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Abstract

Innovation in the agricultural sector will determine our ability to reduce food insecurity and feed 
nine billion people by 2050. Concomitantly, most of the world’s agricultural crop production is 
produced under heavily subsidized insurance. Changes in food security will be largely driven 
by the nexus of innovation, climate change, and the policy institutions under which production 
agriculture operates. In the United States, crop insurance subsidies increased from 30% to 60%
between 1994 and 2000, bringing about a significant increase in program participation. We use this 
increase as a natural experiment (event) to empirically estimate the impact of insurance subsidies 
on rates of technological change and measures of yield resiliency in corn (maize) yields. Our event 
results indicate that subsidies caused an increase in the rates of technological change and, more 
surprisingly, an increase in yield resiliency measures. However, point identification fails if there 
exist any confounding variables. Therefore, we use the spatial heterogeneity in our estimated event 
parameters to identify causal effects from three sources: introduction of genetically modified seeds, 
changing climate, and insurance subsidies themselves. Quite interestingly, the increase in the rates 
of technological change dissipates and the yield resiliency effect is reversed (consistent with theory). 
Furthermore, we find that the positive effects of genetically modified seeds dominate the effects from 
both changing climate and increased subsidies.
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1. Introduction

One of the biggest challenges facing global agriculture today is feeding the world’s growing

population – an estimated nine billion people by 2050 – as well as ensuring food security (Godfray

et al., 2010; Pretty et al., 2010; McKenzie and Williams, 2015). Technological advancements in

fertilizer, herbicides and pesticides, farm machinery, irrigation, and seed genomics have historically

allowed producers to substantially increase agricultural yields, often without the need to bring more

land into production (Evenson and Gollin, 2003; Godfray et al., 2010; Piesse and Thirtle, 2010;

Pisante, Stagnari, and Grant, 2012; Wright, 2012; McKenzie and Williams, 2015).2,3 Technological

change will undoubtedly determine our ability to increase or sustain high yields. However, food

security will also be affected by the institutions under which production agriculture (the farm

sector) operates.

Much of production agriculture in developed countries is produced under heavily subsidized

insurance and has been for the past 20-25 years. Moreover, crop insurance appears to be the

main avenue by which governments will continue to funnel monies into their production agriculture

sectors. In the United States and Canada, administrative and operating costs are fully absorbed by

the government and subsidies on crop insurance premiums are around 60% on average (Glauber,

2013; Ker et al., 2017; Rosa, 2018). In countries in the European Union, subsidies on premiums

range from 30% to 70% on average (for example, 46% in Austria, 49% in Spain, 64% in Italy,

and 65% in France) (Bielza et al., 2007; Enjolras and Sentis, 2011). In Brazil, premium subsidies

are almost 50% (Lavorato and Braga, 2018), and in China subsidies range from 50% to over 80%

(Wang et al., 2011). These subsidies have generated significant transfers of public monies to the

production agriculture sectors in each of these countries. With respect to the U.S. crop insurance

program, the total net cost between 2007 and 2016 was $72 billion – the second largest outlay in

the farm bill (nutrition being the largest). Of the $72 billion, 60% ($43 billion) was direct benefits

to farmers (Rosa, 2018). Unlike past transfers to farmers via price supports or direct payments,

2Such advances led to an over six-fold increase in corn yields and over three-fold increases in soybean and wheat
yields in the United States over the past century (Alston, Beddow, and Pardey, 2010; Piesse and Thirtle, 2010;
National Agricultural Statistics Service, 2019).

3Additional proposed ways to address the global food challenge include reducing food waste (Godfray et al.,
2010; Parfitt, Barthel, and MacNaughton, 2010; Foley et al., 2011) and reducing the overconsumption of calories and
animal-based protein sources, particularly beef (Godfray et al., 2010; Foley et al., 2011; Ranganathan et al., 2016).
However, both of these solutions could be challenging to implement because of increasing global wealth: both food
waste and meat consumption tend to increase with higher incomes.
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insurance subsidies can have a risk substitution effect as well as a wealth effect.4 Given that much

of the world’s crop production is produced under heavily subsidized crop insurance, subsidies may

very well have an impact on food security and adaptation to a changing climate.

The significance of food security has – unsurprisingly – spawned numerous studies on the in-

teractions between technological change in yields, yield resiliency, insurance subsidies, and climate

change. With respect to yield resiliency and climate change, Schlenker and Roberts (2009), Lobell

et al. (2013), Lobell et al. (2014), Tack, Barkley, and Hendricks (2017), and Tack, Coble, and

Barnett (2018) suggest that crop yields will experience a substantial decrease due to the increased

frequency of extreme heat and drought conditions. Others have considered the connection between

insurance subsidies and climate change. For example, Annan and Schlenker (2015) found that sub-

sidies disincentivized producers in mitigating the effects of a changing climate. Finally, a few studies

have considered the effects of genetically modified (GM) seeds on yield resiliency. For example,

Goodwin and Piggott (2019) find that GM advances have led to greater yield resiliency and suggest

that the somewhat dire predictions from the climate literature are not empirically warranted.5

In this manuscript, we use institutional changes in the U.S. crop insurance program to identify the

effects of insurance subsidies on the rates of technological change in yields and the various measures

of yield resiliency. Both the rates of technological change and yield resiliency play important roles

in overcoming food insecurity. We require two methodological innovations to identify these effects.

