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Abstract

Agricultural trade amongst and between the United States and China dominates world
markets and has been complicated by rapid growth, significant changes in domestic farm
policy, intermittent periods of considerable volatility, and, most recently, trade tensions.
It is unlikely that a single GARCH process can adequately accommodate this vacillation.
Not surprisingly, past literature has shown conflicting results depending on the period
considered. We use mixture methods which let the data define the number of possibly
heterogeneous volatility regimes. We model the price volatility transmissions for five
commodities: soybeans, wheat, corn, sugar, and cotton. Specifically, we estimate, test,
and find the presence of multiple regimes using a normal mixture multivariate GARCH
model. We identify different economic structures across the regimes. While we find that
the U.S. tends to play a leading role over China in terms of spillover effects, when the
market state is unstable or highly volatile, we tend to find greater bidirectional volatility
spillovers. Most importantly, we show that the standard approach of modelling spillover
volatilities as a single regime is not valid.
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1 Introduction

Agricultural trade between the United States and China comes with complications: rapid

growth, trade tensions and intermittent periods of considerable volatility. China and the U.S.

are the world’s two dominant food-producing countries which dominate international food

trade. In an era where economies are closely related through trade, investments, and market

integration, volatility transmission across borders is vital for understanding the causes, pat-

terns, impacts of price volatility, and measures available to mitigate the problems associated

with this volatility. Since China’s 2001 accession to the World Trade Organization (WTO),

both markets have become more integrated, which has lead to closer pricing relationships

and the potential that price volatility can be transmitted between markets.

Price volatility — or the variability of prices around a central tendency — has been

measured, decomposed, and predicted with a number of different approaches. Volatil-

ity transmission between markets is frequently measured with a Multivariate Generalized

Autoregressive Conditional Heteroskedastic (MGARCH) model (Assefa, Meuwissen, and

Oude Lansink, 2015). Understanding the source and direction of price volatility flows is

important for all sectors of the economy. The risk associated with the volatility affects in-

vestment decisions, reduces supply response and food consumption, and impacts the welfare

of households (Naylor and Falcon, 2010). Moreover, price volatility may have a negative

impact on growth and thereby contribute to increased poverty (Ramey and Ramey, 1995).

Finally, food price volatility causes planning problems for policy makers and is disruptive

to the food supply chain.

Understanding the trading relationship between China and the U.S. is particularly in-

formative in understanding the formation and transmission of volatility. Rapid initial trade

growth in the years immediately following WTO accession increased U.S. agricultural ex-

ports from $3 billion to more than $9.5 billion in 2007 (FAS-USDA, 2019). This rapid growth

was followed by agricultural price surges from 2006 to 2008. Trade continued to grow and

peaked at $29.4 billion in 2012, again adding pressure to agricultural prices. Rapid trade

growth leads to not only price surges but also trade tensions. After China became the

U.S.’s top agricultural export market outside of North America in 2009, a number of trade
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disputes began to develop. In that year, China initiated an anti-dumping investigation of

U.S. broiler chicken products. In 2018, in reaction to U.S. trade actions against solar panels

and washing machines, China responded by initiating an anti-dumping investigation on U.S.

sorghum. These minor skirmishes, driven by concerns about hidden subsidies and theft of

intellectual property, resulted in disputes that evolved into a trade war. In the summer of

2018, President Trump followed through on threats to impose sweeping tariffs on China.

The resulting showdown between the world’s two biggest economics resulted in a tit-for-tat

game of escalation, with China imposing tariffs on soybeans, beef, pork, fruits, and whiskey.

A December trade truce failed to find a resolution and, by May 2019, a new round of tariffs

was imposed. Shocks associated with prohibitive tariffs or border closures stifle price trans-

mission, make supply and demand more inelastic, and, in turn, increase volatility (Rude and

An, 2015). The interaction between these shocks creates complex dynamics in the transmis-

sion of volatilities, with unobservable states of the market complicating the measurement of

the evolution of risk.

Previous research has assumed a single state of volatility interactions despite the chang-

ing nature of the trading relationship. In general, this research has found spillovers into

China originating from the U.S. market (see Jiang et al. (2017) for a review). Exceptions

include Jiang et al. (2017), who found bidirectional volatility transmission for wheat and

sugar over the period 2005 to 2016, and Hernandez, Ibarra, and Trupkin (2014), who found

bidirectional cross-volatility spillovers for daily soybean futures from 2004 to 2009. How-

ever, with the rapid development and growing importance of China in global agricultural

markets and the volatile nature of the trading relationship between China and the U.S., the

pricing relationship may very well be state-dependent. The objective of this manuscript is

to estimate and test for the existence of multiple regimes using a mixture of multivariate

GARCH models. The normal mixture univariate GARCH model, unlike standard GARCH

models, explicitly allows the evolution of risk to depend on unobservable states of the mar-

ket. This model was applied to U.S. agricultural commodity prices and was found to better

capture the underlying volatility dynamics (Li et al., 2017). In terms of mixtures of multi-

variate GARCH processes, the multivariate innovation term is assumed to follow a mixture

of joint normals, each having a regime-specific conditional variance–covariance structure.
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Bauwens, Hafner, and Rombouts (2007), and Haas, Mittnik, and Paolella (2009) use this

computationally intensive approach to examine financial markets.

