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Abstract

We use queuing-related behavior as an instrument for assessing the social appeal of alternative
cultural norms. Specifically, we study the behavior of rational and sophisticated individuals who
stand in a given queue waiting to be served, and who, in order to speed up the process, consider
switching to another queue. We look at two regimes that govern the possible order in which the
individuals stand should they switch to the other queue: a regime in which cultural convention,
social norms, and basic notions of fairness require that the order in the initial queue is preserved,
and a regime without such cultural inhibitions, in which case the order in the other queue is
random, with each configuration or sequence being equally likely. We seek to find out whether in
these two regimes the aggregate of the behaviors of self-interested individuals adds up to the
social optimum defined as the shortest possible total waiting time. To do this, we draw on a Nash
Equilibrium setting. We find that in the case of the preserved order, the equilibrium outcomes are
always socially optimal. However, in the case of the random order, unless the number of

individuals is small, the equilibrium outcomes are not socially optimal.

Keywords: Decision processes; Queuing; Nash Equilibrium; Social customs; Social welfare

JEL classification: C72; D60; Z13



1. Introduction

We use queuing-related behavior to assess the social appeal of different cultural norms. In
harnessing queuing behavior to this end, we complement stances most often taken in the received
queuing literature. Specifically, our study of switching queues sheds light on an intriguing
question that is at the heart of social science research: which of two social conventions, each
having merit, is superior in the sense of yielding a better social outcome. Thus, the value added of
this paper lies in demonstrating that close observation of queuing behavior can serve as an
instrument for assessing the social value of fundamental traits such as fairness, equal opportunity,
and property rights. It is a novelty of the paper that it exploits queuing behavior rather than

explores queuing behavior per se.

Waiting in line is an experience that very few people enjoy. The advance of technologies
such as online services and Amazon Go shop?! could markedly improve the quality of life of
many people by turning waiting in line to be served into a fading memory. For now, though,
queuing is still a frequent part of daily life. It is, therefore, of interest and relevance to study the

architecture of queuing, and to assess the social efficiency of queuing arrangements.

Queuing arrangements can have significant consequences not only for the individuals
queuing, but also for the enterprises that provide the services and sell the goods for which
individuals queue.? A brief search reveals that this topic has attracted not only the attention of the
public and the media,® but also that of researchers in a variety of disciplines. Mathematicians and
engineers have studied aspects of queues for more than a century now; a seminal paper is that of
Erlang (1909) who showed that the Poisson distribution can be applied to study random
telephone traffic, which, at the time, was often characterized by long queues. Citing Gross et al.
(2008), it appears that the field of inquiry referred to as queuing theory seeks to provide answers
to questions such as “How long must a customer wait?” and “How many people will join the

line?” and has resorted to rigorous mathematical reasoning. For example, Haight (1958) analyzes

! Consider: http://www.theverge.com/2016/12/5/13842592/amazon-go-new-cashier-less-convenience-store
2 Consider: http://time.com/money/4651994/starbucks-sales-growth/?xid=newsletter-brief

3 Consider the recent NY Times article: https://mobile.nytimes.com/2016/09/08/business/how-to-pick-the-fastest-
line-at-the-supermarket.html



a system of two queues, where individuals arriving choose the shorter queue and then either stay
there until they are served, or switch to the other queue if it becomes shorter. The main objective
of Haight’s analysis is to calculate the probabilities that at time t =0, the two queues will reach
given lengths. Haight’s analysis was expanded by Tarabia (2008), who introduced the possibility
of moving the first individual at a given point in time from one queue to the other queue when the
other queue is empty, and of finite-length queues (restricted to be shorter than some fixed length).
In spite of a seeming congruence, our approach and goal in this paper are very different:
assuming that the number of individuals as well as the serving time per individual are constant,
we employ the tool of Nash Equilibrium to study the behavior of rational and sophisticated
individuals who stand in a queue and who consider switching to another queue. Drawing on this
underlying infrastructure, we shed light on an issue that is of interest from both an economics
perspective and from a social efficiency perspective: under which regime governing switching

does the aggregate of the behaviors of self-interested individuals add up to the social optimum?

Recently, the topic of queues has been studied to some extent by behavioral,
experimental, and management researchers. Carmon and Kahneman (1996) designed an
experimental setting aimed at investigating how characteristics of queues such as the length
remaining and the speed of moving influence individuals’ real-time and retrospective evaluation
of their waiting experience. Koo and Fishbach (2010) analyze whether queuing changes the value
individuals attribute to the product or service for which they queue. Janakiraman et al. (2011)
study the decision to abandon waiting in a queue. Song et al. (2015) and Shunko et al. (2015)
investigate how the architecture of queues (for example, having a single queue compared to
having parallel queues) affects the performance of related workers such as cashiers. Kuzu (2015)
investigates customer preferences and their perceptions of ticketed queues compared with
standard, physical queues.* Hassin and Haviv (2003) present an extensive overview of the
development of general queue theories. Practical settings in which queuing theory is applied
include health care (Kozlowski and Worthington, 2015; Carmen et al., 2018), airplane boarding
(Bachmat, 2019), and logistics (Jemai and Karaesmen, 2005; Wu and McGinnis, 2012).