First, insurance subsidies would be expected to have heterogeneous effects between the upper and

lower tails of the yield distribution. To accommodate this, we use mixture methods which let the

data define the number of possibly heterogeneous and asymmetric yield responses to institutional

4Many suggest that moral hazard – using fewer risk-mitigating measures than without insurance – is a serious
problem for crop insurance (Chambers, 1989; Miranda, 1991). Empirically, Babcock and Hennessy (1996) and Smith
and Goodwin (1996) find that crop insurance decreases chemical input use. Antón et al. (2012) and Di Falco et al.
(2014) suggest that subsidized crop insurance may be a lower-cost substitute for on-farm adaptation measures. There
appears to be a consensus that increased subsidies will lead to increased risk as measured in the lower tail of the yield
distribution, i.e. subsidies should decrease yield resiliency. With respect to a wealth effect, Kirwan (2009) shows
that the vast majority of insurance subsidies remains with the producer and is not predominately captured by land
values. This finding is contradicted by Goodwin, Mishra, and Ortalo-Magne (2011) who conclude that land-owners
capture the majority of the benefits from agricultural policy. With respect to Canada, Rude and Ker (2013) show
that 45% of business risk management program payments remains with the producers. There does not appear to be
a consensus in the literature that increased subsidies would lead to increased on-farm wealth. Nevertheless, increased
wealth would lead to higher and quicker adoption rates of new technologies and, in turn, more innovations. In other
words, subsidies should increase the rates of technological change in yields.

5The first genetically modified crops – corn, soybeans, cotton, and canola – became commercially available in
the United States in 1996 and were rapidly and widely adopted by U.S. farmers (Fernandez-Cornejo et al., 2014).
These crops have traits that give them resistance to certain insects (Bt trait), as well as tolerance to herbicides such
as glyphosate (HT trait) which makes weed control easier. GM crop varieties can have either one of the traits (Bt or
HT) or both (stacked varieties) (Fernandez-Cornejo et al., 2014; McFadden et al., 2019). In 2013, 90% of total corn
acres in the U.S. were planted to genetically modified hybrids (Fernandez-Cornejo et al., 2014).
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changes. Moreover, this approach then allows us to introduce a set of yield resiliency measures not

previously considered. Second, we can only point identify the institutional changes if there are no

confounding events. Changing climate and the introduction of GM seeds are possible confounding

events. To establish identification, we subsequently model the spatial heterogeneity in our event

parameters as a function of total subsidies (instrumented by 1995 premium rates), adoption of GM

seeds, and changing climate. These two methodological innovations allow us to exploit heterogeneity

(within the yield distribution and across space) for identification purposes.

The remainder of this manuscript proceeds as follows. In section 2, we discuss the U.S. crop

insurance program, the institutional changes with respect to subsidies, and the accompanying

responses in program participation. We outline our data in section 3 and our empirical approach

in section 4. In section 5, we discuss the estimation results. We conclude with section 6, in which

we emphasize the food security implications of our results.

2. U.S. Crop Insurance Program and Identification of the Effects of Subsidies

The U.S. crop insurance program covers over 100 different crops, ranging from traditional ones

like corn, soybean, cotton, and wheat to specialty crops like grass seed and sunflower. More recently,

insurance programs for livestock and dairy production have also been introduced. The Congres-

sional Budget Office estimates that spending of public monies on agricultural insurance programs

will be almost $90 billion for the 2014-2023 period. Individual farm revenue and yield insurance

are the predominant programs, but other programs such as shallow loss and area-yield and area-

revenue insurance also exist. The insurance program is operated by the Risk Management Agency

(RMA), an arm of the United States Department of Agriculture (USDA). RMA sets premium rates,

subsidizes those premiums, and shares the underwriting gains and losses of the insurance contracts

with private insurers. The premium rates are set to be actuarially fair with an 11% top-up for

reserves; unlike in private insurance markets, there is neither a risk premium nor a premium to

cover a return to capital. Program participation has increased substantially since its introduction,

especially following Acts in 1980 and 1994. Percent of eligible acres enrolled in the program grew

from only 12% in 1980 to over 86% in 2015, and the number of insured crops increased from 28 to

123 over this same time period (Rosa, 2018). The greatest spike in participation followed the 1994

Act, mainly because of the mandatory enrollment requirement for eligibility under other programs.

Participation then decreased somewhat after this eligibility requirement was repealed in 1996 (see
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Table 1). To encourage participation, particularly in buy-up coverage, Congress passed ad hoc

disaster legislation in 1998, 1999, and 2000 (Glauber, 2004) and provided supplemental premium

subsidies in 1999 and 2000 (Glauber, 2013). However, as seen from Table 1, program participation

in buy-up only increased substantially after premium subsidies were further increased in the 2000

Act.

The Federal Crop Insurance Reform Act of 1994 and the Agricultural Risk Protection Act of

2000 represent a unique natural experiment which can be used to analyze differences in the rates

of technological change and yield resiliency before and after the subsidy increase. As seen from

Table 1, participation in the crop insurance program increased dramatically after the 1994 Act.

Participation in buy-up coverage notably increased after the 2000 Act. Thus, in our analysis we

used the 1994 Act as the start of the event.6

Table 1. Percentage of corn acres insured in the Federal Crop Insurance Program.