In this manuscript, we test if normal mixtures of multivariate GARCH processes improve

the measurement of the direction and magnitude of bilateral volatility spillovers for agricul-

tural daily nearby futures prices between Chinese and the U.S.. A normal mixture GARCH

model has the flexibility of allowing for more than one multivariate GARCH component.

This flexibility can improve the model performance by allowing time-varying conditional

skewness and kurtosis. Furthermore, this flexibility makes it easy to understand the inter-

dependence of agricultural futures markets at different market states, such as a usual state

with low to moderate price movement and a “crisis” state with high price volatility.1 The

study spans the period from 2004 to 2018, focusing on five key agricultural commodities:

soybeans, wheat, corn, sugar, and cotton. This manuscript makes two contributions to the

literature. First, the normal mixture multivariate GARCH model offers a more complete

examination of possibly regime-dependent volatility spillovers and cross-market dependence

between the U.S. and Chinese futures markets. Second, this manuscript is the first empiri-

cal application to use formal statistical criteria to evaluate the goodness-of-fit of the normal

mixture multivariate GARCH model in comparison to the standard one-component GARCH

model.

The structure of the paper is as follows. Section 2 addresses the market background of

the commodities of interest, along with the literature on volatility spillovers between the U.S.

and China for those commodities. Section 3 presents the empirical approach while section 4

outlines the data. Diagnostic testing results are reported in section 5. The empirical results

are discussed in Section 6. Section 7 presents our conclusions.
1Moreover, the normal mixture approach can be considered a simplified version of the Markov switching

GARCH model of Haas and Liu (2018) by assuming constant state probabilities. This simplification avoids
the problem of path-independent conditional variance and makes estimation easier than with the Markov
switching approach (refer to Alexander and Lazar (2009) for a discussion of the comparison of normal mixture
and Markov switching GARCH models in the univariate setting).

4



2 U.S.-China Trade

U.S.-China agricultural trade has grown dramatically since China joined the WTO, and

the two countries have become key trading partners in agricultural products. However, the

trading relationship between the two countries has evolved through time. Since 2012, China

has become the predominant market for U.S. agricultural exports. China imported 16%

of the total value of U.S. agricultural exports in 2016 (Hansen et al., 2017). The annual

total exports of agricultural products to China, however, plunged dramatically after China

imposed retaliatory tariffs, from $21.6 billion in 2016 to $9.3 billion in 2018, a level 24% less

than 2008.

As reported by the Office of the United States Trade Representative (USTR, 2018), soy-

beans and cotton are among the leading export categories from the U.S. to China. Largely

due to its expanding demand for livestock feed, China is now the world’s largest soybean

importer, while the U.S. is the largest soybean producing and exporting country. Calculated

with data from Food and Agriculture Organization of the United Nations (FAO), on aver-

age, U.S. exports accounted for around 40% of China soybean imports between 2004-2016.

Studies generally consistently demonstrated volatility spillovers from the U.S. to the Chinese

agricultural futures market, but more recently, a few (e.g. Han, Liang, and Tang (2013);

Hernandez, Ibarra, and Trupkin (2014)) have found that the volatility spillovers could be

bidirectional.

As for cotton, in addition to being a major importer, China is the largest textile pro-

ducing and exporting country. In 2017, Chinese textile exports accounted for 37.2% of the

global market share (WTO, 2018). In the same year, China bought approximately 16%

of U.S. cotton exports (Liu, Robinson, and Shurley, 2018). Among the limited research

on the interrelation between U.S. and Chinese cotton futures markets, Liu (2009) found

bidirectional volatility spillover, whereas Ge, Wang, and Ahn (2010) found mutual price

transmissions.

Unlike the soybean and cotton markets, as the largest global producer of wheat and

second largest producer of corn, China imports only a small portion of overall domestic con-

sumption (USDA, 2019). Between 2000 and 2014, the U.S. exported about 30% and 80% of
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the total Chinese wheat and corn imports, respectively. In recent years, however, the U.S.

exports to China have dropped considerably given issues related to the use of genetically

modified seed that was not yet approved in China. Beginning in 2014, Ukraine replaced

the U.S. as the major exporter of corn to China (Hansen et al., 2017). Empirical results

regarding the interaction between the U.S. and China for wheat and corn are divergent.

Using price data between 1998 and 2001, Hua and Chen (2007) found no significant linkage

between the U.S. and China’s wheat futures prices, while another study on wheat covering

the period 1996 to 2001 documented bidirectional volatility spillover (Fung, Leung, and Xu,

2003). For both wheat and corn, Hernandez, Ibarra, and Trupkin (2014) found unidirec-

tional volatility spillover from the U.S. to China, while Jiang et al. (2017) found significant

bidirectional volatility spillover between the two markets. Not surprisingly, the time frame

matters significantly, as volatility spillovers can change as market structures change. This

represents one of the primary contributions of our manuscript, as we formally test for the

possibility of changing volatility spillover structures.

