .342∗∗∗ .058

(.083) (.086) (.086) (.083) (.086) (.086)

Arellano-Bond test

Order 1 -25.554 -25.731 -25.309 -25.516 -25.686 -25.275

(p-value) (.000) (.000) (.000) (.000) (.000) (.000)

Order 2 -1.482 -1.230 -1.382 -1.457 -1.201 -1.344

(p-value) (.138) (.219) (.167) (.145) (.230) (.179)

Obs. 22,836 22,832 22,836 22,836 22,832 22,836

Counties 2,073 2,072 2,073 2,073 2,072 2,073

Notes: a. *** : p < 0.01, ** : p < 0.05, * : p < 0.10, b. Parentheses: Windmeijer (2005) bias-corrected

robust standard errors, c. Parameter estimates for weather variables, year dummies, and trend are

omitted for the sake of brevity. See appendix table A.2 for full estimation results.
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Table 7: Costs Avoided in $ million by Year

Year LR specification LRsubsidy specification LCR specification

2004 57 64 71
2005 25 30 31
2006 39 45 53
2007 109 127 129
2008 207 231 234
2009 120 137 147
2010 64 71 76
2011 162 188 221
2012 215 230 225
2013 250 276 319
2014 190 206 233
2015 82 90 98

Average 127 141 153
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Table 8: Robustness Check of Dynamic Models for SCL linear specification with Lag-depths from J = 1, 2, and 4

Dependent Variable

Loss Ratio (LR) LRsubsidy Loss Cost Ratio (LCR)

Variable J = 1 J = 2 J = 4 J = 1 J = 2 J = 4 J = 1 J = 2 J = 4

Lagged dependent variable (α̂)
L1. .074∗∗∗ .082∗∗∗ .094∗∗∗ .070∗∗∗ .074∗∗∗ .087∗∗∗ .065∗∗∗ .072∗∗∗ .089∗∗∗

(.011) (.012) (.014) (.011) (.011) (.014) (.012) (.012) (.016)
L2. .033∗∗∗ .030∗∗ .026∗∗ .025∗ .015 .032∗∗

(.012) (.013) (.012) (.013) (.012) (.014)
L3. .007 .002 .017

(.012) (.012) (.013)
L4. .033∗∗∗ .031∗∗ .044∗∗∗

(.012) (.012) (.013)
SCLProducerCount
L1. −.030∗∗∗ −.057∗∗∗ −.064∗∗∗ −.033∗∗∗ −.060∗∗∗ −.068∗∗∗ −.032∗∗∗ −.057∗∗∗ −.062∗∗∗

(.007) (.008) (.009) (.008) (.008) (.009) (.007) (.008) (.009)
L2. −.008∗ −.023∗∗∗ −.010∗∗ −.026∗∗∗ −.009∗∗ −.023∗∗∗

(.005) (.008) (.005) (.008) (.004) (.008)
L3. −.017∗∗ −.019∗∗ −.018∗∗

(.007) (.007) (.007)
L4. .001 −.001 .000

(.004) (.004) (.004)

Number of Parameters 70 71 73 70 71 73 70 71 73
Number of Moments 173 172 165 173 172 165 173 172 165
Arellano-Bond test
Order 1 -27.061 -26.670 -24.185 -27.218 -26.715 -24.426 -26.886 -26.576 -23.716
(p-value) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000)
Order 2 -.106 -1.086 -.954 -.110 -.852 -.898 -.659 -.272 -1.310
(p-value) (.915) (.278) (.340) (.913) (.394) (.369) (.510) (.786) (.190)
Obs. 27,407 25,064 20,688 27,394 25,057 20,685 27,407 25,064 20,688
Counties 2,144 2,108 2,025 2,143 2,106 2,024 2,144 2,108 2,025

Notes: a. *** : p < 0.01, ** : p < 0.05, * : p < 0.10, b. Parenthesis: Windmeijer (2005) bias-corrected robust standard errors, c.
Parameter estimates for weather variables, land, year dummies, and trend are omitted for the sake of brevity.



Table 9: Robustness Check of Dynamic Models for SCL group dummies Specification with Lag-depths from J = 1, 2, and 4

Dependent Variable

Loss Ratio (LR) LRsubsidy Loss Cost Ratio (LCR)

Variable J = 1 J = 2 J = 4 J = 1 J = 2 J = 4 J = 1 J = 2 J = 4

Lagged dependent variable (α̂)
L1. .078∗∗∗ .084∗∗∗ .094∗∗∗ .074∗∗∗ .076∗∗∗ .088∗∗∗ .069∗∗∗ .074∗∗∗ .090∗∗∗

(.011) (.012) (.014) (.011) (.011) (.014) (.012) (.012) (.016)
L2. .034∗∗∗ .031∗∗ .028∗∗ .026∗∗ .017 .033∗∗

(.012) (.013) (.012) (.013) (.012) (.014)
L3. .008 .003 .018

(.012) (.012) (.013)
L4. .034∗∗∗ .033∗∗∗ .045∗∗∗

(.012) (.012) (.013)
SCL456
L1. −.303∗∗∗ −.360∗∗∗ −.367∗∗∗ −.315∗∗∗ −.371∗∗∗ −.391∗∗∗ −.307∗∗∗ −.351∗∗∗ −.367∗∗∗

(.051) (.052) (.057) (.051) (.052) (.058) (.050) (.050) (.056)
L2. −.069 −.136∗∗ −.076 −.148∗∗ −.062 −.133∗∗

(.054) (.059) (.054) (.060) (.053) (.059)
L3. −.125∗∗ −.142∗∗ −.136∗∗

(.057) (.058) (.057)
L4. −.060 −.070 −.055

(.063) (.064) (.063)
SCL789
L1. −.430∗∗∗ −.514∗∗∗ −.561∗∗∗ −.445∗∗∗ −.531∗∗∗ −.580∗∗∗ −.437∗∗∗ −.509∗∗∗ −.515∗∗∗

(.118) (.130) (.134) (.118) (.131) (.136) (.114) (.127) (.133)
L2. −.114 −.270∗∗ −.139 −.301∗∗ −.128 −.239∗∗

(.108) (.122) (.109) (.123) (.104) (.120)
L3. −.243∗∗ −.263∗∗ −.215∗

(.117) (.118) (.113)
L4. −.020 −.041 −.020

(.118) (.119) (.115)