1994 1995 1996 1997 1998 1999 2000 2001

Illinois Total acres insured 31.6 85.6 67.0 57.8 59.6 64.2 67.1 66.7
Insured in buy-up 30.2 36.3 31.8 24.6 21.6 16.8 54.6 55.0

Indiana Total acres insured 21.9 72.7 48.4 44.1 45.0 51.0 59.8 57.8
Insured in buy-up 21.5 26.1 21.1 14.4 11.1 10.2 52.0 50.7

Iowa Total acres insured 55.6 90.2 48.8 78.5 78.2 80.2 82.9 83.7
Insured in buy-up 52.2 58.3 20.5 16.8 15.3 11.5 74.5 75.5

Minnesota Total acres insured 63.0 88.2 79.5 80.0 81.5 81.6 84.6 86.7
Insured in buy-up 52.4 52.5 31.9 27.8 26.7 19.6 69.0 71.7

Ohio Total acres insured 15.8 73.8 56.6 38.5 38.8 44.4 48.8 51.3
Insured in buy-up 15.1 20.2 31.9 17.1 12.9 10.6 39.8 42.9

Wisconsin Total acres insured 39.4 68.3 53.4 44.6 46.8 47.9 53.0 54.0
Insured in buy-up 27.2 23.6 32.3 23.8 22.6 19.3 52.2 36.4

S. Dakota Total acres insured 59.2 130.3* 91.8 91.2 87.0 97.2 89.9 103.4*
Insured in buy-up 44.3 67.4 37.7 32.3 31.7 23.5 75.3 89.9

Notes: Numbers reported are acres insured as a percentage of total acres planted. Acres insured in buy-up are
acres insured at 65% coverage or higher (i.e. above CAT coverage). Percentages were computed using USDA Risk
Management Agency (RMA) Summary of Business data and USDA NASS crop acreage data. For South Dakota,
percentages of acres insured in 1995 and 2001 are over 100% due to the total acreage planted as reported by USDA
NASS being smaller than the acreage insured as reported by USDA RMA.

6We performed the analysis using year 2000 as the start of the event and the results did not change in any material
way.
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As discussed, we use the premium subsidy increase from 30% to 60% between 1994 and 2000 as a

quasi-experiment to empirically estimate the impact of insurance subsidies on rates of technological

change and measures of yield resiliency. Our approach is to compare the component specific slope

parameters before and after the event using dummy variables to identify the change. However,

these dummy variables identify the average effects in aggregate of any changes post 1994. For this

to identify the subsidy effect, there must be no confounding variables. However, there are two

possible confounding events: changing climate and the introduction of GM seeds. As a result, the

estimated dummy variables do not identify the subsidy effect but instead represent the aggregated

effects of changing subsidies, changing climate, and the introduction of GM seeds.

Note that we undertake our analysis for 400 counties independently and thus have 400 county-

level post 1994 effects. Moreover, we expect heterogeneity in these effects because of heterogeneity

in the changing subsidies, changing climate, and adoption of GM varieties. We can use this spatial

heterogeneity for point identification of the effects of subsidies, changing climate, and GM seeds by

using the estimated dummy variables as our response variables, and subsidies, changing climate,

and adoption of GM seeds as our regressors. Specifically, we use 70% coverage level premium

rates in 1995 as an instrument for total subsidies post 1994 to remove any potential issues of

endogeneity due to reverse causation. Changing climate is a collider variable, as defined by Lewbel

(forthcoming), and so we use the 1995-2017 trends in various climate variables. Finally, we use the

2000 state-level GM adoption rates – although GM seeds were introduced in 1996, adoption rate

data begins only in 2000. Note that a reverse causation argument could be made here: increased

subsidies caused increased innovation which may have led to GM seeds. However, research spending

and innovation in GM technology preceded the 1994 subsidy increase by at least a decade, and so

this form of reverse causation is unlikely. A self selection argument could also be made in relation to

adopters knowing that they would experience the greatest gains. To minimize this potential issue,

we only use the first available adoption rates (in 2000). Note that others have also exploited spatial

heterogeneity to distinguish between climatic and non-climatic effects in yields (e.g. Nicholls, 1997;

Lobell and Asner, 2003; Lobell and Field, 2007; Tao et al., 2008; Zhang et al., 2016; Feng et al.,

2018; Kukal and Irmak, 2018).

In this secondary regression – the regression of estimated dummy variables on premium rates,

climate trends, and GM adoption rates, – the conventional standard errors are biased downwards

because they do not account for the fact that our response variable is estimated. We account for
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this using jackknife methods. The jackknife is preferable to a bootstrap in our context. First, it

is well known that residual bootstraps are invalid in the presence of conditional heteroscedasticity,

which we expect in the initial regressions. Second, while the wild bootstrap is robust to conditional

heteroscedasticity, perturbing the sign of residuals necessarily imposes symmetry, whereas our mix-

ture models indicate asymmetry. Third, bootstraps for spline estimates typically use residual or

wild bootstraps because paired bootstraps bias the knot estimates (e.g. Wang, 1995). The jackknife

circumvents these three issues. Specifically, our jackknife drops one year of the panel in each itera-

tion, thereby maintaining robustness to the presence of spatial dependence, along the lines of Hahn

and Newey (2004). The jackknife is a linear approximation to the bootstrap but is biased upwards

relative to the bootstrap (Efron and Tibshirani, 1993). Given this upward bias, for comparison we

also report conventional standard errors.