China is the top importer of raw sugar, while the U.S. ranks third (USDA, 2018). While

there is not much trade of sugar between the two countries, significant bidirectional volatility

transmission was detected for the period spanning 2006 to 2016 (Jiang et al., 2017). They

found the volatility spillover from the U.S. to China was only significant in the sub-sample

between 2012-2016, while the impact from China to the U.S. was only significant during

the global financial crisis period (2008-2011). Again, the changing structure of the market

dynamics is not surprising and can be modelled with a mixture of possibly different bivariate

GARCH processes.

Another driver of volatility regimes and market dynamics is Chinese government pricing

policies (Yu, 2017). China’s price intervention policies have changed over the estimation

period. The basic instrument involves minimum procurement prices that ensure a price

floor where government intervention purchases are triggered when market prices fall below

pre-established levels. China’s domestic price policies typically differ from commodity to

commodity and the process of policy reform also varied across time. First in 2015, China

replaced intervention procurement prices, for cotton and soybeans, with a new system of

target prices where the target is achieved as a combination of market prices and deficiency
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payments. In 2016 corn procurement and intervention prices were replaced by market prices

and direct subsidies. At the end of 2017 China reduced wheat minimum procurement prices

for the first time on over a decade. Again these market and policy dynamics can be modelled

with a mixture of possible different bivariate GARCH processes.

3 Normal Mixture Multivariate GARCH Model

To examine the interdependence and volatility transmission across agricultural futures mar-

kets between the U.S. and China, we estimate normal mixture bivariate GARCH models.

The two-dimensional time series innovation, denoted by the random error vector εt, is as-

sumed to follow a mixture of k-component joint normals:

εt|Ωt−1 ∼ MNM(p1, . . . , pk, µ1, . . . , µk,H1t, . . . ,Hkt),

where Ωt is the information set at time t, and pi ∈ (0, 1), i = 1, . . . , k are the mixing weights

for the components characterized by the joint density φ(εt|µi,Hit). Note that
∑k

i=1 pi = 1

and we impose that
∑k

i=1 piµi = 0 to ensure that εt has zero mean. As is commonly done,

we additionally assume that the density of each component is symmetric with mean 0 for

parsimony of the mixture model.

We follow Haas, Mittnik, and Paolella (2009) and Chung (2009) to apply the BEKK-

GARCH approach of Engle and Kroner (1995) to specify the conditional variance–covariance

matrix, Hit for each component i. The BEKK model is attractive since it is flexible enough to

account for, in detail, the direction, magnitude of own- and cross-volatility spillover caused

by market shocks (past negative or positive innovations), and persistence of volatility. In

addition, this specification guarantees the positive definiteness of all estimated conditional

covariance matrices. The bivariate BEKK-GARCH(1,1) component can be written as fol-

lows:

Hit = CiC
′
i + Aiεt−1ε

′
t−1A

′
i + BiHit−1B

′
i for i = 1, . . . , k, (1)

where Ci, i = 1, . . . , k are 2 × 2 lower-triangular matrices with elements crj,i; the elements

arj,i of the 2 × 2 matrix Ai measure the spillover effect of a price change in market j on
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the conditional volatility of market r under component i, and the elements brj,i of the 2× 2

matrix Bi measures the direct dependence of the conditional volatility in market r on past

volatility of market j (persistence effect).

We use Schwarz’s Bayesian criterion (SBC) (Schwarz et al., 1978) to select the appro-

priate order M of the vector autoregression (VAR) model for log returns at time t, specified

as follows:

Qt = γ0 +

M∑
q=1

γqQt−q + εt, (2)

where Qt = log(Pt)/log(Pt−1)) ∗ 100 is the vector of the logarithmic return expressed in

percentages for the two markets, and γ0 is a vector of constants. Finally, we estimate

the bivariate NM-GARCH model using the expectation-maximization (EM) algorithm of

Dempster, Laird, and Rubin (1977) with multiple starting values.

4 Data

We use daily closing prices of nearby futures contracts on soybean, wheat, corn, sugar,

and cotton. For China, we use data from the Dalian Commodity Exchange (DCE) and

the Zhengzhou Commodity Exchange (CZCE). For the U.S. we use data from the Chicago

Board of Trade (CBOT) and the New York Mercantile Exchange (NYMEX). The data

were obtained from the Commodity Research Bureau of Barchart.com. To account for the

potential impact of the exchange rate on market interdependence and volatility transmission

between markets, we converted all prices to U.S. dollars.

Given that the Chinese agricultural futures market is relatively new, for each commodity

we choose the time intervals for which data for both markets are available. The end date

of the sample is September 28, 2018, for all commodities. Among the five commodities

considered, soybean futures have the largest sample size (T=3390), whereas wheat has the

shortest sample period (T=1459). Table 1 presents descriptive statistics of the series of

log returns. As shown, the average daily returns for soybean, corn, and cotton in both

China and the U.S. are positive, while the average daily return for wheat is negative in both

countries. Interestingly, the mean returns of the sugar futures have opposite directions in
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the two countries: negative in the United States (-0.010% ), positive in China (0.005%).