“ In a ticket queue, a customer receives a ticket with a number, and thereafter waits until the number is called (and /
or appears on a screen). In contrast with a physical queue, there is no need for customers to stand in line.
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Socially optimal queueing arrangements were studied by Maniquet (2003) and by Chun
(2006) in the case of a single queue, and by Chun and Heo (2008) in the case of two queues. In
these three papers, the main interest lies in determining the optimal distribution of N individuals
who are heterogeneous with respect to their waiting cost, but homogeneous with respect to their
required service time. In the optimal distribution, individuals are assigned a position in the
queue(s) being compensated or charged, depending on their position in the queue(s) so that their
combined waiting cost is minimized. In several aspects, the approach taken in our paper differs.
First, we are not interested in identifying the socially optimal distribution of individuals between
two queues but, rather, we inquire under which social norm self-interested individuals will sort
themselves between the queues in a socially optimal manner without any exogenous intervention.
Second, we do not assume any compensation being provided for individuals who have to wait
longer than others. In many real-world situations, such as waiting in line in a supermarket or a
post office, compensation of this type is not feasible. Third, we assume a homogenous waiting
cost. Because information about waiting costs is not public (Mitra and Mutuswami, 2011), and
because self-interested individuals do not endogenize the waiting cost of others, introducing a
differential waiting cost would entail considerable complexity without adding insights to the
issue of interest. Fourth, we differ from Hassin and Roet-Green (2018) who study a setting in
which individuals who arrive at a facility of two servers base their choice of queue on costly
inspection. We do not consider an inspection cost, we study the consequences of simultaneous
decisions of all the individuals in a queue rather than the choices of individuals who join the
queues sequentially, and we analyze the optimal social outcome rather than the equilibrium
outcome for a single individual. Although in a sense our approach is similar to that of Economou
and Manou (2016), and Wang et al., (2017), where in settings in which individuals join or balk a
queue the aggregate of individuals’ strategic actions is compared with the socially optimal

strategy, our setting of a constant number of individuals and social welfare analysis is different.

The setting that we study is as follows. We consider a constant-size population of N
individuals. The individuals stand in front of an about-to-be-opened counter A (we can think of a
counter in a supermarket, bank, post office, pharmacy, and so on). The sequence from the first
individual in the line to the last individual in the line is N,N —1,...,1. We refer to the line in front

of counter A as line A. We assume that an adjacent counter B opens. Actually, a light above
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counter B indicates that soon that counter will open up for business, and that this opening will
coincide with the opening of counter A. In other words, both counters will start processing at the

very same time.

The individuals can switch lines, but only once. For example, because of a railing (a
barrier between the front parts of the lines), switching back is not technically possible. Thus, once
made, the choice of where to queue is irrevocable. If line B is equally attractive to an individual
as line A (a tie), then the individual stays in line A; when switching confers no gain, switching
will not occur. There are no new entries into the population queuing, and we rule out the
possibility that the individuals will give up being served altogether (that is, we do not allow
walking away). This condition is equivalent to assuming that the reservation utility away from the
facility is sufficiently low to ensure that staying in any of the lines is preferable to not waiting in
line. Thus, we confine our interest to jockeying between queues. We rule out any payments
(monetary transfers) between the individuals. The individuals are rational, namely they prefer to
be served earlier than later, they are sophisticated (farsighted), and they are risk neutral. The
individuals are homogeneous in their preferences, they do not differ in their valuation of being
served, and are also homogeneous in their waiting costs (for example, they all have the same
number of items in their baskets to be processed by a cashier). Consequently, once reaching a
counter, any individual will be served at the same pace, namely within a fixed time span. In a
given queue, the individuals can be served only one at a time. To simplify, we normalize the
service time of an individual as one minute. For example, the first individual in an operational
line will be out of the premises after one minute, the second individual in a line will be out after
two minutes, the third individual will be out after three minutes, and so on. The individuals
cannot coordinate with each other their arrival time at the service facility (a Waze type program
is not available to that end). The individuals seek to minimize their waiting time, defined as the
time it takes until processing is completed, namely the time taken until they leave the facility
after being served.

A study of the dynamics of the division between queues in a population of a given size -
the individuals are already in the facility - rather than tracking the dynamics of new arrivals
supplements the related literature. Fixing the size of the population allows us to focus on the main

issue of interest. In the typical “case of arrivals,” individuals face choices such as whether and
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when to arrive (for example, based on the length of the existing queues), would-be arrivals need
to bear in mind the likely previous arrival of others, and so on. These and related issues can and
should be set aside when the purpose of the study is to ascertain the repercussions of one single
choice - that of location/relocation. Our use of simplifying assumptions such as a fixed
population does not come at the cost of eliminating the appeal of our handling of the issue at
stake: for exogenous reasons (say, it is late in the evening) no new customers arrive at the
premises (say, a supermarket). A given number of customers who have finished filling their
shopping trolleys (each with a similar number of items) await processing at a cashier, seeking to
leave for home earlier rather than later. (That the processing time is the same for all the
customers who stand in line to be served is typical in cases such as renewing a driver’s license,
obtaining a passport, mailing a parcel.) This type of setup is pure in the sense that it allows us to
abstract from extraneous considerations, yet is rich enough to support developing a clean
analytical protocol aimed at ranking modes of behavior in terms of their repercussions for
aggregate wellbeing. This stance of ours happens to align with a received approach of studying
social welfare in the context of queuing; see, for example, Chun and Heo (2008).