It is worth noting that the existing literature measures the effects of technological change on

yields almost exclusively by estimating changes in productivity with respect to time. Given the

vast number of technological advances in seed, machinery, inputs, and farm management technolo-

gies with varying and unknown rates of adoption, pinpointing the effect of a given technology is

empirically impossible unless experimental plot data is used. As a result, technological change is

measured by time and reflects not only changing technology but also its interactions with changing

policy, changing climate, changing farm management strategies, etc. Therefore, consistent with the

literature, we use time to model technological change and explicitly recognize that what we are

capturing is technological change interacting within its production environment.

3. Data

We obtained county-level corn yield data from the National Agricultural Statistics Service

(NASS) of the USDA. The most complete data was available for the time frame of 1951 to 2017

(67 years). To be included in the analysis, the following criteria had to be met: (i) counties had

to have complete 67 years of data; (ii) states had to have 25 or more counties with complete 67

years of data; and (iii) less than 10% of state acreage had to be irrigated as reported in the 2012

Census of Agriculture. Seven states met the inclusion criteria: Illinois (IL), Indiana (IN), Iowa

(IA), Minnesota (MN), Ohio (OH), South Dakota (SD), and Wisconsin (WI). These seven states

accounted for 62% of total corn produced in the United States in 2017. In total, our data set

consisted of 414 corn counties. We focus on corn yields because corn is the most important and
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globally grown grain crop. It serves both as a food staple and as livestock feed. The U.S. is the

largest global producer of corn; in 2018, it accounted for 366.29 million metric tonnes of the total

1107.38 million metric tonnes produced globally.

For our causal analysis, we need an estimate of the 1995 premium rates, GM adoption rates, and

climate change trends. We used estimated premium rates for 1995 at the 70% coverage level as

an instrument for total subsidies between 1995 and 2017. To obtain the estimated 1995 premium

rates, we re-estimated the county models without the event parameters using yield data from only

1951-1994. This avoided any possible reverse causation issues. We also obtained state-level data

on the adoption of GM corn from the USDA (county-level adoption data was not available). The

earliest year for which adoption information was available is 2000. Summed across all GM varieties

(insect-resistant, herbicide tolerant, and stacked), the percentage of corn acres planted to GM seed

in 2000 was 17% in Illinois, 11% in Indiana, 30% in Iowa, 37% in Minnesota, 9% in Ohio, 18% in

Wisconsin, and 48% in South Dakota.

With respect to climate data, we obtained daily temperature (in degrees Celsius) and precipita-

tion (in millimeters) data from weather stations across the United States from the NOAA National

Climate Data Center for the time frame of 1951 to 2015. This data was used to compile a data

set of six climate variables: growing degree days (GDD), extreme temperature degree days (HDD),

vapour pressure deficit over the entire growing season (VPD), vapour pressure deficit during July

and August (VPDja), precipitation over the entire growing season (PCP), and precipitation during

July and August (PCPja). These six chosen variables have the strongest relationship with yield

and are most commonly used in the literature (e.g. Cabas, Weersink, and Olale, 2010; Lobell et al.,

2013; Roberts, Schlenker, and Eyer, 2013; Lobell et al., 2014; Annan and Schlenker, 2015; Tolhurst

and Ker, 2015; Burke and Emerick, 2016). Growing degree days measure the number of days that

a crop is exposed to temperatures below the critical threshold (29 degrees Celsius for corn) and

have a positive relationship with yield. Extreme temperature degree days are the number of days

that a crop is exposed to temperatures above the critical threshold and thus have an inverse re-

lationship with yield. Vapour pressure deficit can influence yield both positively and negatively,

and thus its relationship with yield is an empirical question, as discussed by Roberts, Schlenker,

and Eyer (2013). On the one hand, vapour pressure deficit is related to relative humidity, with

a larger value implying a lack of moisture and thus having a negative impact on yield. On the

other hand, vapour pressure deficit is associated with diurnal temperature variation (the difference
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between daily minimum and maximum temperatures) which is in turn correlated with less cloud

cover and more solar radiation, therefore having a positive impact on yield (Roberts, Schlenker,

and Eyer, 2013). Precipitation has a positive relationship with yield up to a particular point after

which excessive precipitation starts to have a decreasing effect on yield due to waterlogging and

oxygen deficiency.

4. Mixture Models

Studies such as Chambers (1989), Miranda (1991), Smith and Goodwin (1996), Antón et al.

(2012), and Di Falco et al. (2014) argue that subsidies lead to a shifting of risk away from on-

farm measures to crop insurance. While this effect would be evident in our standard measures

of variance, it would result in vastly different changes in the lower and upper tails of the yield

distribution. That is, shifting from on-farm risk mitigation efforts to subsidized insurance would

lead to a longer lower tail in the observed yield distribution and not necessarily any effect in the

upper tail. Standard metrics of variance are symmetric and thus would mute the risk substitution

effect relative to more appropriate metrics that can measure differing volatility changes between

the tails. A technique based on mixtures is proposed. Mixtures let the data determine the number

of possibly heterogeneous yield responses to technological change, subsidies, climate change, etc.

Furthermore, using mixtures generates some interesting and new measures of crop yield resiliency

(discussed later).

In general, a mixture model with J components is defined as:

(1) f(yt) =
J∑
j=1

λjfj(yt).

Note, fj(yt) is a continuous density and λk corresponds to the mixing weights where
∑J

j=i λj = 1.