Table 9 (continued)

Dependent Variable

Loss Ratio (LR) LRsubsidy Loss Cost Ratio (LCR)

Variable J = 1 J = 2 J = 4 J = 1 J = 2 J = 4 J = 1 J = 2 J = 4

SCL10Plus
L1. −.481∗∗∗ −.637∗∗∗ −.657∗∗∗ −.533∗∗∗ −.689∗∗∗ −.718∗∗∗ −.537∗∗∗ −.672∗∗∗ −.622∗∗∗

(.124) (.141) (.166) (.124) (.141) (.167) (.120) (.137) (.164)
L2. −.163 −.299∗ −.217∗ −.346∗∗ −.208∗ −.329∗∗

(.129) (.152) (.128) (.152) (.124) (.148)
L3. −.141 −.176 −.189

(.136) (.135) (.130)
L4. .033 −.017 .008

(.110) (.110) (.107)

Number of Parameters 72 75 81 72 75 81 72 75 81
Number of Moments 175 176 173 175 176 173 175 176 173
Arellano-Bond test
Order 1 -27.039 -26.646 -24.138 -27.201 -26.686 -24.376 -26.861 -26.559 -23.663
(p-value) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000)
Order 2 -.047 -1.116 -.969 -.047 -.905 -.912 -.593 -.296 -1.326
(p-value) (.963) (.265) (.333) (.963) (.365) (.362) (.553) (.768) (.185)
Obs. 27,407 25,064 20,688 27,394 25,057 20,685 27,407 25,064 20,688
Counties 2,144 2,108 2,025 2,143 2,106 2,024 2,144 2,108 2,025

Notes: a. *** : p < 0.01, ** : p < 0.05, * : p < 0.10, b. Parenthesis: Windmeijer (2005) bias-corrected robust standard errors, c.

Parameter estimates for weather variables, land, year dummies, and trend are omitted for the sake of brevity.
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Table 10: Robustness Check of Dynamic Model with Started Logs

Linear Specification Group Dummies Specification

Variable ln(LR) ln(LRsubsidy) ln(LCR) ln(LR) ln(LRsubsidy) ln(LCR)

Lagged dependent variable (α̂)
L1. .094∗∗∗ .076∗∗∗ .078∗∗∗ .095∗∗∗ .078∗∗∗ .080∗∗∗

(.016) (.016) (.015) (.016) (.016) (.015)
L2. .038∗∗∗ .023 .024∗ .040∗∗∗ .025∗ .027∗∗

(.013) (.014) (.013) (.013) (.014) (.013)
L3. −.019 −.022 −.009 −.006 −.019 −.005

(.013) (.013) (.012) (.013) (.014) (.012)
SCLProducerCount
L1. −.063∗∗∗ −.064∗∗∗ −.055∗∗∗

(.008) (.008) (.008)
L2. −.015∗∗ −.017∗∗ −.013∗

(.007) (.007) (.007)
L3. −.002 −.003 −.001

(.005) (.005) (.005)
SCL456
L1. −.366∗∗∗ −.369∗∗∗ −.318∗∗∗

(.050) (.049) (.049)
L2. −.110∗∗ −.113∗∗ −.103∗∗

(.051) (.050) (.051)
L3. −.067 −.074 −.078

(.053) (.053) (.053)
SCL789
L1. −.608∗∗∗ −.616∗∗∗ −.531∗∗∗

(.113) (.111) (.113)
L2. −.310∗∗∗ −.327∗∗∗ −.265∗∗

(.108) (.105) (.107)
L3. −.268∗∗ −.268∗∗ −.230∗∗

(.112) (.109) (.113)
SCL10Plus
L1. −.693∗∗∗ −.703∗∗∗ −.610∗∗∗

(.129) (.125) (.127)
L2. −.254∗ −.258∗ −.212

(.139) (.133) (.136)
L3. −.062 −.063 −.017

(.120) (.114) (.119)

Obs. 23,620 23,539 23,620 23,620 23,539 23,620
Counties 2,106 2,105 2,106 2,106 2,105 2,106

Notes: a. *** : p < 0.01, ** : p < 0.05, * : p < 0.10, b. Parenthesis: robust standard errors, c.
Parameter estimates for weather variables, land, year dummies, and year trend are omitted for the
sake of brevity.
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Table 11: Robustness Check of Dynamic Model with Alternative SCL Specification

J = 2 J = 3

Variable ln(LR) ln(LRsubsidy) ln(LCR) ln(LR) ln(LRsubsidy) ln(LCR)

Lagged dependent variable (α̂)
L1. .083∗∗∗ .075∗∗∗ .073∗∗∗ .090∗∗∗ .080∗∗∗ .068∗∗∗

(.012) (.011) (.012) (.013) (.013) (.014)
L2. .033∗∗∗ .027∗∗ .016 .040∗∗∗ .028∗∗ .017

(.012) (.012) (.012) (.012) (.012) (.013)
L3. .008 .000 −.007

(.011) (.011) (.011)
SCL1
L1. −.023∗ −.027∗∗ −.027∗∗ −.022 −.026∗ −.022

(.014) (.014) (.014) (.015) (.015) (.014)
L2. −.003 −.005 −.006 .001 −.003 −.003

(.006) (.006) (.006) (.015) (.014) (.014)
L3. .008 .007 .009

(.006) (.006) (.006)
SCL2
L1. .275∗∗ .270∗∗ .245∗∗ .285∗∗∗ .283∗∗∗ .252∗∗∗

(.091) (.092) (.088) (.095) (.095) (.092)
L2. .064 .066 .048 .153 .145 .106

(.062) (.061) (.060) (.101) (.098) (.097)
L3. .148∗∗ .157∗∗ .143∗∗

(.063) (.062) (.061)

Arellano-Bond test
Order 1 -26.644 -26.685 -26.558 -25.510 -25.689 -25.274
(p-value) (.000) (.000) (.000) (.000) (.000) (.000)
Order 2 -1.113 -.897 -.294 -1.465 -1.204 -1.347
(p-value) (.266) (.370) (.769) (.143) (.229) (.178)
Obs. 25,064 25,057 25,064 22,836 22,832 22,836
Counties 2,108 2,106 2,108 2,073 2,072 2,073