We consider two regimes or disciplines that govern the possible order of the individuals
in line B. In the first regime, cultural convention and social norm have it that the order in line A
is preserved in line B. That is, on switching to line B, priority is the same as in line A. In the
second regime, the cultural inhibition is that once people leave an existing order, any order is
possible; such an alternative convention can arise from a perception like that of equal opportunity
regardless of initial conditions; the order in line B is then random (equivalent to a lottery), with
any configuration or sequence being equally likely, and being considered by the individuals as
such. The choice of the two regimes is inspired by informal observations made in the course of
one week in a supermarket in Austria (where it was noticed that when people switched the order
was preserved), and in a supermarket in the US (where it was seen that when people switched the
order was random). We seek to find out how the individuals will sort themselves between the two
queues, and whether the aggregate of the individuals’ behaviors yields the optimal social welfare
outcome, namely minimization of the total waiting time. Social welfare is utilitarian, where
drawing on the assumption that the individuals do not differ in their valuation of being served, all
the individuals are weighted equally.



When individuals are indifferent to the consequences of their actions for the wellbeing of
others, should we expect the aggregate of their actions to constitute the socially preferred
outcome? We find that the answer to this question depends on the type of social norm and
cultural convention that define the regime under which the individuals act. The results that we

obtain can be summarized as follows.

1. If on switching queues the initial order of the individuals is preserved, then the
equilibrium distribution of the individuals between the two queues is socially optimal: a

convention of honoring an existing order gives rise to a desirable social outcome.

2. If the initial order is not preserved, namely when once the individuals switch to the
second queue their position there is random, then, generally speaking, an equilibrium distribution
between the queues is not socially optimal. In equilibrium, about one third of the population is
located in line A, and the remainder is located in line B. The absence of a social convention of
honoring the prevailing, pre-switching order thus penalizes a population harshly. Only in the

cases of population size of 2, 3, 4, 5, or 7 is a socially optimal equilibrium possible.

In the remainder of this paper we proceed as follows. In Section 2 we study the case in
which on switching queues the initial order of the individuals is preserved. In Section 3 we
analyze the case of random order. In Section 4 we present refinements and comment on

robustness. In Section 5 we discuss our results and conclude.

2. On switching queues, the order is preserved

As described in the Introduction, a realistic scenario to consider will be one in which a given
number of customers have filled their shopping trolleys (each with a similar number of items),

await processing at a cashier, and want to leave for home earlier rather than later.

The assumption that the individuals are sophisticated implies that every individual
accurately anticipates the behavior of the other individuals and tailors his behavior accordingly.
As a solution concept, we thus resort to Nash Equilibrium (NE).

Our goal is to find out whether the Nash Equilibria obtained constitute a socially efficient

outcome. We define social optimum as a distribution of the individuals that minimizes the
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combined (aggregate) time it takes until their processing is completed (namely until they leave
the premises having been served). For such an optimum to occur, the individuals have to be
distributed between the queues as evenly as possible: namely if, for a given NE, N is the number
of individuals, and K is the number of individuals who stay in line A, then this NE is socially

optimal if and only if N2—1 <K< N2+1. When on switching queues the same order is preserved,

then the resulting distribution of the individuals is socially optimal for any N.

Claim 1. Let N >1. When after switching queues the order is preserved, then there exists only
one NE. In this NE, individual N —k stays in line A if k is even, and he switches to line B if k
isodd (k e{0,1,...,N =1}).

Proof. First, we note that the waiting time of individual i, i €{L 2,...,N}, depends only on his
choice of strategy and on the choices of individuals {i+1,i+2,...,N}, but it does not depend on
the choices of individuals {1,2,...,i—1} because they can never be ahead of him in the final
ordering in any queue according to the assumption that the initial order is preserved. Therefore,
we can find the NE sequentially, that is, by identifying the optimal strategy for individual N,
then by identifying the optimal strategy for individual N —1 (given that he can infer the optimal
strategy of individual N ), then by identifying the optimal strategy for individual N -2 (given
that he can infer the optimal strategy of individuals N and N -1), and likewise for each
individual down to individual 1, as long as each individual can infer the strategy choices of all
the individuals ahead of him in the initial queue. Bearing this in mind, we can proceed with the
proof of the claim using induction on k. Individual N is the first in line A. If he were to switch
queues, he would also be the first in line B. Because he has nothing to gain by switching, he stays
put, and the other individuals know that he will do so. Therefore, the basis of the induction holds
true for k =0: namely 0 is even, individual N -0= N stays in line A, and the other individuals

know that.

For the inductive step, we assume that for k €{0,1,...,k,}, individual N —k stays in line

A if k is even and switches to line B if k is odd, and that the other individuals know that. We

then need to prove that the same is true for k =k, +1.



First, we assume that k,+1 is odd. Then, from the induction protocol, individual

N —(k, +1) knows that from the group of k,+1 individuals originally preceding him in line A,

%H stay in line A, and k—2° switch to line B. Therefore, if individual N —(k, +1) stayed in line
A, then his waiting time there would be k—2°+2 minutes, and if he were to switch to line B, his

waiting time there would be %+1 minutes. Therefore, individual N —(k, +1) moves to line B,
and the other individuals know that.