We assume that the component densities are normal. A mixture of normals can approximate

any continuous density to any desired level of error (Everitt and Hand, 1981). The number of

components is chosen using information criterion across one, two, and three components (J =

1, 2, 3). We follow Anderson, Pittau, and Zelli (2016) and consider Akaike Information Criterion

(AIC), AIC with a parameter penalty factor of two, Bayesian Information Criterion (BIC), and the

Consistent Akaike Information Criterion (CAIC). In more than 95% of the counties, the number of

components was two and so that was imposed for all counties.
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The normal mixture model has been used by Tolhurst and Ker (2015) and Ker, Tolhurst, and

Liu (2016) to model yields. Given J = 2 and our normality assumption, we have:

(2) yt ∼ λN(αl + βlt+ δltI[1995,T ](t), σ
2
l ) + (1− λ)N(αu + βut+ δutI[1995,T ](t), σ

2
u)

In this model, λ is the probability of the lower component, αl + βlt + δltI[1995,T ](t) is the lower

component conditional mean, and αu+βut+δutI[1995,T ](t) is the upper component conditional mean.

The lower and upper component variances are σ2l and σ2u, respectively. The event parameters of

interest are δl and δu; they represent the changes in the rates of technological change in the lower

and upper components, respectively, post 1994.

As is commonly done with mixture models, we use the expectation-maximization (EM) algorithm

to estimate the unknown parameters (Dempster, Laird, and Rubin, 1977). The EM algorithm solves

the incomplete data problem that we do not know which component the yield realization is drawn

from. If such information was known, we would simply estimate the parameters of the component

distribution with the subset of data realized from the distribution with standard likelihood or

moment methods. This is the maximization or M-step. The EM algorithm replaces the true

unknown memberships with estimates of the expected membership recovered from the estimated

conditional probabilities of component membership. This is the expectations or E-step. The

process is iterated until convergence. Because local optimums can be found, the process is repeated

for multiple starting membership assignments to ensure that a global optimum is found, and the

maximum of the various maximized likelihoods conditional on the set of starting values is chosen.

We impose two restrictions on our estimated parameters. First, αl ≤ αu: the component conditional

means processes do not cross at the beginning of the sample (this can occur because of the bunching

of the data in the early period). This restriction, tested using a Likelihood Ratio test, was only

rejected in a few counties and below the size of the test. Similarly, we also restrict the conditional

means to not cross post 1995. Again, this was only rejected in a few counties and well below the

size of the test.7 Finally, we restrict the component variances away from zero.8

7We removed counties with a persistent crossover issue from our analysis. This resulted in the removal of 18 out
of 414 (4.3%) counties.

8Another issue with the EM algorithm in small samples is that the component probabilities tend to be biased to
1/J . Therefore, using our parameter estimates from the EM algorithm as starting values, we subsequently maximized
a penalized (in the direction of the bias) likelihood. A standard squared term in the direction of the bias was used as
the penalty and 50 levels of tuning parameters were considered (the tuning parameter puts more or less weight on the
penalty relative to the likelihood). This led to 50 additional sets of parameter estimates. Our chosen final estimate
was the set of parameters that maximized the unpenalized likelihood from amongst the 51 sets of parameters. That is,
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Recovering the Risk Substitution Effect and Yield Resiliency Measures

Yield resiliency is important in meeting future food demand at affordable and stable prices,

particularly in a changing and more volatile climate. In the crop science literature, yield resiliency

is typically defined as the ability of a crop to retain its productivity following environmental stresses

(Holling, 1973). Methods of measuring yield resiliency include, but are not limited to, determining

the plant biomass after recovery and resurrection from stress (Lukac et al., 2012; Gaudin et al., 2013;

Griffiths et al., 2016) and estimating the ratio of crop productivity to severeness of stress (Simelton

et al., 2009). These measures, while appropriate for plot data on yields, are not very helpful in

measuring yield resiliency beyond the specific plant. There is no consensus in the climate change

or agricultural economics literature on measures of yield resiliency. Nonetheless, the literature has

almost exclusively found yield resiliency decreasing (as measured by some increase in mass in the

lower tail) and offered a number of explanations. For example, Tack, Coble, and Barnett (2018),

Lobell et al. (2014), and Burke and Emerick (2016) suggest that the changing climate has been

negatively influencing yield resiliency. Ker et al. (2017) and Annan and Schlenker (2015) suggest

that the decrease in resiliency was driven by high insurance subsidies. Finally, Ker et al. (2017)

suggest that increases in technology have lead to increased planting densities, creating greater

sensitivities to climate. In contrast to the above, Goodwin and Piggott (2019) compare corn yield

responses between the droughts of 2005 and 2012 and suggest that the introduction of biotech seeds

has lead to greater yield resiliency.

Our two-component normal mixture model allows us to formalize a number of yield resiliency

measures with respect to changes in the yield distribution. First, we consider whether the probabil-

ity of the lower component is increasing or decreasing through time. If the probability is decreasing

through time, then yields are becoming more resilient. We term this measure probability yield

resiliency. It is recovered by regressing the component probabilities within the sample against

time:

(3) ωt = αλ + βλt+ δλtI[1995,T ](t) + νt

only if the penalized maximization resulted in parameter estimates that lead to an optimum with a higher likelihood
than the EM algorithm were those parameters used.
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where αλ is the intercept, βλ is the slope representing the change in the probability of a low yield

over time, and δλ is the change in the slope after 1995. Note that probability yield resiliency is

increasing if δλ > 0.