For each of the five agricultural commodities, it is evident that the U.S. futures market is

more volatile than that of China. The covariance matrices indicate the two markets exhibit

small correlation. Returns of all series exhibit skewness, with the exception of China’s sugar.

Excess kurtosis exists in all markets, indicating leptokurtic distributions.

[Table 1 about here]

Figure 1 shows the standardized price levels (divided by their own means) for each

commodity in U.S. and China exchanges. While the price movement of soybeans, wheat,

and cotton appear similar, the prices of corn and sugar appear to be less correlated. Over

the sample, there are three price spikes: the first happened from January 2007 to December

2008, the second from December 2010 to December 2012, and the latest in 2017. The

volatility of prices also varies over time and between the two markets.

[Figure 1 about here]

5 Diagnostic Checks

To assess the fit provided by the proposed model in relation to the usual MGARCH model,

we apply several criteria. First, we report the Bayesian information criterion (BIC) of each

model. Second, we test for the unconditional distributional fit of the model-simulated data

against the original data. To maintain the precision of the simulated density, we use 50,000

replications to simulate returns based on the estimated parameters. For each simulation,

1,001 trials of ε values were generated. We only use the last simulated return while discard

the results of the first 1,000 steps of prediction of each simulation to ensure that the returns

are robust to starting values. Third, we perform two-dimensional Kolmogorov–Smirnov (KS)

test generalized by Peacock (1983) with an efficient algorithm proposed by Xiao (2017).

In addition to the above, we apply a series of tests to check the distributional properties

of the standardized residuals of the two models. As the standardized residuals of a mixture

model would not be identically distributed even if the model were correctly specified, we

proceed with a transformation previously applied to a univariate normal mixture-GARCH

model testing by Haas, Mittnik, and Paolella (2004), Alexander and Lazar (2009), and Li

9



et al. (2017). Specifically,

zt = Φ−1
(
F̂ (εt|Ωt−1)

)
, (3)

where Φ−1 is the inverse normal probability distribution function and F̂ (·) is the condi-

tional cumulative distribution function of the error vector εt. Since F̂ (εt|Ωt−1) returns

the cumulative probability, we project the original two-dimensional residuals to a series of

one-dimensional random variables. The transformed residuals zt’s should be independently

and identically distributed standard normal, provided that the model correctly specifies the

underlying data generating process. As shown by Berkowitz (2001), inaccuracies in the

specified density will be preserved in the transformed residuals. Therefore, in principle, one

can use Equation (3) to check correct specification of moment features such as skewness

and kurtosis. Specifically, if zt’s are normally distributed, then we use the following test

statistics m1 = Tg21/6 and m2 = T (g2 − 3)2/24, where T is the sample size, g1 denotes the

sample skewness of zt and g2 the sample kurtosis, and both m1 and m2 are χ2(1) distributed

under the null.

We also test the normality and serial correlation in the transformed series zt. To check the

normality, we implemented the Jarque and Bera (1987) (JB) test (JB = m1+m2
asy∼ χ2 (2)),

and the energy-test of normality proposed by Székely and Rizzo (2005), which was shown

to be very sensitive against heavy-tailed alternatives. The energy test statistic is based

on Euclidean distance between sample moments. The stationary bootstrap of Politis and

Romano (1994) with 10,000 replicates is used to construct the p-values of the energy test.

The block length of the stationary bootstrapping was randomly chosen from a geometric

distribution with mean 20. To test if the conditional volatility is accurately captured by the

specified model, we use the Lagrange Multiplier ARCH test of Engle (1982) to fit a linear

regression model for the squared transformed residuals and examine joint significance.

Table 2 reports the results of the diagnostic tests. The NM-MGARCH model is always

preferred over the usual MGARCH model when using the BIC criterion. Moreover, the

improvement of the NM-MGARCH model is considerable. As for the unconditional density

fit, neither model passed the bivaraite KS test for any commodity. However, the smaller

test statistics showed a clear preference for the NM-MGARCH models. Tests based on
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transformed residuals also confirmed better performance of NM-MGARCH model. While

both models passed the energy test, the NM-MGARCH model always reported substantial

smaller statistics suggestig a much better fit. Furthermore, the one component MGARCH

model failed every single one of the skewness, kurtosis, JB normality, and Engle’s ARCH

tests. Conversely, the NM-MGARCH model passed the skewness test for all commodities

except cotton. The NM-MGARCH model also passed the kurtosis test and JB normality

test for corn. Most importantly, for tests that both models failed, the NM-MGARCH always

had much smaller statistics, indicating a better fit.

[Table 2 about here]

In summary, our results indicate that an NM-MGARCH model fits much better than the

generic MGARCH model. The outcome reflects the fact that the normal mixture models

have additional flexibility. The NM-MGARCH model can capture time-varying skewness

and kurtosis and the possibility that the heteroskedasticity generating process is driven by

more than one GARCH component.