Next, we assume that k,+1 is even. Then, from the induction protocol, individual

N —(k, +1) knows that from the group of k,+1 individuals originally ahead of him in line A,

k°2+l individuals stay in line A, and k°2+l individuals switch to line B. Therefore, individual

N —(k, +1) knows that his waiting time will be k°2+3 minutes, no matter whether he stays put

or switches queues. Because of the assumption that “if line B is equally attractive to an individual

as line A, then the individual stays in line A,” individual N —(k,+1) stays put, and every other

individual knows that.

Because both the induction basis and the induction step have been shown to hold, the
induction as a whole holds, and the distribution described in Claim 1 is the only possible NE.
Q.E.D.

From Claim 1 we infer that when on switching queues the order is preserved, the
individuals end up distributing themselves between the two queues in a NE so that the aggregate
waiting time is minimized (namely the distribution of the individuals between the queues is equal

when N is even, or is equal but one when N is odd) and, therefore, social welfare is maximized.



3. After a switch, the order is random

We now analyze a regime where the social convention has it that on switching queues, the order
is random, that is, with any configuration or sequence being equally likely, and considered by the

individuals as such. For example, if three individuals from line A decide to switch to line B, we

will have 3!=6 possible sequences, each occurring with probability %

In terms of guiding behavior, when it comes to switching queues, a social convention is
the equivalent of a heritage acquired from experiencing similar situations many times before, so
that when the opportunity to switch queues presents itself, the rules of engagement need not be
inferred or learned from sequential observations of the responses of others. Thus, rational and
sophisticated individuals proceed simultaneously and replicate solutions proven to be favored in
similar circumstances, namely, NE applies. As before, our interest is in finding out whether a
socially optimal equilibrium, defined as minimization of the total waiting time, can emerge from
the aggregate of the individuals’ actions. In this section we find that there are Nash equilibria that
are not socially optimal. Specifically, when N is sufficiently large (hamely when N >7), the

Nash equilibria are never socially optimal.

As a brief illustration of how a social convention gives rise to a switching outcome when
after a switch the order can be any, we consider the case of N =4. In this case, there are three
random-order sub-conventions. We name them “Upper half stay - bottom half switch;” “Stay -
switch intermittently;” and “Edges stay - in-between switch.” Common to the three sub-
conventions is that each constitutes a NE: the resulting distribution is stable in the sense that no

individual has an incentive to change his location decision when no-one else changes theirs.

The distribution of the four individuals between the two queues where each distribution

constitutes a NE are delineated in Figure 1: °

5 The reasoning why the “Upper half stay - bottom half switch” distribution constitutes a NE follows (the reasoning
why each of the other two distributions constitutes a NE is analogous). (i) Because individual 4 who is in line A is
already in the best possible position, he prefers to stay there. (ii) In the case of this distribution, the waiting time in
line A of individual 3 is two minutes. (Again, the waiting time is defined as the time it takes until processing is
completed, namely until individual 3 leaves the premises having been served.) If he were to switch to line B, he

would be one of three individuals in that line, and his expected waiting time there would be %: 2 minutes.
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Upper half stay - bottom half switch Stay - switch intermittently ~ Edges stay - in-between switch

Line A LineB Line A LineB Line A LineB
4 {21} 4 {31} 4 {32}
3 2 1

Figure 1. Distributions constituting Nash Equilibria for N =4 when on switching queues the

order in line B is random.

Note: In line B we use the notation {n, m} to denote that individuals n and m switched to line B,

where their order is random.

Clearly, we cannot predict which of the three social sub-conventions underlying the three
distributions will prevail. However, we know that as Nash equilibria, the three distributions are

the only ones to which a social convention of a random order on a switch can give rise.®

Claim 2. Let N >1. When after switching queues the order is random, then each NE satisfies the

N+2

following condition: {%J individuals stay in line A, and N —{ J individuals switch to

line B.”

Because of the assumption that “if line B is equally attractive to an individual as line A, the individual stays in line
A,” individual 3 stays in line A. (iii) In the case of this distribution, each of the two individuals 2 and 1 is in a similar
situation: his expected waiting time in line B is one and a half minutes, and if he were to stay in line A, his waiting
time there would be three minutes. Therefore, both individuals 2 and 1 prefer to abide by the “Upper half stay -
bottom half switch” social sub-convention, and they switch to line B. Thus, under the social convention “Upper half
stay - bottom half switch,” none of the four individuals has any incentive to deviate by changing his decision; the
distribution constitutes a NE.

& The assumption that a social sub-convention is in place is essential. Had the individuals not known which of the NE
will result from the prevailing social norm, they would have needed to guess the behavior of other individuals, and if
they failed to do so, they would end up with an outcome that does not constitute a NE. For example, without any
prior knowledge of the social convention, individual 3 may aim at the “Upper half stay - bottom half switch”
distribution, individual 2 - at the “Stay-shift intermittently” distribution, and individual 1 - at the “Edges stay - in-
between shift” distribution, thereby yielding the result that all the individuals end up staying in line A.

We also note that the set of Nash equilibria here is markedly different from the set in the parallel case when the order
in line B preserves the order in line A. In Section 2 for N =4 there is only one possible NE (individuals 4 and 2 stay
in line A, individuals 3 and 1 move to line B).