Notes: a. *** : p < 0.01, ** : p < 0.05, * : p < 0.10, b. Parenthesis: robust standard errors, c.
SCL1 = SCLProducerCount if the number of producers on the SCL > 3 and 0 otherwise; SCL2
= 1 if SCLProducerCount < 4 and 0 otherwise, d. Parameter estimates for weather variables,
land, year dummies, and trend are omitted for the sake of brevity.
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Table 12: Robustness Check of Dynamic Models with Additional Control variables

Dependent variable

Linear Specification Group Dummies Specification

Variable ln(LR) ln(LRsubsidy) ln(LCR) ln(LR) ln(LRsubsidy) ln(LCR)

Lagged dependent variable (α̂)
L1. .082∗∗∗ .076∗∗∗ .058∗∗∗ .084∗∗∗ .078∗∗∗ .060∗∗∗

(.013) (.013) (.014) (.013) (.013) (.014)
L2. .039∗∗∗ .030∗∗ .010 .041∗∗∗ .032∗∗ .012

(.013) (.013) (.014) (.013) (.013) (.014)
L3. .001 −.006 −.017 .005 −.002 −.013

(.011) (.011) (.011) (.011) (.011) (.012)
SCLProducerCount
L1. −.055∗∗∗ −.057∗∗∗ −.051∗∗∗

(.009) (.009) (.008)
L2. −.011 −.012 −.009

(.008) (.008) (.007)
L3. .001 .000 .002

(.005) (.005) (.005)
SCL456
L1. −.329∗∗∗ −.341∗∗∗ −.311∗∗∗

(.055) (.056) (.054)
L2. −.099∗ −.111∗ −.082

(.058) (.058) (.056)
L3. −.055 −.063 −.061

(.057) (.057) (.057)
SCL789
L1. −.515∗∗∗ −.523∗∗∗ −.457∗∗∗

(.134) (.134) (.131)
L2. −.262∗∗ −.265∗∗ −.220∗

(.120) (.119) (.116)
L3. −.252∗∗ −.242∗ −.166

(.127) (.126) (.122)
SCL10Plus
L1. −.639∗∗∗ −.663∗∗∗ −.584∗∗∗

(.150) (.148) (.145)
L2. −.190 −.207 −.166

(.153) (.148) (.144)
L3. .001 −.011 .021

(.129) (.126) (.122)
Land ($/acre)
ln Rent .396∗∗∗ .356∗∗∗ −.025 .398∗∗∗ .357∗∗∗ −.020

(.138) (.136) (.134) (.137) (.135) (.134)
Insurance characteristics data
ln(UnitSize) −.236∗∗ −.005 −.154 −.242∗∗ −.010 −.159

(.097) (.095) (.099) (.097) (.095) (.099)
InsuranceType −1.895∗∗∗ −1.683∗∗∗ −1.236∗∗∗ −1.865∗∗∗ −1.658∗∗∗ −1.225∗∗∗

(.300) (.296) (.295) (.298) (.295) (.294)
CoverageType 1.154∗∗ .204 .462 1.139∗∗ .196 .455

(.499) (.513) (.484) (.497) (.511) (.483)
CoverageLevel 1.013 −.347 .937 1.020 −.338 .940
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Table 12 (continued)

Linear Specification Group Dummies Specification

Variable ln(LR) ln(LRsubsidy) ln(LCR) ln(LR) ln(LRsubsidy) ln(LCR)

(1.045) (1.017) (.983) (1.044) (1.017) (.984)
Input expenditure data ($/acre)
ln(Seed) .125 .169 .036 .113 .158 .027

(.106) (.108) (.107) (.106) (.108) (.106)
ln(PetroleumProducts) .696∗∗∗ .759∗∗∗ .769∗∗∗ .693∗∗∗ .756∗∗∗ .767∗∗∗

(.152) (.154) (.149) (.152) (.154) (.150)
ln(FertilizerChemicals) .161 .226 .119 .162 .227 .122

(.168) (.165) (.164) (.168) (.165) (.164)
ln(HiredLabor) −.529∗∗∗ −.592∗∗∗ −.548∗∗∗ −.523∗∗∗ −.589∗∗∗ −.544∗∗∗

(.111) (.109) (.108) (.111) (.109) (.108)
ln(AllOtherExpenses) −.267∗ −.301∗ −.185 −.259 −.293∗ −.182

(.161) (.160) (.155) (.161) (.159) (.155)

Arellano-Bond test
Order 1 -25.246 -25.354 -25.076 -25.221 -25.319 -25.051
(p-value) (.000) (.000) (.000) (.000) (.000) (.000)
Order 2 -1.311 -1.085 -.971 -1.270 -1.048 -.919
(p-value) (.190) (.278) (.332) (.204) (.295) (.358)
Obs. 22,836 22,832 22,836 22,836 22,832 22,836
Counties 2,073 2,072 2,073 2,073 2,072 2,073

Notes: a. *** : p < 0.01, ** : p < 0.05, * : p < 0.10, b. Parentheses: Windmeijer (2005) bias-corrected
robust standard errors, c. Parameter estimates for weather variables, year dummies, and trend are omitted
for the sake of brevity.
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Figure 1: Spatial Distribution of Total Number of SCL Producers from 2001 to 2015
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Figure 2: Spatial Distributions of Number of SCL Producers for Selected Years between 2001 and 2010



Figure 3: Spatial Distributions of Number of SCL Producers from 2012 to 2015



Figure 4: Indemnity Trend for Counties over 3 years after Having at least 4 SCL Producers

Figure 5: LR Trend for Counties over 3 years after Having at least 4 SCL Producers
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Figure 6: LRsubsidy Trend for Counties over 3 years after Having at least 4 SCL Producers

Figure 7: LCR Trend for Counties over 3 years after Having at least 4 SCL Producers
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Figure 8: Costs Avoided in $ million by Year
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Appendix

Table A.1: Full Estimation Results for Table 5

Dependent variable

Linear Specification Group Dummies Specification

Variable ln(LR) ln(LRsubsidy) ln(LCR) ln(LR) ln(LRsubsidy) ln(LCR)

SCLProducerCount
L1. −.008∗ −.012∗∗∗ −.007∗

(.004) (.004) (.004)
L2. .004 .002 .004

(.004) (.004) (.004)
L3. −.001 −.002 −.001

(.003) (.003) (.002)
SCL456
L1. −.053∗ −.076∗∗∗ −.037

(.029) (.029) (.029)
L2. .061∗ .046 .065∗∗

(.032) (.032) (.031)
L3. −.076∗∗ −.091∗∗∗ −.062∗

(.032) (.032) (.032)