6 Estimation Results

Table 3 reports the estimated parameter matrices and standard errors of the parameters. As

expected, the NM-MGARCH model identifies two regimes with distinctly different volatility

dynamics. The unconditional covariance matrix for each regime (Hi) is in Table 3. For

wheat, corn, and sugar, the NM-MGARCH model captures a highly unbalanced occurrence

of the two market regimes. The lower probability market regime (regime 1) occurs, re-

spectively, 29.5%, 10.1%, and 13.9% of the time. Conversely, for soybean and cotton, the

occurrence of the two market regimes was close to even over time. Regime 1 (lower oc-

currence) and 2 (higher occurrence) are featured by high- and low-volatility, respectively,

except for the cotton market where high-volatility regime occurred slightly more frequently

(51.7%). Another observation is that, except for cotton, the correlations between the U.S.

market and Chinese market are greater during turbulent markets, i.e., in the high-volatility

market. This result is similar to the case of the return of stock market index as investigated

by Haas, Mittnik, and Paolella (2009). Note that these effects cannot be accommodated by
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the traditional multivariate GARCH model. As for the cross-effects between markets, the

estimated off-diagonal coefficients in table 3 identify direct spillover (arj) and persistence or

dependence (brj) effects.

[Table 3 about here]

For soybean, the unconditional volatility in regime 1 is double and triple that in regime 2

for the U.S. market and Chinese market, respectively. We find significant volatility spillovers

from price shocks originating in the U.S. soybean market to that of China in both the low-

volatility and the high-volatility market regimes. In addition, we find significant direct

dependence of the conditional volatility in China on that of the U.S. in the high-volatile

market regime. Though volatility transmission happened in both regimes, the magnitudes

are very different. For example, the magnitude of the persistence effect that occurred in

the volatile state (0.526, SE = 0.022) is significantly bigger than that in the low-volatility

state (0.138, SE = 0.027). While these findings confirm volatility spillover from the U.S.

to China for soybean futures (consistent with the literature see Jiang et al. (2017) for a

review), these results also suggest, the cross-market interdependence of volatility increases

during turbulent market regime, a phenomena found in major stock markets (see Kasch

and Caporin (2013), among others). Such dynamics of the conditional variances cannot be

uncovered by a simple single component or the usual bivariate model, where the estimates

(see Appendix) show significant volatility spillover from the U.S. to China and bidirectional

cross-market volatility persistence. Not surprisingly, the magnitude of volatility spillover

is higher than that in the low-volatility regime and lower than the estimate in the high-

volatility regime. The magnitude of volatility dependence of China on the U.S. is also

in-between those in the low- and high-volatility regimes.

The marginal difference in the volatility of wheat between regimes is much greater in

China than in the U.S.. We find the cross-market conditional volatility dependency of the

U.S. on China in the wheat market only occurring in the low-volatility market regime (the

usual market regime). The mean magnitude of cross-market dependency is substantial but

with a very wide confidence interval (0.757, SE=0.229). We also find that the conditional

volatility of China dependence on that of the U.S. mildly statistically significant but eco-

nomically negligible in magnitude (-0.094, SE=0.056). Although any volatility spillovers are
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surprising given the lack of wheat trade, volatility spillovers from China to the U.S. were

also documented in Fung, Leung, and Xu (2003) and Jiang et al. (2017). Moreover, based

on a sample spanning from 2005 to 2009, Hernandez, Ibarra, and Trupkin (2014) found

unidirectional volatility spillover from the U.S. to China.

For corn, the magnitude of between-regime difference in volatility is large both in the

U.S. market and in China. The volatility of the high-volatility component is nearly 6 times

that of the low-volatility component in China, while the ratio is around 2.5 for the U.S.. We

find, the volatility of corn futures prices in China’s market was affected by past volatility in

the U.S. market during both high-volatility and low-volatility states. The magnitude of the

persistence effect, was again, much stronger in high-volatility state. In fact, the magnitude of

cross-market volatility persistence in the low-volatility (usual) regime, though significantly

different from zero, is economically very small (-0.244, SE=0.028). This makes sense in that

imports only account for a very small percentage of corn consumption in China (Jiang et al.,

2017). In addition, we observe bidirectional volatility spillovers between the two markets

during the high-volatility regime. Considering that the low-volatility regime occurred most

of the time, we can conclude that for corn the volatility transmission is mostly unidirectional

flowing from U.S. to China except in a crisis where the spillover is bidirectional. This finding

provides a more complete picture than the finding using the traditional multivariate GARCH

model (results shown in Appendix), where only the overall bidirectional volatility spillover

and persistence effects were captured. Note, the unidirectional volatility spillover for corn

was also documented in Hernandez, Ibarra, and Trupkin (2014), while Jiang et al. (2017)

found the bidirectional spillover between the two countries.