We consider two additional measures of yield resiliency taken from the economic growth literature

which uses mixtures to measure polarization/convergence between sets of countries in poverty

measures. We are obviously concerned with the polarization or convergence between yields from

the lower component and yields from the upper component. First, consider the following metric:

(4) θt =

∫ ∞
−∞

min{ft(y), gt(y)}dy

where ft(y) and gt(y) are density functions. θt has been used to measure changes in economic

polarization or convergence over time between two groups (see Anderson, Leo, and Muelhaupt,

2014; Anderson, 2010; Anderson, Pittau, and Zelli, 2016). Asymptotic properties are investigated

in Anderson, Linton, and Whang (2012). Note that θt ∈ [1, 2], where θt = 1 is indicative of

complete convergence as the densities are necessarily identical and θt = 2 is indicative of complete

polarization where the densities necessarily do not overlap. As stated, we use this quantity as a

measure of polarization/convergence between the upper and lower component densities of our yield

mixture model over time. We consider the following two measures of yield resiliency. First, we

define yield resiliency as increasing if the rate of polarization decreases post 1994. We define this

as marginal yield resiliency and represent it by an indicator variable, denoted Rm, equal to 1 if

dθt
dt |t=1994 <

dθt
dt |t=1995 and 0 otherwise.9 Second, we define a stricter measure of yield resiliency,

termed absolute yield resiliency. This measure reflects whether polarization is increasing in absolute.

We define a second indicator variable, denoted Ra, equal to 1 if dθt
dt |t=1995 > 0 and 0 otherwise.

Note, if Rm = 1, then Ra = 1.

5. Estimation Results

In this section, we report the results of our estimation, testing, and causal effects analysis.

Figures 1a and 1b illustrate two examples of the component trends from our estimated mixtures.

As seen from Figure 1a, the rates of technological change (i.e. slopes) in Stark County, Illinois,

are positive and have increased in both the lower and the upper components post 1995, more so

in the lower component. In Medina County, Ohio (Figure 1b), the rates of technological change

9We necessarily define this measure as a change in the first derivative, as the second derivative is not continuous
given θt is a piecewise linear function.
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(a) Stark County, Illinois (b) Medina County, Ohio

Figure 1. Model estimation results for two representative corn counties.

are again positive but appear to be decreasing post 1995 in the upper component and increasing

in the lower component. In addition, both plots illustrate that the probability of a draw from

the lower component is roughly 10-20%, and, while relatively constant across the years for Stark

County, the draws appear to be increasing in frequency for Medina County. These counties are

fairly representative of our overall results: pre 1995, the rates of technological change are positive

in both components but noticeably higher in the upper component, and post 1995 the change in

the rate of technological change in the lower component tends to be sizeable and positive while the

change in the upper component tends to be smaller.

All parameter estimates from our mixture model are summarized at the state level in Table 2.

There are a number of interesting results. First, we find that βu > 0 and βl > 0, indicating overall

increases in yields from technology. Second, consistent with Tolhurst and Ker (2015) and Ker and

Tolhurst (2019), we find that βu > βl for all states, indicating an increasingly longer lower tail of

the yield distribution, i.e. asymmetric heteroscedasticity and decreasing yield resiliency. Third, λ –

the overall probability of the lower tail component – represents roughly 20% of the yield realizations

and is spatially quite consistent.

Focusing on the estimates of our event parameters (δl, δu, and δλ), we also find a number of

interesting results. First, in four of the seven states we find that δl > δu, in contrast to our pre-

1995 slope coefficients where βu > βl (but note that δl and δu are measured as changes relative

to those pre-1995 slopes (i.e. βu and βl) rather than absolute measures). These results suggest

a decreasing longer lower tail and increasing yield resiliency post 1994. Second, the boxplots in
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Table 2. Corn mean parameter estimates.

Illinois Indiana Iowa Minnesota Ohio Wisconsin S. Dakota

λ 0.188 0.196 0.178 0.230 0.270 0.240 0.171
αu 53.614 50.548 51.298 40.342 48.977 51.464 18.939
αl 48.602 49.081 46.800 38.775 48.245 48.584 18.124
βu 1.935 1.966 2.035 1.997 1.926 1.627 1.540
βl 0.963 1.099 0.964 0.925 1.108 0.833 0.669
δu 0.291 -0.280 0.351 0.786 -0.209 0.358 1.904
δl 0.056 -0.526 2.148 3.198 0.433 1.102 1.445
σu 12.034 10.124 10.533 8.719 8.381 8.225 12.129
σl 10.902 11.730 11.505 11.086 11.293 8.372 6.208
δλ -1.422 -0.708 -0.841 -0.103 -0.939 -0.501 -0.156

Figure 2 illustrate much greater variability in our estimates of δl versus δu. This is because the

lower component has much less mass (and yield realizations), and, therefore, estimates of the lower

component parameters necessarily tend to have greater uncertainty. Third, δλ is very small for

all states, indicating very little change between pre and post 1994 regarding the probability of a

draw from the lower tail component and suggesting little change in yield resiliency as defined by

the probability of a draw from the lower tail component. The estimates of δl and δu are presented

in more detail in the boxplots in Figures 2a and 2b. Similarly, our measures of risk and yield

resiliency, δu− δl and δλ, are presented in Figures 2c and 2d. Other than the probability of a draw

from the lower component (λ), we definitely see heterogeneity across the states in our estimated

parameters. The appendix geographically illustrates the event parameter estimates. Particularly

interesting is that both δl and δu are higher in the northwest and systemically decrease as you move

southeast. Interestingly, we see that δu−δl (where a greater difference suggests increasing volatility

or decreasing yield resiliency) is increasing as you move from the northwest to the southeast. We

do not see any significant geographical clustering of the probability of a draw from the lower tail

(λ). Conversely, we do see δλ decreasing as we move from the northwest to southeast.