7 I_XJ denotes the largest integer that is not greater than x.
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Proof. We analyze the following distribution of the individuals between the two queues so as to
find for which K >0 the distribution in which exactly K individuals stay in line A constitutes a

NE. We can define such a distribution by dividing the individuals between two sets: individuals
NA (N-D*...,(N=K+D* who stay in line A and retain their ordering, and individuals
(N-K)?,(N-K-1)°%,...,2% who move to line B where they are ordered randomly.
(N (N-D*,...,(N-K+D* (N-K)®,(N-K-1)°%,...,1%) is a permutation of the set
{N,N —1,...,1} such that for any two numbers k and I, k >1 implies that k' >1' for i e{A, B}.
For example, for N=4 and K =2, we could have 4*=4,3"=2, 2% =3 1% =1 (the “Stay -
switch intermittently” distribution in Figure 1). To check whether the distribution displayed

above constitutes a NE, we ask whether any individual from line A would rather be in line B, and

whether any individual from line B would rather be in line A.

We start with the A-to-B switch. We look at individual (N -K +1)A who is the most

likely individual in line A to prefer being in line B because his waiting time in line A is the

longest. His waiting time in line A is K minutes, whereas his expected waiting time in line B

would be w minutes. This individual will prefer to stay in line A if and only if
K SN_TM. This inequality can be transformed into K < N+2 :

We next look at a hypothetical B-to-A switch. The expected waiting time in line B is

w. The waiting time of any individual k® from line B if he were to queue in line A

instead would be no longer than K +1 minutes because there would be no more than K
individuals before him in line A. If the analyzed setting constitutes NE, then no individual who is

in line B would rather be in line A. Thus, K+1>$, which can be rewritten as

kKs>N-L
3

In sum, if the distribution

11



Line A Line B

NA {(N=K)P(N-K-D)° 2%
(N-12)°
(N-K+1)"
constitutes a NE, then %< K< N+2 holds. K is an integer so, therefore, K =LN;2J.

Q.E.D.
For a large N, it is straightforward to see that K z% implying that about % of the

individuals will stand in line A, and about % of the individuals will stand in line B. If

(N- K)B >(N-K +1)A, then the condition K = t%J may not be sufficient for the analyzed

setting to constitute a NE. Additionally, the condition N +1—(N — K)B >¥ will need to

hold as well, because otherwise individual (N —K)B would prefer to stay in line A. This last

condition can be rewritten as (N - K)B <w, which states that in NE, if the individual is

assured of being sufficiently close to the front of line A, then the individual stays in line A.

The results obtained tell us that a socially optimal outcome will be possible only for very

N+2

small populations. Indeed, for N =2 and N =3 we have K { le, and for N =4 and

N+2

N =5 we have K :[ J: 2, and thus every NE for N <5 is socially optimal. For N =6 we

N+2

have K :L J: 2, but in this case, K =2 yields a NE that is not socially optimal. For N =7

we have K:N+2

=3, which yields a socially optimal NE. In general, for NE to be socially
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optimal, K > must hold. Therefore, for N >7, NE is never socially optimal because then

N-1 N+2 [NJFZJ
> > .
2 3 3

4. Refinements and robustness

The results described in this paper suggest that from the perspective of social welfare, a regime in
which on switching queues the initial order is preserved is better than a regime in which on

switching queues the order is random.

We are able to shed some light on the question as to which regime will be preferred by a
rational individual who does not know where he will be placed in the original queue. If the initial
order is preserved, then for an even population size N, the expected waiting time in each of the

two queues is the same and is equal to %4‘%; for an odd population size N, it is E+% in the

shorter queue, and %+% in the longer queue. If after a switch the order is random, then, as
shown in Section 3, in NE the queues will have different lengths, with line B being longer. On the
basis of the result in Section 3, that about 1 of the individuals will stay in line A, we can

conclude that the expected waiting time in line A will be %+% which is shorter than %4‘%

and that the expected waiting time in line B will be E+% which is longer than %+%

Nevertheless, if an individual assumes that he will be in each place in the original queue with

equal probability, then, in case of a random order in line B, he expects to end up in line B with a
probability of about % Therefore, his expected waiting time to be served will be approximately

%+%, which is longer than %+% Therefore, the individual will prefer the regime in which

the initial order is preserved.
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The assumption that switching queues is costless can be relaxed. Suppose that the value of

obtaining a gain of one position (namely one slot) is one, and suppose that on switching queues

the individuals incur a cost ¢ > 0. Then, in the case in which the order is preserved and N —| c |

N+|c| N-|c]
2 2

is even, individuals will stay in line A, and individuals will stay in line B. In

N+|c|+1

the case in which the order is preserved and N —LCJ is odd, individuals will stay in

line A, and

N—-fc|-1. .. . . - . . .
% individuals will stay in line B. Thus, the results reported in Section 2 will

hold if N—|c| is odd and c<1, or if N—|c| is even and c<2. If N is large and c is

relatively small, both queues will be of approximately the same length. In the case in which the

{N+2+ZCJ

order is random, individuals will stay in line A, and N —[WJ individuals

will stay in line B. Once again, if N is large and c is relatively small, then these results mimic
the ones reported in Section 3 where approximately one third of the population stays in line A. If

c is relatively large, then the results can significantly differ from the ones reported in Section 3.
. e L N-4 . . .
Interestingly, a specific large value of the cost of switching c == yields a socially optimal

equilibrium in which individuals are distributed evenly between the queues if N is even, or
evenly but for one individual if N is odd. An analysis of the case in which the individuals incur a

positive cost of switching queues is provided in the Appendix.