For sugar, the volatility in the high-volatility regime is over 2 times and around 3.5 times

as high as in the low-volatility regime, in the U.S. and China, respectively. We found signifi-

cant volatility spillover to the U.S. market from a shock originating in China and significant

dependence of volatility in the China’s market on that of the U.S.. However, both are small

in magnitude and only occurred under the low-volatility (the usual) regime. The estimates

of standard multivariate GARCH model suggest no significant volatility spillover between

the two markets, while the volatility persistence effects are bidirectional but economically

negligible in magnitude. Our finding of bidirectional volatility transmission between the
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two countries is consistent with Jiang et al. (2017). While China and U.S. trade very little

sugar, China is among the leading consumers of sugar in the world. Considering, China’s

markets are highly regulated and that China imports a substantial amount of sugar from

global growers, it is not surprising that the price decrease of sugar in 2018 and the subse-

quent tariff increase of China (Patton and Gu, 2018) would affect the international and U.S.

markets.

Regarding cotton, for both the U.S. and China, the high-volatility regime is about 3

times as high as the low-volatility regime. Different bidirectional volatility transmission

was found between the regimes. Significant dependence of volatility in the U.S. market on

that of China was found in the low-volatility regime, while significant volatility spillover

from the U.S. market to China was found in the high-volatility regime. All of those effects

were small in magnitude except for the volatility spillover from the U.S. to China in the

high-volatility regime (-0.708, SE=0.046). The estimates from the standard multivariate

GARCH model suggest significant bidirectional volatility spillover and persistence between

the two markets; the magnitude is negligible except for the volatility dependence of the U.S.

on China (-0.326, SE=0.082). The spillover from China to the U.S. may be due to the fact

that China is a major importer of cotton and the largest textile producing and exporting

country. The substantially smaller magnitude may be due to the fact that China’s cotton

imports from the U.S. took up only a small proportion of U.S. cotton exports (Liu, Robinson,

and Shurley, 2018). The research on volatility spillover between China and the U.S. is very

limited, among which Liu (2009) also found bidirectional volatility spillover between the two

markets.

Finally, we conducted Wald tests for pairwise equality of all cross-volatility coefficients

in both market regimes, reported in the last row of table 3. These tests confirm distinct

cross-market volatility transmissions under the two regimes. In all five commodities, we

rejected the null hypothesis that the off-diagonal coefficients arj and brj are equal across

components/regimes. In summary, our results reveal a number of interesting findings: (i)

volatility spillovers are regime-dependent; (ii) our results are consistent with previous liter-

ature and, at the same time, explain previously incongruent empirical results; (iii) volatility

spillovers tend to flow unidirectionally from the U.S. to China; and (iv) when market regime
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is highly volatile, cross-border volatility spillover and dependence tends to be larger and

bidirectional.

7 Conclusion

While there is substantial literature on the transmission of commodity price volatility across

countries, there is no research that addresses how this transmission changes as market and

policy regimes change. We attempt to remedy this deficiency by applying a multivariate nor-

mal mixture GARCH model. The advantage of this approach is that it maintains the simple

structure of a multivariate GARCH model but mixes components of normal distributions to

accommodate the possibility of regime-specific covariance structure between markets. The

model gives rise to rich dynamics, including time-varying skewness and kurtosis which would

not be encountered, other GARCH models driven by innovations from fat-tailed asymmetric

distributions. This approach allows us to measure the transmission of volatility for major

agricultural prices across the two most important markets which are adjusting to an evolv-

ing relationship that is fraught with increasing tensions at the same time that each becomes

more important to the other.

The most important finding is that while other studies have found spillovers that are

transmitted from the U.S. to China, we find that as events change the marketing regime, the

direction that the volatility flows changes. For most agricultural products, the U.S. is viewed

as the market maker and volatility is transmitted from that market. However, China‘s

increased importance changes the dynamics of pricing relationships. Changes in regimes

affect the direction of the spillover from unidirectional to shared bidirectional. When markets

become less stable highly volatile, they become highly interrelated and there are significant

bidirectional volatility spillovers. Bidirectional flows reflect a more equal role in determining

market disturbances and market power. We performed a battery of tests on the existence

of regime specific volatility spillovers. The results overwhelmingly favored the multiple

regime model over the standard MGARCH model. We also found that the probability of

changing price transmission regimes is higher for soybeans and cotton than for sugar, corn,

and wheat. For both soybeans and cotton, the U.S is the most important exporter and
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China is the most important importer. However, while the U.S is the dominant exporter of

corn and wheat, China is not a significant importer of these products. Furthermore, neither

country exports sugar, and because TRQs insulate each market, their imports play a small

role in international price volatility, so there is a smaller probability of regime shift.

The findings of this study are subject to several limitations. First, by only considering

two normal distributions, we only allow for the possibility of two types of regimes. Sec-

ond, we only make bilateral comparisons. Increasing the dimensionality of the model would

be more realistic, but it would come at a cost of increased complexity with significantly

more parameters and more complex interpretations. Certainly, China and the U.S. domi-

nate agricultural commodity markets, and adjustments in these markets are fundamental to

international price formation.

Price volatility remains a concern for policy makers, analysts, and the general public.