SCL789
L1. −.059 −.089 −.046

(.065) (.065) (.065)
L2. −.037 −.052 −.014

(.061) (.061) (.060)
L3. −.173∗∗ −.190∗∗∗ −.139∗∗

(.069) (.068) (.067)

SCL10Plus
L1. −.137 −.175∗ −.149∗

(.091) (.092) (.090)
L2. −.002 −.018 −.004

(.089) (.088) (.087)
L3. −.015 −.037 −.016

(.065) (.064) (.065)
Precipitation
ln(Mar prec) −.035∗∗ −.034∗ −.044∗∗ −.034∗∗ −.033∗ −.043∗∗

(.017) (.017) (.017) (.017) (.017) (.017)
ln(Apr prec) −.063∗∗∗ −.072∗∗∗ −.062∗∗∗ −.063∗∗∗ −.071∗∗∗ −.062∗∗∗

(.020) (.020) (.020) (.020) (.020) (.020)
ln(May prec) .062∗∗∗ .066∗∗∗ .079∗∗∗ .061∗∗∗ .065∗∗∗ .078∗∗∗

(.021) (.021) (.021) (.021) (.021) (.021)
ln(Jun prec) .105∗∗∗ .101∗∗∗ .105∗∗∗ .104∗∗∗ .099∗∗∗ .104∗∗∗

(.023) (.022) (.023) (.023) (.022) (.023)
ln(Jul prec) −.118∗∗∗ −.112∗∗∗ −.112∗∗∗ −.118∗∗∗ −.112∗∗∗ −.112∗∗∗

(.020) (.020) (.020) (.020) (.020) (.020)
ln(Aug prec) −.065∗∗∗ −.070∗∗∗ −.060∗∗∗ −.065∗∗∗ −.070∗∗∗ −.060∗∗∗
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Table A.1 (continued)

Linear Specification Group Dummies Specification

Variable ln(LR) ln(LRsubsidy) ln(LCR) ln(LR) ln(LRsubsidy) ln(LCR)

(.018) (.018) (.018) (.018) (.018) (.018)
ln(Sep prec) .115∗∗∗ .115∗∗∗ .112∗∗∗ .115∗∗∗ .115∗∗∗ .112∗∗∗

(.017) (.016) (.016) (.017) (.016) (.016)
ln(Oct prec) .032∗ .029∗ .026 .033∗ .030∗ .027

(.017) (.017) (.017) (.017) (.017) (.017)
ln(Nov prec) −.132∗∗∗ −.131∗∗∗ −.118∗∗∗ −.132∗∗∗ −.130∗∗∗ −.117∗∗∗

(.018) (.017) (.017) (.018) (.017) (.017)
Temperature
Mar tMin .025∗∗ .019∗∗ .017∗ .025∗∗∗ .019∗∗ .018∗

(.010) (.010) (.010) (.010) (.010) (.010)
Apr tMin −.022∗∗ −.018∗ −.024∗∗ −.022∗∗ −.018 −.024∗∗

(.011) (.011) (.011) (.011) (.011) (.011)
May tMin −.068∗∗∗ −.063∗∗∗ −.086∗∗∗ −.068∗∗∗ −.062∗∗∗ −.085∗∗∗

(.011) (.011) (.011) (.011) (.011) (.011)
Jun tMin −.086∗∗∗ −.088∗∗∗ −.061∗∗∗ −.084∗∗∗ −.087∗∗∗ −.059∗∗∗

(.016) (.016) (.016) (.016) (.016) (.016)
Jul tMin .092∗∗∗ .091∗∗∗ .103∗∗∗ .090∗∗∗ .089∗∗∗ .102∗∗∗

(.015) (.015) (.015) (.015) (.015) (.015)
Aug tMin −.108∗∗∗ −.111∗∗∗ −.102∗∗∗ −.108∗∗∗ −.111∗∗∗ −.102∗∗∗

(.013) (.013) (.013) (.013) (.013) (.013)
Sep tMin .026∗∗ .021∗ .038∗∗∗ .026∗∗ .021∗∗ .038∗∗∗

(.011) (.011) (.011) (.011) (.011) (.011)
Oct tMin −.021∗ −.022∗∗ −.014 −.021∗ −.022∗∗ −.014

(.011) (.011) (.011) (.011) (.011) (.011)
Nov tMin .036∗∗∗ .036∗∗∗ .037∗∗∗ .036∗∗∗ .036∗∗∗ .037∗∗∗

(.010) (.010) (.010) (.010) (.010) (.010)
Mar tMax −.036∗∗∗ −.030∗∗∗ −.033∗∗∗ −.037∗∗∗ −.031∗∗∗ −.034∗∗∗

(.008) (.008) (.008) (.008) (.008) (.008)
Apr tMax −.050∗∗∗ −.052∗∗∗ −.054∗∗∗ −.049∗∗∗ −.052∗∗∗ −.054∗∗∗

(.009) (.008) (.008) (.009) (.008) (.008)
May tMax −.019 −.013 −.011 −.019∗ −.014 −.011

(.011) (.011) (.011) (.011) (.011) (.011)
Jun tMax .058∗∗∗ .065∗∗∗ .036∗∗ .057∗∗∗ .064∗∗∗ .036∗∗

(.014) (.014) (.014) (.014) (.014) (.014)
Jul tMax .050∗∗∗ .051∗∗∗ .048∗∗∗ .050∗∗∗ .051∗∗∗ .048∗∗∗

(.016) (.016) (.016) (.016) (.016) (.016)
Aug tMax .121∗∗∗ .114∗∗∗ .124∗∗∗ .120∗∗∗ .112∗∗∗ .124∗∗∗

(.014) (.014) (.014) (.014) (.014) (.014)
Sep tMax .053∗∗∗ .048∗∗∗ .052∗∗∗ .053∗∗∗ .048∗∗∗ .052∗∗∗

(.010) (.010) (.010) (.010) (.010) (.010)
Oct tMax .031∗∗∗ .033∗∗∗ .021∗∗ .031∗∗∗ .033∗∗∗ .021∗∗

(.010) (.010) (.010) (.010) (.010) (.010)
Nov tMax −.065∗∗∗ −.064∗∗∗ −.064∗∗∗ −.065∗∗∗ −.064∗∗∗ −.063∗∗∗