Suppose that whereas the individuals are rational - they prefer to be served earlier than
later - they are not sophisticated (not farsighted), that switching queues is costless, and that
switching back and forth is technically possible. We refer to the stages in the progression of the
switching steps as “periods.” Then, the result specified in Claim 1 will hold. Specifically, by
period N /2 if N is even, or by period (N —1)/2 if N is odd, none of the individuals will have an
incentive to switch queues again. Then, the N individuals will be divided between the two lines
evenly if N is even, or evenly but for one individual if N is odd. To see this, we note that in period
1, individual N who occupies the first spot in line A does not have an incentive to switch,

whereas all the other individuals will move to line B in order to gain a better position. Next, each
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of the individuals N —3, N —4, ..., 1 observes that he can obtain a better position (second) if he
were to move back to line A. Thus, individuals N -3, N -4, ..., 1 move to line A, and in period
2 the distribution of the individuals will be N in line A, N—-1 and N -2 in line B, and the
remainder of the individuals in line A. (Individual N —2 will not move back to line A because of
the assumption of no switching when there is a tie.) Once again, some individuals from line A,
specifically N -5, N -6, ..., 1, will have an incentive to move to line B. We can see that by
period N /2 if N is even, or by period (N —1)/2 if N is odd, all comings and goings will come
to halt. What remains to be characterized is the queue in which of individuals 1 and 2 will stand.
It turns out that the whereabouts of these two individuals depends on whether N is even or odd,
and on whether when N is even, whether N or N —2 is a multiple of 4, and when N is odd,
whether N —1 or N —3 is a multiple of 4. Specifically, we have the following characterization.
When N is even, then 1 and 2 are in different lines: if N is a multiple of 4, then 1 is in line A, and
2 isin line B; if N —2 is a multiple of 4, then 2 is in line A, and 1 is in line B. When N is odd,
then 1 and 2 are in the same line: if N —1 is a multiple of 4, then they are in line A; if N -3 isa

multiple of 4, then they are in line B.

The results obtained in the two preceding sections reveal a difference in terms of the
social welfare outcome between the two social norms studied: the one in which after a switch the
initial order is preserved, the other in which after a switch the order is random with every
possible order being equally likely. It is of some interest to ask how the results obtained would be
affected when the social norm in place is a “mix” of these two norms. Specifically, we could
consider a regime in which after a switch order is generally random, but the sequences are such
that on switching queues, individuals who were closer to the counter in line A will be more likely
to be closer to the counter in line B. For example, such a constellation could arise when the two
lines are parallel to each other with no barrier between them so that upon a switch individuals
who occupy a position in the front of line A have a shorter distance to cover to reach the front of

line B.

Suppose that M individuals, namely b,,b,,...,b,, , such that b, <b, iff i< j moved to

line B. There are various ways of formalizing the probability of an ordering of these individuals

in line B under a “mix” social norm. As an example, we consider the following procedure: first,
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we assign a position to individual by, . The probability that this individual will end up occupying

the k™ position in line B is given by

pk'V' = M (1)

(M +1-i)

i=1

The probabilities of occupying different positions by individual b,, in the sequence of M
individuals sum up to 1. Having assumed that individuals who were closer to the counter in line
A will be more likely to be closer to the counter in line B, the highest probability is accorded to
the outcome that individual b, will be the first in line B. After the position of individual b,, is
assigned according to the probabilities assessed, we consider next individual by, ,, and we use the
same assignment rule to accord him a position in the shorter sequence, namely in the sequence

b,b,,...,b,_,, where the probability that he will end up occupying the k™ position among

M —k)*
individuals b,,b,,...,b,, , is equal to PM™ :Q. After assigning a position to individual

(M _iy

by, ,, We repeat this procedure for individuals b, ,,b, ,,...,b,,b. As a result, for each

permutation ¢ :{1,2,...,M}—>{1,2,...,M}, when we define for each i e {L,2,...,M}

Y@ =#{]>i:0(]) <o)},

(with # denoting the number of elements of a given set), the probability that the ordering of the

individuals in line B from the first to the last is (bw b ), namely that for each

o’ qﬂ’l(Z)""’bf/fl(M)

ie{l,2,...,M} individual b. takes the ¢(i)-th place in the line, is given by
M -
P, = E[ Pot-wa-

Obviously, the probabilities of all possible permutations of the set {1,2,...,M} add up to 1.