The relationship between China and the U.S. is central to the policy debate and fundamental

to understanding how markets will evolve under stress. Given that the two countries have

not been able to reach a negotiated resolution to the current trade war, the transmission

and amplification of shocks will have long-term implications for risk management policies.
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Table 1: Descriptive statistics of daily returns

Futures Market Sample period Sample
Size

Mean Covariance ma-
trix

Skewness Excess
Kurtosis

Soybean CBOT
DCE

01/02/2004–
09/28/2018

3,390 0.002
0.008

3.007 0.401

0.401 1.283

 -1.386∗∗∗

0.100∗∗
14.048∗∗∗

15.167∗∗∗

Wheat CBOT
CZCE

07/16/2012–
09/28/2018

1,459 -0.038
-0.034

3.223 0.087

0.087 1.162

 0.483∗∗∗

-0.114∗
2.165∗∗∗

9.497∗∗∗

Corn CBOT
DCE

09/22/2004–
09/28/2018

3,239 0.016
0.019

4.000 0.152

0.152 1.098

 -1.032∗∗∗

-1.458∗∗∗
15.906∗∗∗

53.394∗∗∗

Sugar NYBOT
CZCE

01/06/2006–
09/28/2018

2,946 -0.010
0.005

4.976 0.305

0.305 1.434

 -0.263∗∗∗

-0.024
7.124∗∗∗

12.101∗∗∗

Cotton NYBOT
CZCE

05/09/2005–
9/28/2018

3,099 0.011
0.008

3.763 0.415

0.415 1.086

 -0.962∗∗∗

-1.366∗∗∗
14.964∗∗∗

31.872∗∗∗

Note: * p < 0.10, ** p < 0.05, *** p < 0.01.
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Figure 1: Price movement of five commodities
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Table 2: In-sample fit of MGARCH and NM-MGARCH models

Soybean Wheat Corn Sugar Cotton

MGARCH
NM-
MGARCH MGARCH

NM-
MGARCH MGARCH

NM-
MGARCH MGARCH

NM-
MGARCH MGARCH

NM-
MGARCH

BIC 22,566 22,287 10,125 9,528 22,450 20,227 21,544 20,996 20,516 20,448
Multidimensional
K-S test 0.167∗∗∗ 0.113∗∗∗ 0.154∗∗∗ 0.069∗∗∗ 0.234∗∗∗ 0.062∗∗∗ 0.132∗∗∗ 0.051∗∗∗ 0.173∗∗∗ 0.107∗∗∗

Skewness -1.706∗∗∗ -0.037 -1.521∗∗∗ -0.087 -1.805∗∗∗ -0.081∗ -1.697∗∗∗ -0.037 -1.294∗∗∗ -0.190∗∗∗

Kurtosis 18.932∗∗∗ 2.941∗∗∗ 6.825∗∗∗ 0.652∗∗∗ 14.906∗∗∗ -0.039 12.003∗∗∗ 0.408∗∗∗ 5.546∗∗∗ 0.472∗∗∗

JB 52,271∗∗∗ 1,222∗∗∗ 3,394∗∗∗ 27.683∗∗∗ 31,746∗∗∗ 3.719 19,098∗∗∗ 21.152∗∗∗ 4,836∗∗∗ 47.370∗∗∗

Energy test 49.605 7.978 23.201 1.437 80.543 4.382 38.831 1.432 45.516 1.107

Engle’s ARCH test (H0: no ARCH effects)

lag=4 7,709∗∗∗ 1,106∗∗∗ 1,428∗∗∗ 263.4∗∗∗ 5,513∗∗∗ 463.6∗∗∗ 4,654∗∗∗ 476.9∗∗∗ 2,979∗∗∗ 656∗∗∗

lag=8 3,846∗∗∗ 552∗∗∗ 708∗∗∗ 130.1∗∗∗ 2,736∗∗∗ 226.9∗∗∗ 2,333∗∗∗ 231.9∗∗∗ 1,470 ∗∗∗ 304∗∗∗

lag=12 2,559 ∗∗∗ 367∗∗∗ 467∗∗∗ 86.4∗∗∗ 1,811∗∗∗ 149.6∗∗∗ 1,557∗∗∗ 152.2∗∗∗ 975∗∗∗ 197∗∗∗

lag=16 1,916∗∗∗ 274∗∗∗ 348∗∗∗ 63.6∗∗∗ 1,336∗∗∗ 109.7∗∗∗ 1,168∗∗∗ 111.1∗∗∗ 725 ∗∗∗ 146∗∗∗

lag=20 1,527∗∗∗ 219∗∗∗ 275∗∗∗ 50.4∗∗∗ 1,057∗∗∗ 87.3∗∗∗ 898∗∗∗ 86.7∗∗∗ 572∗∗∗ 116∗∗∗

lag=24 1,264∗∗∗ 181∗∗∗ 228∗∗∗ 41.5∗∗∗ 875∗∗∗ 71.8∗∗∗ 744∗∗∗ 71.5∗∗∗ 462 ∗∗∗ 96∗∗∗

Note: * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 3: NM-MGARCH Estimation results

Soybean Wheat Corn Sugar Cotton

p1 0.425 0.295 0.101 0.139 0.483

(0.044) (0.030) (0.009) (0.015) (0.025)

C∗
1


2.717 0

(0.198)

0.156 0.603

(0.056) (0.025)




2.111 0

(0.126)

0.077 1.764

(0.132) (0.115)