(.010) (.009) (.009) (.010) (.009) (.009)
Mar dday30C .217∗∗∗ .214∗∗∗ .209∗∗∗ .219∗∗∗ .215∗∗∗ .210∗∗∗

(.063) (.061) (.062) (.062) (.061) (.062)
Apr dday30C −.024∗∗ −.021∗ −.028∗∗ −.025∗∗ −.023∗ −.029∗∗

(.012) (.012) (.012) (.012) (.012) (.012)
May dday30C .052∗∗∗ .050∗∗∗ .054∗∗∗ .053∗∗∗ .051∗∗∗ .054∗∗∗
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Table A.1 (continued)

Linear Specification Group Dummies Specification

Variable ln(LR) ln(LRsubsidy) ln(LCR) ln(LR) ln(LRsubsidy) ln(LCR)

(.005) (.005) (.005) (.005) (.005) (.005)
Jun dday30C .012∗∗∗ .010∗∗∗ .014∗∗∗ .012∗∗∗ .010∗∗∗ .014∗∗∗

(.002) (.002) (.002) (.002) (.002) (.002)
Jul dday30C .006∗∗∗ .006∗∗∗ .007∗∗∗ .006∗∗∗ .006∗∗∗ .007∗∗∗

(.002) (.002) (.002) (.002) (.002) (.002)
Aug dday30C .001 .002 .000 .001 .002 .000

(.002) (.002) (.002) (.002) (.002) (.002)
Sep dday30C −.012∗∗∗ −.012∗∗∗ −.009∗∗∗ −.012∗∗∗ −.012∗∗∗ −.009∗∗∗

(.002) (.002) (.002) (.002) (.002) (.002)
Oct dday30C .071∗∗∗ .062∗∗∗ .076∗∗∗ .071∗∗∗ .062∗∗∗ .076∗∗∗

(.016) (.015) (.016) (.016) (.015) (.016)
Nov dday30C .279∗∗∗ .280∗∗∗ .220∗ .277∗∗∗ .278∗∗∗ .218∗

(.105) (.085) (.118) (.107) (.086) (.119)
Drought
Mar Drought −.051∗∗∗ −.049∗∗∗ −.066∗∗∗ −.051∗∗∗ −.049∗∗∗ −.066∗∗∗

(.010) (.010) (.010) (.010) (.010) (.010)
Apr Drought −.007 −.005 −.005 −.007 −.005 −.005

(.014) (.014) (.014) (.014) (.013) (.014)
May Drought −.022∗∗ −.019∗ −.017 −.022∗∗ −.019∗ −.017

(.011) (.011) (.011) (.011) (.011) (.011)
Jun Drought .204∗∗∗ .197∗∗∗ .203∗∗∗ .205∗∗∗ .198∗∗∗ .204∗∗∗

(.014) (.014) (.014) (.014) (.014) (.014)
Jul Drought .188∗∗∗ .181∗∗∗ .183∗∗∗ .187∗∗∗ .180∗∗∗ .182∗∗∗

(.012) (.012) (.012) (.012) (.012) (.012)
Aug Drought .025∗∗ .028∗∗∗ .020∗∗ .024∗∗ .028∗∗∗ .019∗

(.010) (.010) (.010) (.010) (.010) (.010)
Sep Drought .049∗∗∗ .049∗∗∗ .048∗∗∗ .049∗∗∗ .050∗∗∗ .048∗∗∗

(.010) (.010) (.010) (.010) (.010) (.010)
Oct Drought −.039∗∗∗ −.036∗∗ −.037∗∗ −.039∗∗∗ −.037∗∗ −.037∗∗

(.015) (.015) (.015) (.015) (.015) (.015)
Nov Drought .121∗∗∗ .121∗∗∗ .105∗∗∗ .122∗∗∗ .121∗∗∗ .106∗∗∗

(.014) (.014) (.014) (.014) (.014) (.014)
Wetness
Mar Wetness −.052∗∗∗ −.050∗∗∗ −.051∗∗∗ −.052∗∗∗ −.050∗∗∗ −.052∗∗∗

(.010) (.010) (.010) (.010) (.010) (.010)
Apr Wetness .037∗∗∗ .042∗∗∗ .035∗∗∗ .037∗∗∗ .041∗∗∗ .035∗∗∗

(.007) (.007) (.007) (.007) (.007) (.007)
May Wetness .105∗∗∗ .107∗∗∗ .108∗∗∗ .105∗∗∗ .107∗∗∗ .108∗∗∗

(.006) (.006) (.006) (.006) (.006) (.006)
Jun Wetness .138∗∗∗ .136∗∗∗ .133∗∗∗ .138∗∗∗ .136∗∗∗ .133∗∗∗

(.006) (.006) (.006) (.006) (.006) (.006)
Jul Wetness .025∗∗∗ .025∗∗∗ .026∗∗∗ .025∗∗∗ .026∗∗∗ .027∗∗∗

(.008) (.008) (.008) (.008) (.008) (.008)
Aug Wetness −.009 −.007 −.009 −.009 −.007 −.010

(.008) (.007) (.007) (.008) (.007) (.007)
Sep Wetness .051∗∗∗ .049∗∗∗ .055∗∗∗ .051∗∗∗ .049∗∗∗ .056∗∗∗

(.006) (.006) (.006) (.006) (.006) (.006)
Oct Wetness .002 .007 .004 .002 .006 .004

(.006) (.006) (.006) (.006) (.006) (.006)
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Table A.1 (continued)

Linear Specification Group Dummies Specification

Variable ln(LR) ln(LRsubsidy) ln(LCR) ln(LR) ln(LRsubsidy) ln(LCR)

Nov Wetness −.008 −.013 −.019∗∗ −.007 −.011 −.018∗∗
(.009) (.009) (.009) (.009) (.009) (.009)

Land ($/acre)
ln(Rent) .333∗∗∗ .336∗∗∗ .277∗∗∗ .337∗∗∗ .340∗∗∗ .280∗∗∗

(.108) (.104) (.106) (.108) (.104) (.106)
Year
Year 2005 −.816∗∗∗ −.785∗∗∗ −.863∗∗∗ −.810∗∗∗ −.778∗∗∗ −.859∗∗∗