5.1. Testing

The results of our hypothesis tests are given in Table 3. Overall, about one-third of all counties

rejected the null hypothesis that either one of the δj ’s or both are zero. In over 80% of these counties

across all states, the change in the rate of technological change in both components was positive,

and was greater in the lower component (i.e. δl > δu). This is strong evidence of increasing

yield resiliency post 1994 as measured by the lower component mean converging to the upper
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(a) Estimates of δl (b) Estimates of δu

(c) δu − δl (d) Probability of a low yield, λ

Figure 2. Estimates of δj and the probability of a low yield for corn counties
by state. Red line at zero in (A)-(C) is drawn for reference to make it easier to
distinguish between positive and negative values.

component mean. Indiana and Ohio somewhat differ from this overall average, with δu’s in many

of their counties being significantly negative. With respect to the probability of a draw from the

lower component, none of the estimated δλ parameters were significantly different from zero. This

suggests no change in yield resiliency as measured solely by a decreasing probability of a yield draw

from the lower tail component. Overall, these results indicate very strong changes in the parameters

of the mixture models post 1994. In most event studies, these changes would be attributed to the

event effect, i.e. the increases in subsidies.
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Table 3. Test Results: Number of Rejections.

State N δl = 0 δu = 0 δl = δu δλ = 0

Illinois 71 23 18 19 0
Indiana 60 13 12 14 0

Iowa 86 33 28 29 0
Minnesota 51 34 26 28 0

Ohio 57 7 12 9 0
Wisconsin 48 15 19 13 0
S. Dakota 23 12 23 14 0

Total 396 137 138 126 0

Notes: Some counties were removed due to convergence issues, so the number of counties used for testing does not
add up to the 414 counties initially included in the data set.

5.2. Causal Effects

As discussed, we take these event parameter estimates (δl, δu, δu − δl, δλ) and model them as

functions of a changing climate, the subsidy instrument, and GM adoption rates. Note that δl

and δu, which represent changes in the component slopes, represent more location-type measures

of yields, while δu − δl and δλ can be considered more yield resiliency measures and arguably more

important for issues of the effect of subsidies on year-to-year food security. We also consider two

additional measures of yield resiliency: marginal yield resiliency, denoted by Rm ∈ {0, 1}, where

Rm = 1 represents a decreasing rate of polarization between the lower and upper component of the

yield distribution, and absolute yield resiliency, denoted by Ra ∈ {0, 1}, where Ra = 1 represents

increasing convergence of the lower component to the upper component.

Table 4 reports the results.10 The results are notable. First, with respect to our two location

measures (δl and δu) and climate, we find that an increasing GDD is positive and significant

(under conventional standard errors) on the upper component slope but insignificant on the lower

component slope, while an increasing HDD is insignificant on the upper component slope but

negative and significant on the lower component slope, all as expected. With respect to the premium

rates – our instrument for subsidies – we find that the slope coefficients are positive (which is

consistent with a wealth effect) but very insignificant. We find that GM seeds are positive and very

significant.

With respect to our yield resiliency measures, we find an increasing HDD causing an increase

in δu − δl and therefore decreasing yield resiliency. The other three measures of yield resiliency –

10Not all counties in the crop yield data could be paired up with climate data due to missing data in the climate
data set. This required the removal of 7 counties.
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Table 4. Event Parameter Regressions.

Location measures Resiliency measures
δl δu δu − δl δλ Rm Ra

∆GDD 0.152 0.252** 0.101 0.244* 0.029 -0.022
∆HDD -2.598*** 0.304 2.902*** 0.074 -0.242* -0.224
∆V PD 0.506 -0.382 -0.888 -0.834** -0.173 -0.090
∆V PDja -1.514* -0.268 1.246 0.580 0.168 0.297
∆PCP 0.038 -0.027** -0.065* -0.046*** 0.002 -0.004
∆PCPja -0.200*** 0.023 0.223*** -0.007 0.002 -0.000
Rates1995 0.004 0.148 0.145 0.205 -0.136** -0.170**
GM2000 0.074*** 0.033***† -0.040*** 0.013** 0.009*** 0.016***

R2 0.344 0.407 0.260 0.157 0.130 0.165
Wald test overall *** ***††† *** *** *** ***
Wald test climate *** *** *** *** *** ***

Note : Statistical significance is indicated by ∗, ∗∗ and ∗∗∗ for the 10%, 5% and 1% levels under conventional standard
errors. Statistical significance is indicated by †, †† and ††† for the 10%, 5% and 1% levels under jackknife standard
errors. For joint significance, it was necessary to construct the jackknife covariance matrix using Shao (1992).

δλ, Rm and Ra – are increasing in greater yield resiliency, and we would therefore expect opposite

signs to δu− δl, which decreases with greater yield resiliency. Not surprisingly, we do find opposite

signs for most parameters but also very little significance. We only find HDD decreasing yield

resiliency as measured by Rm. Note that Rates1995 appear to cause a decrease in yield resiliency

as measured by Rm, Ra and δu − δl, but are only significant for the first two measures based on

the polarization/convergence of the mixture components. These results are consistent with other

findings in the literature (e.g. Lobell, 2014). Finally, as expected, GM seeds adoption increases

yield resiliency by all four measures and is statistically significant with all four measures.