3.372 0

(0.210)

−0.15 1.585

(0.310) (0.132)




4.037 0

(0.234)

0.321 2.148

(0.164) (0.161)




0.678 0

(0.067)

0.242 0.361

(0.021) (0.023)



A∗
1


0.386 0.099

(0.088) (0.109)

−0.06 −0.619

(0.064) (0.098)




0.197 −0.184

(0.204) 0.181

−0.031 −0.542

(0.147) (0.148)




0.978 −0.568

(0.177) (0.240)

0.540 −0.995

(0.165) (0.184)




0.026 0.260

(1.375) (0.605)

0.054 0.657

(0.317) (0.248)




0.115 −0.288

(0.053) (0.084)

−0.103 −0.132

(0.016) (0.042)



B∗
1


0.131 −0.450

(0.310) (0.914)

0.526 −0.664

(0.022) (0.040)




0.362 −0.661

(0.177) (0.638)

0.213 −0.045

(0.207) (0.931)




0.469 −0.051

(0.388) (1.452)

−0.833 0.161

(0.133) (0.394)




0.135 −0.474

(0.317) (0.873)

0.061 0.442

(0.237) (0.618)




0.443 −0.228

(0.045) (0.053)

−0.002 0.073

(0.009) (0.013)


H1

5.515 0.901

0.901 2.441

 6.000 0.346

0.346 3.501

 16.897 1.034

1.034 8.454

 15.883 1.921

1.921 6.354

 0.745 0.162

0.162 0.205



C∗
2


1.110 0

(0.034)

−0.132 0.358

(0.042) (0.043)




1.190 0

(0.059)

0.003 0.395

(0.035) (0.038)




1.438 0

(0.028)

0.076 0.264

(0.023) (0.058)




1.489 0

(0.121)

0.414 0.191

(0.049) (0.050)




2.342 0

(0.118)

0.754 0.111

(0.161) (0.082)



A∗
2


0.162 −0.170

(0.183) (0.203)

0.156 −0.054

(0.036) (0.058)




0.311 −0.011

(0.076) (0.091)

−0.007 −0.035

(0.025) (0.070)




0.018 −0.043

(0.043) (0.097)

−0.020 0.210

(0.019) (0.059)




0.114 0.181

(0.068) (0.088)

−0.002 −0.120

(0.025) (0.114)




0.463 0.038

(0.050) (0.083)

0.193 0.138

(0.044) (0.101)



B∗
2


0.23 0.098

(0.059) (0.124)

0.138 0.020

(0.027) (0.067)




0.252 0.757

(0.071) (0.229)

−0.094 0.069

(0.056) (0.207)




0.166 −0.189

(0.05) (0.158)

−0.244 0.020

(0.028) (0.083)




0.591 −0.135

(0.082) (0.185)

−0.243 0.185

(0.031) (0.071)




0.344 −0.123

(0.040) (0.050)

−0.708 0.112

(0.046) (0.091)


H2

1.150 0.037

0.037 0.216

  2.061 −0.026

−0.026 0.176

 2.541 0.047

0.047 0.255

 3.203 0.066

0.066 0.489

 6.561 0.584

0.584 1.712


Wald joint test for equal cross-coefficients on each regime (H0 : arj,1 = arj,2 and brj,1 = brj,2 ∀r 6= j)
Chi-
squared531,431

∗∗∗ 10,606∗∗∗ 110,195∗∗∗ 6,304 ∗∗∗ 901,7894∗∗∗

Numbers in parentheses represent standard errors (SE)
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Appendix

Table A.1: MGARCH Model Estimation results

Soybean Wheat Corn Sugar Cotton

C∗
1


0.159 0

(0.027)

−0.018 0.682

(0.409) (0.041)




0.277 0

(0.038)

0.283 0.749

(0.279) (0.108)




1.882 0

(0.030)

0.101 0.003

(0.065) (0.415)




0.113

(0.029)

0.258 0.205

(0.447) (0.547)




0.097 0

(0.033)

−0.453 0.202

(0.234) (0.529)



A∗
1


0.222 −0.021

(0.013) (0.019)

0.113 −0.471

(0.024) (0.033)




0.195 −0.005

(0.016) (0.066)

−0.016 −0.507

(0.041) (0.052)




0.333 −0.174

(0.034) (0.078)

0.065 −0.801

(0.011) (0.043)




0.124 0.025

(0.012) (0.018)

0.006 0.374

(0.013) (0.025)




0.163 −0.072

(0.012) (0.039)

−0.067 −0.681

(0.014) (0.035)



B∗
1


0.983 −0.099

(0.000) (0.029)

0.178 −0.635

(0.031) (0.040)




0.970 −0.023

(0.000) (0.084)

−0.002 0.483

(0.027) (0.065)




0.000 0.228

(0.140) (0.088)

−0.240 −0.630

(0.020) (0.033)




0.987 0.056

(0.000) (0.025)

0.125 −0.888

(0.018) (0.015)




1.000 −0.326

(0.000) (0.082)

0.113 −0.622

(0.025) (0.029)


Numbers in parentheses represent standard errors
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