(.059) (.058) (.058) (.059) (.058) (.057)
Year 2006 −.737∗∗∗ −.754∗∗∗ −.679∗∗∗ −.732∗∗∗ −.747∗∗∗ −.675∗∗∗

(.059) (.058) (.058) (.059) (.058) (.058)
Year 2007 −.714∗∗∗ −.750∗∗∗ −.624∗∗∗ −.707∗∗∗ −.742∗∗∗ −.618∗∗∗

(.056) (.055) (.056) (.056) (.055) (.056)
Year 2008 −.213∗∗∗ −.232∗∗∗ −.080∗ −.208∗∗∗ −.227∗∗∗ −.076∗

(.045) (.045) (.045) (.045) (.045) (.045)
Year 2009 −.033 −.001 .121∗∗ −.033 .000 .121∗∗

(.054) (.053) (.054) (.054) (.053) (.054)
Year 2010 −.645∗∗∗ −.586∗∗∗ −.594∗∗∗ −.640∗∗∗ −.579∗∗∗ −.591∗∗∗

(.053) (.053) (.053) (.053) (.053) (.053)
Year 2011 −1.164∗∗∗ −1.095∗∗∗ −1.093∗∗∗ −1.156∗∗∗ −1.086∗∗∗ −1.087∗∗∗

(.061) (.061) (.060) (.061) (.061) (.060)
Year 2012 −.880∗∗∗ −.847∗∗∗ −.765∗∗∗ −.872∗∗∗ −.838∗∗∗ −.759∗∗∗

(.071) (.072) (.070) (.071) (.072) (.070)
Year 2013 −.395∗∗∗ −.355∗∗∗ −.415∗∗∗ −.392∗∗∗ −.352∗∗∗ −.412∗∗∗

(.042) (.042) (.042) (.042) (.042) (.042)
Year 2014 (omitted) (omitted) (omitted) (omitted) (omitted) (omitted)

Year 2015 −.342∗∗∗ −.342∗∗∗ −.316∗∗∗ −.344∗∗∗ −.343∗∗∗ −.317∗∗∗
(.064) (.064) (.064) (.064) (.064) (.064)

Trend −.007 .003 −.018∗∗ −.007 .003 −.019∗∗
(.009) (.009) (.009) (.009) (.009) (.009)

Constant 8.380 −11.089 28.560 8.544 −11.196 28.906∗
(17.722) (17.192) (17.484) (17.713) (17.180) (17.477)

Obs. 23,331 23,323 23,331 23,331 23,323 23,331
Counties 2,099 2,098 2,099 2,099 2,098 2,099

Notes: a. *** : p < 0.01, ** : p < 0.05, * : p < 0.10, b. Parentheses: county-level clustered robust
standard errors.
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Table A.2: Full Estimation Results for Table 6

Dependent variable

Linear Specification Group Dummies Specification

Variable ln(LR) ln(LRsubsidy) ln(LCR) ln(LR) ln(LRsubsidy) ln(LCR)

Lagged dependent variable (α)
L1. .090∗∗∗ .079∗∗∗ .067∗∗∗ .092∗∗∗ .081∗∗∗ .070∗∗∗

(.013) (.013) (.014) (.013) (.013) (.014)
L2. .039∗∗∗ .027∗∗ .016 .042∗∗∗ .030∗∗ .018

(.012) (.012) (.013) (.012) (.012) (.013)
L3. .005 −.003 −.010 .009 .001 −.006

(.011) (.011) (.011) (.011) (.011) (.011)
SCLProducerCount
L1. −.058∗∗∗ −.061∗∗∗ −.054∗∗∗

(.009) (.009) (.008)
L2. −.013∗ −.015∗∗ −.011

(.008) (.008) (.007)
L3. −.001 −.003 .000

(.005) (.005) (.005)
SCL456
L1. −.359∗∗∗ −.374∗∗∗ −.333∗∗∗

(.055) (.055) (.054)
L2. −.109∗ −.121∗∗ −.090

(.058) (.057) (.056)
L3. −.070 −.086 −.078

(.057) (.057) (.057)

SCL789
L1. −.539∗∗∗ −.556∗∗∗ −.479∗∗∗

(.131) (.130) (.127)
L2. −.276∗∗ −.292∗∗ −.227∗

(.122) (.120) (.116)
L3. −.290∗∗ −.290∗∗ −.214∗

(.126) (.124) (.120)

SCL10Plus
L1. −.661∗∗∗ −.699∗∗∗ −.603∗∗∗

(.147) (.143) (.141)
L2. −.240 −.272∗ −.210

(.153) (.146) (.144)
L3. −.010 −.033 .014

(.129) (.124) (.121)
Precipitation
ln(Mar prec) −.007 −.014 −.019 −.006 −.014 −.018

(.027) (.027) (.026) (.027) (.027) (.026)
ln(Apr prec) −.137∗∗∗ −.144∗∗∗ −.136∗∗∗ −.137∗∗∗ −.144∗∗∗ −.136∗∗∗

(.031) (.032) (.031) (.031) (.032) (.031)
ln(May prec) .081∗∗ .067∗ .091∗∗∗ .082∗∗ .068∗ .091∗∗∗

(.035) (.035) (.034) (.035) (.035) (.034)
ln(Jun prec) .119∗∗∗ .103∗∗∗ .129∗∗∗ .118∗∗∗ .102∗∗∗ .127∗∗∗

(.037) (.037) (.036) (.037) (.037) (.036)
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Table A.2 (continued)

Linear Specification Group Dummies Specification

Variable ln(LR) ln(LRsubsidy) ln(LCR) ln(LR) ln(LRsubsidy) ln(LCR)

ln(Jul prec) −.006 −.012 .004 −.007 −.013 .003
(.031) (.031) (.030) (.031) (.031) (.030)

ln(Aug prec) .003 .001 .014 .003 .001 .015
(.029) (.029) (.028) (.029) (.029) (.028)

ln(Sep prec) .127∗∗∗ .121∗∗∗ .114∗∗∗ .125∗∗∗ .119∗∗∗ .113∗∗∗
(.028) (.028) (.027) (.028) (.028) (.027)

ln(Oct prec) .046∗ .045∗ .065∗∗ .047∗ .046∗ .065∗∗
(.027) (.027) (.026) (.027) (.027) (.026)

ln(Nov prec) −.109∗∗∗ −.102∗∗∗ −.111∗∗∗ −.110∗∗∗ −.103∗∗∗ −.112∗∗∗
(.026) (.026) (.025) (.026) (.026) (.025)