As a numerical illustration, we consider the following distribution of N =8 individuals
between the two queues:
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Line A LineB
{7,5,4,2}

8
6
3
1

Here, M =4, b =2, b,=4, b,=5, and b, =7. To demonstrate how the probability of a given
ordering of the individuals in line B is calculated, we consider the specific sequence (4,7,5,2)
such that individual 4 is the first in line B, individual 7 is the second in line B, and so on. We

begin with individual 7 who according to the social norm “mix” has the highest probability

amongst {7, 5, 4, 2} of being the first in line B. We assume that the probability that he will end
(5-K)°

M

2 (5-i)

i=1

up occupying the k™ position in line B is given by (1) for M =4, namely P} = . In

the specific sequence (4,7,5,2), individual 7 is second in line B, an outcome occurring with
probability P, =0.3. After the probability for individual 7 is assessed, we analyze a smaller set

of individuals without him, namely the set {5, 4, 2}, and we consider the individual who,
according to the social norm “mix,” has the highest probability of being the first in line B if
individual 7 has not taken that position, or has the highest probability of being the second in line
B if individual 7 has taken the first position. In this particular case, the considered individual is 5,
so we calculate the probability that in the set {5, 4, 2} he will be the second. This probability is
P’ =0.286. We thereafter repeat the procedure; we analyze the set without individual 5, namely
the smaller set {4, 2}, and we calculate the probability that individual 4 will be the first in this

set. This probability is P? =0.8. Lastly, individual 2 is obviously the first in the set {2} and this,
of course, happens with probability B'=1. It follows then that the probability of the sequence

(4,7,5,2) inlineBis P'-P}-P*-P' =0.0686.

In a situation in which after a switch the order is random, with every possible order being
equally likely, we found that for N >7 socially optimal Nash equilibria are not possible. For
example, for N =8, three individuals will stay in line A, and five individuals will switch to line

B. In contrast, under a “mix” social norm, the socially optimal distribution
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Line A LineB
8 {7,5,4,2}

6
3
1

constitutes a unique NE.®

An analysis of the general case of N >7 individuals is complex and will depend heavily
on the functional form of the expression appearing in (1). For example, if in (1) we were to
eliminate the raising to the power of 2, then there will be no socially optimal NE for the case of
eight individuals. This consideration suggests that, quite intuitively, when in the regime “mix”
the probability of the sequence with the preserved order is high, then the results will be closer to
the ones obtained for the regime of preserved order.

5. Discussion

We have made several assumptions which, while applying in some real-life situations, may not
hold in others. These assumptions include that of a constant number of individuals in the queue,
and a constant serving time per individual. Here we comment on what could follow when these
assumptions are relaxed. We refer, first, to the assumption that there is a constant number of
individuals in the queue. A situation allowing individuals to join and leave is considered in the
majority of the received literature on queuing theory, as already noted in the Introduction. Our
case is different, and thus complements received treatments: other writings on queuing theory
focus, in the main, on the process of forming and disbanding the queues, while we study the
behavior of individuals who are already in a queue and who do not leave the facility until the
game that we model is concluded. Therefore, relaxing the assumption of a constant number of
individuals (N in our paper) will not deliver added value. To reiterate: what we consider is a
single game, based on a single decision, and without any repetitions and, therefore, the course of

time is not a factor in our model. To illustrate this vividly, consider a situation in which m

8 Because proving that such a configuration constitutes a unique NE is tedious, it is omitted here. The proof is
available from the authors on request.
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individuals are already waiting to be served, and k individuals are about to join the queue. These
last can join either before or after line B is formed and everyone who is queuing then decides if
he is going to stay in line A or move to line B. If the k individuals join before the decisions of the
m individuals are made, then they will be positioned at the end of line A, and we solve the game
for N =m+k individuals, as was already done earlier in the paper. If the k individuals join after
the decision is made, we solve the game for N =m before k join so that k have no impact on the
solution. Therefore, allowing the number of individuals to change will not be all that meaningful.
Put somewhat differently, we have studied a specific setting in which individuals are already
standing in front of an about-to-be-opened counter A, and an adjacent counter B, which will start
processing at the same time as counter A, will also be opened soon. Assuming that switching
from line A to line B happens immediately after the individuals observe the opening of counter B,
then the arrival of new individuals will presumably not affect the choice of the individuals who
are already in the queue, assuming that it is unlikely that new people will arrive at the same time
as individuals who are already in the queue find out about the opening of counter B. Nor is it
likely that new arrivals will join the queue in front of counter A anywhere but at the end of the

queue.

On the matter of changing the serving time per individual, we have the following
thoughts. If we assume that the serving time per individual is not fixed, but rather follows a
distribution that the individuals know, then assuming risk-neutrality, the individuals will be
concerned only with the mean of this distribution, which should not substantively affect our
reported results. And if we allow the serving time to vary but the expected time of service is the
same, nothing will change. (Guo et al., 2011 study a queue setting in which individuals who have
only partial information on service time adopt the maximum entropy principle in order to obtain
more information.) If each individual expects to wait for a different time, then anything can
happen. We can imagine an extreme case in which when N =100, and the serving time of each
individual but of N is 1 and the serving time of individual N is 500, then the solution will be that
N stays in line A and everyone else moves to line B. Considering cases such as this will not
provide us with any valuable insight into human behavior. However, even if it is rational to
expect that the service time for different individuals will not be the same, it may not be realistic

in some situations to assume that individuals in the queue are able to assess in advance the
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serving time of every other individual and incorporate that in their calculations of their own
expected waiting time. We have commented on this point early on: “Because information about
waiting costs is not public (Mitra and Mutuswami, 2011), and because self-interested individuals
do not internalize the waiting cost of others, introducing a differential waiting cost would entail

considerable complexity without adding insights to the issue.”