Most interestingly, our initial event analysis would suggest significant wealth effects in terms of

increased rates of technological change and significant perverse risk effects in terms of increased

(not decreased) yield resiliency, both caused by increased subsidies. In fact, this is not the case.

When we account for confounding events such as a changing climate and the introduction of GM

seeds, we see a very different result. Increased subsidies had little to no effect on the increased rates

of technological change and did, in fact, decrease, not increase, yield resiliency. Both results are

consistent with literature. Goodwin, Mishra, and Ortalo-Magne (2011) indicate that the majority

of income transfers is capitalized into land. Second, Annan and Schlenker (2015) find that insurance

subsidies decrease mitigation efforts, thereby decreasing yield resiliency.
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As mentioned earlier, the conventional standard errors are biased downwards as they do not

account for the response variable being estimated. When we account for this using jackknife

standard errors, only the GM seed effect remains significant in the δu equation. The differences in

the standard errors are non-trivial, with jackknife standard errors increasing by 500-600% relative

to the conventional ones in most cases. The standard errors are reported in the appendix. Note

that while the conventional standard errors are biased downwards, the jackknife standard errors

are biased upwards, and so the true unknown standard errors lie somewhere in between.

6. Conclusions

This manuscript is among the first to consider the nexus of insurance subsidies, changing climate,

and GM seeds on measures of both technological change and yield resiliency. This is important

because innovation in the agricultural sector will determine our ability to feed nine billion people

by 2050, and, concomitantly, most of the world’s agricultural crop production is produced under

heavily subsidized insurance. We used the subsidy increase in the U.S. crop insurance program in

the mid to late 1990s as a quasi-natural experiment or event analysis. We could expect to see both

a wealth and a risk (or decrease in yield resiliency) effect.

The results of the event analysis indicate that subsidies have a positive wealth effect and a

decreasing risk substitution effect or increasing yield resiliency effect. The latter is inconsistent

with theory and the literature of Chambers (1989), Miranda (1991), Smith and Goodwin (1996),

Antón et al. (2012), and Di Falco et al. (2014). The former is also surprising in that the increase

in subsidies simply replaced other methods of transfers to the crop production sector (e.g. direct

payments, price supports) rather than causing an influx of greater monies.

Identification in event studies is vulnerable to confounding events. The two possible confounding

events are changing climate and the introduction of GM seeds. We subsequently model our event

parameters as functions of the 1995 premium rates (an instrument for subsidies), changing climate

parameters, and GM adoption rates in 2000. Interestingly, we find that the initial wealth effect

dissipates and the risk substitution or yield resiliency effect reverses. Increased subsidies do not

cause an increase in rates of technological change in the component and overall means. We also

find that increased subsidies caused a decrease rather than an increase in yield resiliency. These

results are consistent with theory.
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We find that the rates of technological change in yields and the resiliency of yields are decreasing

because of climate change, primarily an increase in the number of harmful degree days or days of

excessive heat (as found by Annan and Schlenker (2015)). However, we do find that the introduction

of GM seeds has dominated the subsidy and climate change effects, such that the overall rates of

technological change have increased and yield resiliency has increased (as found by Goodwin and

Piggott (2019)). It is unknown what effect will dominate in the future. It is likely that subsidies

will not experience any further increases and that the adoption of GM seeds is now at nearly 100%.

However, climate does appear to be continuing to change, suggesting that yield resiliency and the

rate of change in yields may decrease in the future unless technology can keep up. These possible

outcomes will have implications for food security, the cost of risk management programs (as noted

by Tack, Coble, and Barnett (2018)), and feeding 9 billion people in 2050. In some sense, our

results coalesce what may appear to be disparate findings in the literature.
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Appendix

Maps

(a) δl (b) δu

(c) δu − δl (d) λ

(e) δλ

Figure 3. Changes in the rates of technological change in the lower (δl) and upper
(δu) components after 1995, δu − δl, probability of a low yield (λ), and change in
the probability of a low yield (δλ).
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Standard Errors

Table 5. Conventional and Jackknife Standard Errors.

Location measures Resiliency measures
δl δu δu − δl δλ Rm Ra

∆GDD SEconv 0.287 0.100 0.274 0.138 0.071 0.075
SEjack 1.244 0.348 1.233 1.499 0.230 0.208

∆HDD SEconv 0.535 0.186 0.511 0.257 0.132 0.140
SEjack 2.142 0.524 2.363 2.111 0.468 0.405

∆V PD SEconv 0.776 0.270 0.741 0.373 0.191 0.204
SEjack 2.084 0.777 2.372 3.331 0.642 0.587

∆V PDja SEconv 0.894 0.311 0.854 0.429 0.220 0.235
SEjack 3.402 1.081 3.127 2.404 0.721 0.617

∆PCP SEconv 0.036 0.013 0.035 0.017 0.009 0.010
SEjack 0.156 0.034 0.147 0.058 0.033 0.032

∆PCPja SEconv 0.069 0.024 0.066 0.033 0.017 0.018
SEjack 0.217 0.076 0.198 0.193 0.070 0.073

Rates SEconv 0.261 0.091 0.249 0.125 0.064 0.068
SEjack 1.287 0.558 1.191 0.585 0.222 0.214

GM SEconv 0.011 0.004 0.010 0.005 0.003 0.003
SEjack 0.061 0.017 0.060 0.029 0.015 0.017
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