Temperature
Mar tMin .016 .013 .008 .017 .012 .009

(.013) (.013) (.013) (.013) (.013) (.013)
Apr tMin .006 .007 .004 .007 .007 .004

(.015) (.015) (.015) (.015) (.015) (.015)
May tMin −.088∗∗∗ −.084∗∗∗ −.083∗∗∗ −.087∗∗∗ −.083∗∗∗ −.082∗∗∗

(.019) (.019) (.018) (.019) (.019) (.018)
Jun tMin −.081∗∗∗ −.063∗∗∗ −.055∗∗ −.081∗∗∗ −.064∗∗∗ −.056∗∗

(.023) (.024) (.024) (.023) (.024) (.023)
Jul tMin .175∗∗∗ .169∗∗∗ .169∗∗∗ .174∗∗∗ .167∗∗∗ .168∗∗∗

(.021) (.021) (.020) (.021) (.021) (.020)
Aug tMin −.070∗∗∗ −.065∗∗∗ −.078∗∗∗ −.070∗∗∗ −.065∗∗∗ −.078∗∗∗

(.021) (.021) (.020) (.021) (.021) (.020)
Sep tMin −.022 −.013 .002 −.021 −.012 .003

(.016) (.016) (.016) (.016) (.016) (.016)
Oct tMin .057∗∗∗ .055∗∗∗ .049∗∗∗ .058∗∗∗ .056∗∗∗ .050∗∗∗

(.016) (.016) (.016) (.016) (.016) (.016)
Nov tMin .051∗∗∗ .045∗∗∗ .048∗∗∗ .051∗∗∗ .045∗∗∗ .048∗∗∗

(.014) (.015) (.014) (.014) (.015) (.014)
Mar tMax −.052∗∗∗ −.043∗∗∗ −.047∗∗∗ −.052∗∗∗ −.043∗∗∗ −.048∗∗∗

(.011) (.011) (.011) (.011) (.011) (.011)
Apr tMax −.076∗∗∗ −.080∗∗∗ −.083∗∗∗ −.075∗∗∗ −.080∗∗∗ −.083∗∗∗

(.013) (.013) (.013) (.013) (.013) (.013)
May tMax .034∗ .029 .028 .034∗ .029 .027

(.018) (.018) (.017) (.018) (.018) (.017)
Jun tMax .064∗∗∗ .067∗∗∗ .055∗∗ .064∗∗∗ .067∗∗∗ .055∗∗

(.022) (.023) (.022) (.022) (.022) (.022)
Jul tMax .024 .019 .033 .025 .020 .033

(.023) (.023) (.022) (.023) (.023) (.022)
Aug tMax .162∗∗∗ .167∗∗∗ .169∗∗∗ .160∗∗∗ .165∗∗∗ .167∗∗∗

(.023) (.024) (.023) (.023) (.024) (.023)
Sep tMax .059∗∗∗ .044∗∗∗ .049∗∗∗ .058∗∗∗ .043∗∗∗ .048∗∗∗

(.014) (.014) (.014) (.014) (.014) (.014)
Oct tMax −.058∗∗∗ −.049∗∗∗ −.044∗∗∗ −.059∗∗∗ −.050∗∗∗ −.045∗∗∗

(.015) (.015) (.015) (.015) (.015) (.015)
Nov tMax −.057∗∗∗ −.050∗∗∗ −.058∗∗∗ −.057∗∗∗ −.051∗∗∗ −.058∗∗∗

(.014) (.014) (.013) (.014) (.014) (.013)
Mar dday30C .325∗∗ .276∗∗∗ .321∗∗ .328∗∗ .279∗∗∗ .324∗∗

(.131) (.107) (.141) (.131) (.106) (.141)
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Table A.2 (continued)

Linear Specification Group Dummies Specification

Variable ln(LR) ln(LRsubsidy) ln(LCR) ln(LR) ln(LRsubsidy) ln(LCR)

Apr dday30C −.059∗∗∗ −.057∗∗∗ −.071∗∗∗ −.061∗∗∗ −.059∗∗∗ −.071∗∗∗
(.020) (.020) (.021) (.020) (.020) (.021)

May dday30C .041∗∗∗ .042∗∗∗ .055∗∗∗ .042∗∗∗ .043∗∗∗ .055∗∗∗
(.009) (.009) (.009) (.009) (.009) (.009)

Jun dday30C .017∗∗∗ .015∗∗∗ .014∗∗∗ .017∗∗∗ .015∗∗∗ .014∗∗∗
(.004) (.004) (.004) (.004) (.004) (.004)

Jul dday30C .004∗ .005∗ .006∗∗ .004∗ .004∗ .006∗∗
(.003) (.003) (.003) (.003) (.003) (.003)

Aug dday30C .003 .003 .004 .003 .003 .004
(.003) (.003) (.003) (.003) (.003) (.003)

Sep dday30C −.014∗∗∗ −.013∗∗∗ −.010∗∗∗ −.014∗∗∗ −.014∗∗∗ −.010∗∗∗
(.003) (.003) (.003) (.003) (.003) (.003)

Oct dday30C .027 .025 .033 .026 .024 .032
(.026) (.026) (.026) (.026) (.026) (.026)

Nov dday30C .288 .283 .353 .280 .271 .347
(.177) (.175) (.230) (.179) (.176) (.232)

Drought
Mar Drought −.040∗∗ −.039∗∗ −.041∗∗ −.039∗∗ −.038∗∗ −.040∗∗

(.017) (.017) (.017) (.017) (.017) (.017)
Apr Drought .001 −.007 −.012 .001 −.007 −.012

(.022) (.022) (.021) (.022) (.021) (.021)
May Drought −.096∗∗∗ −.095∗∗∗ −.084∗∗∗ −.095∗∗∗ −.095∗∗∗ −.083∗∗∗

(.018) (.018) (.017) (.018) (.018) (.017)
Jun Drought .179∗∗∗ .179∗∗∗ .198∗∗∗ .178∗∗∗ .178∗∗∗ .198∗∗∗

(.022) (.022) (.022) (.022) (.022) (.022)
Jul Drought .225∗∗∗ .224∗∗∗ .196∗∗∗ .226∗∗∗ .224∗∗∗ .196∗∗∗