The problem of switching queues can be seen as a nice test of the rationale for the
prevalence and sustainability of a particular social convention. We have seen that under the
“guide” of the preservation of a queue order, but not (except when the population is particularly
small) under the guide of a random order, the behavior of selfish individuals who are not
concerned about the effects of their conduct on others adds up to the socially optimal outcome.
On the face of it, each of the two social conventions referred to in this paper has merit. Preserving
an order aligns with the notion of “preservation of property rights” and with an interpretation of
the concept of fairness, while a random order aligns with the notion of “equal opportunity” and
with yet another interpretation of the concept of fairness. It is difficult to identify the socially
preferable convention on the basis of abstract reasoning. The observed behavior of the
individuals switching queues under each of the alternative conventions can then be construed as a

social laboratory experiment that helps identify the socially preferable convention.

As a closing reflection, we note that it is possible to consider different regimes governing
the order of individuals on switching queues and (nearly analogously to the reasoning presented
in Section 2) even to prove a stronger version of Claim 1: if there exists any fixed, deterministic
regime that governs the possible order of the individuals in line B known and accepted by all the

individuals, namely if a permutation ¢ of the set {l,2,...,N} exists such that individual i
precedes individual j in line B if and only if ¢(i) > ¢(]), then there exists only one possible NE,

and that NE is socially optimal. That being said, we elected not to pursue this track because no
other deterministic regime seemed to us to be as natural and accepted as the one that we studied
in Section 2 (namely when ¢(k) =k for k e{l,2,...,N}).

20



Appendix

In this Appendix we inquire whether the results reported in Sections 2 and 3 hold when switching
queues subjects the individuals to a cost, ¢ > 0. We begin with the case in which on switching the

order is preserved, as described in Section 2.

Claim Al. Let N >1. When after switching queues the order is preserved, and on switching

queues individuals incur cost ¢ >0, then there exists only one NE. In this NE, individual

N—|c|-k stays in line A if k is even, and he switches to line B if k is odd

(ke{0,1,...,N —| c |-1}). Additionally, all the individuals from N to N —| c |+1 stay in line A.

Proof. The proof is analogous to the proof of Claim 1. The difference is that now, on account of

the cost, individuals from N to N —|_CJ stay in line A because switching queues does not confer

any gain. Then, an analogous induction reasoning can be made, with individual N —LCJ as a base

of induction. Q.E.D.

The distribution of the individuals between the queues is then as follows. When N —LCJ

N_TLCJ individuals will

is even,

N_TLCJ+LCJ=N+TLCJ individuals will stay in line A, and

N —LCJ+1+ _N+fc]+1

stay in line B. When N —| c | is odd, then

Lc]

individuals will stay in

line A, and %

individuals will stay in line B. If ¢>2, then K (as in Sections 2 and 3,
this is the number of individuals who stay in line A) satisfies the inequality:

N+|c N+|c
> ZL J> N2+1. Additionally, when N is even and c>1, then K > ZL Jz N2+1 a

K nd

because % is not an integer, K > N +1. Therefore, the obtained NE will be socially optimal

only if N isevenand c<1,orif N isoddand c<2.If N is large and c is relatively small,

then the two queues will approximately be of the same length.

We next turn to the case of random ordering of Section 3.
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Claim A2. Let N >1. When after switching queues the order is random, and when on switching

queues individuals incur cost ¢ >0, then each NE satisfies the following condition: {—N i §+ ZCJ

individuals switch to line B.

individuals stay in line A, and N _LMJ

Proof. Analogously to the proof of Claim 2, we analyze the following distribution of the
individuals between the two queues, so as to find for which K >0 their distribution constitutes a
NE:

Line A Line B
NS {(N=K)P(N-K-1)° 2%
(N-1)"
(N —k+1)A

We will refer to a waiting cost instead of a waiting time because now we are assuming
that the individuals value one minute as one. Alternatively, the cost ¢ could be counted in time

units, namely minutes.

As in Section 3, we start with the A-to-B switch. We consider individual (N -K +1)A

who is the most likely individual in line A to prefer being in line B because his waiting time in
line A is the longest. His waiting cost in line A is K, whereas his expected waiting cost in line B

would be N_TK+2+C. This individual will prefer to stay in line A if and only if

K< w-i- c. This inequality can be transformed into K < M

We next look at a hypothetical B-to-A switch. The expected waiting cost in line B is

MJFC. The waiting cost of any individual k® from line B if instead he were to queue in

line A would be not higher than K +1 because there would be no more than K individuals

preceding him in line A. If the analyzed setting constitutes NE, then no individual who is in line
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B would rather be in line A. Thus, K+1>M+c, which can be rewritten as

N -1+2c
>—".
3

K

In sum, if the distribution

Line A Line B
NA {(N=K)P(N-K-1)° 2%
(N-12)°
(N-K+1)"
constitutes a NE, then #< K sw holds. Because K is an integer, we obtain

that K ZLWJ QED.

If c is fixed, and N is large, then, similarly as in Section 3, K z% On the other hand, if

the cost of switching queues is relatively large, then that can significantly alter the results

reported in Section 3. Interestingly, when the large value of the cost of switching is ¢ :NT,

then K = L%J and, therefore, NE will be socially optimal, with the individuals distributed evenly

between the queues if N is even, or evenly but for one individual if N is odd.
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