(.020) (.020) (.020) (.020) (.020) (.020)
Aug Drought .013 .014 .014 .013 .014 .015

(.016) (.016) (.015) (.016) (.016) (.015)
Sep Drought .079∗∗∗ .080∗∗∗ .084∗∗∗ .080∗∗∗ .080∗∗∗ .085∗∗∗

(.017) (.017) (.016) (.017) (.017) (.016)
Oct Drought −.005 −.004 .011 −.006 −.004 .010

(.022) (.022) (.022) (.022) (.022) (.022)
Nov Drought .146∗∗∗ .137∗∗∗ .133∗∗∗ .145∗∗∗ .137∗∗∗ .132∗∗∗

(.022) (.022) (.021) (.022) (.022) (.021)
Wetness
Mar Wetness −.025 −.012 −.023 −.025 −.013 −.023

(.017) (.017) (.016) (.017) (.017) (.016)
Apr Wetness .008 .009 .010 .009 .009 .010

(.011) (.012) (.011) (.011) (.012) (.011)
May Wetness .105∗∗∗ .105∗∗∗ .103∗∗∗ .106∗∗∗ .105∗∗∗ .103∗∗∗

(.010) (.009) (.009) (.010) (.009) (.009)
Jun Wetness .143∗∗∗ .140∗∗∗ .143∗∗∗ .143∗∗∗ .139∗∗∗ .143∗∗∗

(.010) (.010) (.010) (.010) (.010) (.010)
Jul Wetness .019 .023∗ .027∗∗ .020 .023∗ .027∗∗

(.012) (.012) (.012) (.012) (.012) (.012)
Aug Wetness −.005 −.004 .007 −.005 −.004 .007

(.012) (.012) (.012) (.012) (.012) (.012)
Sep Wetness .077∗∗∗ .071∗∗∗ .073∗∗∗ .077∗∗∗ .071∗∗∗ .074∗∗∗
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Table A.2 (continued)

Linear Specification Group Dummies Specification

Variable ln(LR) ln(LRsubsidy) ln(LCR) ln(LR) ln(LRsubsidy) ln(LCR)

(.009) (.009) (.009) (.009) (.009) (.009)
Oct Wetness −.014 −.007 −.012 −.015 −.008 −.012

(.010) (.010) (.009) (.010) (.010) (.009)
Nov Wetness −.020 −.031∗∗ −.019 −.019 −.030∗∗ −.018

(.014) (.014) (.013) (.014) (.014) (.013)
Land ($/acre)
ln(Rent) .419∗∗∗ .342∗∗∗ .055 .418∗∗∗ .342∗∗∗ .058

(.083) (.086) (.086) (.083) (.086) (.086)
Year
Year 2005 −.846∗∗∗ −.912∗∗∗ −.908∗∗∗ −.839∗∗∗ −.901∗∗∗ −.900∗∗∗

(.076) (.076) (.074) (.077) (.076) (.074)
Year 2006 −.760∗∗∗ −.840∗∗∗ −.719∗∗∗ −.754∗∗∗ −.832∗∗∗ −.712∗∗∗

(.070) (.071) (.070) (.070) (.071) (.070)
Year 2007 −.720∗∗∗ −.869∗∗∗ −.752∗∗∗ −.715∗∗∗ −.860∗∗∗ −.749∗∗∗

(.080) (.079) (.079) (.079) (.078) (.078)
Year 2008 −.206∗∗∗ −.276∗∗∗ −.105∗ −.197∗∗∗ −.266∗∗∗ −.096

(.063) (.064) (.062) (.063) (.064) (.062)
Year 2009 −.186∗∗∗ −.202∗∗∗ .019 −.177∗∗∗ −.192∗∗∗ .026

(.071) (.071) (.071) (.071) (.071) (.071)
Year 2010 −.795∗∗∗ −.796∗∗∗ −.772∗∗∗ −.777∗∗∗ −.775∗∗∗ −.756∗∗∗

(.071) (.071) (.071) (.072) (.071) (.071)
Year 2011 −1.315∗∗∗ −1.272∗∗∗ −1.251∗∗∗ −1.301∗∗∗ −1.256∗∗∗ −1.240∗∗∗

(.088) (.087) (.086) (.088) (.087) (.086)
Year 2012 −1.070∗∗∗ −.998∗∗∗ −.966∗∗∗ −1.053∗∗∗ −.980∗∗∗ −.953∗∗∗

(.087) (.087) (.084) (.087) (.087) (.084)
Year 2013 −.576∗∗∗ −.529∗∗∗ −.555∗∗∗ −.571∗∗∗ −.523∗∗∗ −.551∗∗∗

(.056) (.057) (.054) (.057) (.057) (.054)
Year 2014 (omitted) (omitted) (omitted) (omitted) (omitted) (omitted)

Year 2015 −.352∗∗∗ −.305∗∗∗ −.295∗∗∗ −.345∗∗∗ −.297∗∗∗ −.289∗∗∗
(.063) (.062) (.061) (.063) (.062) (.061)

Trend −.005∗∗∗ −.004∗∗∗ −.005∗∗∗ −.005∗∗∗ −.004∗∗∗ −.005∗∗∗
(.001) (.001) (.001) (.001) (.001) (.001)

Arellano-Bond test
Order 1 -25.554 -25.731 -25.309 -25.516 -25.686 -25.275
(p-value) (.000) (.000) (.000) (.000) (.000) (.000)
Order 2 -1.482 -1.230 -1.382 -1.457 -1.201 -1.344
(p-value) (.138) (.219) (.167) (.145) (.230) (.179)
Obs. 22,836 22,832 22,836 22,836 22,832 22,836
Counties 2,073 2,072 2,073 2,073 2,072 2,073

Notes: a. *** : p < 0.01, ** : p < 0.05, * : p < 0.10, b. Parentheses: Windmeijer (2005) bias-corrected
robust standard errors.
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Table A.3: Costs Avoided in $ million by Year based on the Estimation Results in Table 12

Year LR specification LRsubsidy specification LCR specification

2004 53 59 67
2005 24 28 30
2006 37 42 50
2007 104 118 121
2008 196 215 221
2009 113 128 139
2010 61 67 72
2011 153 175 208
2012 204 214 212
2013 237 258 301
2014 180 192 219
2015 77 84 93

Average 120 132 144

Figure A.1: Costs Avoided in $ million by Year based on the Estimation Results in Table 12
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